JP5811501B2 - Waste melting treatment method - Google Patents
Waste melting treatment method Download PDFInfo
- Publication number
- JP5811501B2 JP5811501B2 JP2011251362A JP2011251362A JP5811501B2 JP 5811501 B2 JP5811501 B2 JP 5811501B2 JP 2011251362 A JP2011251362 A JP 2011251362A JP 2011251362 A JP2011251362 A JP 2011251362A JP 5811501 B2 JP5811501 B2 JP 5811501B2
- Authority
- JP
- Japan
- Prior art keywords
- biomass
- waste
- melting
- molded product
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002844 melting Methods 0.000 title claims description 129
- 230000008018 melting Effects 0.000 title claims description 129
- 239000002699 waste material Substances 0.000 title claims description 99
- 238000000034 method Methods 0.000 title claims description 20
- 239000002028 Biomass Substances 0.000 claims description 165
- 239000011335 coal coke Substances 0.000 claims description 66
- 238000002485 combustion reaction Methods 0.000 claims description 49
- 239000002245 particle Substances 0.000 claims description 31
- 239000002994 raw material Substances 0.000 claims description 21
- 238000000197 pyrolysis Methods 0.000 claims description 19
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 15
- 241000209094 Oryza Species 0.000 claims description 13
- 235000007164 Oryza sativa Nutrition 0.000 claims description 13
- 235000009566 rice Nutrition 0.000 claims description 13
- 239000010903 husk Substances 0.000 claims description 12
- 239000000155 melt Substances 0.000 claims description 10
- 239000000567 combustion gas Substances 0.000 claims description 9
- 239000010902 straw Substances 0.000 claims description 9
- 241000209140 Triticum Species 0.000 claims description 8
- 235000021307 Triticum Nutrition 0.000 claims description 8
- 238000003763 carbonization Methods 0.000 claims description 7
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000000047 product Substances 0.000 description 79
- 238000000465 moulding Methods 0.000 description 41
- 239000000571 coke Substances 0.000 description 25
- 239000007789 gas Substances 0.000 description 25
- 238000002309 gasification Methods 0.000 description 24
- 239000002893 slag Substances 0.000 description 23
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 12
- 239000002184 metal Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 238000007664 blowing Methods 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 239000001569 carbon dioxide Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 235000019738 Limestone Nutrition 0.000 description 5
- 239000003610 charcoal Substances 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 239000006028 limestone Substances 0.000 description 5
- 239000010813 municipal solid waste Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000000748 compression moulding Methods 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000012768 molten material Substances 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 239000003039 volatile agent Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 239000004484 Briquette Substances 0.000 description 1
- -1 Furthermore Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000010794 food waste Substances 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/40—Valorisation of by-products of wastewater, sewage or sludge processing
Landscapes
- Gasification And Melting Of Waste (AREA)
- Processing Of Solid Wastes (AREA)
- Treatment Of Sludge (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
Description
本発明は、廃棄物を廃棄物溶融炉内で熱分解、燃焼し、溶融する廃棄物溶融処理方法に関する。 The present invention relates to a waste melting method for thermally decomposing, burning, and melting waste in a waste melting furnace.
都市ごみやシュレッダーダストなどの廃棄物を処理する技術として、廃棄物を熱分解、燃焼して、熱分解残渣を溶融しスラグにして排出する廃棄物溶融処理が知られている。 As a technology for treating waste such as municipal waste and shredder dust, waste melting treatment is known in which waste is pyrolyzed and burned to melt the pyrolysis residue into slag and discharge it.
この処理方法は、廃棄物を熱分解してガス化することによりその燃焼熱を回収することができるとともに、熱分解残渣を溶融してスラグとして排出した後に、埋立処分などで最終処分されるべき量を減容することができる利点を有している。このような溶融処理方法には幾つかの方式があるが、その一つとして、竪型をなすシャフト炉式廃棄物ガス化溶融炉による方法がある。 This treatment method can recover the heat of combustion by pyrolyzing and gasifying waste, and it should be disposed of in landfills after melting the pyrolysis residue and discharging it as slag. It has the advantage that the volume can be reduced. There are several methods for such melting treatment, and one of them is a method using a shaft furnace type waste gasification melting furnace having a vertical shape.
このシャフト炉式廃棄物ガス化溶融炉は、例えば、炉下部に堆積させたコークスを燃焼させ、この高温のコークス上へ廃棄物を投入して、熱分解及び部分酸化させてガス化するとともに残渣を溶融してスラグにする処理を行なう炉である(特許文献1参照)。 This shaft furnace type waste gasification melting furnace, for example, burns coke deposited in the lower part of the furnace, throws the waste on this high temperature coke, pyrolyzes and partially oxidizes it, and gasifies it as residue Is a furnace that performs a process of melting slag into slag (see Patent Document 1).
特許文献1のシャフト炉式廃棄物ガス化溶融炉においては、竪型筒状をなす炉体の機能が大別して縦(上下)方向で3つの領域に区分される。すなわち、炉下部にコークスを堆積させたコークス床を有する高温燃焼帯が形成され、この高温燃焼帯の上に廃棄物層が形成され、炉体の上部にて該廃棄物層の上方に大きな空間のフリーボード部をなしている。 In the shaft furnace type waste gasification and melting furnace of Patent Document 1, the functions of a vertical cylindrical furnace body are roughly divided into three regions in the vertical (up and down) direction. That is, a high-temperature combustion zone having a coke bed with coke deposited at the lower part of the furnace is formed, a waste layer is formed on the high-temperature combustion zone, and a large space above the waste layer at the upper part of the furnace body. The free board part is made.
かかるガス化溶融炉では、上記3つの領域のそれぞれでは酸素含有ガスの炉内への吹込みが行われる。炉下部における高温燃焼帯には主羽口が設けられていて、投入されて堆積されたコークス床のコークスを燃焼させて、廃棄物の熱分解残渣を溶融する溶融熱源を得るために酸素富化空気が吹き込まれる。また、廃棄物層には副羽口が設けられ、投入されて堆積された廃棄物を緩やかに流動させると共に、廃棄物を熱分解及び部分酸化させるために空気が吹き込まれる。また、フリーボード部には三段目羽口が設けられ、廃棄物が熱分解されて生成した熱分解ガス(可燃性ガス)の一部を部分燃焼させて内部を所定温度に維持するために空気が吹き込まれる。 In such a gasification melting furnace, oxygen-containing gas is blown into the furnace in each of the three regions. A main tuyere is provided in the high-temperature combustion zone at the bottom of the furnace, and oxygen is enriched to obtain a melting heat source that burns the coke of the coke bed deposited and deposited to melt the pyrolysis residue of waste Air is blown. In addition, the waste layer is provided with a sub tuyere, and air is blown in order to gently flow the waste deposited and deposited, and to thermally decompose and partially oxidize the waste. In addition, the free board part is provided with a third stage tuyere to partially burn part of the pyrolysis gas (combustible gas) generated by pyrolyzing waste and maintaining the inside at a predetermined temperature Air is blown.
このようにシャフト炉式廃棄物ガス化溶融炉は、一つの炉で、廃棄物をその炉内での降下に伴い熱分解ガス化処理と溶融処理の両方を行うことのできる設備である。投入された廃棄物は熱分解され、ガスと残渣が生成される。主羽口からの酸素富化空気の送風によりコークス床のコークスが燃焼され高温燃焼帯が形成され、廃棄物の熱分解残渣が溶融されスラグとメタルとして排出される。コークス床はコークス同士間に生ずる空隙で、主羽口からの酸素富化空気やコークス燃焼により発生した高温ガスを通ガスさせるとともに、溶融したスラグとメタルを通液させる高温火格子としても機能している。高温燃焼帯のコークス燃焼により発生した高温ガスが高温燃焼帯の上に形成された廃棄物層の廃棄物を加熱し、副羽口からの空気の送風により廃棄物は熱分解され、この熱分解により発生した可燃性ガスを含むガスは廃棄物層内を上昇し、フリーボード部を経て、炉内上部に設けられた排出煙道より、炉外の二次燃焼室へ排出される。ガスは可燃ガスを多量に含んでいて二次燃焼室で燃焼され、ボイラで熱回収され蒸気を発生させその蒸気が発電等に用いられる。ボイラから排出されたガスは、サイクロンで比較的粗いダストが除去され、さらに、減温装置で冷却され、有害物質除去剤との反応により有害ガスが除去され、集塵機で除塵処理されるなど排ガス処理された後、煙突から大気に放散される。 As described above, the shaft furnace type waste gasification and melting furnace is a facility capable of performing both pyrolysis gasification treatment and melting treatment in one furnace as the waste falls in the furnace. The input waste is pyrolyzed to produce gas and residue. The coke in the coke floor is combusted by blowing oxygen-enriched air from the main tuyere to form a high-temperature combustion zone, and the pyrolysis residue of the waste is melted and discharged as slag and metal. The coke floor is a gap created between cokes, and it functions as a high-temperature grate that allows oxygen-enriched air from the main tuyere and high-temperature gas generated by coke combustion to flow, and also allows molten slag and metal to flow. ing. The high-temperature gas generated by coke combustion in the high-temperature combustion zone heats the waste in the waste layer formed on the high-temperature combustion zone, and the waste is thermally decomposed by blowing air from the sub tuyere. The gas containing the combustible gas generated by the gas rises in the waste layer, and is discharged to the secondary combustion chamber outside the furnace from the exhaust flue provided in the upper part of the furnace through the free board part. The gas contains a large amount of combustible gas and is combusted in the secondary combustion chamber, and heat is recovered by the boiler to generate steam, which is used for power generation and the like. Exhaust gas treatment, such as removing relatively coarse dust with a cyclone, cooling with a temperature reducing device, removing harmful gas by reaction with a hazardous substance remover, and removing dust with a dust collector And then released from the chimney to the atmosphere.
かかる廃棄物ガス化溶融炉では、炉底部にコークスを堆積させたコークス床が形成され、コークスが燃焼して熱分解残渣の溶融熱源となっているが、近年、化石燃料に由来する石炭コークスの使用量を低減して二酸化炭素排出量を削減することが要望されている。石炭コークスの代替としてバイオマスを利用することが提案されており、建築廃材のおがくずを加熱圧縮成形し炭化した炭化物や木炭などの塊状バイオマス炭化物を利用したり(特許文献2参照)、バイオマスを加圧成形したブリケットなどのバイオマス固形物を廃棄物ガス化溶融炉に投入し炉内で炭化物化させ炭化物層を形成し(特許文献3参照)、コークス使用量を削減する廃棄物溶融方法が提案されている。 In such a waste gasification melting furnace, a coke bed in which coke is deposited at the bottom of the furnace is formed, and the coke burns to become a heat source for melting pyrolysis residues. There is a demand for reducing carbon dioxide emissions by reducing the amount used. It has been proposed to use biomass as an alternative to coal coke, and use mass biomass charcoal such as charcoal and charcoal obtained by heat compression molding of sawdust from building waste (see Patent Document 2), or pressurizing biomass A waste melting method has been proposed in which formed solid biomass such as briquette is put into a waste gasification and melting furnace and carbonized in the furnace to form a carbide layer (see Patent Document 3), thereby reducing the amount of coke used. Yes.
二酸化炭素排出量を削減するため、廃棄物溶融炉におけるコークスの使用量を低減するべく、特許文献2、3のようにコークスの代替として塊状バイオマス炭化物を利用したり、バイオマス固形物を炉内で炭化物化して利用するとしても、以下に示す問題がある。すなわち、特許文献2のように塊状バイオマス炭化物を利用したり、特許文献3のようにバイオマス固形物をそのまま廃棄物溶融炉に投入し炉内で炭化物化する場合には、バイオマス原料の有する揮発分の燃焼熱は炭化される過程で消費され、バイオマス原料の固定炭素相当分の熱エネルギーが、コークスの代替としての溶融熱源に用いられる。そのため、石炭コークスを削減しようとする量に対して、多量の塊状バイオマス炭化物やバイオマス固形物を投入することが必要となり、これらは石炭コークスに比べて高価であるため、石炭コークス使用量の削減のために要する費用が嵩み、廃棄物溶融炉の運転費が嵩むという問題がある。また、バイオマス原料が有する揮発分の燃焼熱を有効に利用できていないという問題もある。また、塊状バイオマス炭化物やバイオマス固形物が炉内で炭化された炭化物は、高温での強度が低く高温火格子としての安定性が石炭コークスに比べて劣り、通ガス性や通液性が劣るため溶融炉下部の温度低下や溶融スラグの排出不良が生じ、廃棄物溶融炉の操業が不安定になるという問題がある。 In order to reduce carbon dioxide emissions, in order to reduce the amount of coke used in a waste melting furnace, as in Patent Documents 2 and 3, bulk biomass charcoal is used as an alternative to coke, or biomass solids are used in the furnace. Even if it is carbonized and used, there are the following problems. That is, when using a biomass biomass as in Patent Document 2 or when putting a biomass solid as it is into a waste melting furnace and converting it into a carbide in the furnace as in Patent Document 3, the volatile content of the biomass material The heat of combustion is consumed in the process of carbonization, and the heat energy equivalent to the fixed carbon of the biomass raw material is used as a melting heat source as a substitute for coke. For this reason, it is necessary to input a large amount of massive biomass charcoal and biomass solids with respect to the amount of coal coke to be reduced, and these are expensive compared to coal coke, which reduces the amount of coal coke used. For this reason, there is a problem that the cost required for this is increased and the operating cost of the waste melting furnace is increased. Moreover, there is also a problem that the combustion heat of the volatile component of the biomass raw material cannot be used effectively. In addition, carbides obtained by carbonizing massive biomass carbides and biomass solids in a furnace have low strength at high temperatures and are less stable as coal grate than coal coke, and are inferior in gas permeability and liquid permeability. There is a problem that the temperature of the lower part of the melting furnace is lowered and the discharge of the molten slag is poor, and the operation of the waste melting furnace becomes unstable.
本発明は、上述のような課題を解決するためになされたもので、廃棄物溶融炉における石炭コークスの使用量を低減して二酸化炭素排出量を削減すると共に、廃棄物溶融炉の運転費が嵩むことを抑制することができ、また、バイオマス原料が有する揮発分の燃焼熱を有効に利用でき、さらに安定した操業ができる廃棄物の溶融処理方法を提供することを課題とする。 The present invention has been made to solve the above-described problems, and reduces the amount of coal coke used in a waste melting furnace to reduce carbon dioxide emissions, while reducing the operating cost of the waste melting furnace. It is an object of the present invention to provide a waste melting treatment method that can suppress the increase in volume, can effectively use the combustion heat of volatile components of the biomass material, and can perform stable operation.
本発明に係る廃棄物の溶融処理方法では、廃棄物溶融炉に廃棄物を投入し廃棄物を熱分解、燃焼し、熱分解燃焼残渣を溶融する。 In the waste melting method according to the present invention, waste is put into a waste melting furnace, the waste is pyrolyzed and burned, and the pyrolysis combustion residue is melted.
かかる廃棄物の溶融処理方法において、本発明では、石炭コークス同士間に生じる空隙により燃焼ガスの上昇通気と溶融物の降下通液とを確保する高温火格子を形成することに必要な最小限の供給量で、石炭コークスを廃棄物溶融炉に投入し、溶融炉の下部に石炭コークスで高温火格子を形成する高温火格子形成工程と、その灰分中にSiO2を80重量%以上、K 2 Oを0.3重量%以上含むバイオマス原料を常温で、又は炭化温度より低い温度に加熱しながら加圧成形したバイオマス成形物を廃棄物溶融炉に投入し、バイオマス成形物のバイオマス粒子が熱分解されて生じる灰分粒子の表面を溶融して融液を生じせしめ、融液により、バイオマス粒子が熱分解されて生じる炭化物粒子、熱分解途中のバイオマス粒子及び灰分粒子を融着してそれぞれの粒子を結合させ、成形物形状を維持したままバイオマス成形物を溶融炉下部まで降下到達させるバイオマス成形物投入降下工程と、高温火格子で、石炭コークスと、バイオマス成形物とを燃焼して発生する燃焼熱により熱分解燃焼残渣を溶融する熱分解燃焼残渣溶融工程とを有することを特徴としている。 In the waste melting method, in the present invention, the minimum gap necessary for forming a high-temperature grate that secures the upward ventilation of the combustion gas and the downward flow of the molten material by the gap generated between the coal cokes . With a supply amount, coal coke is charged into a waste melting furnace, and a high-temperature grate forming step is performed in which a high-temperature grate is formed with coal coke at the lower part of the melting furnace, and SiO 2 in the ash is 80 wt% or more , K 2 Biomass molded products obtained by press-molding biomass raw materials containing 0.3 wt% or more of O at normal temperature or while being heated to a temperature lower than the carbonization temperature are put into a waste melting furnace, and the biomass particles of the biomass molded products are pyrolyzed. The surface of the resulting ash particles is melted to form a melt, and the melt causes the biomass particles to be pyrolyzed, and the carbide particles, the biomass particles in the middle of pyrolysis, and the ash particles are fused. Combustion of coal coke and biomass molding with a high temperature grate and a biomass molding charging and lowering process that combines the respective particles and maintains the shape of the molding while keeping the biomass molding down to the bottom of the melting furnace. And a pyrolysis combustion residue melting step for melting the pyrolysis combustion residue with combustion heat generated in this manner.
バイオマスはFAO(国際食料農業機関)によって分類されており、バイオマスとして、林地残材、間伐材、未利用樹、製材残材、建設廃材等の木質系バイオマス、稲わら、籾殻、草本系バイオマス、さらに、製紙系バイオマス、農業残渣、家畜糞尿、食品廃棄物等の未利用バイオマス資源等を挙げることができる。本発明では、その灰分中にSiO2を80重量%以上含むバイオマス原料を加圧成形した成形物をバイオマス成形物として用いる。 Biomass is categorized by FAO (International Food and Agriculture Organization). As biomass, woody biomass such as forest residue, thinned wood, unused trees, sawn timber, construction waste, rice straw, rice husk, herbaceous biomass, Furthermore, paper-based biomass, agricultural residues, livestock manure, unused biomass resources such as food waste can be listed. In the present invention, a molded product obtained by press-molding a biomass material containing 80% by weight or more of SiO 2 in its ash is used as the biomass molded product.
都市ごみ等一般廃棄物の熱分解燃焼残渣(灰分)の主な成分は、SiO2、Al2O3、CaO、MgO、Fe2O3であり、灰分の融点は800℃より高い。バイオマス原料の灰分の主な成分は、SiO2、CaO、MgO、Fe2O3であり、さらにK2Oが含まれるため、本発明のように、その灰分中にSiO2を80重量%以上含むバイオマス原料を加圧成形した成形物(以下、バイオマス成形物という)を用いることにより、バイオマス成形物の灰分には、CaO、MgO、Fe2O3と、高い濃度のSiO2とわずかなK2Oが含まれ、K2Oの存在により灰分の融点が800℃より低くなる部分が存在する。バイオマス粒を加圧成形したバイオマス成形物を溶融炉に投入すると、溶融炉内を下降する間に、溶融炉内温度が800℃程度であれば、バイオマス成形物のバイオマス粒子が熱分解されて生じる灰分粒子の表面が融点温度以上になり、溶融して灰分粒子の表面に融液が生じる。この融液が、バイオマス成形物のバイオマス粒子が熱分解されて生じる炭化物粒子、熱分解途中のバイオマス粒子及び灰分粒子とを融着させ、バイオマス成形物を構成するそれぞれの粒子を結合させ、バイオマス成形物が崩壊することを抑制して、該バイオマス成形物は溶融炉下部まで成形物形状を維持して到達する。溶融炉下部まで到達したバイオマス成形物は、溶融炉内を下降する間の揮発分の放出が抑制されていて、揮発分を含有しているため、溶融炉下部で石炭コークスとともに燃焼して熱分解燃焼残渣の溶融熱源とすることにより、バイオマス原料が有する揮発分の燃焼熱を有効に利用することができる。また、バイオマス成形物は、溶融炉内を下降する間の揮発分の放出が抑制され、1個当りの重量の減少が抑制されるため炉下部に短時間で到達するため、溶融炉下部で溶融熱源として効率よく利用される。 The main components of pyrolysis combustion residue (ash) of municipal waste such as municipal waste are SiO 2 , Al 2 O 3 , CaO, MgO, and Fe 2 O 3 , and the melting point of ash is higher than 800 ° C. The main components of the ash content of the biomass raw material are SiO 2 , CaO, MgO, Fe 2 O 3 and further contain K 2 O. Therefore, as in the present invention, the ash content contains SiO 2 in an amount of 80% by weight or more. By using a molded product obtained by pressure-molding the biomass material (hereinafter referred to as biomass molded product), the ash content of the biomass molded product includes CaO, MgO, Fe 2 O 3 , high concentration of SiO 2 and slight K 2 O is included, and there is a portion where the melting point of ash is lower than 800 ° C. due to the presence of K 2 O. When a biomass molded product obtained by pressure-molding biomass grains is put into a melting furnace, the biomass particles of the biomass molded product are pyrolyzed if the temperature in the melting furnace is about 800 ° C. while descending the melting furnace. The surface of the ash particles becomes higher than the melting point temperature and melts to form a melt on the surface of the ash particles. This melt melts the carbide particles produced by the thermal decomposition of the biomass particles of the biomass molded product, the biomass particles in the middle of the thermal decomposition, and the ash particles, and binds the respective particles constituting the biomass molded product to form the biomass. Suppressing the collapse of the product, the biomass molded product reaches the lower part of the melting furnace while maintaining the shape of the molded product. The biomass molded product that has reached the bottom of the melting furnace is suppressed from releasing volatiles while descending the melting furnace, and contains volatiles. By using the melting heat source of the combustion residue, it is possible to effectively use the combustion heat of the volatile content of the biomass raw material. In addition, since the biomass molded product reaches the lower part of the furnace in a short time because the release of volatile components while descending in the melting furnace is suppressed and the decrease in the weight per piece is suppressed, it is melted in the lower part of the melting furnace. It is efficiently used as a heat source.
バイオマス成形物が、その灰分中にSiO2を80重量%以上含むバイオマス原料を加圧成形した成形物であることが好ましい理由は、以下に説明する評価試験の結果にもとづくものである。 The reason why the biomass molded product is preferably a molded product obtained by pressure-molding a biomass raw material containing 80% by weight or more of SiO 2 in its ash is based on the result of the evaluation test described below.
<評価試験>
籾殻粒(灰分組成を表1−1に示す)に石灰石(CaCO3)、ドロマイト(CaCO3・MgCO3)、酸化鉄(Fe2O3)の微粒子を添加し燃焼後の灰分組成を変えた試料1〜12を調製した。800℃に保持した空気雰囲気のマッフル炉内で上記試料を燃焼し、灰分粒子を顕微鏡で観察し灰分粒子融着の発生の有無を評価した。
<Evaluation test>
The ash composition after combustion was changed by adding fine particles of limestone (CaCO 3 ), dolomite (CaCO 3 .MgCO 3 ) and iron oxide (Fe 2 O 3 ) to rice husk grains (ash composition is shown in Table 1-1). Samples 1-12 were prepared. The sample was burned in a muffle furnace in an air atmosphere maintained at 800 ° C., and ash particles were observed with a microscope to evaluate the occurrence of ash particle fusion.
表1−2、1−3、1−4に示すように、バイオマス成形物は、バイオマス原料の灰分中のSiO2含有率が80重量%以上であると、灰分粒子融着が有り、粒子が結合してバイオマス成形物が崩壊せずに好ましいが、80重量%より低いと、灰分粒子融着が生じていない。すなわち、バイオマス原料の灰分中のSiO2含有率が80重量%より低いと、SiO2、CaO、MgO、Fe2O3及びK2Oを含む灰分の融点が800℃より高くなり、バイオマス成形物が溶融炉内を下降する間に灰分粒子の表面に融液が生じることがなく、バイオマス成形物を構成するそれぞれの粒子を結合させることができず、バイオマス成形物が崩壊してしまい、溶融炉下部まで成形物形状を維持して到達することができないため、好ましくない。 As shown in Tables 1-2, 1-3, and 1-4, when the biomass molded product has an SiO 2 content of 80% by weight or more in the ash content of the biomass raw material, there is ash particle fusion, and the particles are Although it is preferable that the biomass molded product is bonded and does not collapse, if it is lower than 80% by weight, ash particle fusion does not occur. That is, when the SiO 2 content in the ash content of the biomass raw material is lower than 80% by weight, the melting point of the ash content including SiO 2 , CaO, MgO, Fe 2 O 3 and K 2 O becomes higher than 800 ° C. As the molten metal descends in the melting furnace, no melt is generated on the surface of the ash particles, the particles constituting the biomass molding cannot be combined, and the biomass molding collapses. Since it cannot reach the lower part while maintaining the shape of the molded product, it is not preferable.
このような構成における本発明によると、高温火格子を形成する石炭コークスは元来有しているその塊状形状により、コークス同士間に生ずる空隙で通気確保と通液確保とが確実に行われる高温火格子としての機能と、溶融するための熱源としての機能とをもつ。一方、バイオマス成形物は、溶融炉下部まで形状を維持して到達できる最小限の強度と形状を持てばよく、石炭コークスの溶融熱量を補足する溶融熱源としての機能をもつ。したがって、石炭コークスは高温火格子を形成するに必要な最小限の量で足り、溶融熱源として不足する分は上記バイオマス成形物で補うことができ、両者で十分な溶融熱源を確保しつつ、最小の石炭コークスで高温火格子層の形成を可能とする。その結果、廃棄物溶融炉におけるコークスの使用量を低減することができ、二酸化炭素排出量を削減することができる。 According to the present invention in such a configuration, the coal coke forming the high-temperature grate is naturally a high temperature at which air passage and liquid passage are reliably ensured by the gap formed between the cokes due to the lump shape. It has a function as a grate and a function as a heat source for melting. On the other hand, the biomass molded product only needs to have the minimum strength and shape that can be reached while maintaining the shape to the lower part of the melting furnace, and has a function as a melting heat source that supplements the heat of fusion of coal coke. Therefore, the minimum amount of coal coke required to form a high-temperature grate is sufficient, and the shortage as a heat source for melting can be compensated by the above biomass molding, while ensuring a sufficient heat source for melting with both. Coal coke can be used to form a high-temperature grate layer. As a result, the amount of coke used in the waste melting furnace can be reduced, and the amount of carbon dioxide emissions can be reduced.
仮に、バイオマス成形物だけで高温火格子を形成させようとすると、高い高温強度そして所定サイズ以上のバイオマス成形物が必要となるが、その価格は高い。また、高温火格子としての安定性も石炭コークスより劣る。一方、本発明によるとバイオマス成形物は、溶融熱の供給源、すなわち溶融熱源としての役目だけであれば、高い高温強度は必要とされない。したがって、高価なバイオマス炭化物を使用する必要がなく、廃棄物溶融炉の運転費が嵩むことを抑制することができる。 If an attempt is made to form a high-temperature grate only with a biomass molded product, a high-temperature strength and a biomass molded product having a predetermined size or more are required, but the price is high. Moreover, the stability as a high-temperature grate is also inferior to coal coke. On the other hand, according to the present invention, the high-temperature strength is not required for the biomass molded product as long as it serves only as a source of melting heat, that is, as a melting heat source. Therefore, it is not necessary to use expensive biomass carbide, and it is possible to suppress an increase in the operating cost of the waste melting furnace.
このようにして、石炭コークスで高温火格子を形成すると、この石炭コークスとバイオマス成形物が主羽口からの燃焼用空気により燃焼してその燃焼ガスが高温火格子を良好に上昇通気して廃棄物を加熱して熱分解、燃焼そして熱分解燃焼残渣を溶融し、溶融物が良好に上記高温火格子を降下通液する。 In this way, when a high temperature grate is formed with coal coke, the coal coke and biomass molding are burned by the combustion air from the main tuyere, and the combustion gas rises well through the high temperature grate and is discarded. The material is heated to pyrolyze, burn and melt the pyrolysis combustion residue, and the molten material descends through the high-temperature grate well.
また、本発明では、バイオマス成形物として、その灰分中にSiO2を80重量%以上含むバイオマス原料を加圧成形した成形物を用いることにより、溶融炉に投入され溶融炉内を下降する間にバイオマス成形物が崩壊することを抑制して、溶融炉下部まで成形物形状を維持して到達することができるので、バイオマス原料を成形する際に高圧・長時間加工が必要な成型機やバッチ式の成型機を用いる必要が無く、簡単な連続圧縮成型機を用いて簡便に効率よくバイオマス成形物を成形することができる。 Further, in the present invention, as a biomass molded product, by using a molded product obtained by pressure-molding a biomass raw material containing 80% by weight or more of SiO 2 in its ash, while being put into the melting furnace and descending in the melting furnace, By suppressing the collapse of the biomass molded product and maintaining the shape of the molded product down to the lower part of the melting furnace, it is possible to reach the lower part of the melting furnace. It is not necessary to use this molding machine, and a biomass molded product can be molded simply and efficiently using a simple continuous compression molding machine.
本発明において、バイオマス原料は、その灰分含有率がバイオマス原料乾燥重量に対して10〜30重量%であって、その灰分中にSiO2を80重量%以上含み、CaO、MgO、Fe2O3の合計含有率が20重量%以下であることが好ましい。さらに、灰分中にK2Oが0.3重量%以上含まれることが好ましい。 In the present invention, the biomass raw material has an ash content of 10 to 30% by weight with respect to the dry weight of the biomass raw material, and contains 80% by weight or more of SiO 2 in the ash, CaO, MgO, Fe 2 O 3 The total content of is preferably 20% by weight or less. Furthermore, it is preferable that 0.3% by weight or more of K 2 O is contained in the ash.
このような組成のバイオマス原料を用いることにより、灰分の融点が確実に800℃より低くなり、上記の作用効果がより確実に得られ、溶融炉に投入され溶融炉内を下降する間にバイオマス成形物が崩壊することを抑制して、溶融炉下部まで成形物形状を維持して到達することができる。 By using a biomass raw material having such a composition, the melting point of ash is surely lower than 800 ° C., and the above-mentioned effects are more reliably obtained. It is possible to prevent the product from collapsing and to reach the lower part of the melting furnace while maintaining the shape of the molded product.
本発明において、バイオマス成形物は、バイオマス原料を加熱せずに常温で、又は炭化温度より低い温度に加熱しながら加圧成形した成形物とすることができる。本明細書では、炭化温度とは、バイオマス原料の揮発分が揮発し始める温度をいい、乾留が始まる温度でもある。 In the present invention, the biomass molded product can be a molded product that is pressure-molded while heating the biomass raw material at room temperature or a temperature lower than the carbonization temperature. In this specification, the carbonization temperature refers to a temperature at which the volatile matter of the biomass raw material starts to volatilize, and is also a temperature at which dry distillation starts.
バイオマス原料を加熱せずに常温で、又は炭化温度より低い温度に加熱しながら加圧成形したバイオマス成形物は、揮発分を含有しているため、このバイオマス成形物を投入し、溶融炉の下部で燃焼して溶融熱源とすることにより、バイオマス原料が有する揮発分の燃焼熱を有効に利用することができる。また、バイオマス原料を成形する際に高圧・長時間加工が必要な成型機やバッチ式の成型機を用いる必要が無く、簡単な連続圧縮成型機を用いて簡便に効率よくバイオマス成形物を成形することができる。 Since the biomass molded product that has been pressure-molded while heating the biomass raw material at room temperature or at a temperature lower than the carbonization temperature contains volatile components, this biomass molded product is charged and the lower part of the melting furnace. By combusting at a melting heat source, the combustion heat of the volatile content of the biomass material can be used effectively. In addition, when molding biomass raw materials, there is no need to use a molding machine that requires high-pressure and long-time processing or a batch-type molding machine, and a simple and continuous compression molding machine is used to easily and efficiently form a biomass molded product. be able to.
本発明において、バイオマス原料は、米籾殻、麦籾殻、稲藁及び麦藁のうち少なくとも一つを含むこととすることができる。米籾殻と麦籾殻は、高い灰分含有率であり、灰分中のSiO2含有率が80重量%以上である。また、稲藁及び麦藁の灰分中のSiO2含有率が80重量%以上である。 In the present invention, the biomass raw material may include at least one of rice husk, wheat husk, rice straw and wheat straw. Rice husk and wheat husk have a high ash content, and the SiO 2 content in the ash is 80% by weight or more. Further, SiO 2 content in the ash of rice straw and wheat straw is 80 wt% or more.
本発明において、バイオマス成形物は、みかけ密度が1.2g/cm3以上、より望ましくは1.3g/cm3以上であることが好ましい。バイオマス成形物のみかけ密度が1.2g/cm3以上であれば、バイオマス成形物を構成する粒子が緻密に圧接されているので、バイオマス成形物が溶融炉内を下降する間に、高温雰囲気下で粒子が融着結合され崩壊することなくバイオマス成形物が溶融炉下部まで成形物形状を維持して到達することができる。みかけ密度をこのようにする理由は、バイオマス成形物のみかけ密度が1.2g/cm3より小さいと、バイオマス成形物を構成する粒子の圧接が十分でなく、バイオマス成形物が溶融炉内を下降する間に崩壊して溶融炉下部まで成形物形状を維持して到達することができないので好ましくないからである。 In the present invention, the biomass molded product preferably has an apparent density of 1.2 g / cm 3 or more, more preferably 1.3 g / cm 3 or more. If the apparent density of the biomass molded product is 1.2 g / cm 3 or more, the particles constituting the biomass molded product are densely pressed, so that the biomass molded product is kept in a high-temperature atmosphere while descending in the melting furnace. Thus, the biomass molded product can reach the lower part of the melting furnace while maintaining the shape of the molded product without being fused and collapsed. The reason for making the apparent density in this way is that when the apparent density of the biomass molded product is smaller than 1.2 g / cm 3 , the pressure of particles constituting the biomass molded product is not sufficient, and the biomass molded product descends in the melting furnace. This is because it is not preferable because it cannot collapse and reach the lower part of the melting furnace while maintaining the shape of the molded product.
さらに、本発明において、バイオマス成形物は、みかけ密度が1.2g/cm3以上であり、1個当たりの重量が100g以上であることが好ましい。その理由は、バイオマス成形物の1個当たりの重量が100gより小さいと、バイオマス成形物が溶融炉内を下降し溶融炉下部まで到達するまでの時間が長くなったり、バイオマス成形物が溶融炉下部まで到達するまでの間に放出される揮発分の割合が多くなったりするため、バイオマス成形物が十分に揮発分を保持して溶融炉下部まで到達することができないので好ましくないからである。 Furthermore, in the present invention, the biomass molded product preferably has an apparent density of 1.2 g / cm 3 or more and a weight per piece of 100 g or more. The reason is that if the weight per biomass molded product is less than 100 g, it takes longer time for the biomass molded product to descend in the melting furnace and reach the lower part of the melting furnace, This is because the ratio of the volatile matter released before reaching the temperature increases, so that the biomass molded product cannot sufficiently hold the volatile matter and reach the lower part of the melting furnace, which is not preferable.
さらに、本発明において、石炭コークスの炉内への投入量は、少なくとも高温火格子を形成することに必要な量とし、溶融熱源として必要な熱量をバイオマス成形物により補うこととすることが好ましい。 Furthermore, in the present invention, it is preferable that the amount of coal coke introduced into the furnace is at least an amount necessary for forming a high-temperature grate, and the amount of heat necessary as a melting heat source is supplemented by a biomass molded product.
本発明は、以上のように、廃棄物溶融炉で廃棄物を溶融処理する際に、石炭コークスとバイオマス成形物とを投入することとしたので、炉内では石炭コークスにより高温火格子が形成されて、燃焼ガスの上昇通気、溶融物の降下通流が良好に保たれた状態で、高温火格子形成に必要な最小限の石炭コークスと、これを補うバイオマス成形物で溶融熱源を確保でき、石炭コークスの使用量を低減して二酸化炭素排出量を削減すると共に、廃棄物溶融炉の運転費を低減することができ、また、バイオマス原料が有する揮発分の燃焼熱を有効に利用でき、さらに、安定した操業ができる廃棄物の溶融処理方法を提供することができる。 In the present invention, as described above, when the waste is melted in the waste melting furnace, the coal coke and the biomass molded product are charged, so that a high temperature grate is formed by the coal coke in the furnace. With the combustion gas up-flow and the melt down-flow maintained well, the minimum coal coke required for high-temperature grate formation and biomass molding to supplement this can secure a melting heat source, While reducing the amount of carbon dioxide emitted by reducing the amount of coal coke used, the operating cost of the waste melting furnace can be reduced, and the combustion heat of the volatile content of the biomass feedstock can be used effectively. It is possible to provide a waste melting method that enables stable operation.
以下、添付図面の図1にもとづき、本発明の実施形態を説明する。本実施形態では、シャフト炉式廃棄物ガス化溶融炉に、石炭コークスとバイオマス成形物を燃料として供給することを特徴としているが、これらの特徴についての説明に先立ち、このシャフト炉式廃棄物ガス化溶融炉の概要構成を説明する。 Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1 of the accompanying drawings. The present embodiment is characterized in that coal coke and biomass molding are supplied as fuel to the shaft furnace waste gasification melting furnace. Prior to the description of these characteristics, this shaft furnace waste gas A schematic configuration of the chemical melting furnace will be described.
図1に示される本発明の一実施形態のシャフト炉式廃棄物ガス化溶融炉には、ガス化溶融炉1の炉上部に、処理対象物としての廃棄物、燃料としての石炭コークス及びバイオマス成形物、スラグの成分調整材としての石灰石を炉内へ投入するための投入口2が設けられ、また、上部側方には炉内のガスを炉外へ排出するためのガス排出口3が設けられている。また、ガス化溶融炉1の炉底部には溶融スラグと溶融金属を排出するための出滓口4が設けられている。 In the shaft furnace type waste gasification melting furnace of one embodiment of the present invention shown in FIG. 1, waste as a processing object, coal coke as fuel and biomass molding are formed in the upper part of the gasification melting furnace 1. An inlet 2 is provided for introducing limestone as a material and slag component adjusting material into the furnace, and a gas outlet 3 for exhausting the gas inside the furnace to the outside of the furnace is provided on the upper side. It has been. In addition, an outlet 4 for discharging molten slag and molten metal is provided at the bottom of the gasification melting furnace 1.
シャフト炉式廃棄物ガス化溶融炉は、そのガス化溶融炉1の内部空間が縦方向で3つの領域に大別されていて、下方から、炉下部に形成された下部シャフト部I、その上に位置する中部シャフト部II、上部に形成されたフリーボード部IIIを有する領域となっている。これらの各部I,II,IIIは、それぞれ次のような機能を有する領域となっている。すなわち、下部シャフト部Iは、堆積された石炭コークス及びバイオマス成形物を燃焼させて高温燃焼帯を形成する領域、中部シャフト部IIは、この高温燃焼帯上に投入された廃棄物の堆積により形成された廃棄物層の廃棄物を熱分解させる領域、フリーボード部IIIは、生成した可燃性ガスを部分燃焼させる領域である。 In the shaft furnace type waste gasification and melting furnace, the internal space of the gasification and melting furnace 1 is roughly divided into three regions in the vertical direction. This is a region having a middle shaft portion II located at the top and a free board portion III formed at the top. Each of these parts I, II, and III is an area having the following functions. That is, the lower shaft portion I is a region where the deposited coal coke and biomass molded product are burned to form a high temperature combustion zone, and the middle shaft portion II is formed by the accumulation of waste material put on the high temperature combustion zone. The region where the waste in the generated waste layer is thermally decomposed, the free board part III, is a region where the generated combustible gas is partially combusted.
廃棄物ガス化溶融炉1の上方には、都市ごみ等の廃棄物、石炭コークス、バイオマス成形物、生成するスラグの成分調整材として使用する石灰石をそれぞれ供給する供給装置(図示せず)が配設されており、この供給装置から供給された廃棄物、石炭コークス及びバイオマス成形物、石灰石は搬送コンベア(図示せず)により搬送され炉上部の上記投入口2から炉内に投入される。 Disposed above the waste gasification and melting furnace 1 is a supply device (not shown) for supplying waste such as municipal waste, coal coke, biomass molding, and limestone used as a component adjusting material for the generated slag. The waste, coal coke, biomass molded product, and limestone supplied from this supply device are conveyed by a conveyer (not shown) and charged into the furnace through the inlet 2 at the top of the furnace.
廃棄物ガス化溶融炉に形成された上記下部シャフト部I、中部シャフト部II、フリーボード部IIIの各部に対して、それぞれ酸素含有ガスを吹き込む羽口が炉壁に設けられている。すなわち、下部シャフト部Iには、堆積された石炭コークス及びバイオマス成形物を燃焼させて高温燃焼帯を形成し、熱分解残渣を溶融するための酸素富化空気を吹き込む主羽口5が設けられ、中部シャフト部IIには、投入されて堆積された廃棄物を部分燃焼させると共に廃棄物を緩やかに流動させながら熱分解、燃焼させるための空気を吹き込む副羽口6が設けられ、フリーボード部IIIには、廃棄物が熱分解して生成した可燃性ガスを部分燃焼させて内部を所定温度に維持するための空気を吹き込む三段羽口7が設けられている。
A tuyere for blowing oxygen-containing gas is provided on the furnace wall for each of the lower shaft portion I, the middle shaft portion II, and the freeboard portion III formed in the waste gasification melting furnace. In other words, the lower shaft portion I is provided with a
ガス排出口3に二次燃焼室10が接続して設けられており、廃棄物を熱分解して生成した可燃性ガスを燃焼する。二次燃焼のための空気を吹き込む空気送風口11が設けられている。また、この二次燃焼室10には、該二次燃焼室10で可燃性ガスを燃焼した燃焼ガスから熱回収するボイラ12が隣接して設けられている。
A
一方、上記投入口2から炉内に投入されるバイオマス成形物は、その灰分中にSiO2を80重量%以上含むバイオマス原料を粉砕し、連続圧縮成型機、押出し成型機等を用いて、バイオマス原料を加熱せずに常温で、又は炭化温度より低い温度に加熱しながら加圧成形することにより得られる。このようなバイオマス成形物を用いることにより、溶融炉に投入され溶融炉内を下降する間にバイオマス成形物が崩壊することなく、溶融炉下部まで成形物形状を維持して到達することができる。バイオマス成形物は、溶融炉内に投入された後、炉内で揮発分の熱分解、燃焼が抑制され、炉下部まで到達することができ、バイオマス原料が有する揮発分の燃焼熱を溶融熱源として有効に利用することができる。 On the other hand, the biomass molded product charged into the furnace through the charging port 2 is obtained by pulverizing a biomass material containing 80% by weight or more of SiO 2 in its ash, and using a continuous compression molding machine, an extrusion molding machine, etc. It can be obtained by pressure molding while heating the raw material at normal temperature or without heating to a temperature lower than the carbonization temperature. By using such a biomass molded product, it is possible to maintain the molded product shape and reach the lower portion of the melting furnace without collapsing the biomass molded product while it is charged into the melting furnace and descended in the melting furnace. After the biomass molded product is put into the melting furnace, the pyrolysis and combustion of the volatile matter in the furnace is suppressed, and it can reach the lower part of the furnace, and the combustion heat of the biomass raw material has as the melting heat source. It can be used effectively.
バイオマス成形物の形状は、例えば、直径50mm程度、長さ数十mm程度の円柱状とし、中心軸に直径十数mmの孔が貫通しているものなどが好適であるが、寸法や形状に限定されないことは言うまでも無い。 The shape of the biomass molded product is preferably, for example, a columnar shape having a diameter of about 50 mm and a length of about several tens of mm, and a hole having a diameter of several tens of mm penetrating the central axis is suitable. It goes without saying that it is not limited.
バイオマス原料は、米籾殻、麦籾殻、稲藁及び麦藁のうち少なくとも一つを用い、これらの混合物でもよい。米籾殻から成形したバイオマス成形物の性状例を表2に示す。揮発分が高いことと、灰分中SiO2の含有率が高いことが分かる。 The biomass raw material may be at least one of rice husk, wheat husk, rice straw and wheat straw, and may be a mixture thereof. Table 2 shows examples of properties of the biomass molded product formed from rice husk. It can be seen that the volatile content is high and the content of SiO 2 in the ash is high.
このように構成される本実施形態装置では、廃棄物のガス化溶融処理は次の要領で行われる。 In the present embodiment configured as described above, the waste gasification and melting treatment is performed as follows.
供給装置からの廃棄物、石炭コークス及びバイオマス成形物、石灰石がガス化溶融炉1の上部に設けられた投入口2を経て、それぞれ所定量ずつ炉内へ投入され、主羽口5、副羽口6、及び三段羽口7から、それぞれ酸素富化空気又は空気が炉内へ吹き込まれる。上記投入口2から投入された廃棄物は、炉内で中部シャフト部IIに堆積して廃棄物層を形成し、下部シャフト部Iの高温燃焼帯から上昇してくる高温ガス及び副羽口から吹き込まれる空気によって乾燥され、次いで部分燃焼および熱分解される。熱分解により生成した可燃性ガスは、フリーボード部IIIにて、三段羽口から吹き込まれる空気により燃焼して850℃以上の温度に保たれ、有害ガスとタール分を分解させる処理が施されてから炉外に設けられた二次燃焼室へ送られ、その燃焼ガスがボイラで熱回収される。石炭コークスは下部シャフト部Iに下降し、バイオマス成形物は、崩壊することなく降下し、途中で揮発分が熱分解、燃焼されることが抑制されながら、下部シャフト部Iに下降し、石炭コークス及びバイオマス成形物が燃焼する高温燃焼帯が形成される、中部シャフト部IIの廃棄物層で廃棄物が熱分解した残渣は下降し、石炭コークス及びバイオマス成形物が燃焼されている高温燃焼帯が形成されている下部シャフト部Iに達し、該下部シャフト部Iにて、バイオマス成形物中の揮発分と、石炭コークス及びバイオマス成形物中の固定炭素が燃焼し、不燃物が溶融し溶融スラグと溶融金属になる。溶融スラグと溶融金属は出滓口4から排出され、炉外に設けられた水砕装置に供給され冷却固化され、冷却固化された水砕スラグと水砕金属が回収される。 Waste from the supply device, coal coke, biomass molding, and limestone are introduced into the furnace by a predetermined amount through the inlet 2 provided in the upper part of the gasification melting furnace 1, respectively. Oxygen-enriched air or air is blown into the furnace from the mouth 6 and the three-stage tuyere 7, respectively. The waste introduced from the inlet 2 is deposited on the middle shaft part II in the furnace to form a waste layer, and from the high temperature gas and sub tuyere rising from the high temperature combustion zone of the lower shaft part I. It is dried by blown air and then partially burned and pyrolyzed. The combustible gas generated by pyrolysis is combusted by the air blown from the three-stage tuyere at the freeboard section III and maintained at a temperature of 850 ° C. or higher, and is subjected to a treatment for decomposing harmful gas and tar. After that, it is sent to a secondary combustion chamber provided outside the furnace, and the combustion gas is recovered by the boiler. Coal coke descends to the lower shaft part I, and the biomass molded product descends without collapsing, and the volatiles are lowered to the lower shaft part I while being suppressed from being pyrolyzed and combusted along the way. And a high-temperature combustion zone in which the biomass molding is burned is formed, a residue obtained by pyrolyzing the waste in the waste layer of the middle shaft portion II descends, and a high-temperature combustion zone in which the coal coke and the biomass molding are burned The lower shaft portion I is formed, and in the lower shaft portion I, the volatile matter in the biomass molded product, the coal coke and the fixed carbon in the biomass molded product burn, the incombustible material melts, and the molten slag Become a molten metal. The molten slag and molten metal are discharged from the tap 4 and supplied to a water granulating device provided outside the furnace, cooled and solidified, and the cooled and solidified granulated slag and granulated metal are recovered.
廃棄物ガス化溶融炉に石炭コークスとバイオマス成形物を投入することで、ガス化溶融炉1の下部には石炭コークスで高温火格子を形成し、石炭コークスとバイオマス成形物を燃焼して、廃棄物の熱分解残渣(灰分)、不燃物を溶融する溶融熱源とする。石炭コークスの炉内への投入量は、高温火格子を形成することに必要な量とし、溶融熱源として必要な熱量をバイオマス成形物により補うこととし、それぞれ所定量を投入する。 By putting coal coke and biomass molding into the waste gasification and melting furnace, a high-temperature grate is formed in the lower part of the gasification melting furnace 1 with coal coke, and the coal coke and biomass molding are burned and discarded. A heat source for melting thermal decomposition residue (ash) and non-combustible material. The amount of coal coke introduced into the furnace is an amount necessary for forming a high-temperature grate, and the amount of heat necessary as a melting heat source is supplemented by a biomass molded product, and a predetermined amount is respectively charged.
このような廃棄物のガス化溶融処理過程において、燃料としての石炭コークスとバイオマス成形物のうち、石炭コークスは炉内への投入当初から塊状をなしており、下部シャフト部Iの高温燃焼帯で、石炭コークス同士間での隙間により、高温火格子を形成する。この高温火格子の層は、その上面が主羽口5よりも上方に位置しており、主羽口5からの酸素富化空気または空気が上記隙間を上昇通気し、石炭コークスとバイオマス成形物の燃焼が良好に行われその十分なる燃焼ガスが廃棄物層へ到達する。一方、高温燃焼帯で廃棄物の不燃物や灰分が、石炭コークスとバイオマス成形物の燃焼による熱量により十分に溶融して、溶融スラグと溶融金属が生ずる。溶融スラグと溶融金属は、上記高温火格子の隙間を良好に降下通流し、出滓口4に達する。
In such a process of gasification and melting of waste, coal coke as a fuel and a biomass molded product are in a lump from the beginning of charging into the furnace, and in the high temperature combustion zone of the lower shaft portion I. A high-temperature grate is formed by a gap between coal cokes. The upper surface of this high-temperature grate layer is located above the
このような廃棄物のガス化溶融処理方法によると、高温火格子を形成する石炭コークスは元来有しているその塊状形状により、コークス同士間に生ずる空隙で通気確保と通液確保とが確実に行われる高温火格子としての機能と、溶融するための熱源としての機能とをもつ。一方、バイオマス成形物は、下部シャフト部Iまで形状を維持して到達できるだけの強度と形状を持てばよく、石炭コークスの溶融熱量を補足する溶融熱源としての機能をもつ。したがって、石炭コークスは高温火格子を形成するに必要な最小限の量で足り、溶融熱源として不足する分は上記バイオマス成形物で補うことができ、両者で十分な溶融熱源を確保しつつ、最小の石炭コークスで高温火格子層の形成を可能とする。バイオマス成形物は、溶融熱の供給源、すなわち溶融熱源としての役目だけであれば、高い高温強度は必要とされない。したがって、低価格のバイオマス成形物を使用することができ、廃棄物溶融炉の運転費を低減することができる。 According to such a gasification and melting method for waste, the coke that forms the high-temperature grate is surely ensured to ensure ventilation and liquid passage in the gap formed between the cokes due to its bulk shape. It has a function as a high-temperature grate and a function as a heat source for melting. On the other hand, the biomass molded article only needs to have a strength and a shape that can be reached while maintaining the shape up to the lower shaft portion I, and has a function as a melting heat source that supplements the heat of fusion of coal coke. Therefore, the minimum amount of coal coke required to form a high-temperature grate is sufficient, and the shortage as a heat source for melting can be compensated by the above biomass molding, while ensuring a sufficient heat source for melting with both. Coal coke can be used to form a high-temperature grate layer. As long as the biomass molded product only serves as a source of melting heat, that is, as a melting heat source, high-temperature strength is not required. Therefore, a low-cost biomass molded product can be used, and the operating cost of the waste melting furnace can be reduced.
このようにして、石炭コークスで高温火格子を形成すると、この高温火格子の石炭コークスと高温火格子に堆積したバイオマス成形物が主羽口からの燃焼用空気により燃焼してその燃焼ガスが高温火格子を良好に上昇通気して廃棄物を加熱して熱分解、燃焼そして溶融し、溶融物が良好に上記高温火格子を降下通液する。 In this way, when a high-temperature grate is formed with coal coke, the coal coke of this high-temperature grate and the biomass molding deposited on the high-temperature grate are burned by the combustion air from the main tuyere and the combustion gas becomes high temperature. The grate is lifted and ventilated well, and the waste is heated to thermally decompose, burn and melt, and the molten material descends through the high-temperature grate well.
このように、高温火格子では、燃焼ガスの上昇通気そして溶融スラグと溶融金属の降下通流を良好に維持しつつ、燃料としての石炭コークスとバイオマス成形物が燃焼される。その燃焼に際して、石炭コークスは高温火格子の形成に必要な量だけで良く、廃棄物のガス化溶融に必要な熱量として不足する分は、バイオマス成形物で補われる。さらに、バイオマス原料が有する揮発分の燃焼熱を溶融熱源として有効に利用することができる。 As described above, in the high-temperature grate, coal coke as a fuel and a biomass molded product are combusted while maintaining good upflow of combustion gas and downflow of molten slag and molten metal. During the combustion, only the amount of coal coke required for the formation of the high-temperature grate is required, and the amount of heat necessary for gasification and melting of the waste is supplemented with the biomass molding. Furthermore, the combustion heat of the volatile content of the biomass material can be effectively used as a melting heat source.
かくして、石炭コークスの使用量を極力抑制することができ、一方、バイオマス成形物に関しては、下部シャフト部Iまで形状を維持して到達できるだけの強度と形状を持てばよく、低価格のバイオマス成形物でも燃料として使用することができるようになる。このようにして、石炭コークスの使用量を低減して二酸化炭素排出量を削減すると共に、廃棄物溶融炉の運転費を低減することができ、安定した操業ができる廃棄物の溶融処理ができる。 Thus, the amount of coal coke used can be suppressed as much as possible. On the other hand, as for the biomass molded product, it is only necessary to maintain the shape and reach the lower shaft portion I, and to obtain a low-cost biomass molded product. But it can be used as fuel. In this way, the amount of coal coke used can be reduced to reduce carbon dioxide emissions, the operating cost of the waste melting furnace can be reduced, and the waste can be melted for stable operation.
図1の廃棄物溶融炉を用いて、表2に示す米籾殻から成形したバイオマス成形物を供給して石炭コークスの削減効果を調べた。 Using the waste melting furnace shown in FIG. 1, a biomass molded product formed from rice husk shown in Table 2 was supplied to examine the reduction effect of coal coke.
バイオマス成形物の使用により石炭コークス使用量を削減する場合に懸念されることは、溶融炉下部においてスラグを溶融させる熱が不足し、スラグの溶融および排出が困難となることである。そこで、本実施例では、バイオマス成形物の使用量を増加させながら、スラグの出滓状況を確認し、スラグが溶融および排出困難とならないためのスラグ温度(基準値)を確保できるように、石炭コークス使用量を削減し、石炭コークス削減率と、バイオマス成形物使用率との関係を調べた。 A concern when reducing the amount of coal coke used by using biomass molding is that heat for melting the slag is insufficient at the lower part of the melting furnace, making it difficult to melt and discharge the slag. Therefore, in this example, while increasing the amount of biomass molded product used, the slag output status is confirmed, and the slag temperature (reference value) is secured so that the slag does not become difficult to melt and discharge. Coke consumption was reduced, and the relationship between coal coke reduction rate and biomass molding usage rate was investigated.
石炭コークスの削減効果を評価するにあたり、バイオマス成形物使用率RB(重量%)および石炭コークス削減率RΔC(重量%)を以下のように定義する。
RB = B / CO × 100 (1)
RΔC = (CO − C)/ CO × 100 (2)
ここで、COは石炭コークスのみによる操業時の条件における石炭コークス原単位 (kg/t−ごみ)、
Cはバイオマス成形物を使用したときの石炭コークス原単位 (kg/t−ごみ)、
Bはバイオマス成形物原単位 (kg/t−ごみ)を示す。
In evaluating the reduction effect of coal coke, the biomass molding usage rate R B (% by weight) and the coal coke reduction rate R ΔC (% by weight) are defined as follows.
R B = B / C O × 100 (1)
R ΔC = (C O −C) / C O × 100 (2)
Here, CO is the basic unit of coal coke (kg / t-garbage) under the condition of operation using only coal coke,
C is the basic unit of coal coke (kg / t-garbage) when using biomass molding,
B shows biomass basic unit (kg / t-garbage).
またバイオマス成形物の熱利用効率を石炭コークスの熱利用効率と比較したバイオマス熱利用率RH(熱量%)を以下のように定義する。
RH = HB / HΔC × 100 (3)
ここでHBは投入したバイオマス成形物の発熱量原単位(MJ/t−ごみ)、HΔCは削減した石炭コークス相当分の発熱量原単位(MJ/t−ごみ)を示す。発熱量原単位は熱利用効率に相当し、この発熱量は揮発分の発熱量も含むことは言うまでもない。
Moreover, the biomass heat utilization rate R H (heat amount%) in which the heat utilization efficiency of the biomass molded product is compared with the heat utilization efficiency of coal coke is defined as follows.
R H = H B / H ΔC × 100 (3)
Here, H B represents the calorific value basic unit (MJ / t-garbage) of the input biomass molded product, and H ΔC represents the calorific value basic unit (MJ / t-garbage) corresponding to the reduced coal coke. The calorific value basic unit corresponds to the heat utilization efficiency, and it goes without saying that this calorific value includes the calorific value of volatile matter.
石炭コークス削減率RΔC及びバイオマス熱利用率RHと、バイオマス成形物使用率RBとの関係を表3に示す。バイオマス成形物を使用することにより、スラグが溶融および排出困難とならない状況を確保しつつ、最大で38重量%のコークス削減率が可能であるという結果を得た。またバイオマス成形物の熱利用率は100熱量%以上となり、バイオマス成形物は揮発分も含む発熱量により、相当量以上の石炭コークスを代替していることが示された。これはスラグ溶融の溶融熱源にバイオマス成形物の揮発分を含む熱量が大きく寄与しており、また、バイオマス成形物は、下部シャフト部Iに到達するまでに失われる熱量が、石炭コークスよりも少ないことを示すものである。 And coal coke reduction ratio R [Delta] C and biomass heat utilization rate R H, the relationship between the biomass molding utilization R B shown in Table 3. By using the biomass molded product, it was possible to obtain a coke reduction rate of 38% by weight at the maximum while ensuring that the slag did not become difficult to melt and discharge. Moreover, the heat utilization rate of the biomass molded product was 100 calorie% or more, and it was shown that the biomass molded product replaced a considerable amount of coal coke by the calorific value including volatile matter. This greatly contributes to the amount of heat that contains the volatile content of the biomass molding in the melting heat source of slag melting, and the biomass molding loses less heat than coal coke before reaching the lower shaft part I. It shows that.
1 ガス化溶融炉 1 Gasification melting furnace
Claims (4)
石炭コークス同士間に生じる空隙により燃焼ガスの上昇通気と溶融物の降下通液とを確保する高温火格子を形成することに必要な最小限の供給量で、石炭コークスを廃棄物溶融炉に投入し、溶融炉の下部に石炭コークスで高温火格子を形成する高温火格子形成工程と、
その灰分中にSiO2を80重量%以上、K 2 Oを0.3重量%以上含むバイオマス原料を常温で、又は炭化温度より低い温度に加熱しながら加圧成形したバイオマス成形物を廃棄物溶融炉に投入し、バイオマス成形物のバイオマス粒子が熱分解されて生じる灰分粒子の表面を溶融して融液を生じせしめ、融液により、バイオマス粒子が熱分解されて生じる炭化物粒子、熱分解途中のバイオマス粒子及び灰分粒子を融着してそれぞれの粒子を結合させ、成形物形状を維持したままバイオマス成形物を溶融炉下部まで降下到達させるバイオマス成形物投入降下工程と、
高温火格子で、石炭コークスと、バイオマス成形物とを燃焼して発生する燃焼熱により熱分解燃焼残渣を溶融する熱分解燃焼残渣溶融工程とを有することを特徴とする廃棄物の溶融処理方法。 In a waste melting treatment method in which waste is put into a waste melting furnace, the waste is pyrolyzed and burned, and the pyrolysis combustion residue is melted.
Coal coke is thrown into the waste melting furnace with the minimum supply required to form a high-temperature grate that ensures the upward flow of combustion gas and the downward flow of melt due to the gap between the coal cokes. And a high-temperature grate forming step of forming a high-temperature grate with coal coke at the bottom of the melting furnace,
Waste biomass melted biomass material that is pressure-molded while heating a raw material containing 80% by weight or more of SiO 2 and 0.3 % by weight or more of K 2 O at room temperature or lower than the carbonization temperature. It is put into a furnace, the surface of the ash particles generated by the thermal decomposition of the biomass particles of the biomass molded product is melted to produce a melt, and the carbide particles generated by the thermal decomposition of the biomass particles by the melt, Biomass product input and descent step of fusing biomass particles and ash particles to combine the particles, and lowering the biomass molded product to the bottom of the melting furnace while maintaining the shape of the molded product,
A waste melting method comprising melting a pyrolysis combustion residue by combustion heat generated by burning coal coke and a biomass molded product in a high-temperature grate .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011251362A JP5811501B2 (en) | 2011-11-17 | 2011-11-17 | Waste melting treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011251362A JP5811501B2 (en) | 2011-11-17 | 2011-11-17 | Waste melting treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013108629A JP2013108629A (en) | 2013-06-06 |
JP5811501B2 true JP5811501B2 (en) | 2015-11-11 |
Family
ID=48705568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011251362A Active JP5811501B2 (en) | 2011-11-17 | 2011-11-17 | Waste melting treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5811501B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113462414B (en) * | 2021-06-28 | 2022-12-06 | 辽宁昌盛节能锅炉有限公司 | Biomass raw material pyrolysis furnace |
WO2023181585A1 (en) * | 2022-03-22 | 2023-09-28 | 一般財団法人科学技術振興育英財団 | Energy gas/liquid generation vertical furnace system and generation method, fuel production method, transport device, and method |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58145397A (en) * | 1982-02-22 | 1983-08-30 | Ichiro Shimada | High speed molding machine |
JP4276559B2 (en) * | 2004-03-03 | 2009-06-10 | 新日鉄エンジニアリング株式会社 | Waste melting treatment method using biomass |
JP4894057B2 (en) * | 2004-10-13 | 2012-03-07 | 独立行政法人農業・食品産業技術総合研究機構 | Highly soluble silicic acid fertilizer method for firewood burning ash |
WO2006077652A1 (en) * | 2005-01-24 | 2006-07-27 | Osaka Industrial Promotion Organization | Woody biomas solid fuel and method for production thereof |
US7998448B2 (en) * | 2006-10-27 | 2011-08-16 | Kurimoto, Ltd. | Amorphous silica and its manufacturing method |
JP2008274108A (en) * | 2007-04-27 | 2008-11-13 | Mhi Environment Engineering Co Ltd | Bio-coke manufacturing apparatus and method |
JP2010024393A (en) * | 2008-07-23 | 2010-02-04 | Eco-Material Inc | Biomass fuel using grass plants, wood branches and leaves as main raw materials, and method for producing the same |
WO2011027394A1 (en) * | 2009-09-03 | 2011-03-10 | 新日鉄エンジニアリング株式会社 | Waste treatment method |
-
2011
- 2011-11-17 JP JP2011251362A patent/JP5811501B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013108629A (en) | 2013-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5458219B2 (en) | Waste melting treatment method and coal coke usage reduction method for waste melting furnace | |
JP4377824B2 (en) | Waste melting treatment method using biomass | |
JP5180917B2 (en) | Waste melting treatment method and waste melting treatment apparatus | |
JP5319980B2 (en) | Method for producing coke for waste melting furnace | |
JP2006057082A (en) | Method for producing carbon-containing molded product and method for melting treatment of waste using the carbon-containing molded product | |
JP5811501B2 (en) | Waste melting treatment method | |
JP2008081638A (en) | Method for gasifying woody biomass | |
JP4191636B2 (en) | Waste melting treatment method using bulk biomass | |
JP4276559B2 (en) | Waste melting treatment method using biomass | |
JP6168287B2 (en) | Waste melting treatment method | |
JP5945929B2 (en) | Waste gasification and melting equipment | |
JP5605576B2 (en) | Waste gasification and melting equipment | |
JP2017161187A (en) | Waste gasification fusion equipment and waste gasification fusion method | |
JP2008081635A (en) | Method for gasifying woody biomass | |
JP6100097B2 (en) | Waste melting treatment method | |
JP4589226B2 (en) | Method for producing fuel carbide and fuel gas | |
WO2005080874A1 (en) | Waste fusion treatment method utilizing powdery biomass | |
JP2012145272A (en) | Waste gasification melting treatment method | |
JP6299467B2 (en) | Waste gasification and melting apparatus and waste gasification and melting method | |
JP2004347257A (en) | Operation method of gasification melting furnace | |
JP5794662B2 (en) | Waste melting treatment method | |
JP6299466B2 (en) | Waste gasification and melting apparatus and waste gasification and melting method | |
JP2024031730A (en) | Waste treatment method | |
JP2008081636A (en) | Method for generating power from woody biomass and system for generating power from woody biomass | |
JP2010038535A (en) | Waste melting treatment method and waste melting treatment device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140306 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150326 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150824 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150906 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5811501 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R157 | Certificate of patent or utility model (correction) |
Free format text: JAPANESE INTERMEDIATE CODE: R157 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |