JP4589226B2 - Method for producing fuel carbide and fuel gas - Google Patents

Method for producing fuel carbide and fuel gas Download PDF

Info

Publication number
JP4589226B2
JP4589226B2 JP2005370651A JP2005370651A JP4589226B2 JP 4589226 B2 JP4589226 B2 JP 4589226B2 JP 2005370651 A JP2005370651 A JP 2005370651A JP 2005370651 A JP2005370651 A JP 2005370651A JP 4589226 B2 JP4589226 B2 JP 4589226B2
Authority
JP
Japan
Prior art keywords
gas
fuel
carbide
producing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005370651A
Other languages
Japanese (ja)
Other versions
JP2007169515A (en
Inventor
也寸彦 加藤
裕三 堺
雄一 吉本
雅也 栗田
茂 橋本
浩一 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Engineering Co Ltd filed Critical Nittetsu Plant Designing Corp
Priority to JP2005370651A priority Critical patent/JP4589226B2/en
Publication of JP2007169515A publication Critical patent/JP2007169515A/en
Application granted granted Critical
Publication of JP4589226B2 publication Critical patent/JP4589226B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Description

本発明は、シャフト炉にバイオマス原料を装入し、バイオマス原料の部分燃焼熱により乾留ガス化し、炭化物と乾留ガスを生成させる燃料用炭化物および燃料ガスの製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a fuel carbide and a fuel gas production method in which a biomass raw material is charged into a shaft furnace and is subjected to dry distillation gas by partial combustion heat of the biomass raw material to generate carbide and dry distillation gas.

木質バイオマス等の未利用バイオマス、有機性廃棄物等のバイオマス原料を乾留ガス化する乾留炉として、外熱キルン方式や部分燃焼流動床方式が開発されてきた。バイオマス原料を外熱キルンや部分燃焼流動床で乾留ガス化する場合、原料を破砕して細かくしないと、キルンでは内部までガス化することが困難であり、また、流動床では流動不能となるため、バイオマス原料を約20mm以下まで破砕する前処理が必須となり、そのための破砕動力が余分に必要であった。   An external heat kiln method and a partial combustion fluidized bed method have been developed as a dry distillation furnace for converting a biomass raw material such as woody biomass and biomass materials such as organic waste into dry distillation gas. When biomass raw material is gasified by dry distillation in an externally heated kiln or a partially combusted fluidized bed, it is difficult to gasify the inside of the kiln unless the raw material is crushed and made fine, and the fluidized bed cannot flow. In addition, pretreatment for crushing the biomass raw material to about 20 mm or less is essential, and extra crushing power for that is required.

また、バイオマス原料が建築廃棄物の場合には、金属(ボルト、釘)等が混入しており、破砕機保護のため、事前に金属分離が必要となり、それら金属の分離装置が必要であった。しかしながら、金属はバイオマスと混合した状態で存在しており、回収は困難であり、金属回収できてもそのままで有価物として流通することはなく、後に手選別等が必要であった。   In addition, when the biomass raw material is building waste, metal (bolts, nails), etc. are mixed in, and metal separation is required in advance to protect the crusher, and a separation device for these metals was necessary. . However, the metal is present in a mixed state with the biomass and is difficult to recover. Even if the metal can be recovered, it is not distributed as a valuable resource as it is, and manual sorting or the like is necessary later.

一方で、バイオマスの発電方法については、いろいろ開発されていた。しかしながらいずれの方法も、処理プロセスの複雑さや設備費の大きさ、収集可能なバイオマスの量の制限などにより実現できなかった。   On the other hand, various methods for generating power from biomass have been developed. However, none of these methods could be realized due to the complexity of the treatment process, the size of equipment costs, and the limit on the amount of biomass that can be collected.

そこで、バイオマス原料を乾留ガス化するにあたり、安価な単純でかつ少量のバイオマスでも経済性が成立するブロセスとして、シャフト炉により炭素質資源を酸素及び水蒸気で部分酸化することが提案されている(特許文献1参照)。シャフト炉を使用することによって、外熱キルン方式や部分燃焼流動床方式に比べて、無駄な破砕動力を必要とする面倒な前処理は最小限で抑えることが可能となる。さらに、後流に改質炉を設けることにより、種々の炭素質資源の性状別に、違うエネルギー転換方法を与えることで、高効率な炭素質資源のガスエネルーへの転換を可能としている。
特開2004−41848号公報
Therefore, it has been proposed to partially oxidize carbonaceous resources with oxygen and water vapor in a shaft furnace as a process that is economical and simple even when a small amount of biomass is established in the process of carbonization of biomass raw material (patent) Reference 1). By using the shaft furnace, it is possible to minimize troublesome pretreatment that requires wasteful crushing power as compared with the external heat kiln method and the partial combustion fluidized bed method. Furthermore, by providing a reforming furnace in the downstream, different energy conversion methods are provided according to the properties of various carbonaceous resources, enabling the conversion of highly efficient carbonaceous resources to gas energy.
JP 2004-41848 A

シャフト炉では、シャフト炉内で部分酸化しているが、バイオマス原料の質(カロリー、含水率)に応じて部分燃焼領域の温度は変化する。実験によれば、バイオマス原料の水分が減少したケースでは、部分燃焼部で1200℃以上の局部高温領域が発生し、シャフト炉内での部分酸化に寄与する局部高温によって、原料中の灰分が溶融成長してクリンカが生成していた。   In the shaft furnace, partial oxidation is performed in the shaft furnace, but the temperature of the partial combustion region changes according to the quality of the biomass raw material (calories, moisture content). According to the experiment, in the case where the water content of the biomass raw material is reduced, a local high temperature region of 1200 ° C. or higher is generated in the partial combustion part, and the ash content in the raw material is melted by the local high temperature contributing to the partial oxidation in the shaft furnace. Growing up and producing clinker.

また、高温領域の部分でソリューション反応(CO+C→2CO−Q)や水性ガス反応(HO+C→CO+H−Q)の吸熱反応が進行して発生ガスの温度が急激に温度低下し、結果的に発生ガスの温度をガス管にタールが付着しない温度(300℃以上)に安定的に維持することができず、ガス管にタールが付着し、成長したりしていた。 In addition, the endothermic reaction of the solution reaction (CO 2 + C → 2CO-Q) and the water gas reaction (H 2 O + C → CO + H 2 -Q) proceeds in the high temperature region, and the temperature of the generated gas rapidly decreases. As a result, the temperature of the generated gas cannot be stably maintained at a temperature (300 ° C. or higher) at which tar does not adhere to the gas pipe, and tar adheres to the gas pipe and grows.

また、原料の水分が増加したケースでは、部分燃焼部では局部高温が発生しないが、炉内が低温化し過ぎて炭化反応が不十分となり未炭化物が多く発生していた。   In the case where the moisture content of the raw material increased, local high temperatures did not occur in the partial combustion section, but the inside of the furnace was too cold and the carbonization reaction was insufficient, resulting in a large amount of uncarburized material.

そこで、本発明は、シャフト炉による燃料用炭化物および燃料ガスの製造において、クリンカの発生、タールの付着を防止し、燃料用炭化物および燃料ガスを安定して製造することができる燃料用炭化物および燃料ガスの製造方法を提供するものである。   Accordingly, the present invention provides a fuel carbide and a fuel capable of stably producing fuel carbide and fuel gas by preventing generation of clinker and adhesion of tar in the production of fuel carbide and fuel gas by a shaft furnace. A method for producing a gas is provided.

本発明は、シャフト炉内でバイオマス原料の部分燃焼熱を熱源として乾留ガス化し、炭化物と乾留ガスを生成させる燃料用炭化物および燃料ガスの製造方法において、部分燃焼用の酸化剤として空気および蒸気の混合物を使用し、シャフト炉内で発生するガスの温度の、発生ガス温度設定値からの偏差に基づき、空気に混合する蒸気の添加量を変えることよって酸化剤酸素濃度及び蒸気量を変えることにより、発生するガスの温度を一定範囲に制御することを特徴とする。 The present invention provides a carbonized fuel for fuel and a method for producing fuel gas in which carbonized gas and carbonized gas are generated by using the partial combustion heat of biomass raw material as a heat source in a shaft furnace, and in the method for producing fuel gas and air, steam as oxidants for partial combustion By using a mixture and changing the oxidant oxygen concentration and the amount of steam by changing the amount of steam added to the air based on the deviation of the temperature of the gas generated in the shaft furnace from the set value of the generated gas temperature. , and controlling the temperature of the generated gas to a predetermined range.

外部で空燃比をコントロールした状態で燃焼し、酸素をゼロの状態でシャフト炉に熱ガスを供給することによって、部分酸化によるクリンカの発生を確実に防止できる。また、熱ガスの温度を制御することによって発生ガスの温度制御が可能となる。その場合、外部燃焼の場合のほうが、クリンカ発生及びタールの付着の心配もなく、対応可能なバイオマス原料の範囲が大きい。   Combustion with the air-fuel ratio controlled externally and supplying hot gas to the shaft furnace with zero oxygen can reliably prevent the generation of clinker due to partial oxidation. Further, the temperature of the generated gas can be controlled by controlling the temperature of the hot gas. In that case, in the case of external combustion, there is no concern about clinker generation and tar adhesion, and the range of biomass raw materials that can be handled is larger.

本発明は、シャフト炉内で発生するガスの温度に応じて酸素と蒸気の混合物の比率を変えることによって、あるいは熱ガスの温度を変えることよって炉内にクリンカを発生することがなく、かつ、発生ガスの温度をタール付着が成長しない温度範囲に維持して、燃料用炭化物および燃料ガスを安定して製造することができる。   The present invention does not generate clinker in the furnace by changing the ratio of the mixture of oxygen and steam according to the temperature of the gas generated in the shaft furnace, or by changing the temperature of the hot gas, and By maintaining the temperature of the generated gas in a temperature range where tar adhesion does not grow, the fuel carbide and fuel gas can be produced stably.

また、本発明は、熱ガス供給部を上下2段に設けることにより、長時間掛けて炉内容物を炭化することが可能となり、未炭化物の発生を防止することができ、また、シャフト部の高さを大幅に低減できてコンパクト化できる。   Further, according to the present invention, it is possible to carbonize the furnace contents over a long period of time by providing the hot gas supply unit in two upper and lower stages, and it is possible to prevent the occurrence of uncarburized materials. The height can be greatly reduced and the size can be reduced.

また、本発明は、炉内で高温化された炭化物を冷却するための蒸気を吹き込む蒸気吹き込みノズルを設けることにより、炭化物を気流搬送や金属除去を安全に行うために必要となる冷却装置をよりコンパクトかつ安くすることが可能となる。   In addition, the present invention provides a cooling device that is required to safely carry the carbide through air flow and remove metal by providing a steam blowing nozzle that blows steam for cooling the carbide that has been heated in the furnace. It becomes possible to make it compact and cheap.

また、本発明は、シャフト部に定期的に不活性ガスを急激に吹き込む不活性ガス吹き込みノズルを設けることにより、棚つりを除去することができる。   Moreover, the present invention can remove the shelves by providing an inert gas blowing nozzle that periodically blows an inert gas rapidly into the shaft portion.

また、本発明は、火力発電設備の燃料として燃料用炭化物及び燃料ガスを利用することができるので、発電用の石炭をバイオマスに変換して発電をすることができ、また、燃料ガスはタールが付着しない温度にコントロールできるので微粉炭ボイラまで直接配管接続でき、そのまま燃焼することができるので、高価なガス精製、タール除去装置を設ける必要がなくなる。   In addition, since the present invention can use fuel carbide and fuel gas as fuel for thermal power generation facilities, it can generate power by converting coal for power generation into biomass, and the fuel gas is tar. Since it can be controlled to a temperature at which it does not adhere, it can be directly connected to a pulverized coal boiler and can be burned as it is, so there is no need to provide an expensive gas refining and tar removal device.

図1は本発明の方法を実施するためのシャフト炉を示す断面図である。   FIG. 1 is a sectional view showing a shaft furnace for carrying out the method of the present invention.

シャフト炉1の炉頂にバイオマス原料を装入するため、上部ガスシール弁2aと下部ガスシール弁2bで二重にシールされた装入装置2が設けられる。装入装置2の下部には、装入されたバイオマス原料を炭化するシャフト部3が配設される。シャフト部3の下部には、炭化された炭化物を炭化物排出シュート4へ押し出すプッシャー5が設けられる。シャフト部3には、シャフト部内に部分燃焼用の酸化剤として空気及び蒸気の混合物から生成したガスを供給するガス供給部6を設ける。さらに、シャフト部3のストックレベル9より上に、発生するガスの温度を測定するための温度検出器10が配置される。   In order to charge biomass raw material to the top of the shaft furnace 1, a charging device 2 that is double-sealed by an upper gas seal valve 2a and a lower gas seal valve 2b is provided. A shaft portion 3 for carbonizing the charged biomass material is disposed at the lower portion of the charging device 2. A pusher 5 for pushing carbonized carbide to the carbide discharge chute 4 is provided at the lower portion of the shaft portion 3. The shaft portion 3 is provided with a gas supply portion 6 for supplying a gas generated from a mixture of air and steam as an oxidizing agent for partial combustion in the shaft portion. Furthermore, a temperature detector 10 for measuring the temperature of the generated gas is arranged above the stock level 9 of the shaft portion 3.

シャフト炉1に装入されたバイオマス原料は、シャフト部3でガス供給部6から供給された酸化剤により部分燃焼した熱源により乾留ガス化され、炭化物と燃料ガスが生成され、炭化物はプッシャー5により炭化物排出シュート4へ押し出され、燃料ガスはガス管11から排気される。   The biomass raw material charged in the shaft furnace 1 is dry-distilled by a heat source partially burned by the oxidant supplied from the gas supply unit 6 in the shaft unit 3 to generate carbide and fuel gas. The carbide is generated by the pusher 5. The fuel gas is pushed out to the carbide discharge chute 4 and exhausted from the gas pipe 11.

バイオマス原料として、廃木材等の木質系廃棄物、乾燥汚泥、廃プラスチック材、建築廃材、RDF、一般廃棄物等の炭素質資源を利用することができる。バイオマス原料の寸法は、100mm〜200mmに粗破砕するだけで、シャフト炉にそのまま投入することができ、従来の20mm程度への破砕や金属分離が必要でなく動力、設備費を節約することができる。また、破砕寸法が大きいために未炭化物の状態で一部排出部に到達した場合に、従来は排出装置周りの絞りの部分で棚つりが発生していたが、プッシャーを設置することにより棚つることなくそのまま排出できる。さらには、炭化物と金属は炉内で熱がかかっており分離容易で、比重分離で、微粉炭ボイラにそのまま供絵可能な炭化物と、未炭化物、金属に分離できる。さらには金属回収後の未炭化物は原料と一緒にシャフト炉に再投入でき、シャフト炉内の高温雰囲気で直接還元炭化され、最終的には炭化物とガスに変換される。   Carbonaceous resources such as woody waste such as waste wood, dry sludge, waste plastic material, building waste material, RDF, and general waste can be used as biomass raw materials. The biomass raw material can be put into a shaft furnace as it is by roughly crushing it to 100 mm to 200 mm, and the conventional crushing to about 20 mm and metal separation are not necessary, and power and equipment costs can be saved. . Also, because the crushing dimensions are large, when a part of the discharge part is reached in an uncarburized state, shelves have been generated at the throttle part around the discharge device. It can be discharged as it is. Furthermore, carbide and metal are easily separated because they are heated in the furnace, and can be separated into carbide, uncarburized, and metal that can be provided directly to a pulverized coal boiler by specific gravity separation. Further, the uncarburized material after the metal recovery can be reintroduced into the shaft furnace together with the raw material, and is directly reduced and carbonized in a high temperature atmosphere in the shaft furnace, and finally converted into carbide and gas.

温度検出器10から出力された検出信号により、発生ガスの温度に応じて空気と蒸気の混合割合を調整する。発生するガスの温度に応じて空気に混合する蒸気の比率を変えることによって、部分燃焼領域の温度をソリューション反応や水性ガス反応が急速に進行しない温度レベルに制御することができ、また発生ガス温度もコントロールすることができる。結果として、組成、含水率等が多種多様なバイオマス原料、有機性廃棄物等の原料の質が変化しても、シャフト炉内に局部高温が生じることなく、また、炉内にクリンカを発生することがなく、かつ、発生ガスの温度をタール付着が成長しない300℃以上に制御することが可能となる。   According to the detection signal output from the temperature detector 10, the mixing ratio of air and steam is adjusted according to the temperature of the generated gas. By changing the ratio of steam mixed with air according to the temperature of the generated gas, the temperature of the partial combustion region can be controlled to a temperature level at which solution reaction and water gas reaction do not proceed rapidly, and the generated gas temperature Can also be controlled. As a result, even if the quality of raw materials such as biomass raw materials and organic wastes with various compositions and moisture content changes, local high temperature does not occur in the shaft furnace, and clinker is generated in the furnace. In addition, the temperature of the generated gas can be controlled to 300 ° C. or higher at which tar adhesion does not grow.

シャフト部内に部分燃焼用の酸化剤として空気及び蒸気の混合物から生成したガスを供給するガス供給部6は、初期昇温用のLNGや重油等の燃料と、空気および蒸気を事前に混合した状態で供給することが最良である。さらに、発生ガスへの酸素のリークを防ぐために、微量のLNG等を添加して、酸化剤導入部近くで確実に火点を維持してもよい。   The gas supply unit 6 for supplying a gas generated from a mixture of air and steam as an oxidant for partial combustion into the shaft part is a state in which fuel such as LNG and heavy oil for initial temperature increase, air and steam are mixed in advance It is best to supply with. Furthermore, in order to prevent oxygen leakage to the generated gas, a small amount of LNG or the like may be added to reliably maintain the fire point near the oxidant introduction portion.

ガス供給部6から供給する酸化剤の酸素濃度は、湿ベースで10〜18vol%に制御する。酸化剤中の酸素濃度が10vol%以下となると、原料が酸化反応せずに発生ガス中に酸素が抜けることがあり危険である。また、酸素濃度18vol%以上では、部分燃焼温度が上昇しすぎて、容易にクリンカが生成する。   The oxygen concentration of the oxidant supplied from the gas supply unit 6 is controlled to 10 to 18 vol% on a wet basis. If the oxygen concentration in the oxidant is 10 vol% or less, the raw material does not undergo an oxidation reaction, and oxygen may escape into the generated gas, which is dangerous. On the other hand, when the oxygen concentration is 18 vol% or more, the partial combustion temperature rises too much and clinker is easily generated.

ガス供給部6は上下2段に設ける。ガス供給部6が1段の場合、シャフト部内では、ガス供給部6からの距離によって、温度履歴が極端に異なり、ガス供給部6が遠い場合には、未炭化の状態で排出されることがあるが、ガス供給部6が2段になると、1段目のガス供給部6aで体積縮小し、炉内の降下速度は低下する。ここで、その下部にも2段目のガス供給部6bを設けることによって、長時間掛けて炉内容物を炭化することが可能となり、未炭化物の発生を防止することができる。   The gas supply unit 6 is provided in two upper and lower stages. When the gas supply unit 6 has a single stage, the temperature history varies extremely depending on the distance from the gas supply unit 6 in the shaft portion, and when the gas supply unit 6 is far away, the gas supply unit 6 may be discharged in an uncarbonized state. However, when the gas supply unit 6 has two stages, the volume is reduced by the first stage gas supply unit 6a, and the descent speed in the furnace decreases. Here, by providing the second-stage gas supply unit 6b in the lower part, it becomes possible to carbonize the furnace contents over a long period of time, and the generation of uncarburized can be prevented.

図2はガス供給部6を上下2段に設け、バイオマス原料として20T/日で処理した場合の発生したガス温度と、蒸気の吹き込みとの関係を示すグラフである。   FIG. 2 is a graph showing the relationship between the generated gas temperature and the blowing of steam when the gas supply units 6 are provided in two upper and lower stages and processed at 20 T / day as a biomass raw material.

このとき、対象原料は一般ごみ(水分45%)を対象として操業を実施していた。そこで時間Aで原料を乾燥ごみ(水分10%)に変更した。すると、発生ガスの温度は低下し始めた。更に、発生ガスの組成連続分析によれば、COおよびHの増加が観察された。すなわち、ソリューション反応及び水性ガス化反応によるCO及びHの増加及びそれによる発生ガス温度の低下が確認できる。 At this time, the target raw material was operated for general waste (moisture 45%). Therefore, at time A, the raw material was changed to dry waste (water content 10%). Then, the temperature of the generated gas began to decrease. Furthermore, according to the composition continuous analysis of the generated gas, an increase in CO and H 2 was observed. That is, it is possible to confirm an increase in CO and H 2 due to the solution reaction and the water gasification reaction and a decrease in the generated gas temperature.

時間Bで制御を自動にいれた。以後は自動的に発生温度の設定値(400℃)からの偏差に基づき、蒸気の添加量が自動的に上下し、基本的には発生ガス温度が400℃に制御されるようになった。すなわち、時間Bよりは、蒸気量の増量(=酸化材O濃度の低下)によって、ガス供給部周辺の温度レベルが下がり、ソリューション反応及び水性ガス反応が起こらない温度レベルとなって吸熱反応が制御され、結果的には発生ガス温度をタールが発生しない温度に維持することができた。表1は、1,2段目での原料の降下量とガス温度の関係を示したものである。

Figure 0004589226
Control was automatically entered at time B. Thereafter, based on the deviation from the set value of the generated temperature (400 ° C.), the amount of steam added automatically increased and decreased, and the generated gas temperature was basically controlled to 400 ° C. That is, from time B, an increase in the amount of steam (= a decrease in the concentration of the oxidizing material O 2 ) lowers the temperature level around the gas supply unit, resulting in a temperature level at which solution reaction and water gas reaction do not occur, and endothermic reaction occurs. As a result, the generated gas temperature could be maintained at a temperature at which tar was not generated. Table 1 shows the relationship between the amount of material drop and gas temperature at the first and second stages.
Figure 0004589226

また、表1より、炉頂部での空塔速度は、1Bm/sを基準として設計した場合、1段目のガス供給部6a上部での原料の降下速度は、6.2m/hで急速に降下している。したがって、従来のシャフト炉では、原料の炉内での滞留時間を2h程度確保するためには、13m程度の高さを確保する必要があつた。本発明においては、ガス供給部6を2段化することで、1段目のガス供給部6aの下部においては、原料のガス化成分(水分、揮発分)が70%程度減量しており、さらにはかさ比重も0.15から0.2に変化しており、降下速度は1.4m/hとなる。したがって、2段目のガス供給部6bの上部の滞留時間は、2m程度確保すれば、1.5時間程度の滞留時間を確保でき、1段目のガス供給部6aの上部の高さは最低限バッチ装入の変動代を考慮して3m程度(30min程度)確保すれば十分であり、結果としてシャフト部3を大幅にコンパクト化できる(13m→5m)。さらには2段目の熱ガス供給部2の上部での高温領域で十分に確保でき、未炭化物の発生も抑制できる。   Further, from Table 1, when the superficial velocity at the top of the furnace is designed based on 1 Bm / s, the descending speed of the raw material at the upper part of the first stage gas supply unit 6a is rapidly 6.2 m / h. It is descending. Therefore, in the conventional shaft furnace, in order to ensure the residence time of the raw material in the furnace for about 2 h, it is necessary to secure a height of about 13 m. In the present invention, by gasifying the gas supply unit 6 in two stages, the gasification component (moisture, volatile content) of the raw material is reduced by about 70% in the lower part of the first stage gas supply unit 6a. Furthermore, the bulk specific gravity also changes from 0.15 to 0.2, and the descent speed is 1.4 m / h. Therefore, if the residence time of the upper part of the second stage gas supply unit 6b is secured about 2 m, the residence time of about 1.5 hours can be secured, and the height of the upper part of the first stage gas supply unit 6a is the lowest. It is sufficient to secure about 3 m (about 30 min) in consideration of the fluctuation allowance of the limited batch charging, and as a result, the shaft portion 3 can be greatly downsized (13 m → 5 m). Further, it can be sufficiently secured in the high temperature region at the upper part of the second stage hot gas supply unit 2, and the generation of uncarburized materials can also be suppressed.

シャフト部3の底部には、炉内で高温化された炭化物を冷却するための蒸気を吹き込む蒸気吹き込みノズル7を設ける。最下段のガス供給部6bからさらに下部に蒸気を吹き込むノズル7を設けて、そこから蒸気を供給することによって、炭化物の温度は800℃レベルから100〜200℃まで冷却することが可能となる。その結果、炭化物を気流搬送や金属除去を安全に行うために必要となる冷却装置がよりコンパクトかつ安くすることが可能となる。また、単純に冷却装置を直接設けた場合、無駄となっていた炭化物の顕熱を蒸気でプロセスに回収することが可能となり、結果的にプロセス熱効率が向上する。   A steam blowing nozzle 7 for blowing steam for cooling carbide that has been heated in the furnace is provided at the bottom of the shaft portion 3. By providing a nozzle 7 for blowing steam further from the lowermost gas supply unit 6b and supplying steam from there, the temperature of the carbide can be cooled from the 800 ° C. level to 100 to 200 ° C. As a result, it becomes possible to make the cooling device required for safely carrying the air current and removing the metal more compact and cheaper. Further, when the cooling device is simply provided directly, it becomes possible to recover the sensible heat of the carbide that has been wasted into the process with steam, and as a result, the process thermal efficiency is improved.

シャフト部3には、棚つりを除去するため、定期的に不活性ガスを急激に吹き込む不活性ガス吹き込みノズル8を設けてもよい。定期的に不活性ガスをノズル8から急激に吹き込んで炭化物の棚つりを除去する。シャフト炉内では、内容物の形状によって、壁面で棚つり現象を起こすことが知られている。この棚つり現象は、壁面の摩擦抵抗で、内容物の自重を保持することによって発生する。そこで、壁面の摩擦抵抗を低減するために、壁面周囲に設けた多数のノズル8から、不活性ガスを定期的に噴出することによって、壁面付着力=摩擦抵抗をなくし、発生した棚つりを解消することができる。さらには、定期的に噴出することによって、棚つりの発生を予防することができる。ノズル8は、各々不活性ガスの充填タンクと切替弁をもつと効果的だが、簡単には管状管を設けて、一斉に噴出させてもよい。またノズル8は、周囲に少なくとも200mmピッチで設けると効果的である。   The shaft portion 3 may be provided with an inert gas blowing nozzle 8 for rapidly blowing an inert gas periodically in order to remove the shelves. Periodically, an inert gas is rapidly blown from the nozzle 8 to remove the carbide shelves. In the shaft furnace, it is known that a shelf suspension phenomenon occurs on the wall surface depending on the shape of the contents. This shelving phenomenon occurs when the weight of the contents is held by the frictional resistance of the wall surface. Therefore, in order to reduce the frictional resistance of the wall surface, the inert gas is periodically ejected from a large number of nozzles 8 provided around the wall surface, thereby eliminating the wall adhesion force = frictional resistance and eliminating the generated shelf suspension. can do. Furthermore, the occurrence of shelves can be prevented by ejecting regularly. Each nozzle 8 is effective when it has an inert gas filling tank and a switching valve. However, a simple tube may be provided and ejected all at once. Further, it is effective that the nozzles 8 are provided around the periphery at a pitch of at least 200 mm.

図3はガス供給部6の別実施例を示す断面図である。シャフト部3の外側に炉内側に絞り部12aを形成した燃焼室12を設け、燃焼室12で燃焼バーナー13を燃焼させて酸素のない熱ガスを発生させて絞り部12aから熱ガスを炉内に吹き込んで部分燃焼熱の熱源とする。燃料とすれば簡単には重油LPG等を用いればよいが、乾留した燃料ガスをリサイクルすればなお良い。   FIG. 3 is a sectional view showing another embodiment of the gas supply unit 6. A combustion chamber 12 having a throttle portion 12a formed inside the furnace is provided outside the shaft portion 3, and a combustion burner 13 is combusted in the combustion chamber 12 to generate a hot gas without oxygen, and the hot gas is supplied from the throttle portion 12a into the furnace. Into the heat source of partial combustion heat. If it is used as fuel, it is sufficient to use heavy oil LPG or the like, but it is more preferable to recycle dry-distilled fuel gas.

空気、酸素および燃料ガスの比率を相互に変化させることによって、熱ガスの温度を変更することができる。シャフト炉上部からの発生ガスの温度が低下した場合には、熱ガスの温度を下げることによって、ソリューション反応や水性ガス反応と呼ばれる吸熱反応が抑制でき、炉頂温度を維持することが可能になる。すすの発生を抑制するために、一定量の蒸気を添加することで効果がある。   By changing the ratio of air, oxygen and fuel gas to each other, the temperature of the hot gas can be changed. When the temperature of the gas generated from the upper part of the shaft furnace decreases, the endothermic reaction called solution reaction or water gas reaction can be suppressed by lowering the temperature of the hot gas, and the furnace top temperature can be maintained. . In order to suppress the generation of soot, it is effective to add a certain amount of steam.

図4は燃料用炭化物と燃料ガスを石炭焚き火力発電設備の燃料として利用するシステムを示す図である。   FIG. 4 is a diagram showing a system that uses carbide for fuel and fuel gas as fuel for coal-fired thermal power generation facilities.

シャフト炉1で製造された燃料ガスを石炭焚き火力発電設備13に設置したカスバーナー14で燃焼し、得られた炭化物を火力発電用の石炭ミル15に混合して微粉炭バーナー16で燃焼することによって、発電用の石炭をバイオマスに置換して発電をする。既設の徴粉炭ボイラ等を利用することによって、高価なガス精製、タール除去装置を設けることなく、発生ガスはタールを含んだそのままで燃焼することが可能であり、また炭化物は既存の石炭ミルを利用でき、そのまま燃焼可能である。   The fuel gas produced in the shaft furnace 1 is burned by a casburner 14 installed in a coal-fired thermal power generation facility 13, and the obtained carbide is mixed in a coal mill 15 for thermal power generation and burned by a pulverized coal burner 16. By replacing the coal for power generation with biomass, power is generated. By using an existing pulverized coal boiler or the like, the generated gas can be burned as it is without containing expensive gas refining and tar removal equipment. It can be used and burned as it is.

本発明の方法を実施するためのシャフト炉を示す断面図である。It is sectional drawing which shows the shaft furnace for enforcing the method of this invention. 発生ガス温度と酸化剤のO濃度の関係を示すグラフである。It is a graph showing the O 2 concentration of the relationship between evolved gas temperature and oxidizer. 熱ガス供給部の別実施例を示す断面図である。It is sectional drawing which shows another Example of a hot gas supply part. 燃料用炭化物と燃料ガスを石炭焚き火力発電設備の燃料として利用するシステムを示す図である。It is a figure which shows the system which utilizes the carbide | carbonized_material and fuel gas for fuel as a fuel of a coal burning thermal power generation installation.

符号の説明Explanation of symbols

1:シャフト炉
2:装入装置
2a:上部ガスシール弁
2b:下部ガスシール弁
3:シャフト部
4:炭化物排出シュート
5:プッシャー
6:ガス供給部
6a:1段目の熱ガス供給部
6b:2段目の熱ガス供給部
7:蒸気吹き込みノズル
8:不活性ガス吹き込みノズル
9:ストックレベル
10:温度検出器
11:ガス管
12:燃焼室
12a:絞り部
13:石炭焚き火力発電設備
14:ガスバーナー
15:石炭ミル
16:微粉炭バーナー
1: Shaft furnace 2: Charging device 2a: Upper gas seal valve 2b: Lower gas seal valve 3: Shaft part 4: Carbide discharge chute 5: Pusher 6: Gas supply part 6a: First stage hot gas supply part 6b: Second stage hot gas supply unit 7: Steam blowing nozzle 8: Inert gas blowing nozzle 9: Stock level 10: Temperature detector 11: Gas pipe 12: Combustion chamber 12a: Throttle unit 13: Coal-fired thermal power generation facility 14: Gas burner 15: Coal mill 16: Pulverized coal burner

Claims (7)

シャフト炉内でバイオマス原料の部分燃焼熱を熱源として乾留ガス化し、炭化物と乾留ガスを生成させる燃料用炭化物および燃料ガスの製造方法において、
部分燃焼用の酸化剤として空気および蒸気の混合物を使用し、シャフト炉内で発生するガスの温度の、発生ガス温度設定値からの偏差に基づき、空気に混合する蒸気の添加量を変えることよって酸化剤酸素濃度及び蒸気量を変えることにより、発生するガスの温度を一定範囲に制御することを特徴とする燃料用炭化物および燃料ガスの製造方法。
In the method for producing fuel carbonized fuel and fuel gas in which carbonized gas and carbonized gas are generated by dry distillation gas using the partial combustion heat of biomass raw material as a heat source in the shaft furnace,
By using a mixture of air and steam as the oxidant for partial combustion, and changing the amount of steam added to the air based on the deviation of the temperature of the gas generated in the shaft furnace from the set temperature of the generated gas A fuel carbide and a method for producing fuel gas, wherein the temperature of the generated gas is controlled within a certain range by changing the oxidant oxygen concentration and the amount of steam.
前記酸化剤の酸素濃度を湿ベースで10〜18vol%に制御することを特徴とする請求項1記載の炭化物および燃料ガスの製造方法。   The method for producing carbide and fuel gas according to claim 1, wherein the oxygen concentration of the oxidant is controlled to 10 to 18 vol% on a moisture basis. バイオマス原料の最大寸法が100mm〜200mmであることを特徴とする請求項1又は2に記載の燃料用炭化物および燃料ガスの製造方法。 3. The method for producing fuel carbide and fuel gas according to claim 1 , wherein the maximum size of the biomass raw material is 100 mm to 200 mm . シャフト炉の熱ガス供給部を上下2段とすることを特徴とする請求項1〜3のいずれか1項に記載の燃料用炭化物および燃料ガスの製造方法。 The method for producing a carbide for fuel and a fuel gas according to any one of claims 1 to 3, wherein the hot gas supply section of the shaft furnace has two upper and lower stages . 炉内で高温化された炭化物を、炉底部に位置したノズルから蒸気を吹き込むことによって冷却することを特徴とする請求項1〜4のいずれか1項に記載の炭化物および燃料ガスの製造方法。 The method for producing carbide and fuel gas according to any one of claims 1 to 4, wherein the carbide heated to a high temperature in the furnace is cooled by blowing steam from a nozzle located at the bottom of the furnace . 定期的に不活性ガスを急激に吹き込んで炭化物の棚つりを除去することを特徴とする請求項1〜5のいずれか1項に記載の燃料用炭化物および燃料ガスの製造方法。 The method for producing fuel carbide and fuel gas according to any one of claims 1 to 5, wherein the inert gas is rapidly blown in periodically to remove carbide shelves . 前記燃料ガスが石炭焚き火力発電設備に設置したガスバーナの燃焼用ガスであるとともに、得られた前記燃料用炭化物が火力発電用の石炭ミルに混合して微粉炭バーナで燃焼させる燃料であることを特徴とする請求項1〜6のいずれか1項に記載の炭化物および燃料ガスの製造方法。 The fuel gas is a combustion gas for a gas burner installed in a coal-fired thermal power generation facility, and the obtained fuel carbide is a fuel that is mixed with a coal mill for thermal power generation and burned with a pulverized coal burner. The method for producing carbide and fuel gas according to any one of claims 1 to 6.
JP2005370651A 2005-12-22 2005-12-22 Method for producing fuel carbide and fuel gas Expired - Fee Related JP4589226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005370651A JP4589226B2 (en) 2005-12-22 2005-12-22 Method for producing fuel carbide and fuel gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005370651A JP4589226B2 (en) 2005-12-22 2005-12-22 Method for producing fuel carbide and fuel gas

Publications (2)

Publication Number Publication Date
JP2007169515A JP2007169515A (en) 2007-07-05
JP4589226B2 true JP4589226B2 (en) 2010-12-01

Family

ID=38296501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005370651A Expired - Fee Related JP4589226B2 (en) 2005-12-22 2005-12-22 Method for producing fuel carbide and fuel gas

Country Status (1)

Country Link
JP (1) JP4589226B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5812575B2 (en) * 2010-04-05 2015-11-17 三菱重工業株式会社 Boiler equipment
WO2023027179A1 (en) * 2021-08-27 2023-03-02 一般財団法人科学技術振興育英財団 Vertical-type furnace system and method and other system and method for achieving sdgs and biocarbon neutrality

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112571A (en) * 1997-06-21 1999-01-19 Nippon Steel Corp Dry quenching of coke

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112571A (en) * 1997-06-21 1999-01-19 Nippon Steel Corp Dry quenching of coke

Also Published As

Publication number Publication date
JP2007169515A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
US11248184B2 (en) Gasification system
US8632614B2 (en) Autothermal method for the continuous gasification of carbon-rich substances
US20100156104A1 (en) Thermal Reduction Gasification Process for Generating Hydrogen and Electricity
EP2430127B1 (en) Two stage dry feed gasification system and process
JP5458219B2 (en) Waste melting treatment method and coal coke usage reduction method for waste melting furnace
CN104479743B (en) A kind of rubbish plasma gasification stove with vapor as gasifying medium
JP4855539B2 (en) Biomass utilization apparatus using pulverized coal combustion boiler and biomass utilization method using the same
JP5180917B2 (en) Waste melting treatment method and waste melting treatment apparatus
CN102746902A (en) Gasification method of organic wastes and special gasification furnace
JP4731988B2 (en) Gasification method and apparatus for carbonaceous resources
Kim et al. Combustion characteristics of shredded waste tires in a fluidized bed combustor
JP4589226B2 (en) Method for producing fuel carbide and fuel gas
JP4191636B2 (en) Waste melting treatment method using bulk biomass
JP3559163B2 (en) Gasification method using biomass and fossil fuel
JP4993460B2 (en) Method for thermal decomposition of carbonaceous raw materials
JP3558033B2 (en) Gasification and melting furnace for waste and gasification and melting method
Sergeev et al. Gasification and plasma gasification as type of the thermal waste utilization
RU2680135C1 (en) Device and method of plasma gasification of a carbon-containing material and unit for generation of thermal/electric energy in which the device is used
JP5605576B2 (en) Waste gasification and melting equipment
JP4767701B2 (en) Manufacturing method of pulverized coal for blowing blast furnace tuyere
JPH10148317A (en) Furnace and method for gasification of wastes
JP2005213460A (en) Operation method of gasification furnace
JP2013108629A (en) Waste melting method
JP2010038535A (en) Waste melting treatment method and waste melting treatment device
JP2010116536A (en) Biomass pyrolyzing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100813

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4589226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees