JP2008081636A - Method for generating power from woody biomass and system for generating power from woody biomass - Google Patents

Method for generating power from woody biomass and system for generating power from woody biomass Download PDF

Info

Publication number
JP2008081636A
JP2008081636A JP2006264311A JP2006264311A JP2008081636A JP 2008081636 A JP2008081636 A JP 2008081636A JP 2006264311 A JP2006264311 A JP 2006264311A JP 2006264311 A JP2006264311 A JP 2006264311A JP 2008081636 A JP2008081636 A JP 2008081636A
Authority
JP
Japan
Prior art keywords
woody biomass
gas
exhaust gas
gasification
gasification furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006264311A
Other languages
Japanese (ja)
Other versions
JP4873624B2 (en
Inventor
Hiroyuki Yokomaku
宏幸 横幕
Keizo Takegami
敬三 竹上
Takafumi Yamamoto
隆文 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP2006264311A priority Critical patent/JP4873624B2/en
Publication of JP2008081636A publication Critical patent/JP2008081636A/en
Application granted granted Critical
Publication of JP4873624B2 publication Critical patent/JP4873624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for generating a power from a woody biomass, such as a gasification power generation using the woody biomass, by which the production of clinkers can be prevented. <P>SOLUTION: The method for generating the power from the woody biomass comprises charging a raw material comprising the woody biomass into a fixed bed gasification oven 6 to gasify the raw material, and supplying the gas produced by the gasification into a gas engine 9 to generate the power, and is characterized by cooling the exhaust gas of the gas engine 9 in a cooling device 11 and then blowing the cooled gas into gasification oven 6. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、木質バイオマスを用いたガス化発電等のように、木質バイオマスにより動力を発生させる技術に関する。   The present invention relates to a technique for generating power using woody biomass, such as gasification power generation using woody biomass.

従来から、森林から得られる枝、葉、梢、根株等の林地残材、製材工場から出るオガ粉、樹皮、端材、背板等の残廃材、建築廃材・解体材などの産業廃棄物等といった木質バイオマスをガス化し、燃料等として使用することが行われている。
この場合におけるガス化炉の形式として、流動床式や固定床式のものが広く用いられている。特に固定床式は比較的小規模の設備として設計し得ることから山間部の製材所等、中小規模の設備への適用が可能である(例えば特許文献1参照)。両形式ともガス化される木質バイオマスはガス化炉投入前に細かく破砕された後、投入されることが一般的である。(例えば特許文献2参照)。
特開昭59−38284号公報 特開2002−38163号公報
Conventionally, forest residue such as branches, leaves, treetops and roots obtained from forests, sawdust from lumber mills, residual materials such as bark, scraps and backboard, industrial waste such as construction and demolition materials, etc. Such woody biomass is gasified and used as fuel.
In this case, a fluidized bed type or a fixed bed type is widely used as a gasification furnace. In particular, since the fixed floor type can be designed as a relatively small-scale facility, it can be applied to small- and medium-scale facilities such as a mountain mill. In both types, the woody biomass to be gasified is generally fed after being crushed finely before the gasifier is charged. (For example, refer to Patent Document 2).
JP 59-38284 A JP 2002-38163 A

しかしながら、固定床式のガス化炉では原料が堆積した状態でガス化が進行するため、バーク(樹皮)のような融点の低い木質バイオマスの場合、炉内にクリンカ(焼塊)が発生し易いという問題点があった。
そこで、本発明の主たる課題は、クリンカの発生を抑制することにある。
However, in a fixed bed gasification furnace, gasification proceeds with raw material accumulated, and thus, in the case of woody biomass having a low melting point such as bark (bark), clinker (burned ingot) is likely to be generated in the furnace. There was a problem.
Therefore, a main problem of the present invention is to suppress the generation of clinker.

上記課題を解決した本発明は、木質バイオマスからなる原料を固定床ガス化炉に投入しガス化した後、このガス化により発生したガスをガスエンジンに供給して動力を発生させる方法において、
前記ガスエンジンの排ガスを冷却した後に前記ガス化炉に吹き込むことを特徴とするものである。ガス化炉に吹き込む排ガスの温度は、通常の場合50〜150℃とするのが好ましい。
排ガスは酸素濃度が低いため、これを炉内に吹き込むと燃焼抑制作用により温度上昇が抑制される。しかし排ガスそれ自体は温度が高いため、これをそのまま炉内に吹き込むと炉内温度が上昇してしまい、結果的にクリンカの発生を抑制し難くなる。そこで、本発明では、排ガスを冷却した後に炉内に吹き込むことにより、排ガスの高熱の影響を排除しながら、低酸素濃度化による温度上昇の抑制を図り、もってクリンカの発生を防止することとしたものである。
また、本発明では、炉内に吹き込まれた排ガスが燃焼領域を通過して加温された後、チャー領域を通過する際に二酸化炭素(CO2)が一酸化炭素(CO)と酸素(O)に分解する反応が起こり、製品ガス発生量が増加するという副次的利点もある。なお、この副次的利点については特許文献2に記載されているが、特許文献2記載のものは固定床式におけるクリンカの問題や排ガスを冷却することを全く想定していないため、本発明とは考え方が全く異なるものである。
このような本発明は、例えば、ガスエンジンにより発電機を駆動して発電を行う木質バイオマスによるガス化発電に用いることができる。
本発明においては、木質バイオマスが供給される固定床ガス化炉と、この固定床ガス化炉により発生したガスが供給されるガスエンジンと、前記ガスエンジンの排ガスを冷却する冷却装置とを有し、
前記ガスエンジンの排ガスを前記冷却装置で冷却した後に前記ガス化炉に吹き込むように構成したことを特徴とする木質バイオマスによる動力発生システムも提案される。
The present invention that has solved the above problems is a method of generating power by supplying the gas generated by this gasification to a gas engine after gasifying the raw material consisting of woody biomass into a fixed bed gasification furnace,
The exhaust gas from the gas engine is cooled and then blown into the gasification furnace. In general, the temperature of the exhaust gas blown into the gasification furnace is preferably 50 to 150 ° C.
Since the exhaust gas has a low oxygen concentration, when it is blown into the furnace, the temperature rise is suppressed by the combustion suppressing action. However, since the exhaust gas itself has a high temperature, if it is blown into the furnace as it is, the temperature inside the furnace rises, and as a result, it becomes difficult to suppress the generation of clinker. Therefore, in the present invention, after the exhaust gas is cooled, it is blown into the furnace, thereby suppressing the rise in temperature by reducing the oxygen concentration while eliminating the influence of high heat of the exhaust gas, thereby preventing the generation of clinker. Is.
In the present invention, after the exhaust gas blown into the furnace passes through the combustion region and is heated, carbon dioxide (CO 2 ) is converted into carbon monoxide (CO) and oxygen (O 2 ) when passing through the char region. There is also a secondary advantage that the product gas generation amount is increased due to the decomposition reaction. Although this secondary advantage is described in Patent Document 2, the one described in Patent Document 2 does not assume the problem of clinker in a fixed bed type or cooling exhaust gas at all. Is completely different.
For example, the present invention can be used for gasification power generation using woody biomass that generates power by driving a generator by a gas engine.
The present invention includes a fixed bed gasification furnace to which woody biomass is supplied, a gas engine to which gas generated by the fixed bed gasification furnace is supplied, and a cooling device for cooling the exhaust gas of the gas engine. ,
A power generation system using woody biomass is also proposed in which the exhaust gas of the gas engine is cooled by the cooling device and then blown into the gasification furnace.

以上のとおり、本発明によればクリンカの発生を抑制できるだけでなく、ガス発生量を増加させることもできる。   As described above, according to the present invention, not only the generation of clinker can be suppressed, but also the amount of gas generation can be increased.

以下、本発明の一実施形態について添付図面を参照しながら詳説する。
図1は、ガス化発電設備例のフローシートを示している。バーク(樹皮)等の木質バイオマス原料Bは原料ピット1に貯留されており、順次ピットクレーン2により取り出され、投入ホッパー3に投入される。木質バイオマス原料としては、森林から得られる枝、葉、梢、根株等の林地残材、製材工場から出るオガ粉、バーク(樹皮)、端材、背板等の残廃材、建築廃材・解体材などの産業廃棄物等を用いることができる。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows a flow sheet of an example of a gasification power generation facility. The woody biomass material B such as bark (bark) is stored in the material pit 1, and is sequentially taken out by the pit crane 2 and is introduced into the input hopper 3. Woody biomass raw materials include forest residue such as branches, leaves, treetops and roots obtained from forests, sawdust from lumber mills, bark (bark), scraps, backboard and other waste materials, building waste materials and demolition materials Industrial wastes such as can be used.

ホッパー3に投入された原料はコンベヤ4によって移送され、固定床ガス化炉6に対して供給される。図示形態では、ガス化炉6の入側に、上下に離間配置された投入ダンパー5A,5Bが設けられており、下側のダンパー5Bが閉じられかつ上側のダンパー5Aが開けられた状態で両ダンパー5A,5B間にコンベヤ4からの原料が順次投入され、次いで上側のダンパー5Aが閉じられた後、下側のダンパー5Bが開けられることにより、ダンパー5A,5B間に保持された原料がガス化炉6上部に投入されるようになっている。以降は、この繰り返しにより順次原料がガス化炉6内に供給される。ガス化炉6としては、固定床である限り、上向流式であっても下向流式(ダウンドラフト式)であっても良い。ダウンドラフト式の方が、タールや油分の発生が少ない利点がある。   The raw material thrown into the hopper 3 is transferred by the conveyor 4 and supplied to the fixed bed gasifier 6. In the illustrated embodiment, charging dampers 5A and 5B spaced apart from each other are provided on the inlet side of the gasification furnace 6, and both the lower damper 5B is closed and the upper damper 5A is opened. The raw material from the conveyor 4 is sequentially charged between the dampers 5A and 5B, and then the upper damper 5A is closed, and then the lower damper 5B is opened, so that the raw material held between the dampers 5A and 5B is gas. It is put into the upper part of the converter 6. Thereafter, the raw material is sequentially supplied into the gasification furnace 6 by this repetition. As long as it is a fixed bed, the gasification furnace 6 may be an upward flow type or a downward flow type (downdraft type). The downdraft type has the advantage of less tar and oil generation.

ダウンドラフト式ガス化炉6の具体例が図2に示されている。すなわち、このガス化炉6は、ホッパーとしての役割を担う上部筒状部61と、この上部筒状部61の底部開口から連続する下部筒状部62と、下部筒状部62を隙間をもって取り囲む筒状ケーシング63とを備えている。これら上部筒状部等61,62,63はそれぞれ縦向き且つ相互に同軸的に配置されている。下部筒状部62の底部開口には火格子64が設けられている。下部筒状部62の高さ方向中間部には、炉内を上下に仕切る仕切り板65が設けられており、この仕切り板65の幅方向中央部には上下に貫通する通過孔66が形成されている。さらに、下部筒状部62内における仕切り板65よりも上側の内周壁には、酸化剤の吹込口67が炉内の幅方向中央を臨むように突出されている。吹込口67の先端は通過孔66の縁よりも外側の位置、つまり仕切り板65における通過孔66を有しない周囲部の上方に位置している。この吹込口67は下部筒状部62の内周方向に沿って適宜の間隔(例えば等間隔)で複数設けるのが好ましい。また、吹込口67は下部筒状部62の内周方向に沿って連続するスリット状に形成することもできる。   A specific example of the downdraft type gasification furnace 6 is shown in FIG. That is, the gasification furnace 6 surrounds the upper cylindrical portion 61 serving as a hopper, the lower cylindrical portion 62 continuous from the bottom opening of the upper cylindrical portion 61, and the lower cylindrical portion 62 with a gap. And a cylindrical casing 63. These upper cylindrical portions 61, 62, 63 are arranged vertically and coaxially with each other. A grate 64 is provided at the bottom opening of the lower cylindrical portion 62. A partition plate 65 that partitions the inside of the furnace up and down is provided at an intermediate portion in the height direction of the lower cylindrical portion 62, and a passage hole 66 penetrating vertically is formed at the center in the width direction of the partition plate 65. ing. Further, an oxidant blowing port 67 projects from the inner peripheral wall above the partition plate 65 in the lower cylindrical portion 62 so as to face the center in the width direction in the furnace. The tip of the blowing port 67 is positioned outside the edge of the passage hole 66, that is, above the peripheral portion of the partition plate 65 that does not have the passage hole 66. It is preferable to provide a plurality of the blowing ports 67 at appropriate intervals (for example, at equal intervals) along the inner circumferential direction of the lower cylindrical portion 62. Further, the blowing port 67 can be formed in a slit shape that is continuous along the inner peripheral direction of the lower cylindrical portion 62.

吹込口67に対する供給路は適宜形成することができるが、図示形態では、下部筒状部62が内筒部62Aおよび外筒部62Bからなる二重筒状に形成されており、内筒部62Aと外筒部62Bとの間の円筒状空間62Sの上部に吹込口67が連通され、吹込口67よりも下側の部分に外側ケーシング63を貫通する供給管70が連通されることによって、供給路が構成されている。   Although the supply path to the blowing port 67 can be appropriately formed, in the illustrated embodiment, the lower cylindrical portion 62 is formed in a double cylindrical shape including an inner cylindrical portion 62A and an outer cylindrical portion 62B, and the inner cylindrical portion 62A. The blower port 67 is communicated with the upper portion of the cylindrical space 62S between the outer cylinder part 62B and the supply pipe 70 penetrating the outer casing 63 is communicated with a portion below the blower port 67, thereby supplying the air. A road is constructed.

この供給管70に対しては、図示しない空気供給ポンプ等の酸化剤供給手段が接続されており、供給管70を介して燃焼のための空気や酸素等の酸化剤が供給される。   An oxidant supply means such as an air supply pump (not shown) is connected to the supply pipe 70, and an oxidant such as air or oxygen for combustion is supplied through the supply pipe 70.

ガス化炉6内に供給された原料は、上部筒状部61及び下部筒状部62を下降・通過する過程でガス化される。すなわち、上部筒状部61から順次供給される原料は、吹込口67よりも若干上側の熱分解ゾーンに到達すると、熱分解が開始され、ガス(CO、H2、CH4、CO2、H2O)、チャー、炭化水素に分解される。この熱分解ステップの熱源は、次述の燃焼ステップにより発生する熱である。 The raw material supplied into the gasification furnace 6 is gasified in the process of descending and passing through the upper cylindrical portion 61 and the lower cylindrical portion 62. That is, when the raw material sequentially supplied from the upper cylindrical portion 61 reaches the thermal decomposition zone slightly above the blowing port 67, thermal decomposition is started and gas (CO, H 2 , CH 4 , CO 2 , H 2 O), decomposed into char and hydrocarbon. The heat source of this pyrolysis step is heat generated by the combustion step described below.

次いで、この熱分解ステップで生成したガス、チャー、炭化水素は吹込口67から仕切り板65に至る燃焼・ガス化ゾーンに到達し、吹込口67から供給される酸化剤によって燃焼されるとともに、生成したチャーが、温度約700〜1200℃で、主にBoudouard反応と水生ガス反応によりCOとH2に変換され、ガス化が達成される。発生したガスは、火格子64を通過し、下部筒状部62の外面と外側ケーシング63の内周面との間を通り、外側ケーシング63に設けられた排出口71を介して、外部に取り出される。 Next, the gas, char, and hydrocarbons generated in this pyrolysis step reach the combustion / gasification zone from the inlet 67 to the partition plate 65 and are burned by the oxidant supplied from the inlet 67 and generated. The char is converted into CO and H 2 at a temperature of about 700 to 1200 ° C. mainly by the Boudouard reaction and the aquatic gas reaction, and gasification is achieved. The generated gas passes through the grate 64, passes between the outer surface of the lower cylindrical portion 62 and the inner peripheral surface of the outer casing 63, and is taken out to the outside through the discharge port 71 provided in the outer casing 63. It is.

ガス化炉6内の灰は底部の抜出口を介して排出される一方、ガス化炉6内で発生したガスは炉側部から抜き出され、サイクロン等からなる集塵機7に供給されてガス内に混入する灰が除去され、次いで燃料ガス冷却装置8において冷却された後、ガスエンジン9に供給され、燃料として使用される。ガスエンジン9には発電機10が接続されており、発電がなされる。ガスエンジン9の排ガスは排ガス冷却装置11で冷却され、大気に放出される。図示形態では、各冷却装置8,11は間接熱交換器により構成されており、水等の冷却液が燃料ガス冷却装置8で燃料ガスの冷却に使用された後、ガスエンジン9の冷却液として用いられ、さらにその後、排ガス冷却装置11で排ガスの冷却に使用されるようになっている。   While the ash in the gasification furnace 6 is discharged through the bottom outlet, the gas generated in the gasification furnace 6 is extracted from the side of the furnace and supplied to a dust collector 7 made of a cyclone or the like. The ash mixed in is removed and then cooled in the fuel gas cooling device 8 and then supplied to the gas engine 9 to be used as fuel. A generator 10 is connected to the gas engine 9 to generate power. The exhaust gas from the gas engine 9 is cooled by the exhaust gas cooling device 11 and released to the atmosphere. In the illustrated embodiment, each of the cooling devices 8 and 11 is configured by an indirect heat exchanger. After a coolant such as water is used for cooling the fuel gas by the fuel gas cooling device 8, the coolant is used as a coolant for the gas engine 9. After that, the exhaust gas cooling device 11 is used to cool the exhaust gas.

そして本実施形態では、冷却された後のガスエンジン9の排ガスの一部(または全部であっても良い)が、本発明に従ってガス化炉6に吹き込まれるようになっている。図示形態では、触媒塔12を経た排ガスがガス化炉6に供給されるようになっているが、冷却した後の排ガスであれば触媒塔12を経ていない排ガスであっても良い。排ガス冷却装置11による冷却の度合いは適宜定めることができるが、排ガスのガスエンジン出口温度は通常450〜600℃であり、これをガス化炉6の入口温度で50〜150℃となるように冷却するのが好ましい。入り口温度が150℃を超えると燃焼抑制効果により排ガスが保有する温度による炉内温度上昇の影響が大きくなり、50℃を下回ると結露により水滴が発生しガス化に悪影響を及ぼす。   In the present embodiment, a part (or all of the exhaust gas) of the gas engine 9 after being cooled is blown into the gasification furnace 6 according to the present invention. In the illustrated embodiment, the exhaust gas that has passed through the catalyst tower 12 is supplied to the gasification furnace 6, but it may be exhaust gas that has not passed through the catalyst tower 12 as long as it has been cooled. The degree of cooling by the exhaust gas cooling device 11 can be determined as appropriate, but the gas engine outlet temperature of the exhaust gas is usually 450 to 600 ° C., and this is cooled to 50 to 150 ° C. at the inlet temperature of the gasification furnace 6. It is preferable to do this. When the inlet temperature exceeds 150 ° C., the effect of the temperature rise in the furnace due to the temperature held by the exhaust gas becomes large due to the combustion suppression effect, and when it falls below 50 ° C., water droplets are generated due to condensation, which adversely affects gasification.

ガス化炉6内への排ガス吹き込み位置は適宜定めることができるが、吹込口67の近傍(特に、下向流式の場合には吹込口67の下側、上向流式の場合には吹込口の上側)はクリンカが発生し易いため、吹込口67を介して酸化剤とともに排ガスを吹き込んだり、吹込口67近傍の高さ位置(特に、下向流式の場合には吹込口67の下側、上向流式の場合には吹込口の上側)に専用の吹込み口を設け、この吹込み口を介して酸化剤とは別に排ガスを炉6内に吹き込むのは好ましい形態である。にまた、本実施形態では、酸化剤及び排ガスの両者を吹き込むようにしているが、場合によっては排ガスのみを吹き込むこともできる。酸化剤及び排ガスの吹き込み比率や吹き込み量は、実験に基づいてクリンカが発生し難くなるように定めるのが望ましい。   Although the exhaust gas blowing position into the gasification furnace 6 can be determined as appropriate, it is in the vicinity of the blowing port 67 (particularly, the lower side of the blowing port 67 in the case of the downward flow type, and the blowing position in the case of the upward flow type. Since the clinker is likely to be generated at the upper side of the mouth, exhaust gas is blown together with the oxidant through the blow-in port 67, or the height position in the vicinity of the blow-in port 67 (in particular, in the case of the downward flow type, below the blow-in port 67 On the side, in the case of the upward flow type, it is preferable to provide a dedicated blowing port (above the blowing port) and blow the exhaust gas into the furnace 6 separately from the oxidant through this blowing port. In addition, in the present embodiment, both the oxidant and the exhaust gas are blown, but depending on the case, only the exhaust gas can be blown. It is desirable that the blowing ratio and the blowing amount of the oxidant and the exhaust gas are determined based on experiments so that the clinker is hardly generated.

他方、ガス化に際しては、炉6内に熱分解領域、燃焼領域およびガス化領域が形成される。そして、ガス化領域における固形物の嵩比重が低いと、(1)ガス化領域内におけるガス化可能な成分量がそもそも少ないこと、および(2)空隙に入り込む酸素量が多くなり燃焼が進行し易くなることに起因して、ガス発生量が少なくなる。よって、少なくともガス化領域における固形物の嵩比重が0.5以上、好ましくは0.5〜2.0となるようにするのも好ましい形態である。嵩比重を0.5以上とするために、ガス化炉6内にピストン等の圧縮装置(図示しない)を設け、炉6内の固形物を圧縮することもできるが、予め、木質バイオマスをペレット化、ブリケット化、押出成形、撹拌成形等により、嵩比重が0.5以上となるように圧縮加工しておき、これを原料として炉6内に投入する方が、容易であり好ましい。この場合、原料のサイズは直径6〜12mm、長さ10〜20mmとするのが好ましい。原料のサイズが小さすぎると、圧損増大やクリンカ(焼塊)の生成を引き起こすおそれがあり、反対に原料サイズが大きすぎると炉内にブリッジを発生するおそれがある。   On the other hand, during gasification, a pyrolysis region, a combustion region, and a gasification region are formed in the furnace 6. If the bulk specific gravity of the solid in the gasification region is low, (1) the amount of components that can be gasified in the gasification region is small in the first place, and (2) the amount of oxygen that enters the gap increases and combustion proceeds. Due to the ease, the amount of gas generation is reduced. Therefore, it is also a preferable form that the bulk specific gravity of the solid substance at least in the gasification region is 0.5 or more, preferably 0.5 to 2.0. In order to set the bulk specific gravity to 0.5 or more, a compression device (not shown) such as a piston can be provided in the gasification furnace 6 to compress the solid matter in the furnace 6. It is easier and more preferable to perform compression processing so that the bulk specific gravity becomes 0.5 or more by forming, briquetting, extrusion molding, stirring molding, and the like, and putting this into the furnace 6 as a raw material. In this case, the size of the raw material is preferably 6 to 12 mm in diameter and 10 to 20 mm in length. If the size of the raw material is too small, there is a risk of increasing pressure loss and generating clinker (burned ingot). Conversely, if the raw material size is too large, a bridge may be generated in the furnace.

また、クリンカの発生を防止するために、ガス化炉6内に融点を上昇させる作用を有する物質を存在させた状態でガス化を図ることもできる。このために、予め原料に融点上昇物質を混入させる等により、原料とともに融点上昇物質をガス化炉6内に供給することができる。吹込口67の近傍(特に、下向流式の場合には吹込口67の下側、上向流式の場合には吹込口の上側)はクリンカが発生し易いため、吹込口67を介して空気とともに融点上昇物質を炉6内に投入したり、吹込口67近傍の高さ位置(特に、下向流式の場合には吹込口67の下側、上向流式の場合には吹込口の上側)に専用の投入口を設け、この投入口を介して空気とは別に融点上昇物質を炉6内に投入したりするのは好ましい形態である。これらの融点上昇物質の供給位置は適宜組み合わせて使用できる。融点上昇物質としては、炭酸カルシウム、水酸化カルシウム、酸化カルシウム、燐酸カルシウム、ドロマイト等を用いることができ、粉状や粒子状の形態で用いることができる。融点上昇物質の添加量は、適宜定めることができるが、木質バイオマス原料に対して0.5〜20重量%とするのが好ましい。なお、このことからも明らかなように、本発明は、他のクリンカ発生防止技術と組み合わせて適用することができる。   Moreover, in order to prevent generation | occurrence | production of a clinker, gasification can also be aimed at in the state in which the substance which has the effect | action which raises melting | fusing point exists in the gasification furnace 6. FIG. For this reason, the melting point increasing substance can be supplied into the gasification furnace 6 together with the raw material by mixing the melting point increasing substance in the raw material in advance. The clinker is likely to be generated in the vicinity of the inlet 67 (particularly, the lower side of the inlet 67 in the case of the downward flow type and the upper side of the inlet in the case of the upward flow type). A melting point-raising substance is introduced into the furnace 6 together with air, or the height position near the inlet 67 (particularly the lower side of the inlet 67 in the case of the downward flow type, the inlet in the case of the upward flow type). It is a preferable mode that a dedicated inlet is provided on the upper side of the furnace 6 and a melting point-increasing substance is introduced into the furnace 6 separately from air through this inlet. The supply positions of these melting point raising substances can be used in appropriate combination. As the melting point raising substance, calcium carbonate, calcium hydroxide, calcium oxide, calcium phosphate, dolomite and the like can be used, and they can be used in the form of powder or particles. The addition amount of the melting point increasing substance can be appropriately determined, but is preferably 0.5 to 20% by weight with respect to the woody biomass raw material. As is apparent from this, the present invention can be applied in combination with other clinker generation prevention techniques.

本発明の排ガス吹込みによる効果を確認するために、図2に示す構造のダウンドラフト式固定床ガス化炉を用い、表1に示す各例について実験を行った。従来例では排ガスを吹き込まずに空気のみを吹き込むようにした。また実施例1〜4では排ガスを吹き込むとともにその分だけ空気吹込み量を減らした。その他、表1に示されない他の条件は各例共通である。試験の結果は、表1に示すとおりであり、排ガスを冷却した後に空気とともにガス化炉に吹き込むことでクリンカの発生を抑制し、かつ排ガス発生量が増加することが判明した。   In order to confirm the effect of the exhaust gas injection of the present invention, an experiment was conducted on each example shown in Table 1 using a downdraft type fixed bed gasification furnace having a structure shown in FIG. In the conventional example, only air is blown without blowing exhaust gas. In Examples 1 to 4, exhaust gas was blown and the amount of air blown was reduced accordingly. Other conditions not shown in Table 1 are common to the examples. The results of the test are as shown in Table 1. It was found that by cooling the exhaust gas and blowing it into the gasification furnace together with air, the generation of clinker is suppressed and the amount of exhaust gas generated increases.

Figure 2008081636
Figure 2008081636

本発明は、木質バイオマスをガス化する限り、そのガスの用途に限定されるものではなく、上記例のような発電利用の他、燃料利用など、広範な用途に適用できるものである。   As long as the woody biomass is gasified, the present invention is not limited to the use of the gas, and can be applied to a wide range of uses such as the use of fuel as well as the use of power as in the above example.

ガス化発電設備例のフロー図である。It is a flowchart of the example of gasification power generation equipment. ガス化炉を概略的に示す縦断面図である。It is a longitudinal cross-sectional view which shows a gasification furnace roughly.

符号の説明Explanation of symbols

1…原料ピット、2…ピットクレーン、3…ホッパー、4…コンベヤ、5A,5B…ダンパー、6…固定床ガス化炉、7…集塵装置、8…燃料ガス冷却装置、9…ガスエンジン、10…発電機、11…排ガス冷却装置。   DESCRIPTION OF SYMBOLS 1 ... Raw material pit, 2 ... Pit crane, 3 ... Hopper, 4 ... Conveyor, 5A, 5B ... Damper, 6 ... Fixed bed gasifier, 7 ... Dust collector, 8 ... Fuel gas cooling device, 9 ... Gas engine, 10 ... Generator, 11 ... Exhaust gas cooling device.

Claims (4)

木質バイオマスからなる原料を固定床ガス化炉に投入しガス化した後、このガス化により発生したガスをガスエンジンに供給して動力を発生させる方法において、
前記ガスエンジンの排ガスを冷却した後に前記ガス化炉に吹き込むことを特徴とする木質バイオマスによる動力発生方法。
In a method in which a raw material made of woody biomass is put into a fixed bed gasifier and gasified, and then gas generated by this gasification is supplied to a gas engine to generate power.
A method for generating power using woody biomass, wherein the exhaust gas from the gas engine is cooled and then blown into the gasification furnace.
前記ガス化炉に吹き込む排ガスの温度を前記冷却により50〜150℃とする、請求項1記載の木質バイオマスによる動力発生方法   The power generation method using woody biomass according to claim 1, wherein the temperature of exhaust gas blown into the gasification furnace is set to 50 to 150 ° C by the cooling. 前記ガスエンジンにより発電機を駆動して発電を行う、請求項1記載の木質バイオマスによる動力発生方法。   The power generation method using woody biomass according to claim 1, wherein a power generator is driven by the gas engine to generate power. 木質バイオマスが供給される固定床ガス化炉と、この固定床ガス化炉により発生したガスが供給されるガスエンジンと、前記ガスエンジンの排ガスを冷却する冷却装置とを有し、
前記ガスエンジンの排ガスを前記冷却装置で冷却した後に前記ガス化炉に吹き込むように構成したことを特徴とする木質バイオマスによる動力発生システム。
A fixed bed gasification furnace to which woody biomass is supplied, a gas engine to which gas generated by the fixed bed gasification furnace is supplied, and a cooling device for cooling the exhaust gas of the gas engine,
A power generation system using woody biomass, wherein exhaust gas from the gas engine is cooled by the cooling device and then blown into the gasification furnace.
JP2006264311A 2006-09-28 2006-09-28 Power generation method using woody biomass and power generation system using woody biomass Active JP4873624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006264311A JP4873624B2 (en) 2006-09-28 2006-09-28 Power generation method using woody biomass and power generation system using woody biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006264311A JP4873624B2 (en) 2006-09-28 2006-09-28 Power generation method using woody biomass and power generation system using woody biomass

Publications (2)

Publication Number Publication Date
JP2008081636A true JP2008081636A (en) 2008-04-10
JP4873624B2 JP4873624B2 (en) 2012-02-08

Family

ID=39352813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006264311A Active JP4873624B2 (en) 2006-09-28 2006-09-28 Power generation method using woody biomass and power generation system using woody biomass

Country Status (1)

Country Link
JP (1) JP4873624B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBZ20130006A1 (en) * 2013-02-07 2014-08-08 Dissertori Kg Sas A FLUID MOTOR AND A MODIFICATION KIT TO REALIZE THIS ENGINE.
CN108977226A (en) * 2018-09-30 2018-12-11 广州威能机电有限公司 The electricity-generating method of biomass power generation system and application biomass

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000505123A (en) * 1996-03-07 2000-04-25 ゼヴァル エントゾルグングザンラーゲン ゲーエムベーハー Downstream fixed bed gasifier and its use.
JP2008081638A (en) * 2006-09-28 2008-04-10 Tsukishima Kikai Co Ltd Method for gasifying woody biomass
JP2008081637A (en) * 2006-09-28 2008-04-10 Tsukishima Kikai Co Ltd Method and apparatus for gasifying woody biomass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000505123A (en) * 1996-03-07 2000-04-25 ゼヴァル エントゾルグングザンラーゲン ゲーエムベーハー Downstream fixed bed gasifier and its use.
JP2008081638A (en) * 2006-09-28 2008-04-10 Tsukishima Kikai Co Ltd Method for gasifying woody biomass
JP2008081637A (en) * 2006-09-28 2008-04-10 Tsukishima Kikai Co Ltd Method and apparatus for gasifying woody biomass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBZ20130006A1 (en) * 2013-02-07 2014-08-08 Dissertori Kg Sas A FLUID MOTOR AND A MODIFICATION KIT TO REALIZE THIS ENGINE.
CN108977226A (en) * 2018-09-30 2018-12-11 广州威能机电有限公司 The electricity-generating method of biomass power generation system and application biomass

Also Published As

Publication number Publication date
JP4873624B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP4454045B2 (en) Swivel melting furnace and two-stage gasifier
JP4950554B2 (en) Gasification combustion equipment
JP5458219B2 (en) Waste melting treatment method and coal coke usage reduction method for waste melting furnace
WO1997049953A1 (en) Method for fusion treating a solid waste for gasification
JP2008081638A (en) Method for gasifying woody biomass
JP2007247962A (en) Combustible material treatment apparatus
JP4855539B2 (en) Biomass utilization apparatus using pulverized coal combustion boiler and biomass utilization method using the same
JP2010043840A (en) Method and apparatus for melting waste
JP2008081637A (en) Method and apparatus for gasifying woody biomass
JP4873624B2 (en) Power generation method using woody biomass and power generation system using woody biomass
JP2009051956A (en) Elevated temperature reduction thermochemical decomposition plant for biomass
JP2005232262A (en) Equipment and method for gasifying solid biomass fuel
JP4276559B2 (en) Waste melting treatment method using biomass
JP2008081635A (en) Method for gasifying woody biomass
JP4191636B2 (en) Waste melting treatment method using bulk biomass
JP4493609B2 (en) Method for thermal decomposition of carbonaceous raw materials
JP2017180922A (en) Waste tire gasification melting device and waste tire gasification melting method
JP4355667B2 (en) Method for producing valuable materials from livestock manure
JP5490488B2 (en) Waste melting treatment method
JP2007309642A (en) Swirling-type melting furnace, and method of gasifying waste using the same
JP6168287B2 (en) Waste melting treatment method
JP4505422B2 (en) Rectangular shaft type pyrolyzer
JP5811501B2 (en) Waste melting treatment method
JP5945929B2 (en) Waste gasification and melting equipment
RU2241904C1 (en) Complex for processing solid fuel on bioresources base and producing thermal energy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4873624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350