WO2023181585A1 - Energy gas/liquid generation vertical furnace system and generation method, fuel production method, transport device, and method - Google Patents

Energy gas/liquid generation vertical furnace system and generation method, fuel production method, transport device, and method Download PDF

Info

Publication number
WO2023181585A1
WO2023181585A1 PCT/JP2023/000160 JP2023000160W WO2023181585A1 WO 2023181585 A1 WO2023181585 A1 WO 2023181585A1 JP 2023000160 W JP2023000160 W JP 2023000160W WO 2023181585 A1 WO2023181585 A1 WO 2023181585A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
biomass
vertical furnace
tuyere
height
Prior art date
Application number
PCT/JP2023/000160
Other languages
French (fr)
Japanese (ja)
Inventor
正一 久米
Original Assignee
一般財団法人科学技術振興育英財団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般財団法人科学技術振興育英財団 filed Critical 一般財団法人科学技術振興育英財団
Publication of WO2023181585A1 publication Critical patent/WO2023181585A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel

Definitions

  • the present invention relates to a vertical furnace system and production method, a fuel production method, a transportation device, and a method for producing and utilizing energy gas or energy liquid using biomass and other raw materials.
  • Japanese Patent No. 6206822 discloses that two or more vertical furnaces are connected in series, the first vertical furnace is referred to as "front furnace 1", and the furnaces after the first vertical furnace are referred to as "after furnace 2".
  • a multi-stage vertical furnace system with a pressure control system is disclosed in which the outflow gas pressure at the outlet of the front furnace is increased to +49.03 Pa or more and +88257.42 Pa or less than the internal pressure of the after furnace.
  • Japanese Patent Application Publication No. 2004-155915 discloses that cows that are at risk of suffering from bovine spongiform encephalopathy, the meat and bone meal produced by them, livestock products, and discarded livestock products such as internal organs after slaughtering or excreted filth are heated to a high temperature of 1200 to 2600 degrees Celsius.
  • waste livestock products in which the high-temperature molten reducing gas is gasified in a melting furnace, the basicity of the molten slag is controlled to 0.4 to 1.4 with SiO 2 components, and the high-temperature molten reducing gas is recovered as an energy resource;
  • a method for high temperature smelting reduction gasification of the waste is disclosed.
  • JP-A No. 2005-283072 discloses that a vertical furnace has a bed filled with coke at the bottom, and a layer of waste deposited on top of the bed of coke is partially combusted with oxygen-containing gas to produce combustible gas.
  • a coke bed type gasification and melting furnace the temperature at the top of the deposited layer is controlled at 800°C or higher by blowing oxygen with an oxygen concentration of 90% or more through the tuyere, and the combustible gas is discharged from the gasification and melting furnace.
  • a method of utilizing gasification and melting furnace gas is disclosed in which the gasification and melting furnace gas is mixed with a gas used in a steelworks to form a mixed gas, and the mixed gas is used as fuel within the steelworks.
  • Table 1 shows the results of "blast furnaces using coke” that use coal, a typical fossil fuel, as raw material. This is a table of data when the use of fossil fuel coke is reduced and ⁇ biomass chips'' and sludge fuel are input in place of coke-using blast furnaces.
  • W2015/012302 includes a vertical cylindrical charcoal water gas generator 1 having a combustion chamber 7, a reduction layer 9 and a drying layer 10, and respective supplies for supplying charcoal, water and air to the charcoal water gas generator.
  • the reduction layer and the combustion chamber are arranged in a concentric cylindrical shape with the combustion chamber outside and a heat transfer wall 16 interposed therebetween, and a heat exchanger 12 is provided inside the combustion chamber. , either supply water to this heat exchanger to generate high-temperature, high-pressure superheated steam, or supply water from a raw water tank to the heat exchanger to generate steam, and then heat this steam through an induction heating device.
  • a method and apparatus for producing charcoal water gas in which superheated steam is generated by heating and a water gas reaction is carried out by introducing this superheated steam into the reduction layer 9, and a fuel using the same production method and apparatus.
  • a battery power generation system is disclosed.
  • FIG. 10 is a schematic cross-sectional view of the charcoal water gas production apparatus shown in W2015/012302, and in the figure, 1.
  • Charcoal water gas generator body (overall) 2.
  • Charcoal inlet top cover 3.
  • Combustion air suction port at startup 4.
  • Charcoal inlet and combustion air hole 5.
  • Ash outlet 6.
  • Lattice 7.
  • Oxidation layer (combustion chamber) 8. CO2 gas9.
  • Reduction layer 10. Drying layer 11. Ash layer 12.
  • Water pipe 13 Lower cylindrical part 14.
  • Upper cylindrical part Heat transfer wall 17. This is a flange joint.
  • the operating temperature range of this device is 800°C to 900°C in "9 reduction layer”.
  • This equipment also generates charcoal incineration ash in the "11 ash layer”.
  • This technology aims to gasify rice husks and generate gas to generate electricity.
  • the temperature inside the furnace is approximately 600°C to 800°C.
  • the generated gas is 1280 Mm 3 /h and the power generation amount is 390 kW, but there is a problem that a large amount of rice husk char (incinerated ash) is generated at this time.
  • blast furnaces for iron manufacturing have traditionally been carried out using coal, coke, or charcoal as the main raw materials.
  • This material uses charcoal, and in this way, the premise of blast furnaces has been to ⁇ pre-process'' wood, which is biological, into charcoal, or ⁇ charcoalize'' it.
  • Figure 11 shows the gasifier shown in Makoto Houki's rice husk gasification power generation system in the Philippines (Environmental Technology vol.35 No.6 2006).
  • the temperature inside the furnace is approximately 600°C to 800°C. This technique also has the problem of generating incineration ash.
  • a shaft furnace type gasification and melting furnace which is one of the waste gasification and melting technologies, can process a variety of wastes and can significantly reduce the amount of final disposal. It has been reported that by applying biomass chips and sludge fuel, each has the effect of partially substituting coke and can reduce CO2 .
  • Incineration ash is generated in conventional equipment or systems that produce energy gas or liquid using plants, wood, or other biomass as an energy source, as described above.
  • the present invention relates to a vertical furnace system and method for producing energy gas or energy liquid safely and at low cost using biomass and other raw materials, and a method for producing fuel using the produced energy gas or liquid.
  • an object of the present invention is to provide a transportation device equipped with the vertical furnace system, and a transportation method using energy gas or energy liquid produced by the production method on the transportation device.
  • the present invention can be expressed, for example, as follows.
  • a vertical furnace whose height inside the furnace exceeds the diameter or equivalent diameter of the lower part of the furnace;
  • the vertical furnace is equipped with a charging device for charging biomass or biomass and non-biomass substances from above the upper part of the vertical furnace or the lower part of the furnace,
  • the biomass and non-biomass substances inputted into the vertical furnace by the input device are such that the biomass is 10 to 100% by mass, and the non-biomass substance is 0 to 90% by mass as the balance, the combined biomass and non-biomass material input has moisture;
  • the vertical furnace is provided with at least a lower tuyere as a tuyere, and the lower tuyere is located at a height of less than 30% of the height of the inside of the vertical furnace, and the lower tuyere is located at a height of less than 30% of the height of the inside of the vertical furnace, and the lower tuyere is located at a height of less than 30% of the height of the inside of the vertical furnace.
  • a blowing device for blowing other oxygen-containing gas into the furnace through the lower tuyere; Energy gas or liquid generation characterized by having a furnace lower temperature control device for maintaining the temperature inside the furnace lower part of the vertical furnace at a high temperature where hydrogen gas can be generated by reducing water in the furnace.
  • Vertical furnace system characterized by having a furnace lower temperature control device for maintaining the temperature inside the furnace lower part of the vertical furnace at a high temperature where hydrogen gas can be generated by reducing water in the furnace.
  • the biomass and non-biomass material to be input into the vertical furnace are such that the biomass is 10 to 100% by mass, and the non-biomass material is 0 to 90 mass% as the balance, the combined biomass and non-biomass material input has moisture;
  • the vertical furnace is provided with at least a lower tuyere as a tuyere, and the lower tuyere is located at a height of less than 30% of the height of the inside of the vertical furnace, and the lower tuyere is located at a height of less than 30% of the height of the inside of the vertical furnace, and the lower tuyere is located at a height of less than 30% of the height of the inside of the vertical furnace.
  • a fuel source for a power engine for driving a transportation device On the transportation device, the energy gas or liquid produced by the method described in (4) above, a fuel source for a power engine for driving a transportation device; a fuel source for a power engine for a generator as a direct power source or a power source via an electrical storage device for an electric power plant driving a transport device, or A transportation method for use as a fuel source for a fuel cell as a direct power source or as a power source via an electrical storage device for an electric power device driving a transportation device.
  • energy gas or energy liquid can be generated safely and at low cost using biomass and other raw materials, fuel can be manufactured using the generated energy gas or liquid, and biomass It is possible to realize a safe and low-cost transportation device and transportation method using materials such as and other raw materials.
  • FIG. 2 is a diagram showing the relationship between the temperature (° C.) inside the lower part of the furnace and the concentration (%) of energy gas (C n H m such as CO + H 2 + CH 4 ) in the furnace at an intermediate height position inside the furnace.
  • FIG. 2 is a diagram showing the relationship between the temperature (° C.) at an intermediate height position inside the furnace and the concentration (%) of energy gas (C n H m such as CO + H 2 + CH 4 ) in the furnace at an intermediate height position inside the furnace.
  • FIG. 2 is a diagram showing the relationship between the temperature (° C.) at an intermediate height position inside the furnace and the concentration (%) of energy gas (C n H m such as CO + H 2 + CH 4 ) in the furnace at an intermediate height position inside the furnace.
  • FIG. 2 is a diagram showing the relationship between the temperature (° C.) at the top of the furnace and the concentration (%) of energy gas (C n H m such as CO + H 2 + CH 4 ) in the furnace at an intermediate height position inside the furnace.
  • FIG. 2 is a diagram showing the relationship between the ratio of biomass mass input into the furnace/(mass of coal and/or coke) and the concentration of energy gas (CO + H 2 + CH 4 etc.) at an intermediate height position inside the furnace.
  • FIG. 2 is a block diagram of a vehicle. It is a figure which shows the example of a composite energy blast. It is a figure which shows the example of a composite energy blast. It is a figure which shows the example of a composite energy blast.
  • FIG. 1 is a schematic cross-sectional view of a conventional charcoal water gas production device.
  • FIG. 2 is a diagram showing a gasifier in a conventional rice husk gasification power generation system.
  • the energy gas or liquid production vertical furnace system of the present invention includes a vertical furnace and a charging device for charging biomass and non-biomass substances into the vertical furnace.
  • the transportation device of the present invention is equipped with the energy gas or liquid production vertical furnace system of the present invention.
  • the fuel production method of the present invention is a method of producing fuel using energy gas or liquid produced using the energy gas or liquid production vertical furnace system of the present invention.
  • the energy gas or liquid generation method of the present invention includes a step of charging biomass and non-biomass material into a vertical furnace, and a step of processing the biomass or biomass and non-biomass material in the vertical furnace.
  • the transportation method of the present invention is a transportation method that uses energy gas or liquid produced by the method of the present invention on a transportation device.
  • a vertical furnace has a height (preferably 1.5 times) exceeding the diameter or equivalent diameter (if the horizontal cross-sectional shape is other than circular) of the lower part of the furnace (for example, the hearth or hearth bottom or the upper part thereof).
  • the height of the furnace is
  • Examples of vertical furnaces include blast furnaces, vertical gasification and melting furnaces, waste treatment furnaces, hydrogen-reduced iron smelting furnaces, etc., which smelt iron ore to produce molten iron, and various types of pig iron. Examples include, but are not limited to, furnaces.
  • biomass in the present invention examples include vegetable shells (rice husks, etc.), bamboo, broad-leaved trees, coniferous trees, root stocks, large trees, thinned wood, waste wood from forests, rotten forest wood and other waste plants, waste wood, In addition to plant-derived materials such as bark and scraps generated at lumber factories, construction waste materials, construction dismantled materials, furniture wood, tatami mats, waste paper materials, plant-derived materials that are attached to or contain metals or soil, etc.
  • vegetable shells rice husks, etc.
  • bamboo broad-leaved trees
  • coniferous trees root stocks
  • large trees thinned wood
  • waste wood from forests rotten forest wood and other waste plants
  • waste wood waste wood
  • plant-derived materials such as bark and scraps generated at lumber factories, construction waste materials, construction dismantled materials, furniture wood, tatami mats, waste paper materials, plant-derived materials that are attached to or contain metals or soil, etc.
  • biomass deposited on the bottom of dams, lakes, ponds, rivers, rice paddies, fields, oceans, etc., and dumping.
  • Examples include earth and sand, biological substances mixed with earth and sand, and include, but are not limited to, those treated with antiseptic and anti-anticide agents and various other chemically synthesized substances and naturally derived substances. do not have.
  • Such biomass can be charged into a vertical furnace, for example, individually or in a mixture of two or more kinds.
  • the biomass inputted into the vertical furnace is not limited to solids that do not substantially contain water or other liquids, but may also be biomass that contains or is accompanied by water, seawater, or other liquids. Alternatively, it may be mixed with other non-biomass materials such as seawater or other liquids, metals, metal oxides, mud, soil, stones, brick waste, glass, or gases.
  • biomass and/or microplastics and other non-biomass substances contained in suspension or otherwise, in oceans, lakes, rivers, drainage systems, wastewater systems, or sewage systems, together with seawater or other moisture, or separated. It can also be charged into a vertical furnace.
  • the biomass to be input into the vertical furnace must be dried, carbonized, or reduced to a predetermined size before being input into the furnace.
  • pre-treatment such as shredding, agglomeration or pelletization.
  • Radioactively contaminated biomass or non-biomass materials, radioactive waste, radioactively contaminated water containing biomass or non-biomass materials, chemical wastewater, etc. can also be objects to be fed into the vertical furnace.
  • the non-biomass material is 0 to 90% by mass (preferably 85, 80, or 70% by mass or less), which is the remainder of the biomass 10 to 100% by mass (preferably 15, 20, or 30% by mass or more), based on the vertical furnace. )throw into. For example, 30% by mass of biomass and 70% by mass of non-biomass material can be charged into the vertical furnace.
  • the input to the vertical furnace combining biomass and non-biomass materials may contain 15 to 75% by mass of moisture, preferably 15 to 60% by mass.
  • non-biomass materials include: Fossil raw materials or fossil raw material waste such as coke, coal, heavy oil, kerosene, light oil, natural gas, peat or other low-grade coal, low-grade petroleum residue; Petroleum-based and/or coal-based substances in solid or liquid form, such as plastics and tires, including packaging materials made of various plastic materials; Various carbonaceous substances; Metals in various metal products, electrical products made of metal materials, etc.; Examples include, but are not limited to, mud, soil, stones, brickwork, glass, etc.; as well as water, seawater, and other water contained in or associated with such non-biomass materials. Such non-biomass materials can be charged into the vertical furnace, for example, individually or in a mixture of two or more.
  • Non-biomass materials may include carbon-containing fuel materials that can act as reducing agents.
  • non-biomass materials input into a vertical furnace for iron smelting include: Fossil fuels such as coke and coal; Iron ore, metals, molded pig iron, iron scrap, sponge iron, and other metal oxides; Although limestone can be mentioned as an auxiliary raw material, it is not limited to these.
  • the vertical furnace is equipped with at least a lower tuyere as a tuyere, and the lower tuyere is located at a height of less than 30% of the height of the inside of the vertical furnace, and at least air or other and a blowing device for blowing the oxygen-containing gas into the furnace through the lower tuyere.
  • an upper tuyere is provided at a height of 70% or more of the height of the inside of the vertical furnace, and at least oxygen or oxygen-enriched air or preheated air (e.g., preheated to 40°C or higher) is provided.
  • air air
  • energy liquids e.g. coal- or petroleum-based or other liquid hydrocarbons or hydrocarbon-based liquids
  • energy gases e.g. natural gas or other hydrocarbon gases.
  • It may have a blowing device for blowing into the furnace through the upper tuyere. When blowing with this blowing device, it is necessary to maintain the temperature inside the lower part of the vertical furnace at a high temperature that allows hydrogen gas to be generated by reducing water in the furnace. It is effective in maintaining the internal temperature at 815 to 1050 °C or higher, even when the input to a vertical furnace containing biomass and non-biomass materials contains 15 to 75% by mass of moisture. .
  • a central tuyere is provided in a portion of the vertical furnace with a height of 30% or more and less than 70% of the height inside the furnace, and at least a central tuyere is provided for carrying oxygen or oxygen-enriched air or preheated air, energy liquid, and energy gas. It may include a blowing device for blowing one or more of them into the furnace through the middle tuyere. When the blowing device is used to blow into the furnace through the upper tuyere, the temperature inside the lower part of the vertical furnace can be increased by reducing hydrogen gas by reducing water in the furnace.
  • One or more tuyeres other than the lower tuyere, middle tuyere, and upper tuyere are provided as necessary in a part of the furnace at a height of 70% or more of the height of the inside of the furnace, and the required material is placed in the tuyeres. It may have a blowing device for blowing into the furnace through the mouth.
  • the device may include a blowing device for blowing one or more of powder), water at room temperature, or heated water.
  • the blowing device for blowing into the furnace through the lower tuyere, upper tuyere, middle tuyere, and other tuyere that the vertical furnace may have shall be provided individually, or may be used in combination in one or more groups. It can be provided in a manner similar to that, or it can be provided in such a way that all of the equipment or equipment can be used in combination.
  • the input biomass is 10 to 100% by mass (e.g., as a proportion of the input amount per fixed time, or as a proportion of a fixed volume or mass), and the input non-biomass materials are: The remainder is 0 to 90% by mass (for example, as a proportion of the input amount per fixed time, or as a proportion of a fixed volume or mass).
  • Preferred input ratios of biomass and non-biomass materials are as described above.
  • Biomass and non-biomass materials may be introduced using conveyors and/or chutes (including rotating chutes), or pipes and necessary pumps and Liquids, gases, and other fluids/semi-fluids may be introduced using valves or the like.
  • biomass can be mixed with coal and/or coke, which are non-biomass materials, and other necessary materials, and the mixture can be charged or swirled from the top of the furnace and/or the upper part of the vertical furnace. It is also possible to input coal and/or coke, which are biomass substances, and biomass at different times and/or positions (separate input).
  • Such mixed charging and separated charging can be performed while being controlled by a charging amount control device. Even when non-biomass materials such as iron ore, sintered pellets, reduced iron, molded pig iron, and scrap are input, they can be mixed with biomass or mixed with coal and/or coke.
  • non-biomass materials such as iron ore, sintered pellets, reduced iron, molded pig iron, and scrap are input, they can be mixed with biomass or mixed with coal and/or coke.
  • biomass and non-biomass substances into powder, granules, solids, and coarse materials in order of average diameter (size), and select appropriate devices and routes for inputting them.
  • Examples of the types and contents of substances that are analyzed in this way include the amount of various solid substances, the amount of metals, mud, soil, water, tar, etc. in or mixed with biomass, water and other various substances. Examples include, but are not limited to, the amount of liquid or semi-liquid, the amount of various gases, etc.
  • Biomass can also be classified according to its moisture content, for example, as follows, and used for input amount control. Almost 0% moisture (e.g. charcoal, smoked charcoal, etc.) Moisture 0.1% ⁇ 1% Moisture 1% to 3% Moisture 3% to 10% Moisture 10% to 20% Moisture 20% to 30% Moisture 30% or more (high moisture)
  • Control by the input amount control device includes, for example, temperature sensors (thermocouples, etc.) and other necessary sensors (such as hydrogen concentration sensors, Based on data acquired by a carbon oxide concentration sensor, image sensor, etc., for example, the temperature at a predetermined location such as the lower part or the top of a vertical furnace, the temperature distribution in a predetermined range, the hydrogen concentration or carbon monoxide concentration at a predetermined location, etc. This can be done to understand and control the operational status of vertical furnace systems such as
  • the energy gas or liquid producing vertical furnace system of the present invention is capable of injecting amounts of various solids, moisture or other various liquids in biomass or non-biomass materials, or various gases into the furnace from required locations using a charging device.
  • an input amount control device that controls the amount of (including the type and content of the contained substance as necessary).
  • the following furnace lower temperature control device and furnace top temperature control device or further furnace middle temperature control device
  • a feeding device is installed to feed the required type and amount of biomass or non-biomass material into the vertical furnace from a required location based on the temperature etc. detected by a temperature sensor in the lower part of the furnace.
  • an input amount control device may be mentioned.
  • a charging device is installed to charge the required type and amount of biomass or non-biomass material into the vertical furnace from a required location based on the temperature etc. detected at the top of the furnace by a temperature sensor.
  • a temperature sensor For example, an input amount control device may be mentioned.
  • the lower furnace temperature control device and the furnace top temperature control device are each controlled by a blowing device through at least one of the tuyeres provided in the above-mentioned vertical furnace. Control of the flow rate of the substance, the content of the required substance (including, for example, oxygen concentration, preheating temperature, etc.), and other known means may also be used.
  • furnace lower temperature control device As a device that can constitute at least a part of the furnace lower temperature control device and the furnace top temperature control device (or the furnace middle temperature control device), it is possible to supplementally raise the temperature inside the furnace at required points in the vertical furnace.
  • a gas-ignited burner or other gas-ignited device may be provided.
  • the temperature in the furnace can be raised supplementarily.
  • the combusted gas becomes a reduced gas in the furnace under a reducing atmosphere (as described later, a certain range or a wide range within the furnace can be a reducing atmosphere).
  • a reducing atmosphere as described later, a certain range or a wide range within the furnace can be a reducing atmosphere.
  • hydrogen gas becomes water vapor by combustion in a furnace, but hydrogen gas is generated from the water vapor in a furnace under a reducing atmosphere.
  • carbon monoxide gas becomes carbon dioxide by combustion in the furnace, but carbon monoxide gas is generated from the carbon dioxide in the furnace under a reducing atmosphere.
  • the present invention includes a furnace lower temperature control device for maintaining the temperature inside the furnace lower part of a vertical furnace at a high temperature that allows hydrogen gas to be generated by reducing water in the furnace.
  • the furnace lower temperature control device controls the temperature inside the furnace lower part of the vertical furnace. Melting reduction of a metal oxide when the metal oxide is present, or In the case of containing oxidized carbides, the temperature may be maintained at a high temperature that allows either or both of the production of carbon monoxide gas by reduction of the oxidized carbides.
  • the present invention further comprises: Controlling the temperature of at least a part of the inside of the top of the vertical furnace (for example, a part in a certain range in the radial direction and/or height direction) to a required temperature of room temperature (equivalent to the temperature of the surrounding atmosphere) or higher. It may have a furnace top temperature control device.
  • the present invention may also include a furnace central temperature control device for controlling the temperature of the vertically intermediate portion of the vertical furnace as necessary.
  • the temperature control device for the lower part of the furnace can control the temperature inside the lower part of the vertical furnace from 815 to 1050°C (815°C or 1050°C, or a temperature between them). ) or more.
  • the furnace top temperature control device may be configured to, for example, control the temperature of at least a portion of the inside of the top of the vertical furnace to a required temperature of 1000 to 1050° C. above room temperature.
  • the temperature may be controlled to any temperature from room temperature to 1000 to 1050°C or less, or within a certain range, but the temperature is not limited to this. .
  • the lower limit of the range of above normal temperature and below 1000 to 1050°C is, for example, normal temperature, 40°C, 45°C, 50°C, 60°C, 80°C, 100°C, 120°C, 150°C, 200°C, 300°C, or 400°C
  • the upper limit is, for example, 60°C, 80°C, 100°C, 120°C, 150°C, 200°C, 300°C, 400°C, 500°C, 600°C, 800°C, 1000°C , 1050°C, but is not limited to these.
  • the temperature control device for the middle part of the furnace sets the temperature of the middle part in the height direction in the vertical furnace slightly higher (for example, 5 degrees Celsius or more higher) than the temperature control device for the top part of the furnace.
  • the temperature can be controlled according to the purpose of the transportation device.
  • incineration ash and foreign substances in the biomass are melted or reduced and melted in this high temperature section, and depending on the input materials, metals and reduced slag are obtained (for example, Fe 2 O 3 +3C ⁇ 2Fe+3CO; SnO+C ⁇ Sn+CO; PbO+C ⁇ Pb+CO; Cu2O +C ⁇ 2Cu+CO
  • metallic iron is obtained from iron oxide, metallic tin from tin oxide, metallic lead from lead oxide, metallic copper from copper oxide, and furthermore, energy gas CO is obtained. ).
  • incineration ash i.e., industrial waste containing metal oxide
  • This reduced slag is not an industrial waste that requires processing costs, but can be recycled as a raw material for cement or used as an agricultural material containing mineral components necessary for plant growth.
  • Figure 1 is an example of a vertical furnace 10 whose height is 1.5 times or more the diameter of the lower furnace portion 10a.
  • At least air or other oxygen-containing gas is blown into the furnace through the lower tuyere 22a.
  • At least one or more of oxygen, oxygen-enriched air, preheated air, energy liquid, and energy gas are blown into the furnace through the upper tuyere 22u and the middle tuyere 22m, respectively.
  • the biomass and non-biomass materials (furnace input materials) charged into the furnace top 10t are gradually lowered to the furnace lower part 10a while being heated in the furnace, and are placed at one or more places in the furnace lower part 10a.
  • a combustion control zone with a height (including stages) of The temperature is controlled to a high temperature that allows hydrogen gas to be produced by reduction of
  • the materials charged into the furnace transition from the oxidation reaction zone to the reduction reaction zone as the temperature inside the furnace increases.
  • the input biomass moves to the reduction reaction zone, many components in the biomass transfer to carbon, tar, or other chemical substances, and are contained in the input biomass at a sufficient proportion of 15 to 75% by mass. Due to the reduction reaction of the water, a sufficient amount of energy gas such as CO + H 2 is generated, and C n H m such as CH 4 is also generated.
  • the energy gas inside the furnace at the intermediate height position inside the furnace is The concentration (C n H m such as CO + H 2 + CH 4 ) rises quite rapidly, and if it exceeds about 35%, it can become even higher.
  • the furnace height ratio (furnace height/hearth diameter), which is the ratio of the furnace height inside the furnace to the diameter of the furnace lower part 10a, is about 1.5 or more
  • the hydrogen in the gas in the furnace upper part 10u increases and moves from the oxidation zone to the reduction zone.
  • the furnace height ratio increases from about 1.5 to 1.8 or more
  • the hydrogen (H 2 ) concentration in the gas in the upper part of the furnace 10u increases further and can reach a high concentration of 5% or more, forming a reduction zone.
  • the residual material is not incineration ash (i.e., industrial waste) but molten reduction slag, i.e., metal
  • molten reduction slag i.e., metal
  • materials containing oxides, earth, sand, stone, brick waste, etc. are input, materials derived from earth, sand, stone, brick waste, etc., become recycled products such as metals or raw materials for recycled products.
  • Such reduced slag can be flowed out in a molten state from the lower part of the furnace 10a through the molten reduced slag/metal outlet 10s. Therefore, industrial waste such as incineration ash containing metal oxides is hardly generated.
  • the range of the oxidation reaction zone and the range of the reduction reaction zone in the furnace can be changed.
  • the range of the oxidation reaction zone can be made small or relatively small, and the range of the reduction reaction zone can be made large or relatively large.
  • the biomass contains a large amount of water, the range of the oxidation reaction zone can be made large or relatively large, and the range of the reduction reaction zone can be made small or relatively small.
  • the outer peripheral wall 10w of the vertical furnace 10 in FIG. A heat exchange pipe may also be buried. In that case, by flowing water or other liquids through the heat exchange pipe, it can be used as a boiler (bioboiler) that heats them or generates steam from them.
  • the waste heat of the furnace body of the vertical furnace or the heat of products such as high-temperature gas generated in the vertical furnace can be used directly or indirectly through heat exchange or the like.
  • high-temperature steam high-temperature superheated steam
  • high-temperature superheated steam generated by heat exchange for example, high-temperature superheated steam of several hundred degrees Celsius or 1000 degrees Celsius or more
  • heat exchange for example, high-temperature superheated steam of several hundred degrees Celsius or 1000 degrees Celsius or more
  • can be used for indirect heating e.g. by heat exchanger. Examples of such heating uses include, but are not limited to, preheating biomass or non-biomass materials to be input into a vertical furnace, and producing silicon by heating (steaming, etc.) biomass. .
  • the vertical furnace 10 of the present invention has a furnace lower part 10a, an upper part than the furnace lower part 10a (for example, an upper and lower intermediate position [furnace intermediate part 10m] of the vertical furnace 10, or an upper and lower intermediate position and an upper part [furnace upper part]). 10u]), or from the upper part of the vertical furnace 10 (the furnace top 10t and/or the upper part of the vertical furnace 10 located below the furnace top 10t), or the gas exhaust ports 10g etc. provided at those positions.
  • C n H m such as CO, H 2 and CH 4 (which may also contain nitrogen gas, other reducing substances, etc.) can be recovered.
  • Such recovered materials may be used as energy gas or energy liquid liquefied by cooling, including natural cooling.
  • liquid or gaseous fuels, various chemicals, and other substances gasoline, diesel oil, kerosene, liquefied natural gas, liquefied methane, It can be used as a raw material for diesel oil, ammonia, benzene, naphthalene, various agricultural chemicals, etc.).
  • Bio-liquid energy such as bio-gasoline
  • Biogas energy such as bionatural gas
  • Biomineral resources such as biosilicon
  • Bio metals such as bio iron
  • Bio-coal resources such as bio-coal
  • It can be used for various purposes as a biochar-based resource such as bioactivated carbon.
  • the vertical furnace 10 in the present invention uses biomass to produce high hydrogen gas with a concentration (volume concentration) of 5% or more hydrogen gas and 0.5% or less oxygen gas. (hydrogen-rich gas) is preferable.
  • the concentration of H 2 and CO decreases from the lower part to the upper part in the vertical furnace 10, so high concentration H 2 and/or CO gas can be removed by providing a gas outlet in the lower part of the furnace 10a. Therefore, it is desirable to take it out from the furnace lower part 10a. Highly concentrated hydrogen gas is also useful in the production of ammonia.
  • the biomass and non-biomass materials (the combined input of biomass and non-biomass materials) to be charged into the vertical furnace 10 may contain moisture at a predetermined ratio.
  • the proportion of moisture in the input material is, for example, 15 to 75% by mass, 20 to 75% by mass, 25 to 75% by mass, 30 to 75% by mass, 40 to 75% by mass, or 50 to 75% by mass (or , 15 to 60% by mass, respectively (up to 60% by mass). It should be noted that the input material does not need to have this moisture ratio in any part thereof; It is sufficient if it has the following.
  • the moisture content of the input to the vertical furnace 10 for example, controlling the moisture content using moisture-containing biomass or other input moisture
  • the moisture content (H 2 O) for example, controlling the moisture content using moisture-containing biomass or other input moisture
  • the moisture content (H 2 O) for example, controlling the moisture content using moisture-containing biomass or other input moisture
  • the concentration and amount of hydrogen gas (H 2 ) produced by reduction from water (H 2 O) can be controlled, for example, by the amount control device described above.
  • iron oxide, other metal oxides, or other oxides in the input to the furnace can be converted into metallic iron, other metals, or other reduced products by the generated hydrogen gas (H 2 ). Alternatively, it becomes possible to control the reduction.
  • wood vinegar including bamboo vinegar
  • citric acid acetic acid
  • acetic acid or other organic acids
  • high quality wood vinegar that does not contain other oxides including metal oxides produced by oxidation can be obtained through the gas outlet 10g.
  • silicon can be generated from the molten reduction product or reduced slag that may flow out from the lower part of the vertical furnace.
  • the transportation device of the present invention uses an energy gas or liquid producing vertical furnace system as a fuel source of a power engine for driving a vehicle such as an automobile or a railway vehicle, or a transportation device such as a ship.
  • a device equipped with the energy gas or liquid generating vertical furnace system of the present invention as a fuel source for a power engine for a generator which is a direct power source for an electric power device that drives the above-mentioned transportation device or a power source via a power storage device.
  • the energy gas or liquid producing vertical furnace system of the present invention is installed as a fuel source for a fuel cell that serves as a direct power source for an electric power device that drives a transportation device or as a power source via a power storage device.
  • FIG. 6 is a block diagram of an example of a vehicle equipped with the energy gas or liquid production vertical furnace system of the present invention.
  • the vehicle 40 has wheels 46 driven by an engine 42 or an AC motor 44, and is equipped with the equipment shown in FIG. 6 in addition to the vertical furnace 10.
  • the vertical furnace 10 has heat exchange pipes embedded in the outer peripheral wall. In addition to generating energy gas, this vertical furnace 10 functions as a boiler in which water is passed through the heat exchange pipe to generate steam.
  • a vertical furnace mounted on a vehicle or the like can have an outer diameter of about 50 to 150 cm and a height of about 100 to 200 to 300 cm, for example.
  • the generated energy gas passes through the gas purification device 48 and is supplied to the engine 42 by the fuel injection device 52, either separately or mixed with the fuel stored in the fuel tank 50, and the engine 42 is operated to drive the vehicle 40. do.
  • the steam generated through the heat exchange pipe of the vertical furnace 10 is supplied to a steam generator 54, and the alternating current generated by the steam generator 54 is rectified by a rectifier 56 and charged to a battery 58.
  • the output from the battery 58 is further converted into alternating current at a predetermined frequency by an inverter 60 and supplied to an alternating current motor 44 for driving the vehicle, so that the alternating current motor 44 can drive the vehicle 40.
  • the steam that has passed through the steam generator 54 is condensed by a radiator 62, and is supplied to the heat exchange pipe of the vertical furnace 10 via a water tank 64 for use.
  • the current generated by the solar panel 66 is charged to the battery 60 via the voltage stabilizing device 68, and is used to drive the vehicle 40 by the AC motor 44.
  • charging equipment using a solar panel and equipment that generates electricity using a steam generator by providing a heat exchange pipe in a vertical furnace can be provided as necessary.
  • Fuels such as liquid hydrocarbons, gaseous hydrocarbons, ammonia, etc., for gasoline engines, diesel engines, gas turbines, and other prime movers or for fuel cells can be produced.

Abstract

In the present invention, 30 mass% of biomass and 70 mass% of non-biomass material are charged into a vertical furnace 10 of an energy gas/liquid-generating vertical furnace system from above by a charging device 30. The charged materials contain 15 to 75 mass% of moisture; at least air or other oxygen-containing gas is blown into the vertical furnace 10 through a lower tuyere 22a; and at least one or more selected from among oxygen/oxygen-enriched air or preheated air, energy liquid, and energy gas are blown in through a middle tuyere 22m and an upper tuyere 22u respectively. The temperature inside a furnace lower part of the vertical furnace 10 is maintained at a high temperature at which hydrogen gas can be generated by means of reduction of water in the furnace. A transport device on which the vertical furnace system is mounted. A method for producing fuel with use of the energy gas/liquid generated using the vertical furnace system.

Description

エネルギーガス又は液体生成竪型炉システム及び生成方法、燃料製造方法、輸送装置及び方法Energy gas or liquid production vertical furnace system and production method, fuel production method, transportation device and method
 本発明は、バイオマス及びその他の原料等を用いてエネルギーガス又はエネルギー液体を生成し、利用する、竪型炉システム及び生成方法、燃料製造方法、輸送装置及び方法に関する。 The present invention relates to a vertical furnace system and production method, a fuel production method, a transportation device, and a method for producing and utilizing energy gas or energy liquid using biomass and other raw materials.
 特許第6206822号公報には、竪型炉を2基以上の複数基で直列につなぎ、最初の竪型炉を「前炉1」とし、最初の竪型炉以降の炉を「後炉2」とし、その前炉の出口流出ガス圧力を後炉の炉内圧力よりも+49.03Pa以上、+88257.42Pa以下と高める圧力制御システムの多段竪型炉システムが開示されている。 Japanese Patent No. 6206822 discloses that two or more vertical furnaces are connected in series, the first vertical furnace is referred to as "front furnace 1", and the furnaces after the first vertical furnace are referred to as "after furnace 2". A multi-stage vertical furnace system with a pressure control system is disclosed in which the outflow gas pressure at the outlet of the front furnace is increased to +49.03 Pa or more and +88257.42 Pa or less than the internal pressure of the after furnace.
 特開2004-155915には、牛海綿状脳症の恐れがある牛、それらにより生成した肉骨粉、および畜産物並びにその解体後の内臓などの廃棄畜産物あるいは排出汚物を1200~2600℃の高温にて溶融炉にて高温溶融還元ガス化すると共に、溶融スラグの塩基度をSiO  成分にて0.4~1.4に制御し、該高温溶融還元ガスをエネルギー資源として回収する廃棄畜産物およびその排出物の高温溶融還元ガス化方法が開示されている。 Japanese Patent Application Publication No. 2004-155915 discloses that cows that are at risk of suffering from bovine spongiform encephalopathy, the meat and bone meal produced by them, livestock products, and discarded livestock products such as internal organs after slaughtering or excreted filth are heated to a high temperature of 1200 to 2600 degrees Celsius. waste livestock products, in which the high-temperature molten reducing gas is gasified in a melting furnace, the basicity of the molten slag is controlled to 0.4 to 1.4 with SiO 2 components, and the high-temperature molten reducing gas is recovered as an energy resource; A method for high temperature smelting reduction gasification of the waste is disclosed.
 特開2005-283072には、竪型の炉の底部にコークスの充填層を有し、コークスの充填層の上に投入される廃棄物の堆積層を酸素含有ガスで部分燃焼して可燃ガスを得るコークスベッド方式のガス化溶融炉において、酸素濃度90%以上の酸素を羽口から吹き込むことで堆積層上部の温度を800℃以上に制御し、ガス化溶融炉から排出される可燃ガスであるガス化溶融炉ガスを、製鉄所で使用されるガスと混合して混合ガスとし、混合ガスを製鉄所内燃料として利用するガス化溶融炉ガスの利用方法が開示されている。 JP-A No. 2005-283072 discloses that a vertical furnace has a bed filled with coke at the bottom, and a layer of waste deposited on top of the bed of coke is partially combusted with oxygen-containing gas to produce combustible gas. In a coke bed type gasification and melting furnace, the temperature at the top of the deposited layer is controlled at 800℃ or higher by blowing oxygen with an oxygen concentration of 90% or more through the tuyere, and the combustible gas is discharged from the gasification and melting furnace. A method of utilizing gasification and melting furnace gas is disclosed in which the gasification and melting furnace gas is mixed with a gas used in a steelworks to form a mixed gas, and the mixed gas is used as fuel within the steelworks.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1は石化燃料の代表である石炭を原料とした「コークス使用高炉」における実績である。コークス使用高炉において、石化燃料のコークスを少なくして代替に「バイオマスチップ」と汚泥燃料化物を投入した場合のデータの表である。 Table 1 shows the results of "blast furnaces using coke" that use coal, a typical fossil fuel, as raw material. This is a table of data when the use of fossil fuel coke is reduced and ``biomass chips'' and sludge fuel are input in place of coke-using blast furnaces.
 バイオマスチップ投入した場合のコークス削減量は、最大約21g/tで僅かである。殆どが石炭原料のコークスが使用されたものであった。これまでの高炉技術ではバイオマスの置換が僅かでしかなかった。 The amount of coke reduced when biomass chips are introduced is only a maximum of approximately 21g/t. Most of them used coke made from coal. Until now, blast furnace technology has only slightly replaced biomass.
 W2015/012302には、燃焼室7と還元層9と乾燥層10とを有する縦型円筒状の木炭水性ガス発生装置1と、木炭、水および空気を前記木炭水性ガス発生装置へ供給する各供給手段とを備える木炭水性ガス製造装置において、前記還元層と燃焼室とを、燃焼室を外側とし伝熱壁16を介して同心円筒状に配設し、前記燃焼室内に熱交換器12を設け、この熱交換器に水を供給して高温・高圧の過熱水蒸気を発生するか、あるいは、熱交換器に原水タンクから水を供給して水蒸気を発生し、この水蒸気を誘導加熱装置を介して加熱することにより過熱水蒸気を発生するようにし、この過熱水蒸気を前記還元層9に導入することによって水性ガス反応を行わせる木炭水性ガスの製造方法と装置、並びに同製造方法及び装置を使用した燃料電池発電システムが開示されている。 W2015/012302 includes a vertical cylindrical charcoal water gas generator 1 having a combustion chamber 7, a reduction layer 9 and a drying layer 10, and respective supplies for supplying charcoal, water and air to the charcoal water gas generator. In the charcoal water gas production apparatus, the reduction layer and the combustion chamber are arranged in a concentric cylindrical shape with the combustion chamber outside and a heat transfer wall 16 interposed therebetween, and a heat exchanger 12 is provided inside the combustion chamber. , either supply water to this heat exchanger to generate high-temperature, high-pressure superheated steam, or supply water from a raw water tank to the heat exchanger to generate steam, and then heat this steam through an induction heating device. A method and apparatus for producing charcoal water gas in which superheated steam is generated by heating and a water gas reaction is carried out by introducing this superheated steam into the reduction layer 9, and a fuel using the same production method and apparatus. A battery power generation system is disclosed.
 図10は、W2015/012302に示されている木炭水性ガス製造装置の模式断面図であり、図中、
1.木炭水性ガス発生装置本体(全体)
2.木炭投入口上蓋部
3.起動時燃焼空気吸引口
4.木炭投入口兼燃焼空気孔
5.灰排出口
6.格子
7.酸化層(燃焼室)
8.CO2ガス
9.還元層
10.乾燥層
11.灰層
12.水管
13.下部円筒形部
14.木炭水性ガス取出し口(CO・H2・他)
15.上部円筒形部
16.伝熱壁
17.フランジ結合部
である。この装置の運転の温度領域は「9 還元層」では800℃~900℃である。この装置も「11 灰層」において木炭の焼却灰が発生する。
FIG. 10 is a schematic cross-sectional view of the charcoal water gas production apparatus shown in W2015/012302, and in the figure,
1. Charcoal water gas generator body (overall)
2. Charcoal inlet top cover 3. Combustion air suction port at startup 4. Charcoal inlet and combustion air hole 5. Ash outlet 6. Lattice 7. Oxidation layer (combustion chamber)
8. CO2 gas9. Reduction layer 10. Drying layer 11. Ash layer 12. Water pipe 13. Lower cylindrical part 14. Charcoal water gas outlet (CO, H2 , etc.)
15. Upper cylindrical part 16. Heat transfer wall 17. This is a flange joint. The operating temperature range of this device is 800°C to 900°C in "9 reduction layer". This equipment also generates charcoal incineration ash in the "11 ash layer".
 「資源循環型農業を実現するもみ殻ガス化発電システムの実証を開始」(2019年11月14日 ヤンマー株式会社)には、稲作において発生する廃棄物である籾殻を活用して熱と電気を供給するもみ殻ガス化発電システムについて開示されている。 “Start of demonstration of rice husk gasification power generation system to realize resource recycling agriculture” (November 14, 2019 Yanmar Co., Ltd.) will generate heat and electricity by utilizing rice husks, which are waste generated during rice cultivation. A rice husk gasification power generation system is disclosed.
 同文献に記載の技術は、入手し得なかった「籾穀ガス化発電技術」(バイオマス活用推進専門会議発表資料)[2019年3月29日ヤンマーエネルギーシステム株式会社ソリューション推進室 技術開発部ガス化グループ 脇坂 裕昭]にも記載されていたものである。 The technology described in this document is the previously unavailable "rice grain gasification power generation technology" (Presentation material of the Biomass Utilization Promotion Specialist Committee) [March 29, 2019 Yanmar Energy System Co., Ltd. Solution Promotion Office Technology Development Department Gasification It was also listed in the group Hiroaki Wakisaka.
 この技術は、籾殻をガス化し、ガスを生成し発電を目的としている。炉内温度は約600℃~800℃である。例えば籾殻を1時間1000kgで生成ガスは1280Mm3/hで発電量は390kWであるが、この時、籾殻チャー(焼却灰)が多く発生するという問題がある。 This technology aims to gasify rice husks and generate gas to generate electricity. The temperature inside the furnace is approximately 600°C to 800°C. For example, when 1000 kg of rice husks are processed for one hour, the generated gas is 1280 Mm 3 /h and the power generation amount is 390 kW, but there is a problem that a large amount of rice husk char (incinerated ash) is generated at this time.
 「鉄と鋼」第68年(1982)第15号[解説]ブラジル木炭製鉄(1982年 ISIJ 川崎製鉄 谷口良一 芹沢保文)には、ブラジルにおいて、コークス高炉の銑鉄生産量が木炭高炉のそれを大幅に上回るようになったのは1976年以降であり、1982年においても木炭銑の生産量は全銑鉄生産量の35-40%と大きな分野を占めていたこと等が記載されている。 "Tetsu to Hagane" No. 68 (1982) No. 15 [Commentary] Brazilian Charcoal Steel Manufacturing (1982 ISIJ Kawasaki Steel, Ryoichi Taniguchi, Yasufumi Serizawa) states that in Brazil, the pig iron production of coke blast furnaces exceeds that of charcoal blast furnaces. It is stated that the production volume of charcoal pig iron began to significantly exceed that after 1976, and even in 1982, the production volume of charcoal pig accounted for 35-40% of the total production volume of pig iron.
 ブラジルの木炭製鉄の資料にあるように製鉄の高炉においてはこれまで石炭やコークス、もしくは木炭を主原料として実行されるものであった。この資料は木炭を用いた資料であり、このように木材というバイオを木炭に「事前加工処理」即ち、「木炭化」するというのが高炉においてはこれまでの前提であった。 As shown in the documents on charcoal iron manufacturing in Brazil, blast furnaces for iron manufacturing have traditionally been carried out using coal, coke, or charcoal as the main raw materials. This material uses charcoal, and in this way, the premise of blast furnaces has been to ``pre-process'' wood, which is biological, into charcoal, or ``charcoalize'' it.
 図11は、フィリピンにおける籾殻のガス化発電システム 法貴 誠(環境技術 vol.35 No.6 2006)に示されているガス化炉であり、図中、
1.モータ
2.ホッパー
3.ガス出口
4.レベルセンサー
5.回転羽根
6.燃料コンベア
7.熱電対
8.灰出しコンベア
9.灰出し羽根
10.送気口
11.モータ
12.灰出口
である。炉内温度は約600℃~800℃である。この技術においても、焼却灰が発生するという問題がある。
Figure 11 shows the gasifier shown in Makoto Houki's rice husk gasification power generation system in the Philippines (Environmental Technology vol.35 No.6 2006).
1. Motor 2. Hopper 3. Gas outlet 4. Level sensor 5. Rotating blade 6. Fuel conveyor7. Thermocouple8. Ash removal conveyor9. Ash removal blade 10. Air supply port 11. Motor 12. This is the ash exit. The temperature inside the furnace is approximately 600°C to 800°C. This technique also has the problem of generating incineration ash.
 シャフト炉式ガス化溶融炉におけるバイオマス利用によるCO削減技術の開発 ~バイオマスチップ及び汚泥燃料化物の適用事例~(新日鉄住金エンジニアリング技報Vol.6(2015)11 野田 康一ら)には、一般廃棄物のガス化溶融技術の一つであって、多様なごみが処理可能で、最終処分量を大幅に削減できるシャフト炉式ガス化溶融炉において、バイオマスである、木質系建設廃棄物を原料とするバイオマスチップと、汚泥燃料化物を、適用することにより、各々コークスの一部代替効果があり、COを削減できることが報告されている。 Development of CO2 reduction technology using biomass in shaft furnace type gasification and melting furnace - Application examples of biomass chips and sludge fuel - (Nippon Steel & Sumikin Engineering Technical Report Vol. 6 (2015) 11 Koichi Noda et al.) A shaft furnace type gasification and melting furnace, which is one of the waste gasification and melting technologies, can process a variety of wastes and can significantly reduce the amount of final disposal. It has been reported that by applying biomass chips and sludge fuel, each has the effect of partially substituting coke and can reduce CO2 .
 以上のような、これまでの植物、木材その他のバイオマスをエネルギー源としてエネルギーガス又は液体を製造する設備あるいはシステムにおいては、焼却灰が発生する。 Incineration ash is generated in conventional equipment or systems that produce energy gas or liquid using plants, wood, or other biomass as an energy source, as described above.
 その焼却灰の処理については、「焼却灰の最終処分場及び施設」の設置、あるいは、「焼却灰再利用のための加工設備の設置と処理作業」などにおいて、安全・衛生・環境及び処理コスト等の大きな問題があり、植物、木材その他のバイオマスを有効に活用する上で大きな障害・問題となっていた。 Regarding the disposal of the incinerated ash, safety, hygiene, environment, and processing costs are required, such as the installation of "final disposal sites and facilities for incinerated ash" or the "installation and processing of processing equipment for reuse of incinerated ash." These problems have been a major obstacle and problem to the effective use of plants, wood, and other biomass.
特許第6206822号Patent No. 6206822 特開2004-155915JP2004-155915 特開2005-283072JP2005-283072 W2015/012302A1W2015/012302A1
 本発明は、バイオマス及びその他の原料等を用いて、安全且つ低コストで、エネルギーガス又はエネルギー液体を生成する竪型炉システム及び生成方法、生成したエネルギーガス又は液体を用いて燃料を製造する方法、前記竪型炉システムを搭載した輸送装置、及び、輸送装置上において前記生成方法により生成するエネルギーガス又はエネルギー液体を用いる輸送方法を提供することを目的とする。 The present invention relates to a vertical furnace system and method for producing energy gas or energy liquid safely and at low cost using biomass and other raw materials, and a method for producing fuel using the produced energy gas or liquid. , an object of the present invention is to provide a transportation device equipped with the vertical furnace system, and a transportation method using energy gas or energy liquid produced by the production method on the transportation device.
 本発明は、例えば次のように表すことができる。 The present invention can be expressed, for example, as follows.
 (1) 炉内部において、炉下部の直径又は相当直径を超える高さの竪型炉と、
当該竪型炉に対し、その竪型炉の上部又は炉下部よりも上方からバイオマス又はバイオマス及び非バイオマス物質を投入する投入装置を備え、
当該投入装置により前記竪型炉に投入する前記バイオマス及び非バイオマス物質は、前記バイオマスが10乃至100質量%、前記非バイオマス物質は残部としての0乃至90質量%であり、
前記バイオマスと非バイオマス物質を併せた投入物は水分を有し、
前記竪型炉は、羽口として少なくとも下部羽口を備え、その下部羽口は、竪型炉の炉内の高さの30%未満の高さの部分に位置するものであり、少なくとも空気又はその他の酸素含有ガスを前記下部羽口を通じて炉内に吹き込むための吹込装置を有し、
前記竪型炉の炉下部の内部の温度を、炉内において水の還元による水素ガス生成が可能な高温に維持するための、炉下部温度制御装置を有することを特徴とするエネルギーガス又は液体生成竪型炉システム。
(1) A vertical furnace whose height inside the furnace exceeds the diameter or equivalent diameter of the lower part of the furnace;
The vertical furnace is equipped with a charging device for charging biomass or biomass and non-biomass substances from above the upper part of the vertical furnace or the lower part of the furnace,
The biomass and non-biomass substances inputted into the vertical furnace by the input device are such that the biomass is 10 to 100% by mass, and the non-biomass substance is 0 to 90% by mass as the balance,
the combined biomass and non-biomass material input has moisture;
The vertical furnace is provided with at least a lower tuyere as a tuyere, and the lower tuyere is located at a height of less than 30% of the height of the inside of the vertical furnace, and the lower tuyere is located at a height of less than 30% of the height of the inside of the vertical furnace, and the lower tuyere is located at a height of less than 30% of the height of the inside of the vertical furnace. a blowing device for blowing other oxygen-containing gas into the furnace through the lower tuyere;
Energy gas or liquid generation characterized by having a furnace lower temperature control device for maintaining the temperature inside the furnace lower part of the vertical furnace at a high temperature where hydrogen gas can be generated by reducing water in the furnace. Vertical furnace system.
 (2) 上記(1)記載のエネルギーガス又は液体生成竪型炉システムを、
輸送装置を駆動するための動力機関の燃料源、
輸送装置を駆動する電気動力装置の直接の電源若しくは蓄電装置を介する電源としての発電機用の動力機関の燃料源、又は、
輸送装置を駆動する電気動力装置の直接の電源若しくは蓄電装置を介する電源としての燃料電池のための燃料源
として搭載した輸送装置。
(2) The energy gas or liquid production vertical furnace system described in (1) above,
a fuel source for a power engine for driving a transportation device;
a fuel source for a power engine for a generator as a direct power source or a power source via an electrical storage device for an electric power plant driving a transport device, or
A transport device mounted as a fuel source for a fuel cell as a direct power source for an electric power unit driving the transport device or as a power source via an electrical storage device.
 (3) 上記(1)記載のエネルギーガス又は液体生成竪型炉システムを用いてエネルギーガス又は液体を生成し、
生成したエネルギーガス又は液体を用いて、ガソリン機関、ディーゼル機関、ガスタービン、及びその他の原動機用又は燃料電池のための燃料を製造する方法。
(3) Generate energy gas or liquid using the energy gas or liquid generation vertical furnace system described in (1) above,
A method of producing fuel for gasoline engines, diesel engines, gas turbines, and other prime movers or for fuel cells using the produced energy gas or liquid.
 (4) 炉内部において、炉下部の直径又は相当直径を超える高さの竪型炉に、当該竪型炉の上部又は炉下部よりも上方からバイオマス又はバイオマス及び非バイオマス物質を投入する工程と、
前記投入されたバイオマス又はバイオマス及び非バイオマス物質を前記竪型炉内で処理する工程を有し、
前記竪型炉に投入する前記バイオマス及び非バイオマス物質は、前記バイオマスが10乃至100質量%、前記非バイオマス物質は残部としての0乃至90質量%であり、
前記バイオマスと非バイオマス物質を併せた投入物は水分を有し、
前記竪型炉は、羽口として少なくとも下部羽口を備え、その下部羽口は、竪型炉の炉内の高さの30%未満の高さの部分に位置するものであり、少なくとも空気又はその他の酸素含有ガスを前記下部羽口を通じて炉内に吹き込み、
前記竪型炉の炉下部の内部の温度を、炉内において水の還元による水素ガス生成が可能な高温に維持することを特徴とするエネルギーガス又は液体生成方法。
(4) Inside the furnace, a step of charging biomass or biomass and non-biomass substances from above the upper part of the vertical furnace or the lower part of the furnace into a vertical furnace with a height exceeding the diameter or equivalent diameter of the lower part of the furnace;
a step of treating the input biomass or biomass and non-biomass material in the vertical furnace,
The biomass and non-biomass material to be input into the vertical furnace are such that the biomass is 10 to 100% by mass, and the non-biomass material is 0 to 90 mass% as the balance,
the combined biomass and non-biomass material input has moisture;
The vertical furnace is provided with at least a lower tuyere as a tuyere, and the lower tuyere is located at a height of less than 30% of the height of the inside of the vertical furnace, and the lower tuyere is located at a height of less than 30% of the height of the inside of the vertical furnace, and the lower tuyere is located at a height of less than 30% of the height of the inside of the vertical furnace. blowing other oxygen-containing gas into the furnace through the lower tuyere;
An energy gas or liquid production method characterized in that the temperature inside the lower part of the vertical furnace is maintained at a high temperature at which hydrogen gas can be produced by reducing water in the furnace.
 (5) 輸送装置上において、上記(4)記載の方法により生成するエネルギーガス又は液体を、
輸送装置を駆動するための動力機関の燃料源、
輸送装置を駆動する電気動力装置の直接の電源若しくは蓄電装置を介する電源としての発電機用の動力機関の燃料源、又は、
輸送装置を駆動する電気動力装置の直接の電源若しくは蓄電装置を介する電源としての燃料電池のための燃料源
として用いる輸送方法。
(5) On the transportation device, the energy gas or liquid produced by the method described in (4) above,
a fuel source for a power engine for driving a transportation device;
a fuel source for a power engine for a generator as a direct power source or a power source via an electrical storage device for an electric power plant driving a transport device, or
A transportation method for use as a fuel source for a fuel cell as a direct power source or as a power source via an electrical storage device for an electric power device driving a transportation device.
 本発明によれば、バイオマス及びその他の原料等を用いて、安全且つ低コストで、エネルギーガス又はエネルギー液体を生成し得、生成したエネルギーガス又は液体を用いて燃料を製造し得、また、バイオマス及びその他の原料等を用いた安全且つ低コストの輸送装置及び輸送方法を実現し得る。 According to the present invention, energy gas or energy liquid can be generated safely and at low cost using biomass and other raw materials, fuel can be manufactured using the generated energy gas or liquid, and biomass It is possible to realize a safe and low-cost transportation device and transportation method using materials such as and other raw materials.
竪型炉の模式的説明図である。It is a typical explanatory view of a vertical furnace. 炉下部の内部の温度(℃)と、炉内部の中間高さ位置における炉内エネルギーガス(CO+H2+CH4等のCnHm)濃度(%)の関係を示す図である。FIG. 2 is a diagram showing the relationship between the temperature (° C.) inside the lower part of the furnace and the concentration (%) of energy gas (C n H m such as CO + H 2 + CH 4 ) in the furnace at an intermediate height position inside the furnace. 炉内部の中間高さ位置における温度(℃)と、炉内部の中間高さ位置における炉内エネルギーガス(CO+H2+CH4等のCnHm)濃度(%)の関係を示す図である。FIG. 2 is a diagram showing the relationship between the temperature (° C.) at an intermediate height position inside the furnace and the concentration (%) of energy gas (C n H m such as CO + H 2 + CH 4 ) in the furnace at an intermediate height position inside the furnace. 炉頂部における温度(℃)と、炉内部の中間高さ位置における炉内エネルギーガス(CO+H2+CH4等のCnHm)濃度(%)の関係を示す図である。FIG. 2 is a diagram showing the relationship between the temperature (° C.) at the top of the furnace and the concentration (%) of energy gas (C n H m such as CO + H 2 + CH 4 ) in the furnace at an intermediate height position inside the furnace. 炉内に投入されたバイオマス質量/(石炭および/またはコークスの質量)の割合と、炉内部の中間高さ位置におけるエネルギーガス(CO+H2+CH4等)濃度の関係を示す図である。FIG. 2 is a diagram showing the relationship between the ratio of biomass mass input into the furnace/(mass of coal and/or coke) and the concentration of energy gas (CO + H 2 + CH 4 etc.) at an intermediate height position inside the furnace. 車両のブロック図である。FIG. 2 is a block diagram of a vehicle. 複合エネルギー衝風の例を示す図である。It is a figure which shows the example of a composite energy blast. 複合エネルギー衝風の例を示す図である。It is a figure which shows the example of a composite energy blast. 複合エネルギー衝風の例を示す図である。It is a figure which shows the example of a composite energy blast. 従来の木炭水性ガス製造装置の模式断面図である。FIG. 1 is a schematic cross-sectional view of a conventional charcoal water gas production device. 従来の籾殻のガス化発電システムにおけるガス化炉を示す図である。FIG. 2 is a diagram showing a gasifier in a conventional rice husk gasification power generation system.
 本発明のエネルギーガス又は液体生成竪型炉システムは、竪型炉と、その竪型炉にバイオマス及び非バイオマス物質を投入する投入装置を備える。 The energy gas or liquid production vertical furnace system of the present invention includes a vertical furnace and a charging device for charging biomass and non-biomass substances into the vertical furnace.
 また本発明の輸送装置は、本発明のエネルギーガス又は液体生成竪型炉システムを搭載したものである。 Furthermore, the transportation device of the present invention is equipped with the energy gas or liquid production vertical furnace system of the present invention.
 また本発明の燃料製造方法は、本発明のエネルギーガス又は液体生成竪型炉システムを用いて生成したエネルギーガス又は液体を用いて燃料を製造する方法である。 Further, the fuel production method of the present invention is a method of producing fuel using energy gas or liquid produced using the energy gas or liquid production vertical furnace system of the present invention.
 また本発明のエネルギーガス又は液体生成方法は、竪型炉にバイオマス及び非バイオマス物質を投入する工程と、そのバイオマス又はバイオマス及び非バイオマス物質を前記竪型炉内で処理する工程を有する。 Furthermore, the energy gas or liquid generation method of the present invention includes a step of charging biomass and non-biomass material into a vertical furnace, and a step of processing the biomass or biomass and non-biomass material in the vertical furnace.
 また本発明の輸送方法は、輸送装置上において、本発明の方法により生成するエネルギーガス又は液体を用いる輸送方法である。 Furthermore, the transportation method of the present invention is a transportation method that uses energy gas or liquid produced by the method of the present invention on a transportation device.
 (1) 竪型炉 (1) Vertical furnace
 竪型炉は、炉内部において、炉下部(例えば炉床若しくは炉底又はそれらの上側部分)の直径又は相当直径(水平断面形状が円形以外の場合)を超える高さ(好ましくは1.5倍以上の高さ)の炉である。 A vertical furnace has a height (preferably 1.5 times) exceeding the diameter or equivalent diameter (if the horizontal cross-sectional shape is other than circular) of the lower part of the furnace (for example, the hearth or hearth bottom or the upper part thereof). The height of the furnace is
 竪型炉の例としては、高炉、竪型ガス化溶融炉、廃棄物処理炉、水素還元鉄精錬炉等の、鉄鉱石を精練して溶鉄を製造する溶鉱炉や各種の銑鉄を製造するための炉を挙げることができるが、これらに限るものではない。 Examples of vertical furnaces include blast furnaces, vertical gasification and melting furnaces, waste treatment furnaces, hydrogen-reduced iron smelting furnaces, etc., which smelt iron ore to produce molten iron, and various types of pig iron. Examples include, but are not limited to, furnaces.
 (2) バイオマス (2) Biomass
 竪型炉に対し、バイオマスを10乃至100質量%(好ましくは15、20又は30質量%以上、より好ましくは30質量%以上)投入する。 10 to 100% by mass (preferably 15, 20 or 30% by mass or more, more preferably 30% by mass or more) of biomass is charged into the vertical furnace.
 本発明におけるバイオマスの例としては、植物性の殻(もみ殻など)、竹、広葉樹、針葉樹、根株、太樹、間伐材、林木の廃材、森林の腐食した木材やその他の廃植物、廃材木、木材工場で生じる樹皮や端材、建築廃材、建築解体材、家具木材、畳、廃紙材料、金属や土砂等に付着した又は金属や土砂等を含有する植物由来物等の植物由来物の他、食料残渣、廃棄食品、動植物由来の油脂類若しくは廃油、牛糞、馬糞、その他の家畜糞、人糞、ダム・湖・池・川・水田・畑・海洋などの底に堆積した堆積バイオマス、投棄土砂、土砂と混合した生物由来物質等を挙げることができ、防腐・防アリ処理剤やその他の各種化学合成物質や天然由来物質により処理されたもの含有したものを含むが、これらに限るものではない。このようなバイオマスは、例えば、それぞれ個別に又は2種以上を混合して竪型炉に投入することができる。 Examples of biomass in the present invention include vegetable shells (rice husks, etc.), bamboo, broad-leaved trees, coniferous trees, root stocks, large trees, thinned wood, waste wood from forests, rotten forest wood and other waste plants, waste wood, In addition to plant-derived materials such as bark and scraps generated at lumber factories, construction waste materials, construction dismantled materials, furniture wood, tatami mats, waste paper materials, plant-derived materials that are attached to or contain metals or soil, etc. , food residue, waste food, fats and oils derived from animals and plants, cow dung, horse dung, other livestock dung, human feces, biomass deposited on the bottom of dams, lakes, ponds, rivers, rice paddies, fields, oceans, etc., and dumping. Examples include earth and sand, biological substances mixed with earth and sand, and include, but are not limited to, those treated with antiseptic and anti-anticide agents and various other chemically synthesized substances and naturally derived substances. do not have. Such biomass can be charged into a vertical furnace, for example, individually or in a mixture of two or more kinds.
 本発明において竪型炉に対し投入するバイオマスは、水又はその他の液体を実質上含まない固体のみならず、水又は海水その他の液体を含んだ又は伴うバイオマスであってもよく、バイオマスが例えば水又は海水その他の液体、金属、金属酸化物、泥、土、石、レンガ屑、ガラス又は気体等のその他の非バイオマス物質と混合したものであってもよい。例えば、海洋、湖沼、河川、排水系、廃水系又は汚水系における、浮遊物として又はその他の状態で含むバイオマスとマイクロプラスチックその他の非バイオマス物質の両者又は一方を、海水若しくはその他の水分と共に又は分離して、竪型炉に対し投入することもできる。 In the present invention, the biomass inputted into the vertical furnace is not limited to solids that do not substantially contain water or other liquids, but may also be biomass that contains or is accompanied by water, seawater, or other liquids. Alternatively, it may be mixed with other non-biomass materials such as seawater or other liquids, metals, metal oxides, mud, soil, stones, brick waste, glass, or gases. For example, biomass and/or microplastics and other non-biomass substances, contained in suspension or otherwise, in oceans, lakes, rivers, drainage systems, wastewater systems, or sewage systems, together with seawater or other moisture, or separated. It can also be charged into a vertical furnace.
 また、本発明において竪型炉に対し投入するバイオマスについては、炉内に投入する前に、水分を含む場合における水分の減量や、予め、乾燥させる・乾留する・所定の大きさ以下にする(例えば、細断、塊状化若しくはペレット化)等の前処理を行うことを要するものではない。 In addition, in the present invention, the biomass to be input into the vertical furnace must be dried, carbonized, or reduced to a predetermined size before being input into the furnace. For example, it is not necessary to carry out any pre-treatment such as shredding, agglomeration or pelletization.
 放射能汚染バイオマス若しくは非バイオマス物質、放射性廃棄物、バイオマス若しくは非バイオマス物質を含有する放射能汚染水、薬品排水等も竪型炉投入対象物となり得る。 Radioactively contaminated biomass or non-biomass materials, radioactive waste, radioactively contaminated water containing biomass or non-biomass materials, chemical wastewater, etc. can also be objects to be fed into the vertical furnace.
 (3) 非バイオマス物質 (3) Non-biomass materials
[規則91に基づく訂正 27.03.2023]
 非バイオマス物質は、竪型炉に対し、前記バイオマス10至100質量%(好ましくは15、20又は30質量%以上)の残部である0乃至90質量%(好ましくは85、80又は70質量%以下)投入する。例えば、バイオマス30質量%、非バイオマス物質70質量%を竪型炉に投入することができる。
[Amendment under Rule 91 27.03.2023]
The non-biomass material is 0 to 90% by mass (preferably 85, 80, or 70% by mass or less), which is the remainder of the biomass 10 to 100% by mass (preferably 15, 20, or 30% by mass or more), based on the vertical furnace. )throw into. For example, 30% by mass of biomass and 70% by mass of non-biomass material can be charged into the vertical furnace.
 バイオマスと非バイオマス物質を併せた竪型炉に対する投入物中には、水分を15乃至75質量%有するものとすることができ、15乃至60質量%であることが望ましい。 The input to the vertical furnace combining biomass and non-biomass materials may contain 15 to 75% by mass of moisture, preferably 15 to 60% by mass.
 非バイオマス物質の例としては、
コークス、石炭・重油・灯油・軽油、天然ガス、泥炭又はその他の低級石炭、低級の石油残渣物等の化石原料又は化石原料廃棄物;
各種プラスチック材料製の梱包材を含むプラスチック類やタイヤなどの固体若しくは固形物又は液体状の石油系および/または石炭系物質;
各種炭系物質;
薬品
各種金属製品、金属材料製の電気製品等における金属類;
泥、土、石、レンガ屑、ガラスなど;並びに
前記のような非バイオマス物質に含まれる又は伴う水、海水、その他の水
を挙げることができるが、これらに限るものではない。このような非バイオマス物質は、例えば、それぞれ個別に又は2種以上を混合して竪型炉に対し投入することができる。
Examples of non-biomass materials include:
Fossil raw materials or fossil raw material waste such as coke, coal, heavy oil, kerosene, light oil, natural gas, peat or other low-grade coal, low-grade petroleum residue;
Petroleum-based and/or coal-based substances in solid or liquid form, such as plastics and tires, including packaging materials made of various plastic materials;
Various carbonaceous substances;
Metals in various metal products, electrical products made of metal materials, etc.;
Examples include, but are not limited to, mud, soil, stones, brickwork, glass, etc.; as well as water, seawater, and other water contained in or associated with such non-biomass materials. Such non-biomass materials can be charged into the vertical furnace, for example, individually or in a mixture of two or more.
 非バイオマス物質は、還元剤として作用し得る炭素含有燃料物質を含むものとすることができる。 Non-biomass materials may include carbon-containing fuel materials that can act as reducing agents.
 例えば鉄精錬のための竪型炉の場合に投入する非バイオマス物質の例としては、
コークス、石炭等の化石燃料;
鉄鉱石、金属、型銑、鉄スクラップ、スポンジアイアンン、その他の金属酸化物;
副原料として石灰石
を挙げることができるが、これらに限るものではない。
For example, examples of non-biomass materials input into a vertical furnace for iron smelting include:
Fossil fuels such as coke and coal;
Iron ore, metals, molded pig iron, iron scrap, sponge iron, and other metal oxides;
Although limestone can be mentioned as an auxiliary raw material, it is not limited to these.
 (4) 羽口及び吹込装置 (4) Tuyere and blowing device
 竪型炉は、羽口として少なくとも下部羽口を備え、その下部羽口は、竪型炉の炉内の高さの30%未満の高さの部分に位置するものであり、少なくとも空気又はその他の酸素含有ガスを前記下部羽口を通じて炉内に吹き込むための吹込装置を有する。 The vertical furnace is equipped with at least a lower tuyere as a tuyere, and the lower tuyere is located at a height of less than 30% of the height of the inside of the vertical furnace, and at least air or other and a blowing device for blowing the oxygen-containing gas into the furnace through the lower tuyere.
 また竪型炉の炉内の高さの70%以上の高さの部分には、上部羽口を備え、少なくとも、酸素若しくは酸素富化空気又は予熱空気(例えば40℃又はそれ以上に予熱された空気)、エネルギー液体(例えば石炭若しくは石油系の又はその他の液体炭化水素又は炭化水素を主とする液体)、及びエネルギーガス(例えば天然ガス又はその他の炭化水素ガス)のうち1又は2以上を前記上部羽口を通じて炉内に吹き込むための吹込装置を有するものとすることができる。その吹込装置による吹き込みを行った場合、竪型炉の炉下部の内部の温度を、炉内において水の還元による水素ガス生成が可能な高温に維持する上で、また竪型炉の炉下部の内部の温度を815乃至1050℃以上に維持する上で、バイオマスと非バイオマス物質を併せた竪型炉に対する投入物中に水分を15乃至75質量%有するものであるときも含めて、有効である。 In addition, an upper tuyere is provided at a height of 70% or more of the height of the inside of the vertical furnace, and at least oxygen or oxygen-enriched air or preheated air (e.g., preheated to 40°C or higher) is provided. air), energy liquids (e.g. coal- or petroleum-based or other liquid hydrocarbons or hydrocarbon-based liquids), and energy gases (e.g. natural gas or other hydrocarbon gases). It may have a blowing device for blowing into the furnace through the upper tuyere. When blowing with this blowing device, it is necessary to maintain the temperature inside the lower part of the vertical furnace at a high temperature that allows hydrogen gas to be generated by reducing water in the furnace. It is effective in maintaining the internal temperature at 815 to 1050 °C or higher, even when the input to a vertical furnace containing biomass and non-biomass materials contains 15 to 75% by mass of moisture. .
 また竪型炉の炉内の高さの30%以上70%未満の高さの部分には、中部羽口を備え、少なくとも、酸素若しくは酸素富化空気又は予熱空気、エネルギー液体、及びエネルギーガスのうち1又は2以上を前記中部羽口を通じて炉内に吹き込むための吹込装置を有するものとすることができる。その吹込装置による吹き込みを行った場合、前記上部羽口を通じて炉内に吹き込むための吹込装置による吹き込みと併せて、竪型炉の炉下部の内部の温度を、炉内において水の還元による水素ガス生成が可能な高温に維持する上で、また竪型炉の炉下部の内部の温度を815乃至1050℃以上に維持する上で、バイオマスと非バイオマス物質を併せた竪型炉に対する投入物中に水分を15乃至75質量%有するものであるときも含めて、更に有効である。 In addition, a central tuyere is provided in a portion of the vertical furnace with a height of 30% or more and less than 70% of the height inside the furnace, and at least a central tuyere is provided for carrying oxygen or oxygen-enriched air or preheated air, energy liquid, and energy gas. It may include a blowing device for blowing one or more of them into the furnace through the middle tuyere. When the blowing device is used to blow into the furnace through the upper tuyere, the temperature inside the lower part of the vertical furnace can be increased by reducing hydrogen gas by reducing water in the furnace. In order to maintain the temperature at which biomass and non-biomass materials can be produced at a high temperature, and to maintain the temperature inside the lower part of the vertical furnace at 815 to 1050°C or higher, it is necessary to It is even more effective when the water content is 15 to 75% by mass.
 また竪型炉は、竪型炉の炉内の高さの30%未満の高さの部分、竪型炉の炉内の高さの30%以上70%未満の高さの部分、又は竪型炉の炉内の高さの70%以上の高さの部分に、前記下部羽口、中部羽口及び上部羽口以外の羽口を必要に応じ1又は複数箇所に設け、所要物質を当該羽口を通じて炉内に吹き込むための吹込装置を有するものとすることができる。 In addition, in a vertical furnace, a portion with a height of less than 30% of the height inside the furnace of a vertical furnace, a portion with a height of 30% or more and less than 70% of the height inside the furnace of a vertical furnace, or a vertical One or more tuyeres other than the lower tuyere, middle tuyere, and upper tuyere are provided as necessary in a part of the furnace at a height of 70% or more of the height of the inside of the furnace, and the required material is placed in the tuyeres. It may have a blowing device for blowing into the furnace through the mouth.
 また、竪型炉が備える少なくとも何れかの羽口を通じ、酸素若しくは酸素富化空気又は予熱空気、エネルギー液体、エネルギーガス、エネルギー固体粉(例えば、石炭若しくは低級石炭由来の粉体、バイオマス由来の炭化物粉)、及び、常温水若しくは加熱水のうち、1又は2以上を吹き込むための吹込装置を有するものとすることができる。 In addition, through at least one of the tuyeres provided in the vertical furnace, oxygen or oxygen-enriched air or preheated air, energy liquid, energy gas, energy solid powder (for example, powder derived from coal or low-grade coal, carbonized material derived from biomass) The device may include a blowing device for blowing one or more of powder), water at room temperature, or heated water.
 下部羽口、上部羽口、中部羽口及び竪型炉が有し得るその他の羽口を通じて炉内に吹き込みを行うための吹込装置は、個別に設けること、1若しくは2以上の群において兼用するように設けること、又は、全て兼用して設けることができ、兼用は、全部又は一部の装置若しくは設備を兼用するものとすることができる。 The blowing device for blowing into the furnace through the lower tuyere, upper tuyere, middle tuyere, and other tuyere that the vertical furnace may have shall be provided individually, or may be used in combination in one or more groups. It can be provided in a manner similar to that, or it can be provided in such a way that all of the equipment or equipment can be used in combination.
 炉内吹き込み物質及び投入物は、例えば太陽光・太陽熱等の太陽エネルギーにより予熱したものを用いることや、火山等の地熱を活用した25℃以上の気体や液体を用いることもできる。 For the substances and inputs injected into the furnace, it is possible to use, for example, those preheated by solar energy such as sunlight or solar heat, or to use gases or liquids at 25°C or higher that utilize geothermal heat from volcanoes, etc.
 (5) バイオマス・非バイオマス物質の投入及び投入装置 (5) Biomass/non-biomass material input and input equipment
 (5-1) 竪型炉の上部(炉頂部および/または炉頂部よりも下方に位置する竪型炉の上方部)又は炉下部よりも上方(例えば、竪型炉の上下中間位置または上下中間位置及び上部)から、その竪型炉に対し(すなわち竪型炉内に)、バイオマス又はバイオマス及び非バイオマス物質を投入する(「投入」は、「装入」を含むものとする。)。投入は、例えば、連続的に行うこと又は間隔おきに行うことできる。 (5-1) Upper part of the vertical furnace (furnace top and/or upper part of the vertical furnace located below the furnace top) or above the lower part of the furnace (for example, upper and lower intermediate positions or upper and lower intermediate positions of the vertical furnace) Biomass or biomass and non-biomass materials are charged into the vertical furnace (that is, into the vertical furnace) from the position and the top (“charging” includes “charging”). Dosing can be done, for example, continuously or at intervals.
 (5-2) 投入するバイオマスは10乃至100質量%(例えば、一定時間当たりの投入量中の比率として、又は、一定の体積若しくは質量中の比率として)であり、投入する非バイオマス物質は、残部である0乃至90質量%(例えば、一定時間当たりの投入量中の比率として、又は、一定の体積若しくは質量中の比率として)である。バイオマス及び非バイオマス物質の好ましい投入量比率は上記の通りである。 (5-2) The input biomass is 10 to 100% by mass (e.g., as a proportion of the input amount per fixed time, or as a proportion of a fixed volume or mass), and the input non-biomass materials are: The remainder is 0 to 90% by mass (for example, as a proportion of the input amount per fixed time, or as a proportion of a fixed volume or mass). Preferred input ratios of biomass and non-biomass materials are as described above.
 (5-3) バイオマス及び非バイオマス物質の投入は、例えば、各種のコンベア等の運搬装置および/またはシュート(旋回シュートを含む)等を用いて投入するもの、或いは、管路及び必要なポンプやバルブ等を用いて液体、気体、その他の流動体・半流動体を投入するものとすることができる。 (5-3) Biomass and non-biomass materials may be introduced using conveyors and/or chutes (including rotating chutes), or pipes and necessary pumps and Liquids, gases, and other fluids/semi-fluids may be introduced using valves or the like.
 例えば、非バイオマス物質である石炭および/またはコークス並びにその他の必要な物質と、バイオマスを、混合して、炉頂部および/または竪型炉の上方部より投入又は旋回投入することができるほか、非バイオマス物質である石炭および/またはコークスの投入とバイオマスの投入を時期および/または位置を分離して投入すること(分離投入)も可能である。 For example, biomass can be mixed with coal and/or coke, which are non-biomass materials, and other necessary materials, and the mixture can be charged or swirled from the top of the furnace and/or the upper part of the vertical furnace. It is also possible to input coal and/or coke, which are biomass substances, and biomass at different times and/or positions (separate input).
 このような混合投入や分離投入は、投入量制御装置により制御しつつ行い得る。鉄鉱石、焼結ペレット、還元鉄、型銑、スクラップ等の非バイオマス物質を投入する場合も、バイオマスと混合投入することや石炭および/またはコークスと混合投入することも可能である。 Such mixed charging and separated charging can be performed while being controlled by a charging amount control device. Even when non-biomass materials such as iron ore, sintered pellets, reduced iron, molded pig iron, and scrap are input, they can be mixed with biomass or mixed with coal and/or coke.
 バイオマス及び非バイオマス物質を、平均径(大きさ)順に、粉、粒、固形、粗大と分類し、それぞれに応じた投入のための装置や経路を選択して投入することもできる。 It is also possible to classify biomass and non-biomass substances into powder, granules, solids, and coarse materials in order of average diameter (size), and select appropriate devices and routes for inputting them.
 (5-4) バイオマス及び非バイオマス物質の投入は、例えば、含有する物質の種類や含有量(例えば単位体積又は単位質量中の含有量)を、必要に応じ分析した上で、コンピュータ等を利用した投入量制御装置により制御(例えば単位時間当たりの投入量の増減・投入開始停止等の制御)しつつ行うことができる。前記含有する物質の種類や含有量の分析は、必要な限度において必要な精度で行えば足りる。 (5-4) When inputting biomass and non-biomass substances, use a computer etc. to analyze the type and content (e.g. content per unit volume or unit mass) of the substances contained, as necessary. This can be carried out while being controlled (for example, controlling the increase/decrease of the amount of input per unit time, starting and stopping of input, etc.) using the input amount control device. It is sufficient to analyze the type and content of the contained substances within the necessary limits and with the necessary accuracy.
 このような分析を行う含有する物質の種類や含有量の例としては、各種固体物質の量、バイオマス中の又はバイオマスと混合した金属・泥・土・水分・タール等の量、水その他の各種液体や半流動体の量、各種気体の量等を挙げることができるが、これらに限るものではない。 Examples of the types and contents of substances that are analyzed in this way include the amount of various solid substances, the amount of metals, mud, soil, water, tar, etc. in or mixed with biomass, water and other various substances. Examples include, but are not limited to, the amount of liquid or semi-liquid, the amount of various gases, etc.
 バイオマスを、含有水分によって例えば次のように分類して投入量制御に利用することもできる。
水分ほぼ0%(例えば木炭、燻炭等)
水分0.1%~1%
水分1%~3%
水分3%~10%
水分10%~20%
水分20%~30%
水分30%以上(高水分)
Biomass can also be classified according to its moisture content, for example, as follows, and used for input amount control.
Almost 0% moisture (e.g. charcoal, smoked charcoal, etc.)
Moisture 0.1%~1%
Moisture 1% to 3%
Moisture 3% to 10%
Moisture 10% to 20%
Moisture 20% to 30%
Moisture 30% or more (high moisture)
 (5-5) 投入量制御装置による制御は、例えば、竪型炉又はその周辺部の所要箇所に設けられた、温度センサ(熱電対等)及びその他の必要な各種センサ(例えば水素濃度センサや一酸化炭素濃度センサ、画像センサ)により取得したデータ等に基づいて、例えば竪型炉内の炉下部や頂部等の所定箇所の温度や所定範囲の温度分布、所定箇所の水素濃度や一酸化炭素濃度等の竪型炉システムの運用状況を把握しそれらを制御するために行うことができる。 (5-5) Control by the input amount control device includes, for example, temperature sensors (thermocouples, etc.) and other necessary sensors (such as hydrogen concentration sensors, Based on data acquired by a carbon oxide concentration sensor, image sensor, etc., for example, the temperature at a predetermined location such as the lower part or the top of a vertical furnace, the temperature distribution in a predetermined range, the hydrogen concentration or carbon monoxide concentration at a predetermined location, etc. This can be done to understand and control the operational status of vertical furnace systems such as
 すなわち、本発明のエネルギーガス又は液体生成竪型炉システムは、投入装置により所要箇所より炉内に投入する、バイオマス中又は非バイオマス物質中の各種固体、水分若しくはその他の各種液体量、又は各種気体の量を(必要に応じ含有物質の種類や含有量を含めて)それぞれ制御する投入量制御装置を有するものとすることができる。これらにより、例えば下記の炉下部温度制御装置及び炉頂部温度制御装置(或いは更に炉中部温度制御装置)を実現することもできる。前者の例としては、竪型炉内の炉下部について温度センサにより検知した温度等に基づき、所要の種類及び量のバイオマス又は非バイオマス物質を所要箇所より竪型炉内に投入するよう投入装置を制御する投入量制御装置を挙げることができる。後者の例としては、竪型炉内の炉頂部について温度センサにより検知した温度等に基づき、所要の種類及び量のバイオマス又は非バイオマス物質を所要箇所より竪型炉内に投入するよう投入装置を制御する投入量制御装置を挙げることができる。 In other words, the energy gas or liquid producing vertical furnace system of the present invention is capable of injecting amounts of various solids, moisture or other various liquids in biomass or non-biomass materials, or various gases into the furnace from required locations using a charging device. It is possible to have an input amount control device that controls the amount of (including the type and content of the contained substance as necessary). With these, for example, the following furnace lower temperature control device and furnace top temperature control device (or further furnace middle temperature control device) can be realized. As an example of the former, a feeding device is installed to feed the required type and amount of biomass or non-biomass material into the vertical furnace from a required location based on the temperature etc. detected by a temperature sensor in the lower part of the furnace. For example, an input amount control device may be mentioned. As an example of the latter, a charging device is installed to charge the required type and amount of biomass or non-biomass material into the vertical furnace from a required location based on the temperature etc. detected at the top of the furnace by a temperature sensor. For example, an input amount control device may be mentioned.
 (5-6) なお、炉下部温度制御装置及び炉頂部温度制御装置(或いは炉中部温度制御装置)としては、それぞれ、上記の竪型炉が備える少なくとも何れかの羽口を通じた吹込装置による所要物質の吹込流量や所要物質の内容(例えば酸素濃度や予熱温度等を含む)の制御や他の公知手段を用いることもできる。 (5-6) The lower furnace temperature control device and the furnace top temperature control device (or the furnace middle temperature control device) are each controlled by a blowing device through at least one of the tuyeres provided in the above-mentioned vertical furnace. Control of the flow rate of the substance, the content of the required substance (including, for example, oxygen concentration, preheating temperature, etc.), and other known means may also be used.
 また例えば、炉下部温度制御装置及び炉頂部温度制御装置(或いは炉中部温度制御装置)の少なくとも一部を構成し得るものとして、竪型炉の所要箇所に、炉内の温度を補助的に上げるためのガス点火バーナー又はその他のガス点火装置を設けることができる。 In addition, for example, as a device that can constitute at least a part of the furnace lower temperature control device and the furnace top temperature control device (or the furnace middle temperature control device), it is possible to supplementally raise the temperature inside the furnace at required points in the vertical furnace. A gas-ignited burner or other gas-ignited device may be provided.
 炉内において生成した水素ガスや一酸化炭素ガスなどの燃焼可能ガスを、ガス点火バーナー等を用いて必要に応じ炉内で燃焼させることにより、炉内温度を補助的に上げることができる。燃焼したガスは、還元雰囲気下の炉内(後述のように炉内のある程度の範囲又は広範囲が還元雰囲気であるものとすることができる)において、還元されたガスとなる。例えば、水素ガスは、炉内において、燃焼により水蒸気となるが、還元雰囲気下の炉内においては、その水蒸気から水素ガスが生成する。また、一酸化炭素ガスは、炉内において、燃焼により二酸化炭素となるが、還元雰囲気下の炉内においては、その二酸化炭素から一酸化炭素ガスが生成する。 By burning combustible gas such as hydrogen gas and carbon monoxide gas generated in the furnace in the furnace as necessary using a gas ignition burner, the temperature in the furnace can be raised supplementarily. The combusted gas becomes a reduced gas in the furnace under a reducing atmosphere (as described later, a certain range or a wide range within the furnace can be a reducing atmosphere). For example, hydrogen gas becomes water vapor by combustion in a furnace, but hydrogen gas is generated from the water vapor in a furnace under a reducing atmosphere. Further, carbon monoxide gas becomes carbon dioxide by combustion in the furnace, but carbon monoxide gas is generated from the carbon dioxide in the furnace under a reducing atmosphere.
 (6) 炉下部及び炉頂部等の温度制御 (6) Temperature control of the lower part of the furnace, the top of the furnace, etc.
 (6-1) 本発明は、竪型炉の炉下部の内部の温度を、炉内において水の還元による水素ガス生成が可能な高温に維持するための炉下部温度制御装置を有する。 (6-1) The present invention includes a furnace lower temperature control device for maintaining the temperature inside the furnace lower part of a vertical furnace at a high temperature that allows hydrogen gas to be generated by reducing water in the furnace.
 炉下部温度制御装置は、竪型炉の炉下部の内部の温度を、
 酸化金属を有する場合における当該酸化金属の溶融還元、又は、
酸化炭化物を有する場合における酸化炭化物の還元による一酸化炭素ガスの生成
の何れか又は両方が可能な高温に維持するものとすることもできる。
The furnace lower temperature control device controls the temperature inside the furnace lower part of the vertical furnace.
Melting reduction of a metal oxide when the metal oxide is present, or
In the case of containing oxidized carbides, the temperature may be maintained at a high temperature that allows either or both of the production of carbon monoxide gas by reduction of the oxidized carbides.
 (6-2) 本発明は更に、
前記竪型炉の頂部の内部の少なくとも一部(例えば径方向および/または高さ方向における一定範囲の部分)の温度を常温(周囲の大気と同等の温度)以上の所要温度に制御するための炉頂部温度制御装置
を有するものとすることができる。
(6-2) The present invention further comprises:
Controlling the temperature of at least a part of the inside of the top of the vertical furnace (for example, a part in a certain range in the radial direction and/or height direction) to a required temperature of room temperature (equivalent to the temperature of the surrounding atmosphere) or higher. It may have a furnace top temperature control device.
 また本発明は、前記竪型炉内の高さ方向中間部の温度を必要に応じ制御するための炉中部温度制御装置を有するものとすることもできる。 The present invention may also include a furnace central temperature control device for controlling the temperature of the vertically intermediate portion of the vertical furnace as necessary.
 (6-3) 前記炉下部温度制御装置は、例えば、竪型炉の炉下部の内部の温度を815乃至1050℃(815℃若しくは1050℃とすること又はそれらの間の温度とすることもできる)以上に維持するためのものとすることができる。 (6-3) The temperature control device for the lower part of the furnace can control the temperature inside the lower part of the vertical furnace from 815 to 1050°C (815°C or 1050°C, or a temperature between them). ) or more.
 また前記炉頂部温度制御装置は、例えば、前記竪型炉の頂部の内部の少なくとも一部の温度を常温以上で1000乃至1050℃以下の所要温度に制御するものとすることができる。例えば、本発明のシステム、方法及び輸送装置の目的に応じ、常温以上1000乃至1050℃以下の何れかの温度又は一定範囲の温度に制御するものとすることができるが、これに限るものではない。前記常温以上で1000乃至1050℃以下の範囲の下限は、例えば、常温、40℃、45℃、50℃、60℃、80℃、100℃、120℃、150℃、200℃、300℃、又は400℃とすることができ、また、上限は、例えば、60℃、80℃、100℃、120℃、150℃、200℃、300℃、400℃、500℃、600℃、800℃、1000℃、1050℃とすることができるが、これらに限るものではない。 Further, the furnace top temperature control device may be configured to, for example, control the temperature of at least a portion of the inside of the top of the vertical furnace to a required temperature of 1000 to 1050° C. above room temperature. For example, depending on the purpose of the system, method, and transportation device of the present invention, the temperature may be controlled to any temperature from room temperature to 1000 to 1050°C or less, or within a certain range, but the temperature is not limited to this. . The lower limit of the range of above normal temperature and below 1000 to 1050°C is, for example, normal temperature, 40°C, 45°C, 50°C, 60°C, 80°C, 100°C, 120°C, 150°C, 200°C, 300°C, or 400°C, and the upper limit is, for example, 60°C, 80°C, 100°C, 120°C, 150°C, 200°C, 300°C, 400°C, 500°C, 600°C, 800°C, 1000°C , 1050°C, but is not limited to these.
 また前記炉中部温度制御装置は、前記竪型炉内の高さ方向中間部の温度を、炉頂部温度制御装置よりもやや高め(例えば5℃又はそれ以上高め)の、本発明のシステム、方法及び輸送装置の目的に応じた温度に制御するものとすることができる。 Further, the system and method of the present invention, wherein the temperature control device for the middle part of the furnace sets the temperature of the middle part in the height direction in the vertical furnace slightly higher (for example, 5 degrees Celsius or more higher) than the temperature control device for the top part of the furnace. The temperature can be controlled according to the purpose of the transportation device.
 (6-4) バイオマス(及び必要な非バイオマス物質)を用いた本発明における竪型炉の炉下部の内部の温度を前記のように高温に制御することにより、炉内部において、カーボン(C)と酸素(O)との反応は、吸熱反応となり、COがカーボンと反応する還元反応になる。このカーボンと酸素の反応を活用することにより、他の物質、例えば水(HO)も、HとCOという還元反応を起こさせて高濃度の水素ガスを製造し、COからCOというエネルギーガスを製造することができる。 (6-4) By controlling the temperature inside the lower part of the furnace of the present invention using biomass (and necessary non-biomass materials) to a high temperature as described above, carbon (C) is The reaction between carbon and oxygen (O 2 ) becomes an endothermic reaction, and a reduction reaction in which CO 2 reacts with carbon. By utilizing this reaction between carbon and oxygen, other substances such as water (H 2 O) can also undergo a reduction reaction of H 2 and CO, producing highly concentrated hydrogen gas, and converting CO 2 into CO. Energy gas can be produced.
 また、炉下部の内部の温度を前記のように高温に制御することにより、バイオマス中の焼却灰や異物は、この高温部において溶融、又は還元溶融し、投入物に応じ、金属や還元スラグが得られる(例えば、
Fe+3C→2Fe+3CO;
SnO+C→Sn+CO;
PbO+C→Pb+CO;
CuO+C→2Cu+CO
の場合、酸化鉄から金属鉄、酸化錫から金属錫、酸化鉛から金属鉛、酸化銅から金属銅が得られ、更に、エネルギーガスCOが得られる。)。
In addition, by controlling the temperature inside the lower part of the furnace to a high temperature as described above, incineration ash and foreign substances in the biomass are melted or reduced and melted in this high temperature section, and depending on the input materials, metals and reduced slag are obtained (for example,
Fe 2 O 3 +3C→2Fe+3CO;
SnO+C→Sn+CO;
PbO+C→Pb+CO;
Cu2O +C→2Cu+CO
In the case of , metallic iron is obtained from iron oxide, metallic tin from tin oxide, metallic lead from lead oxide, metallic copper from copper oxide, and furthermore, energy gas CO is obtained. ).
 そのため、従来のバイオマス燃焼発電などにおいて発生していた焼却灰(すなわち、酸化金属を含む産業廃棄物)の発生が効果的に防がれる。 Therefore, the generation of incineration ash (i.e., industrial waste containing metal oxide), which was generated in conventional biomass combustion power generation, etc., is effectively prevented.
 この還元スラグは、処理費用を要する産業廃棄物ではなく、セメントの原料として再生することや、植物生育に必要なミネラル成分を含む農業資材として活用することができる。 This reduced slag is not an industrial waste that requires processing costs, but can be recycled as a raw material for cement or used as an agricultural material containing mineral components necessary for plant growth.
 (7) エネルギーガス又はエネルギー液体及び再生産物若しくはその原料の生成プロセス (7) Production process of energy gas or energy liquid and recycled products or raw materials thereof
 (7-1) 図1は、高さが炉下部10aの直径の1.5倍以上である竪型炉10の例である。 (7-1) Figure 1 is an example of a vertical furnace 10 whose height is 1.5 times or more the diameter of the lower furnace portion 10a.
[規則91に基づく訂正 27.03.2023]
 バイオマス10乃至100質量%及び残部としての非バイオマス物質0乃至90質量%であって、バイオマスと非バイオマス物質を併せたものに対し水分を15乃至75質量%有するもの(例えば、バイオマス30質量%及び非バイオマス物質70質量%であって、バイオマスと非バイオマス物質を併せたものに対し水分を15乃至75質量%有するもの)を、炉頂部10tに通じる投入口20L、投入口20R及び投入口20Cより竪型炉10内に、投入装置24により投入する。投入口20L、投入口20R及び投入口20Cは、投入物に応じて使用される。
[Amendment under Rule 91 27.03.2023]
10 to 100% by mass of biomass and 0 to 90% by mass of non-biomass material as the balance, with a moisture content of 15 to 75% by mass based on the combined biomass and non-biomass material (for example, 30% by mass of biomass and 0 to 90% by mass of non-biomass material) A non-biomass material containing 70% by mass and having a moisture content of 15 to 75% by mass based on the combined biomass and non-biomass material) is poured into the furnace through the inlet 20L, 20R and 20C leading to the furnace top 10t. The material is charged into the vertical furnace 10 by the charging device 24. The input port 20L, the input port 20R, and the input port 20C are used depending on the input material.
 下部羽口22aを通じて少なくとも空気又はその他の酸素含有ガスが炉内に吹き込まれる。 At least air or other oxygen-containing gas is blown into the furnace through the lower tuyere 22a.
 更に、上部羽口22u及び中部羽口22mをそれぞれ通じて少なくとも、酸素若しくは酸素富化空気又は予熱空気、エネルギー液体、及びエネルギーガスのうち1又は2以上が炉内に吹き込まれる。 Further, at least one or more of oxygen, oxygen-enriched air, preheated air, energy liquid, and energy gas are blown into the furnace through the upper tuyere 22u and the middle tuyere 22m, respectively.
 炉頂部10tに投入したバイオマス及び非バイオマス物質(炉内投入物)を、炉内で昇温させつつ、次第に炉下部10aへ降下させ、炉下部10aの炉内における1箇所又は複数箇所の、複数の高さ(段を含む)を有する燃焼制御帯において、バイオマスと非バイオマス物質をエネルギー源として、或いは、バイオマス自体をエネルギー源の全部として、815乃至1050℃以上に昇温させ、炉内において水の還元による水素ガス生成が可能な高温に制御する。 The biomass and non-biomass materials (furnace input materials) charged into the furnace top 10t are gradually lowered to the furnace lower part 10a while being heated in the furnace, and are placed at one or more places in the furnace lower part 10a. In a combustion control zone with a height (including stages) of The temperature is controlled to a high temperature that allows hydrogen gas to be produced by reduction of
 更には、竪型炉10の炉頂部10tの内部の一部の温度を常温以上で1000乃至1050℃以下の所定温度に制御することが望ましい。 Further, it is desirable to control the temperature of a part of the interior of the furnace top 10t of the vertical furnace 10 to a predetermined temperature of 1000 to 1050° C. above room temperature.
 炉内投入物は、炉内をガスに対し向流移動(下降)する過程で、炉内温度が昇温するに従い、酸化反応帯から還元反応帯へ推移する。投入されたバイオマスが還元反応帯に移行すると、バイオマスにおいて、カーボンやタール又はその他の化学物質等へ移行する成分が多くなり、投入されたバイオマス等に15乃至75質量%という十分な割合で含まれていた水の還元反応により、十分な量のCO+H2等のエネルギーガスが生成すると共にCH4等のCnHmも生成する。 In the process of moving (downward) countercurrently to the gas in the furnace, the materials charged into the furnace transition from the oxidation reaction zone to the reduction reaction zone as the temperature inside the furnace increases. When the input biomass moves to the reduction reaction zone, many components in the biomass transfer to carbon, tar, or other chemical substances, and are contained in the input biomass at a sufficient proportion of 15 to 75% by mass. Due to the reduction reaction of the water, a sufficient amount of energy gas such as CO + H 2 is generated, and C n H m such as CH 4 is also generated.
 (7-2) 図2に示されるように、本発明における竪型炉10の炉下部10aの内部の温度を815℃程度以上とすると、炉内部の中間高さ位置における炉内エネルギーガス(CO+H2+CH4等のCnHm)濃度が、かなり急に上昇し、1050℃程度以上にすると、更に高濃度となり得る。 (7-2) As shown in Fig. 2, if the temperature inside the lower part 10a of the vertical furnace 10 in the present invention is about 815°C or higher, the energy gas (CO+H The concentration of C n H m ), such as 2 + CH 4 , rises quite rapidly and can become even higher at temperatures above about 1050°C.
 また、図3に示されるように、炉内部の中間高さ位置における温度が50℃程度以上となると、炉内部の中間高さ位置における炉内エネルギーガス(CO+H2+CH4等のCnHm)濃度が急上昇し得る。 Furthermore, as shown in Fig. 3, when the temperature at the intermediate height position inside the furnace exceeds approximately 50°C, the energy gas (C n H m such as CO + H 2 + CH 4 etc.) at the intermediate height position inside the furnace ) concentration can rise rapidly.
 また、図4に示されるように、炉頂部における温度が40℃程度を超えると、炉内部の中間高さ位置における炉内エネルギーガス(CO+H2+CH4等のCnHm)濃度が、かなり急に上昇し、45℃程度以上にすると、更に高濃度となり得る。 In addition, as shown in Figure 4, when the temperature at the top of the furnace exceeds about 40°C, the concentration of energy gas (CO + H 2 + C n H m such as CH 4 ) in the furnace at the intermediate height of the furnace increases considerably. If the temperature rises suddenly to about 45°C or higher, the concentration can become even higher.
 更に、図5に示されるように、炉内に投入物におけるバイオマス質量/(石炭および/またはコークスの質量)の割合を30%程度以上とすると、炉内部の中間高さ位置における炉内エネルギーガス(CO+H2+CH4等のCnHm)濃度が、かなり急に上昇し、35%程度以上とすると、更に高濃度となり得る。 Furthermore, as shown in Figure 5, if the ratio of biomass mass/(mass of coal and/or coke) in the materials input into the furnace is approximately 30% or more, the energy gas inside the furnace at the intermediate height position inside the furnace is The concentration (C n H m such as CO + H 2 + CH 4 ) rises quite rapidly, and if it exceeds about 35%, it can become even higher.
 なお、炉内部における炉の高さと炉下部10aの直径の比率である炉高さ比率(炉の高さ/炉床直径)が1.5程度以上である場合、炉上部10uのガス中の水素(H)濃度が増大して酸化帯から還元帯へと移る。炉高さ比率が1.5から1.8程度以上になると炉上部10uのガス中の水素(H)濃度が更に増大して5%以上の高濃度となり得、還元帯となる。 In addition, if the furnace height ratio (furnace height/hearth diameter), which is the ratio of the furnace height inside the furnace to the diameter of the furnace lower part 10a, is about 1.5 or more, the hydrogen in the gas in the furnace upper part 10u The (H 2 ) concentration increases and moves from the oxidation zone to the reduction zone. When the furnace height ratio increases from about 1.5 to 1.8 or more, the hydrogen (H 2 ) concentration in the gas in the upper part of the furnace 10u increases further and can reach a high concentration of 5% or more, forming a reduction zone.
 (7-3) 竪型炉10の炉下部10a内の全部又は部分を含む還元反応帯においては、残渣物質は、焼却灰(すなわち産業廃棄物)ではなく、溶融された還元スラグ、すなわち、金属酸化物や土砂・石・レンガ屑等を含む物質が投入された場合の土砂・石・レンガ屑等由来の物質を含めて、金属等の再生産物又は再生産物の原料となる。 (7-3) In the reduction reaction zone that includes all or part of the lower part 10a of the vertical furnace 10, the residual material is not incineration ash (i.e., industrial waste) but molten reduction slag, i.e., metal When materials containing oxides, earth, sand, stone, brick waste, etc. are input, materials derived from earth, sand, stone, brick waste, etc., become recycled products such as metals or raw materials for recycled products.
 このような還元スラグは、炉下部10aから溶融還元スラグ・メタル流出口10sを通じて溶融状態で流出させることができる。そのため、酸化金属を含んだ焼却灰のような産業廃棄物は、ほとんど発生しないものとなる。 Such reduced slag can be flowed out in a molten state from the lower part of the furnace 10a through the molten reduced slag/metal outlet 10s. Therefore, industrial waste such as incineration ash containing metal oxides is hardly generated.
 (7-4) 投入するバイオマスが含有する物質の種類・含有量・性状等に応じて、炉内における酸化反応帯の範囲と還元反応帯の範囲を変化させることができる。例えば、バイオマスが含有する炭素(カーボンC)の比率が高い場合、酸化反応帯の範囲を小さく又は比較的に小さく、還元反応帯の範囲を大きく又は比較的に大きくすることができる。また例えば、バイオマスが含有する水分量が多い場合、酸化反応帯の範囲を大きく又は比較的に大きく、還元反応帯の範囲を小さく又は比較的に小さくすることができる。 (7-4) Depending on the type, content, properties, etc. of substances contained in the input biomass, the range of the oxidation reaction zone and the range of the reduction reaction zone in the furnace can be changed. For example, when the proportion of carbon (carbon C) contained in biomass is high, the range of the oxidation reaction zone can be made small or relatively small, and the range of the reduction reaction zone can be made large or relatively large. For example, if the biomass contains a large amount of water, the range of the oxidation reaction zone can be made large or relatively large, and the range of the reduction reaction zone can be made small or relatively small.
 (7-5) 図1の竪型炉10の(不定形耐火物等により形成された)外周壁部10wは、例えば、竪型炉10の上下方向の軸線のまわりに螺旋を描くように、熱交換パイプを埋設したものとすることもできる。その場合、熱交換パイプに水やその他の液体を流すことにより、それらの加熱又はそれらからの蒸気発生等を行なうボイラー(バイオボイラー)として用いることができる。 (7-5) For example, the outer peripheral wall 10w of the vertical furnace 10 in FIG. A heat exchange pipe may also be buried. In that case, by flowing water or other liquids through the heat exchange pipe, it can be used as a boiler (bioboiler) that heats them or generates steam from them.
 尤も、熱交換手段や熱の利用はこの例に限るものではない。竪型炉の炉体の廃熱又は竪型炉において生成する高温ガス等の生成物の熱を、直接に又は熱交換などにより間接に利用することができる。例えば、熱交換により高温蒸気(高温過熱水蒸気)を生成させ、発電機等を駆動する蒸気タービンに使用することができる。或いは例えば、熱交換により生成した高温過熱蒸気(例えば数百℃又は1000℃以上の高温過熱蒸気)を直接加熱に用いることや、熱交換により生成した高温蒸気又は竪型炉において生成した高温ガスを(熱交換器などによる)間接加熱に用いることができる。このような加熱利用の例としては、竪型炉に投入するバイオマスや非バイオマス物質の予熱や、バイオマスを加熱(蒸し焼き等)することによるシリコンの生成を挙げることできるが、これらに限るものではない。 However, the heat exchange means and the use of heat are not limited to this example. The waste heat of the furnace body of the vertical furnace or the heat of products such as high-temperature gas generated in the vertical furnace can be used directly or indirectly through heat exchange or the like. For example, high-temperature steam (high-temperature superheated steam) is generated by heat exchange and can be used in a steam turbine that drives a generator or the like. Alternatively, for example, high-temperature superheated steam generated by heat exchange (for example, high-temperature superheated steam of several hundred degrees Celsius or 1000 degrees Celsius or more) may be used for direct heating, or high-temperature steam generated by heat exchange or high-temperature gas generated in a vertical furnace may be used. Can be used for indirect heating (e.g. by heat exchanger). Examples of such heating uses include, but are not limited to, preheating biomass or non-biomass materials to be input into a vertical furnace, and producing silicon by heating (steaming, etc.) biomass. .
 (8) エネルギーガス若しくはエネルギー液体又は金属若しくはその他の還元物等の生成又は回収 (8) Generation or recovery of energy gases, energy liquids, metals or other reduced products, etc.
 (8-1) 本発明における竪型炉10は、炉下部10a、炉下部10aよりも上方(例えば、竪型炉10の上下中間位置[炉中間部10m]または上下中間位置及び上部[炉上部10u])、又は、竪型炉10の上部(炉頂部10tおよび/または炉頂部10tよりも下方に位置する竪型炉10の上方部)から、それらの位置に設けられたガス排出口10g等を通じて、
CO、H2、CH4等のCnHm(窒素ガスや、その他の還元物質等を含むものであってもよい)を回収し得るものとすることができる。
(8-1) The vertical furnace 10 of the present invention has a furnace lower part 10a, an upper part than the furnace lower part 10a (for example, an upper and lower intermediate position [furnace intermediate part 10m] of the vertical furnace 10, or an upper and lower intermediate position and an upper part [furnace upper part]). 10u]), or from the upper part of the vertical furnace 10 (the furnace top 10t and/or the upper part of the vertical furnace 10 located below the furnace top 10t), or the gas exhaust ports 10g etc. provided at those positions. Through
C n H m such as CO, H 2 and CH 4 (which may also contain nitrogen gas, other reducing substances, etc.) can be recovered.
 このような回収物は、エネルギーガス又は自然冷却を含む冷却により液化したエネルギー液体として、
或いは
フィッシャー・トロプシュ法又はその他の方法による合成や精製等による原動機用又は燃料電池のための液体燃料若しくは気体燃料、各種化学物質、その他の物質(ガソリン、軽油、灯油、液化天然ガス、液化メタン、ディーゼルオイル、アンモニア、ベンゼン、ナフタレン、各種農業用薬剤等)の原料として
利用することができる。
 このように得られる回収物、合成物、精製物等は、
バイオガソリン等のバイオ液体エネルギー、
バイオ天然ガス等のバイオガスエネルギー、
バイオシリコン等のバイオ鉱物資源、
バイオ鉄等のバイオ金属、
バイオ石炭等のバイオ石炭系資源、
バイオ活性炭等のバイオ炭系資源として様々な用途に利用され得る。
Such recovered materials may be used as energy gas or energy liquid liquefied by cooling, including natural cooling.
Alternatively, liquid or gaseous fuels, various chemicals, and other substances (gasoline, diesel oil, kerosene, liquefied natural gas, liquefied methane, It can be used as a raw material for diesel oil, ammonia, benzene, naphthalene, various agricultural chemicals, etc.).
The recovered products, synthesized products, purified products, etc. obtained in this way are
Bio-liquid energy such as bio-gasoline,
Biogas energy such as bionatural gas,
Biomineral resources such as biosilicon,
Bio metals such as bio iron,
Bio-coal resources such as bio-coal,
It can be used for various purposes as a biochar-based resource such as bioactivated carbon.
 (8-2) 本発明における竪型炉10(向流移動炉)は、バイオマスを用いて、水素ガスが5%以上、酸素ガスが0.5%以下の濃度(容積濃度)の高水素ガス(富水素ガス)を生成し得るものであることが好ましい。 (8-2) The vertical furnace 10 (countercurrent transfer furnace) in the present invention uses biomass to produce high hydrogen gas with a concentration (volume concentration) of 5% or more hydrogen gas and 0.5% or less oxygen gas. (hydrogen-rich gas) is preferable.
 H、COの濃度は、一般に、竪型炉10内の下部から上部に向かって濃度が下がるので、高濃度のHおよび/またはCOガスは、炉下部10aにガス排出口を設けることなどにより、炉下部10aから取り出すことが望ましい。高濃度の水素ガスは、アンモニアの製造にも有用である。 Generally, the concentration of H 2 and CO decreases from the lower part to the upper part in the vertical furnace 10, so high concentration H 2 and/or CO gas can be removed by providing a gas outlet in the lower part of the furnace 10a. Therefore, it is desirable to take it out from the furnace lower part 10a. Highly concentrated hydrogen gas is also useful in the production of ammonia.
 (8-3) 本発明においては、竪型炉10に投入するバイオマス及び非バイオマス物質中(バイオマスと非バイオマス物質を併せた投入物中)に水分を所定比率で有するものとすることができる。投入物中に有する水分の比率は、例えば15乃至75質量%、20乃至75質量%、25乃至75質量%、30乃至75質量%、、40乃至75質量%、又は50乃至75質量%(或いは、15乃至60質量%のように、それぞれ60質量%以下)とすることができる。なお、投入物は、その何れの部分についてもこの水分比率であることを要するものではなく、例えば、一定時間当たりの投入物中に、又は、一定の体積若しくは質量の投入物中に所要の水分を有するものであれば足りる。 (8-3) In the present invention, the biomass and non-biomass materials (the combined input of biomass and non-biomass materials) to be charged into the vertical furnace 10 may contain moisture at a predetermined ratio. The proportion of moisture in the input material is, for example, 15 to 75% by mass, 20 to 75% by mass, 25 to 75% by mass, 30 to 75% by mass, 40 to 75% by mass, or 50 to 75% by mass (or , 15 to 60% by mass, respectively (up to 60% by mass). It should be noted that the input material does not need to have this moisture ratio in any part thereof; It is sufficient if it has the following.
 竪型炉10への投入物の水分制御(例えば水分含有バイオマスやその他の投入水分による水分制御)によって、投入物(バイオマスおよび/または非バイオマス物質)が炉下部10aまで下降する過程における水分(HO)を制御すること、及び、水分(HO)から還元生成する水素ガス(H)の濃度及び量を制御することが可能となる。このような竪型炉10への投入物の水分制御は、例えば前記投入量制御装置により行い得る。 By controlling the moisture content of the input to the vertical furnace 10 (for example, controlling the moisture content using moisture-containing biomass or other input moisture), the moisture content (H 2 O), and the concentration and amount of hydrogen gas (H 2 ) produced by reduction from water (H 2 O). The moisture content of the material charged into the vertical furnace 10 can be controlled, for example, by the amount control device described above.
 更には、生成する水素ガス(H)により、炉内投入物中の酸化鉄若しくはその他の酸化金属又はその他の酸化物の全部又は部分を金属鉄若しくはその他の金属又はその他の還元物とすること又は還元を制御することも可能となる。 Furthermore, all or part of iron oxide, other metal oxides, or other oxides in the input to the furnace can be converted into metallic iron, other metals, or other reduced products by the generated hydrogen gas (H 2 ). Alternatively, it becomes possible to control the reduction.
[規則91に基づく訂正 27.03.2023]
 バイオマスに伴う水分(又はその他の炉内投入物中の水分)が炉下部10aまで降下することによって、炉下部10aの水素ガス濃度が高くなり、還元反応を水素ガス還元により行われ(又は水素ガス還元により行われる比率が高くなり)、炭素還元により行われる比率を減少させることが可能となる。これによって必要カーボン量を減少させること、二酸化炭素排出量の低減や実質的に二酸化炭素排出量をなくすゼロカーボン化、バイオマスを利用するカーボンニュートラル(バイオカーボンニュートラル)の取り組みにも適合するものとすることができる。
[Amendment under Rule 91 27.03.2023]
As the moisture accompanying the biomass (or moisture in other materials input into the furnace) falls to the lower part of the furnace 10a, the hydrogen gas concentration in the lower part of the furnace 10a increases, and the reduction reaction is carried out by hydrogen gas reduction (or hydrogen gas The proportion carried out by reduction increases), and it becomes possible to reduce the proportion carried out by carbon reduction. This will reduce the amount of carbon required, reduce carbon dioxide emissions, achieve zero carbon emissions by virtually eliminating carbon dioxide emissions, and be compatible with carbon neutral (biocarbon neutral) initiatives that utilize biomass. be able to.
 (8-4) また、バイオマス及び非バイオマス物質の種類等に応じ、還元過程においてクエン酸、酢酸又はその他の有機酸を含有する木酢(竹酢を含む)を生成し得る。この場合、酸化により生成する酸化金属を始めとする他の酸化物を含まない高品質の木酢を、ガス排出口10gを通じて得ることができる。 (8-4) Also, depending on the type of biomass and non-biomass materials, wood vinegar (including bamboo vinegar) containing citric acid, acetic acid, or other organic acids can be produced during the reduction process. In this case, high quality wood vinegar that does not contain other oxides including metal oxides produced by oxidation can be obtained through the gas outlet 10g.
 (8-5) また、投入するバイオマス及び非バイオマス物質の種類等に応じ、竪型炉の炉下部から流出し得る溶融還元物又は還元スラグからシリコンを生成し得る。 (8-5) Also, depending on the types of biomass and non-biomass materials to be input, silicon can be generated from the molten reduction product or reduced slag that may flow out from the lower part of the vertical furnace.
 (9) 輸送装置 (9) Transportation equipment
 (9-1) 本発明の輸送装置は、エネルギーガス又は液体生成竪型炉システムを、自動車若しくは鉄道車両などの車両又は船舶などの輸送装置を駆動するための動力機関の燃料源として本発明のエネルギーガス又は液体生成竪型炉システムを搭載したものの他、
前記のような輸送装置を駆動する電気動力装置の直接の電源若しくは蓄電装置を介する電源としての発電機用の動力機関の燃料源として本発明のエネルギーガス又は液体生成竪型炉システムを搭載したもの、又は、
輸送装置を駆動する電気動力装置の直接の電源若しくは蓄電装置を介する電源としての燃料電池のための燃料源として本発明のエネルギーガス又は液体生成竪型炉システムを搭載したものである。
(9-1) The transportation device of the present invention uses an energy gas or liquid producing vertical furnace system as a fuel source of a power engine for driving a vehicle such as an automobile or a railway vehicle, or a transportation device such as a ship. In addition to those equipped with energy gas or liquid generation vertical furnace systems,
A device equipped with the energy gas or liquid generating vertical furnace system of the present invention as a fuel source for a power engine for a generator, which is a direct power source for an electric power device that drives the above-mentioned transportation device or a power source via a power storage device. , or
The energy gas or liquid producing vertical furnace system of the present invention is installed as a fuel source for a fuel cell that serves as a direct power source for an electric power device that drives a transportation device or as a power source via a power storage device.
 (9-2) 図6は、本発明のエネルギーガス又は液体生成竪型炉システムを搭載した車両の例のブロック図である。 (9-2) FIG. 6 is a block diagram of an example of a vehicle equipped with the energy gas or liquid production vertical furnace system of the present invention.
 車両40は、エンジン42又は交流電動機44により駆動される車輪46を有し、竪型炉10の他、図6に記載の機器類を搭載している。 The vehicle 40 has wheels 46 driven by an engine 42 or an AC motor 44, and is equipped with the equipment shown in FIG. 6 in addition to the vertical furnace 10.
 竪型炉10は、外周壁部に熱交換パイプが埋設されたものである。この竪型炉10は、エネルギーガスを生成する以外に、前記熱交換パイプに水が流されて蒸気を発生するボイラーとして機能する。車両等に搭載する竪型炉は、例えば、外径が50乃至150cm程度、高さが100から200乃至300cm程度とすることができる。 The vertical furnace 10 has heat exchange pipes embedded in the outer peripheral wall. In addition to generating energy gas, this vertical furnace 10 functions as a boiler in which water is passed through the heat exchange pipe to generate steam. A vertical furnace mounted on a vehicle or the like can have an outer diameter of about 50 to 150 cm and a height of about 100 to 200 to 300 cm, for example.
 生成したエネルギーガスは、ガス精製装置48を経、燃料タンク50に貯蔵された燃料と別々に或いは混合して、燃料噴射装置52によりエンジン42に供給され、エンジン42が作動して車両40を駆動する。 The generated energy gas passes through the gas purification device 48 and is supplied to the engine 42 by the fuel injection device 52, either separately or mixed with the fuel stored in the fuel tank 50, and the engine 42 is operated to drive the vehicle 40. do.
 また、竪型炉10の熱交換パイプを経て発生した蒸気は、蒸気発電機54に供給され、その蒸気発電機54により発電された交流電流は、整流器56により整流されてバッテリー58に充電され、バッテリー58からの出力は更にインバーター60により所定の周波数の交流に変換されて車両駆動用の交流電動機44に供給され、その交流電動機44により車両40を駆動することができる。蒸気発電機54を経た蒸気はラジエター62により復水し、水タンク64を介して竪型炉10の熱交換パイプに供給されて利用される。 Further, the steam generated through the heat exchange pipe of the vertical furnace 10 is supplied to a steam generator 54, and the alternating current generated by the steam generator 54 is rectified by a rectifier 56 and charged to a battery 58. The output from the battery 58 is further converted into alternating current at a predetermined frequency by an inverter 60 and supplied to an alternating current motor 44 for driving the vehicle, so that the alternating current motor 44 can drive the vehicle 40. The steam that has passed through the steam generator 54 is condensed by a radiator 62, and is supplied to the heat exchange pipe of the vertical furnace 10 via a water tank 64 for use.
 更に、太陽光パネル66による電流が電圧安定化装置68を経てバッテリー60に充電され、交流電動機44による車両40の駆動に利用される。なお、太陽光パネルによる充電設備や、竪型炉に熱交換パイプを設けて蒸気発電機により発電する設備は、それぞれ必要に応じ設けることができる。 Further, the current generated by the solar panel 66 is charged to the battery 60 via the voltage stabilizing device 68, and is used to drive the vehicle 40 by the AC motor 44. Note that charging equipment using a solar panel and equipment that generates electricity using a steam generator by providing a heat exchange pipe in a vertical furnace can be provided as necessary.
 (10) 燃料製造方法 (10) Fuel manufacturing method
 本発明のエネルギーガス又は液体生成竪型炉システム或いはエネルギーガス又は液体生成方法を用いて生成したエネルギーガス又はエネルギー液体を用いて、精製又は合成(例えばフィッシャー・トロプシュ法)を行うことにより、水素、液体炭化水素、気体炭化水素、アンモニア等の、ガソリン機関、ディーゼル機関、ガスタービン、及びその他の原動機用又は燃料電池のための燃料を製造することができる。 Hydrogen, Fuels such as liquid hydrocarbons, gaseous hydrocarbons, ammonia, etc., for gasoline engines, diesel engines, gas turbines, and other prime movers or for fuel cells can be produced.
10  竪型炉
10a 炉下部
10g ガス排出口
10m 炉中間部
10s 溶融還元スラグ・メタル流出口
10t 炉頂部
10u 炉上部
10w 外周壁部
20C 投入口
20L 投入口
20R 投入口
22u 上部羽口
22m 中部羽口
22a 下部羽口
24  投入装置
40  車両
42  エンジン
44  交流電動機
46  車輪
48  ガス精製装置
50  燃料タンク
52  燃料噴射装置
54  蒸気発電機
56  整流器
58  バッテリー
60  インバーター
62  ラジエター
64  水タンク
66  太陽光パネル
68  電圧安定化装置
10 Vertical furnace 10a Furnace lower part 10g Gas outlet 10m Furnace middle part 10s Melting reduction slag/metal outlet 10t Furnace top part 10u Furnace upper part 10w Outer peripheral wall part 20C Inlet 20L Inlet 20R Inlet 22u Upper tuyere 22m Middle tuyere 22a Lower tuyere 24 Feeding device 40 Vehicle 42 Engine 44 AC motor 46 Wheels 48 Gas purification device 50 Fuel tank 52 Fuel injection device 54 Steam generator 56 Rectifier 58 Battery 60 Inverter 62 Radiator 64 Water tank 66 Solar panel 68 Voltage stabilization Device

Claims (21)

  1.  炉内部において、炉下部の直径又は相当直径を超える高さの竪型炉と、
    当該竪型炉に対し、その竪型炉の上部又は炉下部よりも上方からバイオマス又はバイオマス及び非バイオマス物質を投入する投入装置を備え、
    当該投入装置により前記竪型炉に投入する前記バイオマス及び非バイオマス物質は、前記バイオマスが10乃至100質量%、前記非バイオマス物質は残部としての0乃至90質量%であり、
    前記バイオマスと非バイオマス物質を併せた投入物は水分を有し、
    前記竪型炉は、羽口として少なくとも下部羽口を備え、その下部羽口は、竪型炉の炉内の高さの30%未満の高さの部分に位置するものであり、少なくとも空気又はその他の酸素含有ガスを前記下部羽口を通じて炉内に吹き込むための吹込装置を有し、
    前記竪型炉の炉下部の内部の温度を、炉内において水の還元による水素ガス生成が可能な高温に維持するための、炉下部温度制御装置を有することを特徴とするエネルギーガス又は液体生成竪型炉システム。
    A vertical furnace with a height that exceeds the diameter or equivalent diameter of the lower part of the furnace inside the furnace,
    The vertical furnace is equipped with a charging device for charging biomass or biomass and non-biomass substances from above the upper part of the vertical furnace or the lower part of the furnace,
    The biomass and non-biomass substances inputted into the vertical furnace by the input device are such that the biomass is 10 to 100% by mass, and the non-biomass substance is 0 to 90% by mass as the balance,
    the combined biomass and non-biomass material input has moisture;
    The vertical furnace is provided with at least a lower tuyere as a tuyere, and the lower tuyere is located at a height of less than 30% of the height of the inside of the vertical furnace, and the lower tuyere is located at a height of less than 30% of the height of the inside of the vertical furnace, and the lower tuyere is located at a height of less than 30% of the height of the inside of the vertical furnace. a blowing device for blowing other oxygen-containing gas into the furnace through the lower tuyere;
    Energy gas or liquid generation characterized by having a furnace lower temperature control device for maintaining the temperature inside the furnace lower part of the vertical furnace at a high temperature where hydrogen gas can be generated by reducing water in the furnace. Vertical furnace system.
  2.  上記バイオマスと非バイオマス物質を併せた投入物中に、水分を15乃至75質量%有する請求項1記載のシステム。 The system of claim 1, wherein the combined biomass and non-biomass material input contains 15 to 75% water by mass.
  3.  上記竪型炉の炉内の高さの70%以上の高さの部分に上部羽口を備え、少なくとも、酸素若しくは酸素富化空気又は予熱空気、エネルギー液体、及びエネルギーガスのうち1又は2以上を前記上部羽口を通じて炉内に吹き込むための吹込装置を有する請求項1又は2記載のシステム。 The above-mentioned vertical furnace is provided with an upper tuyere at a height of 70% or more of the height inside the furnace, and at least one or more of oxygen, oxygen-enriched air, preheated air, energy liquid, and energy gas. 3. The system according to claim 1, further comprising a blowing device for blowing into the furnace through the upper tuyere.
  4.  上記竪型炉の炉内の高さの30%以上70%未満の高さの部分に中部羽口を備え、少なくとも、酸素若しくは酸素富化空気又は予熱空気、エネルギー液体、及びエネルギーガスのうち1又は2以上を前記中部羽口を通じて炉内に吹き込むための吹込装置を有する請求項1乃至3の何れか1項に記載のシステム。 A middle tuyere is provided at a height of 30% or more and less than 70% of the height inside the furnace of the vertical furnace, and at least one of oxygen, oxygen-enriched air, preheated air, energy liquid, and energy gas is provided. The system according to any one of claims 1 to 3, further comprising a blowing device for blowing at least two or more of the above into the furnace through the central tuyere.
  5.  上記竪型炉が備える少なくとも何れかの羽口を通じ、酸素若しくは酸素富化空気又は予熱空気、エネルギー液体、エネルギーガス、エネルギー固体粉、及び、常温水若しくは加熱水のうち、1又は2以上を吹き込むための吹込装置を有する請求項1乃至4の何れか1項に記載のシステム。 One or more of oxygen or oxygen-enriched air, preheated air, energy liquid, energy gas, energy solid powder, and room temperature water or heated water is blown through at least one of the tuyeres provided in the vertical furnace. A system according to any one of claims 1 to 4, comprising a blowing device for.
  6.  上記非バイオマス物質として、石炭及びコークスの両方又は一方を含み、
    前記石炭及びコークスの両方又は一方に対し、上記バイオマスは30質量%以上である請求項1乃至5の何れか1項に記載のシステム。
    The non-biomass material includes both or one of coal and coke,
    The system according to any one of claims 1 to 5, wherein the biomass is 30% by mass or more with respect to both or one of the coal and coke.
  7.  上記炉下部温度制御装置が、上記炉下部の内部の温度を815乃至1050℃以上に維持するためのものである請求項1乃至6の何れか1項に記載のシステム。 The system according to any one of claims 1 to 6, wherein the furnace lower part temperature control device is for maintaining the temperature inside the furnace lower part at 815 to 1050°C or higher.
  8.  上記投入するバイオマス及び非バイオマス物質に応じ、還元過程において木酢を生成し得る請求項1乃至7の何れか1項に記載のシステム。 The system according to any one of claims 1 to 7, capable of producing pyroligneous vinegar in the reduction process depending on the input biomass and non-biomass materials.
  9.  上記竪型炉の炉下部から溶融還元物及び還元スラグが流出し得、上記投入するバイオマス及び非バイオマス物質に応じ、前記溶融還元物又は還元スラグからシリコンを生成し得る請求項1乃至8の何れか1項に記載のシステム。 Any one of claims 1 to 8, wherein a molten reduction product and reduced slag can flow out from the lower part of the vertical furnace, and silicon can be produced from the molten reduction product or reduced slag depending on the biomass and non-biomass material input. or the system described in item 1.
  10.  請求項1乃至9の何れか1項に記載のシステムを、
    輸送装置を駆動するための動力機関の燃料源、
    輸送装置を駆動する電気動力装置の直接の電源若しくは蓄電装置を介する電源としての発電機用の動力機関の燃料源、又は、
    輸送装置を駆動する電気動力装置の直接の電源若しくは蓄電装置を介する電源としての燃料電池のための燃料源
    として搭載した輸送装置。
    The system according to any one of claims 1 to 9,
    a fuel source for a power engine for driving a transportation device;
    a fuel source for a power engine for a generator as a direct power source or a power source via an electrical storage device for an electric power plant driving a transport device, or
    A transport device mounted as a fuel source for a fuel cell as a direct power source for an electric power unit driving the transport device or as a power source via an electrical storage device.
  11.  請求項1乃至9の何れか1項に記載のシステムを用いてエネルギーガス又は液体を生成し、
    生成したエネルギーガス又は液体を用いて、ガソリン機関、ディーゼル機関、ガスタービン、及びその他の原動機用又は燃料電池のための燃料を製造する方法。
    Producing an energy gas or liquid using the system according to any one of claims 1 to 9,
    A method of producing fuel for gasoline engines, diesel engines, gas turbines, and other prime movers or for fuel cells using the produced energy gas or liquid.
  12.  炉内部において、炉下部の直径又は相当直径を超える高さの竪型炉に、当該竪型炉の上部又は炉下部よりも上方からバイオマス又はバイオマス及び非バイオマス物質を投入する工程と、
    前記投入されたバイオマス又はバイオマス及び非バイオマス物質を前記竪型炉内で処理する工程を有し、
    前記竪型炉に投入する前記バイオマス及び非バイオマス物質は、前記バイオマスが10乃至100質量%、前記非バイオマス物質は残部としての0乃至90質量%であり、
    前記バイオマスと非バイオマス物質を併せた投入物は水分を有し、
    前記竪型炉は、羽口として少なくとも下部羽口を備え、その下部羽口は、竪型炉の炉内の高さの30%未満の高さの部分に位置するものであり、少なくとも空気又はその他の酸素含有ガスを前記下部羽口を通じて炉内に吹き込み、
    前記竪型炉の炉下部の内部の温度を、炉内において水の還元による水素ガス生成が可能な高温に維持することを特徴とするエネルギーガス又は液体生成方法。
    A step of charging biomass or biomass and non-biomass substances from above the upper part of the vertical furnace or the lower part of the furnace into a vertical furnace with a height exceeding the diameter or equivalent diameter of the lower part of the furnace inside the furnace;
    a step of treating the input biomass or biomass and non-biomass material in the vertical furnace,
    The biomass and non-biomass material to be input into the vertical furnace are such that the biomass is 10 to 100% by mass, and the non-biomass material is 0 to 90% by mass as the balance,
    the combined biomass and non-biomass material input has moisture;
    The vertical furnace is provided with at least a lower tuyere as a tuyere, and the lower tuyere is located at a height of less than 30% of the height inside the vertical furnace, and the lower tuyere is located at a height of less than 30% of the height of the inside of the vertical furnace. blowing other oxygen-containing gas into the furnace through the lower tuyere;
    An energy gas or liquid production method characterized in that the temperature inside the lower part of the vertical furnace is maintained at a high temperature at which hydrogen gas can be produced by reducing water in the furnace.
  13.  上記バイオマスと非バイオマス物質を併せた投入物中に、水分を15乃至75質量%有する請求項12記載の方法。 13. The method according to claim 12, wherein the combined biomass and non-biomass material input contains 15 to 75% by mass of water.
  14.  上記竪型炉の炉内の高さの70%以上の高さの部分に上部羽口を備え、少なくとも、酸素若しくは酸素富化空気又は予熱空気、エネルギー液体、及びエネルギーガスのうち1又は2以上を前記上部羽口を通じて炉内に吹き込む請求項12又は13記載の方法。 The above-mentioned vertical furnace is provided with an upper tuyere at a height of 70% or more of the height inside the furnace, and at least one or more of oxygen, oxygen-enriched air, preheated air, energy liquid, and energy gas. 14. The method according to claim 12 or 13, wherein the tuyere is blown into the furnace through the upper tuyere.
  15.  上記竪型炉の炉内の高さの30%以上70%未満の高さの部分に中部羽口を備え、少なくとも、酸素若しくは酸素富化空気又は予熱空気、エネルギー液体、及びエネルギーガスのうち1又は2以上を前記中部羽口を通じて炉内に吹き込む請求項12乃至14の何れか1項に記載の方法。 A middle tuyere is provided at a height of 30% or more and less than 70% of the height inside the furnace of the vertical furnace, and at least one of oxygen, oxygen-enriched air, preheated air, energy liquid, and energy gas is provided. The method according to any one of claims 12 to 14, wherein at least two or more of the above are blown into the furnace through the central tuyere.
  16.  上記竪型炉に備える少なくとも何れかの羽口を通じ、酸素若しくは酸素富化空気又は予熱空気、エネルギー液体、エネルギーガス、エネルギー固体粉、及び、常温水若しくは加熱水のうち1又は2以上を吹き込む請求項12乃至15の何れか1項に記載の方法。 A claim for blowing one or more of oxygen or oxygen-enriched air or preheated air, energy liquid, energy gas, energy solid powder, and room temperature water or heated water through at least one of the tuyeres provided in the vertical furnace. The method according to any one of items 12 to 15.
  17.  上記非バイオマス物質として、石炭及びコークスの両方又は一方を含み、
    前記石炭及びコークスの両方又は一方に対し、上記バイオマスは30質量%以上である請求項12乃至16の何れか1項に記載の方法。
    The non-biomass material includes both or one of coal and coke,
    The method according to any one of claims 12 to 16, wherein the biomass is 30% by mass or more with respect to both or one of the coal and coke.
  18.  上記炉下部の内部の温度を815乃至1050℃以上に維持する請求項12乃至17の何れか1項に記載の方法。 The method according to any one of claims 12 to 17, wherein the temperature inside the lower part of the furnace is maintained at 815 to 1050°C or higher.
  19.  上記投入するバイオマス及び非バイオマス物質に応じ、還元過程において木酢を生成する請求項12乃至18の何れか1項に記載の方法。 The method according to any one of claims 12 to 18, wherein pyroligneous vinegar is produced in the reduction process depending on the biomass and non-biomass materials input.
  20.  上記竪型炉の炉下部から溶融還元物及び還元スラグを流出させる工程を有し、上記投入するバイオマス及び非バイオマス物質に応じ、前記溶融還元物又は還元スラグからシリコンを生成し得る請求項12至19の何れか1項に記載の方法。 Claims 12 to 12, further comprising the step of flowing out a molten reduction product and reduced slag from the lower part of the vertical furnace, and capable of producing silicon from the molten reduction product or reduced slag depending on the biomass and non-biomass materials to be input. 19. The method according to any one of Item 19.
  21.  輸送装置上において、請求項12乃至20の何れか1項に記載の方法により生成するエネルギーガス又は液体を、
    輸送装置を駆動するための動力機関の燃料源、
    輸送装置を駆動する電気動力装置の直接の電源若しくは蓄電装置を介する電源としての発電機用の動力機関の燃料源、又は、
    輸送装置を駆動する電気動力装置の直接の電源若しくは蓄電装置を介する電源としての燃料電池のための燃料源
    として用いる輸送方法。
    On the transport device, the energy gas or liquid produced by the method according to any one of claims 12 to 20,
    a fuel source for a power engine for driving a transportation device;
    a fuel source for a power engine for a generator as a direct power source or a power source via an electrical storage device for an electric power plant driving a transport device, or
    A transportation method for use as a fuel source for a fuel cell as a direct power source or as a power source via an electrical storage device for an electric power device driving a transportation device.
PCT/JP2023/000160 2022-03-22 2023-01-06 Energy gas/liquid generation vertical furnace system and generation method, fuel production method, transport device, and method WO2023181585A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022065386 2022-03-22
JP2022-065387 2022-03-22
JP2022-065386 2022-03-22
JP2022065387 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023181585A1 true WO2023181585A1 (en) 2023-09-28

Family

ID=88100936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000160 WO2023181585A1 (en) 2022-03-22 2023-01-06 Energy gas/liquid generation vertical furnace system and generation method, fuel production method, transport device, and method

Country Status (1)

Country Link
WO (1) WO2023181585A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002521561A (en) * 1998-07-24 2002-07-16 インプルーブト コンバーターズ インク. Blast furnaces with narrow tops and uses
JP2005249279A (en) * 2004-03-03 2005-09-15 Nippon Steel Corp Waste melting and treating method utilizing biomass
JP2005325322A (en) * 2004-05-13 2005-11-24 Kangen Yoyu Gijutsu Kenkyusho:Kk Energy recovery method of reducing gasified wood biomass
JP2005330452A (en) * 2004-05-17 2005-12-02 Kangen Yoyu Gijutsu Kenkyusho:Kk Method for recovering energy from reducing gas-converted woody biomass
JP2007510789A (en) * 2003-11-04 2007-04-26 アイティーアイ リミテッド Gasification
JP2013108629A (en) * 2011-11-17 2013-06-06 Jfe Engineering Corp Waste melting method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002521561A (en) * 1998-07-24 2002-07-16 インプルーブト コンバーターズ インク. Blast furnaces with narrow tops and uses
JP2007510789A (en) * 2003-11-04 2007-04-26 アイティーアイ リミテッド Gasification
JP2005249279A (en) * 2004-03-03 2005-09-15 Nippon Steel Corp Waste melting and treating method utilizing biomass
JP2005325322A (en) * 2004-05-13 2005-11-24 Kangen Yoyu Gijutsu Kenkyusho:Kk Energy recovery method of reducing gasified wood biomass
JP2005330452A (en) * 2004-05-17 2005-12-02 Kangen Yoyu Gijutsu Kenkyusho:Kk Method for recovering energy from reducing gas-converted woody biomass
JP2013108629A (en) * 2011-11-17 2013-06-06 Jfe Engineering Corp Waste melting method

Similar Documents

Publication Publication Date Title
USRE45869E1 (en) Slurry dewatering and conversion of biosolids to a renewable fuel
KR101298907B1 (en) Waste treatment process and apparatus
KR101355529B1 (en) Waste treatment process and apparatus
US4935038A (en) Process for recovery of usable gas from garbage
Groß et al. Energy recovery from sewage sludge by means of fluidised bed gasification
CN101713304B (en) Method for cycle power generation by carrying out wet decomposition pretreatment, dry distillation and gasification on domestic garbage
JPS5851038B2 (en) Seizouhouhouunarabini Sonosouchi
US9657989B2 (en) Systems and methods for processing municipal wastewater treatment sewage sludge
JPS62187000A (en) Method of gassifying sewage sludge
WO1997049953A1 (en) Method for fusion treating a solid waste for gasification
ZA200703757B (en) Slurry dewatering and conversion of biosolids to a renewable fuel
WO2023181585A1 (en) Energy gas/liquid generation vertical furnace system and generation method, fuel production method, transport device, and method
CN104976621A (en) Household garbage pyrolysis gasifier
CN208869480U (en) A kind of process system of industrial sludge cracking
KR100470730B1 (en) Smelting Incineration Apparatus and Method of Solid Waste Treatment
JP6777110B2 (en) Pyrolysis method and equipment for organic substances
WO2023027179A9 (en) Vertical-type furnace system and method and other system and method for achieving sdgs and biocarbon neutrality
WO2005080874A1 (en) Waste fusion treatment method utilizing powdery biomass
JP2002371307A (en) Method for recycling organic or hydrocarbon waste, and blast furnace facility suitable for recycling
Pawlak-Kruczek et al. Sustainable utilization of the sewage sludge using combined drying, torrefaction and plasma gasification technologies
AU2003208132A1 (en) Waste management
Ludikhuize Research on new thermal treatment processes for domestic refuse in the Netherlands
KR20110022655A (en) Solidified fuel gas generator and a combustion method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774186

Country of ref document: EP

Kind code of ref document: A1