JP6777110B2 - Pyrolysis method and equipment for organic substances - Google Patents

Pyrolysis method and equipment for organic substances Download PDF

Info

Publication number
JP6777110B2
JP6777110B2 JP2018032375A JP2018032375A JP6777110B2 JP 6777110 B2 JP6777110 B2 JP 6777110B2 JP 2018032375 A JP2018032375 A JP 2018032375A JP 2018032375 A JP2018032375 A JP 2018032375A JP 6777110 B2 JP6777110 B2 JP 6777110B2
Authority
JP
Japan
Prior art keywords
reactor
pipe
gas
mixed gas
thermal decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018032375A
Other languages
Japanese (ja)
Other versions
JP2019147871A (en
Inventor
村井 亮太
亮太 村井
石井 純
純 石井
鷲見 郁宏
郁宏 鷲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018032375A priority Critical patent/JP6777110B2/en
Publication of JP2019147871A publication Critical patent/JP2019147871A/en
Application granted granted Critical
Publication of JP6777110B2 publication Critical patent/JP6777110B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、廃プラスチックなどの有機物質を熱分解してガス状物質などに転換するための有機物質の熱分解技術に関する。 The present invention relates to a technique for thermally decomposing an organic substance such as waste plastic to thermally decompose it into a gaseous substance or the like.

廃プラスチック、含油スラッジ、廃油などの多くは焼却処理されているのが現状である。しかし、焼却処理ではCO発生などの環境負荷が高く、また、焼却炉の熱的損傷の問題もあり、ケミカルリサイクル技術の確立が求められている。
ケミカルリサイクル技術のなかでも、有機物質を気体燃料や液体燃料に転換するための技術は、廃プラスチックを中心に従来から種々検討がなされ、例えば、以下のような提案がなされている。
At present, most of waste plastics, oil-containing sludge, waste oil, etc. are incinerated. However, the incineration process has a high environmental load such as CO 2 generation, and there is also a problem of thermal damage to the incinerator, so establishment of chemical recycling technology is required.
Among the chemical recycling technologies, various technologies for converting organic substances into gas fuels and liquid fuels have been studied conventionally, mainly for waste plastics, and for example, the following proposals have been made.

特許文献1には、水素濃度60vol%以上、好ましくは80vol%以上、温度600℃以上のコークス炉ガス(COG)を廃プラスチックなどの有機物質と反応させることにより、有機物質を高効率で水素化分解・ガス化し、COGを増熱化する方法が開示されている。
また、特許文献2には、ガス化溶融炉で発生した一酸化炭素と水素を含有する排ガスを利用し、この排ガスに過剰の水蒸気を添加してシフト反応を行わせ、このシフト反応生成ガスを有機物質に接触させることで、有機物質を改質して低分子化(熱分解)する方法が開示されている。
According to Patent Document 1, a coke oven gas (COG) having a hydrogen concentration of 60 vol% or more, preferably 80 vol% or more, and a temperature of 600 ° C. or more is reacted with an organic substance such as waste plastic to hydrogenate the organic substance with high efficiency. A method of decomposing and gasifying to increase the heat of COG is disclosed.
Further, in Patent Document 2, an exhaust gas containing carbon monoxide and hydrogen generated in a gasification melting furnace is used, and excess steam is added to the exhaust gas to cause a shift reaction, and the shift reaction generated gas is used. A method of modifying an organic substance to reduce its molecular weight (pyrolysis) by contacting it with an organic substance is disclosed.

また、特許文献3には、冶金炉で発生した一酸化炭素を含有する排ガスを利用し、この排ガスに過剰の水蒸気を添加してシフト反応を行わせ、このシフト反応生成ガスを有機物質に接触させることで、有機物質を改質して低分子化(熱分解)するとともに、改質反応器から出た低分子化生成物(熱分解生成物)のうち、液体生成物を改質反応器に還流させて再熱分解し、ガス化率を向上させるようにした方法が開示されている。 Further, in Patent Document 3, carbon monoxide-containing exhaust gas generated in a metallurgical reactor is used, excess steam is added to the exhaust gas to cause a shift reaction, and the shift reaction-generated gas is brought into contact with an organic substance. By allowing the organic substance to be reformed to reduce the molecular weight (pyrolysis), the liquid product among the low molecular weight products (pyrolysis products) emitted from the reforming reactor is modified into the reforming reactor. Disclosed is a method in which the gasification rate is improved by refluxing to the water and rethermally decomposing it.

特開2007−224206号公報JP-A-2007-224206 特許第5679088号公報Japanese Patent No. 5679088 特開2013−173884号公報Japanese Unexamined Patent Publication No. 2013-173884

しかしながら、上記従来技術には、以下のような問題がある。
まず、特許文献1に関しては、有機物質のガス化率がきわめて高くなることが特徴であるが、COG中の水素濃度が60vol%以上となるのは石炭乾留工程のうちでも乾留末期に限られるので、特許文献1の方法では、乾留末期のタイミングでガス流路を切替え、多量のダストを含む600℃以上のCOGを廃プラスチックの水素化分解反応器に供給する必要がある。しかし、このような過酷な条件で、流路切替弁を長期間安定して作動させ続けることは困難であり、この意味で実現性に乏しい技術であると言える。さらに、廃プラスチックの効率的なガス化のためには、60vol%以上の水素を含有するCOGを連続的に水素化分解反応器に供給することが必要であるが、このためには炭化室毎に水素濃度計と流路切替弁を設置する必要があり、設備コストが増大する。
However, the above-mentioned prior art has the following problems.
First, Patent Document 1 is characterized in that the gasification rate of organic substances is extremely high, but the hydrogen concentration in COG is 60 vol% or more only in the final carbonization process of the coal carbonization process. In the method of Patent Document 1, it is necessary to switch the gas flow path at the timing of the final carbonization stage and supply COG of 600 ° C. or higher containing a large amount of dust to the hydrocracking reactor of waste plastic. However, under such harsh conditions, it is difficult to keep the flow path switching valve operating stably for a long period of time, and in this sense, it can be said that the technology is not feasible. Furthermore, in order to efficiently gasify waste plastic, it is necessary to continuously supply COG containing 60 vol% or more of hydrogen to the hydrocracking reactor. For this purpose, each carbonization chamber It is necessary to install a hydrogen concentration meter and a flow path switching valve in the facility, which increases the equipment cost.

また、特許文献2の方法は、設備的には比較的温和な条件で反応がなされるため、実施が容易であることや設備コストを低減できる利点を有するものの、得られる熱分解生成物は油状物質の割合が多くなり、ガス状物質の収率が低いという課題がある。油状物質は、使用場所までの輸送を考慮した場合、粘性を保つために保温が必要であるなどハンドリング性が悪い。このため有機物質の熱分解では、可能な限りガス状物質の収率を高めることが望まれる。 Further, the method of Patent Document 2 has advantages that it is easy to carry out and the equipment cost can be reduced because the reaction is carried out under relatively mild conditions in terms of equipment, but the obtained thermal decomposition product is oily. There is a problem that the proportion of the substance increases and the yield of the gaseous substance is low. When considering transportation to the place of use, oily substances have poor handleability, such as the need for heat retention in order to maintain viscosity. Therefore, in the thermal decomposition of organic substances, it is desired to increase the yield of gaseous substances as much as possible.

そのような課題に対して、特許文献3の方法では、気体生成物の収率を高めるために、改質反応器から出た熱分解生成物のうち、液体生成物を改質反応器に還流させて再熱分解させているが、本発明者らが検証実験を実施したところ、特許文献3の方法のように液体生成物を改質反応器に還流させても、その大部分が揮発するのみで熱分解が進まず、再び常温で液状となる物質として回収されてしまうことが判った。 In response to such a problem, in the method of Patent Document 3, in order to increase the yield of the gas product, the liquid product among the pyrolysis products produced from the reforming reactor is refluxed to the reforming reactor. However, when the present inventors conducted a verification experiment, most of the liquid product volatilized even if the liquid product was refluxed to the reforming reactor as in the method of Patent Document 3. It was found that the thermal decomposition did not proceed only by itself, and it was recovered as a substance that became liquid again at room temperature.

したがって本発明の目的は、以上のような従来技術の課題を解決し、廃プラスチックなどの有機物質を熱分解して熱分解生成物を得る際に、気体生成物(常温で気体である熱分解生成物)の収率を高めることができる有機物質の熱分解方法を提供することにある。また、本発明の他の目的は、そのような有機物質の熱分解方法の実施に好適な設備を提供することにある。 Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, and when an organic substance such as waste plastic is thermally decomposed to obtain a thermal decomposition product, a gas product (thermal decomposition which is a gas at room temperature) is obtained. It is an object of the present invention to provide a method for thermally decomposing an organic substance capable of increasing the yield of a product). Another object of the present invention is to provide equipment suitable for carrying out such a method for thermally decomposing an organic substance.

本発明者らは、上記課題を解決するため検討を重ねた結果、流動層式の反応器において、反応器から取り出された熱分解生成物のうちの液体生成物を反応器に還流させて再熱分解を行う際に、液体生成物を反応器の側壁部を貫通して設置された吹込み管を通じて流動層内に直接吹き込むことにより、気体生成物(常温で気体である熱分解生成物)に効率的に熱分解させることができ、これにより気体生成物(常温で気体である熱分解生成物)の収率を高めることができること、特に、流動化ガスとして反応器に導入される混合ガスの一部を、液体生成物とともに吹込み管を通じて流動層内に吹き込むことにより、気体生成物(常温で気体である熱分解生成物)の収率を飛躍的に高めることができることを見出した。 As a result of repeated studies to solve the above problems, the present inventors recirculate the liquid product among the thermal decomposition products taken out from the reactor to the reactor in the fluidized layer type reactor. When performing thermal decomposition, a gas product (thermal decomposition product that is a gas at room temperature) is produced by blowing the liquid product directly into the fluidized layer through a blowing pipe installed through the side wall of the reactor. It can be efficiently thermally decomposed into a gas, which can increase the yield of a gas product (thermal decomposition product which is a gas at room temperature), and in particular, a mixed gas introduced into a reactor as a fluidized gas. It has been found that the yield of a gas product (thermal decomposition product which is a gas at room temperature) can be dramatically increased by blowing a part of the gas product together with the liquid product into the fluidized layer through a blowing pipe.

本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]流動化ガスとして少なくとも水素及び二酸化炭素を含む混合ガス(g)が導入される流動層式の反応器(A)において、有機物質を混合ガス(g)と接触させることにより熱分解させる方法であって、
反応器(A)から取り出された有機物質の熱分解生成物のうち、常温で液体である熱分解生成物(x)の少なくとも一部を、液体の状態で、反応器(A)の側壁部を貫通して設置された吹込み管(C)を通じて流動層(f)内に吹き込み、反応器(A)内で熱分解させることを特徴とする有機物質の熱分解方法。
[2]上記[1]の熱分解方法において、流動化ガスとして反応器(A)に導入される混合ガス(g)の一部を、液状の熱分解生成物(x)とともに吹込み管(C)を通じて流動層(f)内に吹き込むことを特徴とする有機物質の熱分解方法。
The present invention has been made based on such findings, and has the following gist.
[1] In a fluidized bed type reactor (A) into which a mixed gas (g) containing at least hydrogen and carbon dioxide is introduced as a fluidized gas, an organic substance is thermally decomposed by contacting with the mixed gas (g). It's a method
Of the pyrolysis products of organic substances taken out from the reactor (A), at least a part of the pyrolysis product (x) which is liquid at room temperature is in a liquid state, and the side wall portion of the reactor (A). A method for thermally decomposing an organic substance, which comprises blowing into a fluidized bed (f) through a blowing pipe (C) installed so as to penetrate the reactor and thermally decomposing it in a reactor (A).
[2] In the thermal decomposition method of the above [1], a part of the mixed gas (g) introduced into the reactor (A) as a fluidized gas is blown into a blow pipe (x) together with a liquid thermal decomposition product (x). A method for thermally decomposing an organic substance, which comprises blowing into the fluidized bed (f) through C).

[3]上記[2]の熱分解方法において、吹込み管(C)が単管構造又は内管と外管からなる二重管構造を有し、単管構造を有する吹込み管(C)の場合には、混合ガス(g)と液状の熱分解生成物(x)を単管から混合状態で吹き込み、二重管構造を有する吹込み管(C)の場合には、内管と外管のうちの一方から混合ガス(g)を、他方から液状の熱分解生成物(x)を、それぞれ吹き込むことを特徴とする有機物質の熱分解方法。
[4]上記[2]又は[3]の熱分解方法において、吹込み管(C)の設置高さよりも上部側の領域での反応器内空塔速度をu(m/sec)、下部側の領域での反応器内空塔速度をu*(m/sec)とした場合、吹込み管(C)を通じて反応器(A)内に吹き込む混合ガス(g)の流速u(m/sec)を、下記(1)式及び(2)式を満足するように制御することを特徴とする有機物質の熱分解方法。
≧u …(1)
*≧u/2 …(2)
[3] In the thermal decomposition method of the above [2], the blow pipe (C) has a single pipe structure or a double pipe structure composed of an inner pipe and an outer pipe, and has a single pipe structure. In the case of, the mixed gas (g) and the liquid thermal decomposition product (x) are blown from a single pipe in a mixed state, and in the case of a blow pipe (C) having a double pipe structure, the inner pipe and the outer pipe are blown. A method for thermally decomposing an organic substance, which comprises blowing a mixed gas (g) from one of the pipes and a liquid thermal decomposition product (x) from the other.
[4] In the thermal decomposition method of [2] or [3] above, the superficial velocity in the reactor in the region above the installation height of the blow pipe (C) is u 0 (m / sec), and the lower part. Assuming that the superficial velocity in the reactor in the region on the side is u * (m / sec), the flow velocity u L (m / m /) of the mixed gas (g) blown into the reactor (A) through the blowing pipe (C). A method for thermally decomposing an organic substance, which comprises controlling sec) so as to satisfy the following equations (1) and (2).
u L ≧ u 0 … (1)
u * ≧ u 0 /2… (2)

[5]上記[1]〜[4]のいずれかの熱分解方法において、有機物質が廃プラスチック、含油スラッジ、廃油、バイオマスの中から選ばれる1種以上であることを特徴とする有機物質の熱分解方法。
[6]上記[1]〜[5]のいずれかの熱分解方法において、混合ガス(g)は、さらに水蒸気を含むことを特徴とする有機物質の熱分解方法。
[7]上記[6]の熱分解方法において、混合ガス(g)は、水蒸気濃度が20〜70vol%、水素濃度が10〜40vol%、二酸化炭素濃度が10〜40vol%であることを特徴とする有機物質の熱分解方法。
[8]上記[1]〜[7]のいずれかの熱分解方法において生成した、常温で気体である熱分解生成物を有用ガス状物質として回収することを特徴とするガス状物質の製造方法。
[5] In any of the above-mentioned [1] to [4], the organic substance is one or more selected from waste plastic, oil-containing sludge, waste oil, and biomass. Pyrolysis method.
[6] The method for thermally decomposing an organic substance according to any one of the above [1] to [5], wherein the mixed gas (g) further contains water vapor.
[7] In the thermal decomposition method of the above [6], the mixed gas (g) is characterized in that the water vapor concentration is 20 to 70 vol%, the hydrogen concentration is 10 to 40 vol%, and the carbon dioxide concentration is 10 to 40 vol%. Pyrolysis method of organic substances.
[8] A method for producing a gaseous substance, which comprises recovering a pyrolysis product that is a gas at room temperature as a useful gaseous substance, which is produced by the thermal decomposition method according to any one of the above [1] to [7]. ..

[9]流動化ガスとして少なくとも水素及び二酸化炭素を含む混合ガス(g)が導入される流動層式の反応器であって、有機物質を混合ガス(g)と接触させることにより熱分解させる反応器(A)と、
該反応器(A)から排出された、有機物質の熱分解生成物を含むガス(g)を常温又は常温近傍まで冷却し、ガス(g)に含まれる有機物質の熱分解生成物の一部を液化させてガス(g)から分離する分離装置(B)と、
反応器(A)の側壁部を貫通して設置され、分離装置(B)でガス(g)から分離された液状の熱分解生成物(x)の少なくとも一部を流動層(f)内に吹き込む吹込み管(C)を有することを特徴とする有機物質の熱分解設備。
[10]上記[9]の熱分解設備において、分離装置(B)が散水式の装置からなる熱分解設備であって、
さらに、分離装置(B)で分離された液状の熱分解生成物(x)から水分を除去する水分除去装置(D)と、該水分除去装置(D)で水分が除去された液状の熱分解生成物(x)の少なくとも一部を吹込み管(C)に供給する供給手段(E)を有することを特徴とする有機物質の熱分解設備。
[9] A fluidized bed reactor in which a mixed gas (g) containing at least hydrogen and carbon dioxide is introduced as a fluidized gas, and a reaction in which an organic substance is thermally decomposed by contacting with the mixed gas (g). Vessel (A) and
The reactor (A) discharged from the gas containing pyrolysis products of the organic substance (g p) and cooled to room temperature or ambient temperature near the thermal decomposition products of organic substances contained in the gas (g p) a separation device by liquefying a portion separated from the gas (g p) (B),
The reactor (A) is installed through the side wall portion of the separation device (B) in a fluidized bed at least a portion of the gas (g p) thermal decomposition products of the liquid separated from the (x) (f) the A pyrolysis facility for organic substances, which comprises a blowing pipe (C) for blowing into.
[10] In the thermal decomposition equipment of the above [9], the separation device (B) is a thermal decomposition equipment composed of a sprinkling type device.
Further, a water removing device (D) for removing water from the liquid thermal decomposition product (x) separated by the separating device (B) and a liquid thermal decomposition in which the water is removed by the water removing device (D). A pyrolysis facility for organic substances, which comprises a supply means (E) for supplying at least a part of a product (x) to a blow pipe (C).

[11]上記[9]又は[10]の熱分解設備において、さらに、流動化ガスとして反応器(A)に導入される混合ガス(g)の一部を吹込み管(C)に供給する供給手段(F)を有し、該供給手段(F)で吹込み管(C)に供給された混合ガス(g)が、液状の熱分解生成物(x)とともに流動層(f)内に吹き込まれるようにしたことを特徴とする有機物質の熱分解設備。
[12]上記[11]の熱分解設備において、吹込み管(C)が単管構造又は内管と外管からなる二重管構造を有し、単管構造を有する吹込み管(C)の場合には、混合ガス(g)と液状の熱分解生成物(x)が単管から混合状態で吹き込まれ、二重管構造を有する吹込み管(C)の場合には、内管と外管のうちの一方から混合ガス(g)が、他方から液状の熱分解生成物(x)が、それぞれ吹き込まれるようにしたことを特徴とする有機物質の熱分解設備。
[11] In the pyrolysis facility of [9] or [10] above, a part of the mixed gas (g) introduced into the reactor (A) as a fluidized gas is further supplied to the blow pipe (C). The mixed gas (g) having the supply means (F) and supplied to the blow pipe (C) by the supply means (F) is contained in the fluidized bed (f) together with the liquid pyrolysis product (x). A pyrolysis facility for organic substances, which is characterized by being blown into it.
[12] In the thermal decomposition equipment of the above [11], the blow pipe (C) has a single pipe structure or a double pipe structure composed of an inner pipe and an outer pipe, and has a single pipe structure. In the case of, the mixed gas (g) and the liquid thermal decomposition product (x) are blown from the single pipe in a mixed state, and in the case of the blow pipe (C) having a double pipe structure, the inner pipe A thermal decomposition facility for organic substances, characterized in that a mixed gas (g) is blown from one of the outer pipes and a liquid thermal decomposition product (x) is blown from the other.

本発明によれば、廃プラスチックなどの有機物質を熱分解して熱分解生成物を得る際に、気体生成物(常温で気体である熱分解生成物)の収率を効果的に高めることができる。また、実施設備に関しても、特別な計測器や流路切替弁などが必要なく、しかも比較的低い反応温度でも有機物質の熱分解を行うことができるので、比較的簡易な設備で実施することができる。また、熱分解に使用するガスは製鉄所やごみ処理場などで安定的に供給可能なガスを用いればよく、このようなガスを用いて有機物質を効率的に熱分解し、気体生成物(常温で気体である熱分解生成物)の割合が高い熱分解生成物を得ることができる。 According to the present invention, when an organic substance such as waste plastic is thermally decomposed to obtain a thermal decomposition product, the yield of a gas product (thermal decomposition product which is a gas at room temperature) can be effectively increased. it can. In addition, as for the implementation equipment, no special measuring instrument or flow path switching valve is required, and organic substances can be thermally decomposed even at a relatively low reaction temperature, so it can be implemented with relatively simple equipment. it can. In addition, the gas used for pyrolysis may be a gas that can be stably supplied at a steel mill or a waste treatment plant, and such a gas can be used to efficiently pyrolyze an organic substance to produce a gas product (gas product). It is possible to obtain a pyrolysis product having a high proportion of the pyrolysis product) which is a gas at room temperature.

本発明による有機物質の熱分解方法のフロー及び熱分解設備の一実施形態を模式的に示す全体構成図Overall configuration diagram schematically showing a flow of a thermal decomposition method for an organic substance according to the present invention and an embodiment of a thermal decomposition facility. 図1の熱分解設備において、有機物質の熱分解生成物を含むガス(g)を常温又は常温近傍まで冷却し、ガス(g)に含まれる有機物質の熱分解生成物の一部を液化させてガス(g)から分離する分離装置Bを模式的に示す構成図(縦断面図)In pyrolysis equipment of FIG. 1, a gas (g p) comprising a thermal decomposition product of the organic materials are cooled to room temperature or ambient temperature near a portion of the thermal decomposition products of organic substances contained in the gas (g p) diagram showing by liquefying separation device B to separate from the gas (g p) schematically (longitudinal sectional view) 図1の熱分解設備において、液状の熱分解生成物と水分とを分離するための水分除去装置Dを模式的に示す構成図(縦断面図)A block diagram (longitudinal sectional view) schematically showing a moisture removing device D for separating liquid thermal decomposition products and moisture in the thermal decomposition equipment of FIG. 1. 本発明において、液状の熱分解生成物を反応器A内に吹き込む吹込み管Cの種々の実施形態を模式的に示す構成図(縦断面図)In the present invention, a block diagram (longitudinal cross-sectional view) schematically showing various embodiments of a blowing pipe C for blowing a liquid pyrolysis product into the reactor A. 本発明において、吹込み管Cの設置高さよりも上部側の領域での反応器内空塔速度uと、下部側の領域での反応器内空塔速度u*と、吹込み管Cを通じて反応器A内に吹き込む混合ガス(g)の流速uを示す説明図In the present invention, through the reactor superficial velocity u 0 in the region above the installation height of the blow pipe C, the reactor superficial velocity u * in the region below, and the blow pipe C. explanatory view showing a flow rate u L of the mixed gas blown into the reactor a (g)

本発明法は、流動化ガスとして少なくとも水素及び二酸化炭素を含む混合ガス(g)が導入される流動層式の反応器Aにおいて、有機物質を混合ガス(g)と接触させることにより熱分解させる方法であって、反応器Aから取り出された有機物質の熱分解生成物のうち、常温で液体である熱分解生成物(x)の少なくとも一部を、液体の状態で、反応器Aの側壁部を貫通して設置された吹込み管Cを通じて流動層f内に吹き込み、反応器A内で熱分解させるものである。また、好ましくは、流動化ガスとして反応器Aに導入される混合ガス(g)の一部を、液状の熱分解生成物(x)とともに吹込み管Cを通じて流動層f内に吹き込むものである。なお、以下の説明では、有機物質の熱分解生成物のうち、常温で液体である熱分解生成物(x)を「油状物質」、常温で気体である熱分解生成物を「ガス状物質」という。 In the method of the present invention, in a fluidized bed type reactor A in which a mixed gas (g) containing at least hydrogen and carbon dioxide is introduced as a fluidized gas, an organic substance is thermally decomposed by contacting with the mixed gas (g). In the method, of the pyrolysis products of the organic substance taken out from the reactor A, at least a part of the pyrolysis product (x) which is liquid at room temperature is in a liquid state, and the side wall of the reactor A. It is blown into the fluidized bed f through a blowing pipe C installed so as to penetrate the portion, and is thermally decomposed in the reactor A. Further, preferably, a part of the mixed gas (g) introduced into the reactor A as a fluidized gas is blown into the fluidized bed f together with the liquid pyrolysis product (x) through the blowing pipe C. .. In the following description, among the pyrolysis products of organic substances, the pyrolysis product (x) which is liquid at room temperature is referred to as "oily substance", and the pyrolysis product which is gas at room temperature is referred to as "gaseous substance". That is.

上記のように、反応器Aから取り出された熱分解生成物のうち、油状物質を反応器Aに還流させて再熱分解を行う際に、吹込み管Cを通じて流動層f内に直接吹き込んで熱分解させることにより、油状物質をガス状物質に効率的に熱分解させることができ、これによりガス状物質の収率を高めることができる。また、特に、流動化ガスとして反応器Aに導入される混合ガス(g)の一部を、油状物質とともに吹込み管Cを通じて流動層f内に吹き込むことにより、ガス状物質の収率を飛躍的に高めることができる。 As described above, among the pyrolysis products taken out from the reactor A, when the oily substance is refluxed to the reactor A for rethermal decomposition, it is directly blown into the fluidized bed f through the blowing pipe C. By pyrolyzing, the oily substance can be efficiently thermally decomposed into a gaseous substance, whereby the yield of the gaseous substance can be increased. Further, in particular, a part of the mixed gas (g) introduced into the reactor A as a fluidized gas is blown into the fluidized bed f together with the oily substance through the blowing pipe C, thereby dramatically increasing the yield of the gaseous substance. Can be enhanced.

本発明において有機物質の熱分解に用いる、少なくとも水素及び二酸化炭素を含む混合ガス(g)としては、例えば、ガス化溶融炉や製鉄プロセスで発生するガス、或いはこれらのガスを改質したものを用いることができる。すなわち、ガス化溶融炉や製鉄プロセスで発生するガスが所定のガス組成を満足する場合は、そのまま使用すればよいが、例えば、転炉ガスのように一酸化炭素リッチで水素が少ないガスを使用する場合には、過剰の水蒸気を添加してシフト反応を行わせればよい。これにより、もともと含まれていた水素と、シフト反応で生成した二酸化炭素および水素と、シフト反応に消費されなかった水蒸気とを含む混合ガスが生成され、有機物質の熱分解に適したガス組成とすることができる。 As the mixed gas (g) containing at least hydrogen and carbon dioxide used for the thermal decomposition of the organic substance in the present invention, for example, a gas generated in a gasification melting furnace or an ironmaking process, or a modified gas thereof is used. Can be used. That is, if the gas generated in the gasification melting furnace or the steelmaking process satisfies the predetermined gas composition, it can be used as it is, but for example, a gas rich in carbon monoxide and low in hydrogen such as a linz-Donaw gas is used. In this case, excess water vapor may be added to carry out the shift reaction. As a result, a mixed gas containing hydrogen originally contained, carbon dioxide and hydrogen generated in the shift reaction, and water vapor not consumed in the shift reaction is generated, and the gas composition suitable for thermal decomposition of organic substances is obtained. can do.

ここで、ガス化溶融炉とは、ごみを低酸素状態で加熱することで熱分解させ、この熱分解で発生したガスを燃焼又は回収するとともに、灰分及び不燃物を高温で溶融する炉設備であり、熱分解と溶融を一体で行う方式と、分離して行う方式とがある。具体的には、ガス化改質方式(例えば、サーモセレクト方式など)、シャフト炉方式(例えば、コークスベッド式、酸素式、プラズマ式など)、キルン炉方式、流動床方式、半乾留・負圧燃焼方式などがある。本発明では、いずれの方式のガス化溶融炉で発生した排ガスを用いてもよく、また、2種以上の排ガスが混合されたものを用いてもよい。ガス化溶融炉で発生する排ガスとしては、例えば、二酸化炭素濃度が20〜60vol%、水素濃度が60〜20vol%である二酸化炭素と水素を含有する排ガス、一酸化炭素濃度が10〜50vol%、水素濃度が50〜10vol%である一酸化炭素と水素を含有する排ガスが挙げられ、これらの排ガスをそのまま或いは所定のガス組成に改質した上で、有機物質の熱分解用の混合ガス(g)として用いることができる。
また、製鉄プロセスにおける転炉ガスや高炉ガスなども利用可能なガスであり、上述のように水素が不足するガスの場合には、いわゆるシフト反応によって水素が生成するため、水素濃度が10vol%程度であっても本発明の混合ガス(g)として好適な組成となる。
Here, the gasification melting furnace is a furnace facility that thermally decomposes waste by heating it in a low oxygen state, burns or recovers the gas generated by this thermal decomposition, and melts ash and incombustibles at a high temperature. There is a method in which thermal decomposition and melting are performed integrally, and a method in which thermal decomposition and melting are performed separately. Specifically, gasification reforming method (for example, thermoselect method), shaft furnace method (for example, coke bed type, oxygen type, plasma type, etc.), kiln furnace method, fluidized bed method, semi-dry distillation / negative pressure There is a combustion method and so on. In the present invention, the exhaust gas generated in any type of gasification and melting furnace may be used, or a mixture of two or more types of exhaust gas may be used. The exhaust gas generated in the gasification melting furnace includes, for example, an exhaust gas containing carbon dioxide and hydrogen having a carbon dioxide concentration of 20 to 60 vol% and a hydrogen concentration of 60 to 20 vol%, and an exhaust gas having a carbon monoxide concentration of 10 to 50 vol%. Exhaust gas containing carbon monoxide and hydrogen having a hydrogen concentration of 50 to 10 vol% can be mentioned, and these exhaust gases are reformed as they are or to a predetermined gas composition, and then a mixed gas (g) for thermal decomposition of organic substances is used. ) Can be used.
In addition, linz-Donaw gas and blast furnace gas in the iron-making process are also usable gases, and in the case of gas lacking hydrogen as described above, hydrogen is generated by the so-called shift reaction, so the hydrogen concentration is about 10 vol%. However, the composition is suitable for the mixed gas (g) of the present invention.

一般に廃プラスチックなどの高分子量有機物質は300〜400℃以上で加熱すると熱分解が始まることが知られているが、この時、軽質化とともに重質化も進行してしまう。熱分解時に水素を共存させると、炭化水素種への水素付加反応と水素化分解反応が進行するため、重質化抑制と低分子化に有効である。しかしながら、水素化分解には高温が必要であり、且つ水素消費量が多くなることが問題である。 It is generally known that high molecular weight organic substances such as waste plastics start thermal decomposition when heated at 300 to 400 ° C. or higher, but at this time, they become lighter and heavier. When hydrogen coexists during thermal decomposition, the hydrogenation reaction to the hydrocarbon species and the hydrocracking reaction proceed, which is effective in suppressing heaviness and reducing the molecular weight. However, there is a problem that high temperature is required for hydrocracking and hydrogen consumption is high.

一方、水蒸気改質や炭酸ガス改質は、HOやCO分子中の酸素による炭化水素の酸化と看做すことができ、少ない水素添加量で低分子化と炭素質生成抑制が達成できる。さらに、水蒸気改質や炭酸ガス改質は、改質される有機分子の炭素鎖が長くなるにつれて反応温度が低下するという特徴を有する。これら水素化、水素化分解、水蒸気改質、および炭酸ガス改質を組み合わせることにより、比較的低い反応温度でも効率的に有機物質の低分子化を促進することが可能になる。
したがって、本発明で用いる混合ガス(g)は、水素及び二酸化炭素に加えて、水蒸気を含有することが好ましい。
On the other hand, steam reforming and carbon dioxide reforming can be regarded as the oxidation of hydrocarbons by oxygen in H 2 O and CO 2 molecules, low molecular weight carbonaceous product inhibition achieved with a small amount of hydrogen addition it can. Further, steam reforming and carbon dioxide reforming are characterized in that the reaction temperature decreases as the carbon chain of the organic molecule to be reformed becomes longer. By combining these hydrogenation, hydrocracking, steam reforming, and carbon dioxide reforming, it is possible to efficiently promote the reduction of molecular weight of organic substances even at a relatively low reaction temperature.
Therefore, the mixed gas (g) used in the present invention preferably contains water vapor in addition to hydrogen and carbon dioxide.

本発明で用いられる有機物質を炭化水素(C)で示すと、上述の反応は、以下に示す反応式で表すことができる。
水素化:C+H→Cn+2
水素化分解:C+H→C+C(m=p+r、n+2=q+s)
水蒸気改質:C+HO→Cm−1n−2+CO+2H
炭酸ガス改質:C+CO→Cm−1n−2+2CO+H
ただし、水素化には下記のCO、COのメタネーション反応も含まれる。
CO+3H→CH+HO、CO+4H→CH+2H
なお、水蒸気改質や炭酸ガス改質で生成したHによっても、上記の水素化や水素化分解が進行する。
When an organic substance used in the present invention a hydrocarbon (C m H n), the above reaction can be represented by the reaction formula shown below.
Hydrogenation: C m H n + H 2 → C m H n + 2
Hydrogenation decomposition: C m H n + H 2 → C p H q + C r H s (m = p + r, n + 2 = q + s)
Steam reforming: C m H n + H 2 O → C m-1 H n-2 + CO + 2H 2
Carbon dioxide reforming: C m H n + CO 2 → C m-1 H n-2 + 2CO + H 2
However, hydrogenation also includes the following CO and CO 2 metanation reactions.
CO + 3H 2 → CH 4 + H 2 O, CO 2 + 4H 2 → CH 4 + 2H 2 O
The above hydrogenation and hydrocracking also proceed with H 2 generated by steam reforming and carbon dioxide gas reforming.

また、一酸化炭素を含有するガスに水蒸気を添加して、下記(i)のシフト反応を行えば、COをHとCOに変換できるので、本発明で用いる混合ガス(g)として好適なものとなる。
CO+HO→H+CO …(i)
ガス化溶融炉で発生する排ガスや製鉄所で発生するガスには一酸化炭素を多く含むものがあるため、この方法によれば、一酸化炭素と水蒸気のシフト反応を制御することで、熱分解用として好適な混合ガスを得ることができる。
Further, if water vapor is added to the gas containing carbon monoxide and the shift reaction of (i) below is carried out, CO can be converted into H 2 and CO 2, which is suitable as the mixed gas (g) used in the present invention. It will be something like that.
CO + H 2 O → H 2 + CO 2 … (i)
Since some exhaust gas generated in gasification and melting furnaces and gas generated in steelworks contain a large amount of carbon monoxide, according to this method, thermal decomposition is performed by controlling the shift reaction between carbon monoxide and steam. A mixed gas suitable for use can be obtained.

特に、一酸化炭素を含有する排ガスに水蒸気を過剰に添加すると、生成ガス中に水蒸気が残留するため水蒸気改質反応を利用することができるようになる。つまりシフト反応の反応率を適宜制御することによって、ガス中の水蒸気、水素、炭酸ガスの各濃度を制御し、有機物質熱分解用として好適なガス組成の混合ガス(g)とすることができる。
シフト反応の反応率は、シフト反応器内での滞留時間を調整することで制御することができる。例えば、滞留時間を短くするには、シフト反応器長さを小さくしたり、或いは触媒充填量を少なくする方法が一般的であり、その場合、シフト反応器長さや触媒充填量は、ほぼ平衡まで反応を進行させる場合の1/2〜1/4程度とすればよい。
In particular, if steam is excessively added to the exhaust gas containing carbon monoxide, steam remains in the produced gas, so that the steam reforming reaction can be utilized. That is, by appropriately controlling the reaction rate of the shift reaction, the concentrations of steam, hydrogen, and carbon dioxide in the gas can be controlled to obtain a mixed gas (g) having a gas composition suitable for thermal decomposition of organic substances. ..
The reaction rate of the shift reaction can be controlled by adjusting the residence time in the shift reactor. For example, in order to shorten the residence time, it is common to reduce the shift reactor length or the catalyst filling amount, in which case the shift reactor length and the catalyst filling amount are almost in equilibrium. It may be about 1/2 to 1/4 of the case where the reaction is allowed to proceed.

サーモセレクト方式のガス化溶融炉から発生する排ガスには、通常、COが20〜40vol%、COが40〜20vol%、Hが20〜40vol%程度含有されている。したがって、このような二酸化炭素と水素を含有する排ガスに適量の水蒸気を混合するだけで、CO:15〜20vol%、CO:10〜35vol%、H:15〜20vol%、HO:20〜50vol%程度の組成となり、有機物質熱分解用の混合ガス(g)として好適なものとなる。
また、製鉄所で発生する高炉ガスや転炉ガスについても、同様のシフト反応を利用することで、有機物質熱分解用として好適なガス組成に改質することができる。
なお、混合ガス(g)として、上述したようなシフト反応で生成したガスを用いる場合において、反応器Aに投入する有機物質が水を含んでいる場合には、反応器A内で水蒸気が発生するので、その分を考慮してシフト反応で添加する水蒸気の過剰割合を調整することが好ましい。
The exhaust gas generated from the thermoselect type gasification melting furnace usually contains about 20 to 40 vol% of CO, 40 to 20 vol% of CO 2 , and 20 to 40 vol% of H 2 . Therefore, by simply mixing an appropriate amount of water vapor with the exhaust gas containing carbon dioxide and hydrogen, CO: 15 to 20 vol%, CO 2 : 10 to 35 vol%, H 2 : 15 to 20 vol%, H 2 O: The composition is about 20 to 50 vol%, which is suitable as a mixed gas (g) for thermal decomposition of organic substances.
Further, the blast furnace gas and the linz-Donaw gas generated in the steelworks can be reformed to a gas composition suitable for thermal decomposition of organic substances by utilizing the same shift reaction.
When a gas generated by the shift reaction as described above is used as the mixed gas (g), if the organic substance to be charged into the reactor A contains water, water vapor is generated in the reactor A. Therefore, it is preferable to adjust the excess ratio of water vapor added in the shift reaction in consideration of the amount.

本発明において、熱分解の対象となる有機物質に特別な制限はないが、高分子量の有機物質が好適であり、例えば、廃プラスチック、含油スラッジ、廃油、バイオマスなどが挙げられ、これらの1種以上を対象とすることができる。
対象とする廃プラスチックの種類に特別な制限はないが、例えば、産業廃棄物系、容器包装リサイクル法の対象プラスチックなどを挙げることができる。より具体的には、PEやPPなどのポリオレフィン類、PAやPETなどの熱可塑性ポリエステル類、PSなどのエラストマー類、熱硬化性樹脂類、合成ゴム類や発砲スチロールなどを挙げることができる。なお、多くのプラスチック類にはフィラーなどの無機物が添加されているが、本発明では、このような無機物は反応に関与しないので、固体状残渣として反応器Aから排出される。また、廃プラスチックは、必要に応じて適当なサイズに事前裁断された後、反応器Aに投入される。
In the present invention, the organic substance to be thermally decomposed is not particularly limited, but a high molecular weight organic substance is preferable, and examples thereof include waste plastic, oil-containing sludge, waste oil, and biomass, and one of them. The above can be targeted.
There are no particular restrictions on the types of waste plastics to be targeted, but examples thereof include industrial waste systems and plastics subject to the Containers and Packaging Recycling Law. More specifically, polyolefins such as PE and PP, thermoplastic polyesters such as PA and PET, elastomers such as PS, thermosetting resins, synthetic rubbers and styrofoam can be mentioned. Inorganic substances such as fillers are added to many plastics, but in the present invention, such inorganic substances are not involved in the reaction and are discharged from the reactor A as a solid residue. Further, the waste plastic is pre-cut to an appropriate size as needed, and then put into the reactor A.

また、廃プラスチックがポリ塩化ビニルなどの塩素含有樹脂を含んでいると、反応器A内で塩素が発生し、この塩素がガス状物質や油状物質中に含有されてしまう恐れがある。したがって、廃プラスチックが塩素含有樹脂を含む恐れがある場合には、反応器A内にCaOなどのような塩素吸収剤を投入し、塩素分が生成するガス状物質や油状物質中に含有されないようにすることが好ましい。 Further, if the waste plastic contains a chlorine-containing resin such as polyvinyl chloride, chlorine is generated in the reactor A, and this chlorine may be contained in a gaseous substance or an oily substance. Therefore, when there is a possibility that the waste plastic contains a chlorine-containing resin, a chlorine absorber such as CaO is added into the reactor A so that it is not contained in the gaseous substance or the oily substance in which chlorine is generated. Is preferable.

含油スラッジとは、含油廃液処理工程で発生する汚泥状の混合物のことであり、一般に30〜70質量%程度の水分を含んでいる。スラッジ中の油分としては、例えば、各種鉱物油、天然及び/又は合成油脂類、各種脂肪酸エステル類などが挙げられるが、これらに限定されるものではない。なお、反応器Aに含油スラッジを供給する際などのハンドリング性を向上させるために、遠心分離などの手法により、スラッジ中の水分を30〜50質量%程度まで低減させてもよい。 The oil-containing sludge is a sludge-like mixture generated in the oil-containing waste liquid treatment step, and generally contains about 30 to 70% by mass of water. Examples of the oil content in the sludge include, but are not limited to, various mineral oils, natural and / or synthetic fats and oils, and various fatty acid esters. In addition, in order to improve the handleability when supplying oil-containing sludge to the reactor A, the water content in the sludge may be reduced to about 30 to 50% by mass by a method such as centrifugation.

廃油としては、例えば、使用済みの各種鉱物油、天然及び/又は合成油脂類、各種脂肪酸エステル類などが挙げられるが、これらに限定されるものではない。また、これら2種以上の廃油の混合物であってもよい。また、製鉄所の圧延工程で発生する廃油の場合、一般に多量(通常、80質量%超程度)の水分を含有しているが、この水分についても、比重分離などの手法によって事前に低減させておくことが、ハンドリング性の面で有利である。 Examples of waste oil include, but are not limited to, various used mineral oils, natural and / or synthetic fats and oils, and various fatty acid esters. Further, it may be a mixture of these two or more kinds of waste oils. In addition, waste oil generated in the rolling process of a steel mill generally contains a large amount of water (usually more than 80% by mass), but this water is also reduced in advance by a method such as specific gravity separation. It is advantageous in terms of handleability.

バイオマスとしては、例えば、下水汚泥、紙、木材(建設廃材、間伐材など)、農作物由来の廃棄物(例えば、籾殻、茶殻、コーヒー殻(滓)など)などの他、ゴミ固形燃料(RDF)などの加工されたバイオマスなどが挙げられるが、これらに限定されるものではない。バイオマスには、通常、多量の水分が含有されているので、事前に乾燥させておくことがエネルギー効率の点から好ましい。また、ナトリウムやカリウムなどのアルカリ金属を比較的高濃度に含むバイオマスの場合、反応器A内でアルカリ金属が析出する可能性があるので、水洗などの方法によって事前にアルカリ金属を溶出させておくことが好ましい。なお、建設廃材などの大型のバイオマスは、事前に裁断して反応器Aに投入される。 Biomass includes, for example, sewage sludge, paper, wood (construction waste, thinned wood, etc.), agricultural waste (for example, paddy husks, tea husks, coffee husks (slag), etc.), and solid waste fuel (RDF). Processed biomass such as, but is not limited to these. Since biomass usually contains a large amount of water, it is preferable to dry it in advance from the viewpoint of energy efficiency. Further, in the case of biomass containing alkali metals such as sodium and potassium at a relatively high concentration, alkali metals may precipitate in the reactor A, so the alkali metals should be eluted in advance by a method such as washing with water. Is preferable. Large-scale biomass such as construction waste is cut in advance and put into the reactor A.

反応器A内での反応温度は400〜800℃程度が望ましく、600〜700℃程度がより望ましい。反応温度が400℃未満では有機物質の熱分解が進みにくく、ガス状物質の収率が低くなる。一方、反応温度が800℃を超えると熱分解生成物のガス状物質のうちC1〜C4化合物の熱分解が進んでCOやCOが生成され、ガス状物質の発熱量が低下し、気体燃料としての価値が低下する。
なお、反応温度が高いとガス状物質の生成量が増加し、油状物質の生成量が減少する傾向があるが、反応温度が低い方がエネルギーコストは小さくなるため、できるだけ低温での反応が有利である。圧力の影響はほとんど認められないので、常圧〜数kg/cm程度の微加圧で反応器Aを運転することが経済的である。
The reaction temperature in the reactor A is preferably about 400 to 800 ° C, more preferably about 600 to 700 ° C. If the reaction temperature is less than 400 ° C., the thermal decomposition of the organic substance is difficult to proceed, and the yield of the gaseous substance becomes low. On the other hand, when the reaction temperature exceeds 800 ° C., the thermal decomposition of the C1 to C4 compounds among the gaseous substances of the thermal decomposition products proceeds to generate CO and CO 2 , the calorific value of the gaseous substances decreases, and the gaseous fuel The value as is reduced.
When the reaction temperature is high, the amount of gaseous substances produced tends to increase and the amount of oily substances produced tends to decrease, but the lower the reaction temperature, the lower the energy cost, so the reaction at as low a temperature as possible is advantageous. Is. Since the influence of pressure is hardly observed, it is economical to operate the reactor A with a slight pressure of about normal pressure to several kg / cm 2 .

本発明では、反応器Aとして、熱伝導に優れるため有機物質を高い熱分解速度で熱分解することができる流動層式の反応器を用い、この流動層式の反応器A内に投入された有機物質を混合ガス(g)と接触させることにより熱分解させる。そして、反応器Aから取り出された有機物質の熱分解生成物のうち、油状物質の少なくとも一部を反応器Aに還流させるに当たり、ガス状物質の収率を高めるため、反応器Aの側壁部を貫通して設置された吹込み管Cを通じて油状物質を流動層f内に吹き込む。なお、反応器Aに還流させる油状物質は、反応器Aから取り出された油状物質の一部でもよいし、全部でもよい。 In the present invention, as the reactor A, a fluidized bed type reactor capable of thermally decomposing an organic substance at a high thermal decomposition rate because of its excellent heat conduction is used, and the reactor is charged into the fluidized bed type reactor A. The organic substance is thermally decomposed by contacting it with the mixed gas (g). Then, in order to increase the yield of the gaseous substance when at least a part of the oily substance is returned to the reactor A among the thermal decomposition products of the organic substance taken out from the reactor A, the side wall portion of the reactor A The oily substance is blown into the fluidized bed f through the blow pipe C installed through the above. The oily substance refluxed to the reactor A may be a part or all of the oily substance taken out from the reactor A.

反応器Aから取り出される油状物質は、通常、C10〜C12を主成分として、C5〜C24の炭化水素からなり、ナフサ(C5〜C8)、灯油(C9〜C12)、軽油(C13〜C24)の混合物であり、重油相当(C25以上)をほとんど含まない良質の軽質油である。したがって、そのまま回収して液体燃料などとして使用することが可能であるが、輸送の利便性や燃焼性などを観点からすると、ガス状物質の収率を高めることが望ましい。 The oily substance taken out from the reactor A is usually composed of C10 to C12 as a main component and C5 to C24 hydrocarbons, and consists of naphtha (C5 to C8), kerosene (C9 to C12), and light oil (C13 to C24). It is a high-quality light oil that is a mixture and contains almost no heavy oil equivalent (C25 or higher). Therefore, it is possible to recover it as it is and use it as a liquid fuel or the like, but from the viewpoint of transportation convenience and combustibility, it is desirable to increase the yield of the gaseous substance.

上述したような混合ガス(g)を用い、反応温度を400〜800℃として、有機物質の熱分解実験を実施したところ、ガス状物質の収率は概ね3〜4割程度であり、油状物質の収率が6〜7割程度であった。油状物質を分析すると、C10〜C12を主成分とした炭化水素であった。高分子である有機物質は反応器内で熱分解が進み、C10〜C12程度に分解されると揮発して反応器外に排出され、常温に冷却されると油状物質になるものと推定された。この油状物質を反応器上部から滴下して還流させてもほとんど熱分解されず揮発してしまい、ふたたび常温で油状物質となるため、還流量が少量ではガス状物質の収率向上にはつながらず、収率向上のためには大量の油状物質を還流(循環)させることが必要であることが判った。 When a thermal decomposition experiment of an organic substance was carried out using a mixed gas (g) as described above at a reaction temperature of 400 to 800 ° C., the yield of the gaseous substance was about 30 to 40%, and the oily substance. The yield was about 60 to 70%. When the oily substance was analyzed, it was a hydrocarbon containing C10 to C12 as a main component. It is estimated that the organic substance, which is a polymer, undergoes thermal decomposition in the reactor, volatilizes when decomposed to about C10 to C12, is discharged to the outside of the reactor, and becomes an oily substance when cooled to room temperature. .. Even if this oily substance is dropped from the upper part of the reactor and refluxed, it is hardly thermally decomposed and volatilized, and becomes an oily substance again at room temperature. Therefore, a small amount of reflux does not lead to an improvement in the yield of gaseous substances. It was found that it is necessary to reflux (circulate) a large amount of oily substance in order to improve the yield.

そこで、反応器Aから回収した油状物質を、反応器Aの側壁部を貫通して設置された吹込み管Cを通じて流動層f内に吹き込むことで反応器Aに還流させたところ、油状物質が熱分解され、ガス状物質の収率を向上させることができた。これは、C10〜C12程度の油状物質をそのまま反応器に還流させると、炭素の鎖状構造が切断されて低分子化する前に揮発してしまうのに対して、反応器Aの流動層f内に直接吹込みをすることで反応器A内での滞留時間が長くなり、揮発前に炭素の鎖状構造が切断されてガス状物質となり、その結果、C1〜C4のガス状物質の収率が向上するものと考えられる。
すなわち、油状物質が反応器Aの流動層f内に直接還流され加熱される場合、流動媒体との接触が良好であり、油状物質および揮発した油状物質と流動媒体とが接触する際に熱分解が進行するため、ガス状物質の収率が向上するものと考えられる。
Therefore, when the oily substance recovered from the reactor A was blown into the fluidized bed f through the blowing pipe C installed through the side wall portion of the reactor A and returned to the reactor A, the oily substance was released. It was thermally decomposed and the yield of the gaseous substance could be improved. This is because when an oily substance of about C10 to C12 is recirculated to the reactor as it is, the chain structure of carbon is cut and volatilizes before the molecular weight is reduced, whereas the fluidized bed f of the reactor A By injecting directly into the reactor A, the residence time in the reactor A becomes longer, and the chain structure of carbon is cut before volatilization to become a gaseous substance, and as a result, the gaseous substances of C1 to C4 are collected. It is thought that the rate will improve.
That is, when the oily substance is directly refluxed into the fluidized bed f of the reactor A and heated, the contact with the fluidized medium is good, and the oily substance and the volatilized oily substance are thermally decomposed when they come into contact with each other. It is considered that the yield of the gaseous substance is improved because of the progress of.

また、油状物質を吹込み管Cを通じて流動層f内に吹き込む際に、流動化ガスとして反応器Aに導入される混合ガス(g)の一部を吹込み管Cに供給し、この混合ガス(g)を油状物質とともに流動層f内に吹き込むことにより、(i)油状物質とガス化剤である混合ガス(g)とが近接した状態で流動層f内に供給されること、(ii)油状物質が混合ガス(g)とともに吹き込まれることにより流動層f内で拡散しやすくなること、により流動層f内での油状物質の熱分解が効率的に生じ、ガス状物質の収率が飛躍的に高められる。 Further, when the oily substance is blown into the fluidized bed f through the blowing pipe C, a part of the mixed gas (g) introduced into the reactor A as a fluidized gas is supplied to the blowing pipe C, and this mixed gas is supplied. By blowing (g) into the fluidized bed f together with the oily substance, (i) the oily substance and the mixed gas (g) which is a gasifying agent are supplied into the fluidized bed f in close proximity, (ii). ) By blowing the oily substance together with the mixed gas (g), it becomes easy to diffuse in the fluidized bed f, so that the thermal decomposition of the oily substance in the fluidized bed f occurs efficiently, and the yield of the gaseous substance increases. It can be dramatically enhanced.

図1〜図3は、本発明による有機物質の熱分解方法のフロー及び熱分解設備の一実施形態を模式的に示すものであり、図1は全体構成図、図2は図1中の分離装置Bを模式的に示す構成図(縦断面図)、図3は図1中の水分除去装置Dを模式的に示す構成図(縦断面図)である。
この実施形態の熱分解設備は、流動化ガスとして少なくとも水素及び二酸化炭素を含む混合ガス(g)が導入される流動層式の反応器であって、有機物質を混合ガス(g)と接触させることにより熱分解させる反応器Aと、この反応器Aから排出された、有機物質の熱分解生成物を含むガス(g)を常温又は常温近傍まで冷却し、ガス(g)に含まれる有機物質の熱分解生成物の一部を液化させてガス(g)から分離する分離装置Bと、反応器Aの側壁部を貫通して設置され、分離装置Bでガス(g)から分離された液状の熱分解生成物(x)(油状物質)の少なくとも一部を流動層f内に吹き込む吹込み管Cを備える。さらに、この実施形態では、散水式の分離装置Bで分離された油状物質から水分を除去する水分除去装置Dと、この水分除去装置Dで水分が除去された油状物質の少なくとも一部を吹込み管Cに供給する供給手段E(油分還流管11)を有するとともに、流動化ガスとして反応器Aに導入される混合ガス(g)の一部を吹込み管Cに供給する供給手段F(ガス分岐管17)を備える。
1 to 3 schematically show a flow of a method for thermally decomposing an organic substance according to the present invention and an embodiment of a pyrolysis facility. FIG. 1 is an overall configuration diagram, and FIG. 2 is a separation in FIG. A configuration diagram (longitudinal cross-sectional view) schematically showing the device B, and FIG. 3 is a configuration diagram (longitudinal cross-sectional view) schematically showing the moisture removing device D in FIG.
The pyrolysis facility of this embodiment is a fluidized bed type reactor in which a mixed gas (g) containing at least hydrogen and carbon dioxide is introduced as a fluidized gas, and an organic substance is brought into contact with the mixed gas (g). a reactor a to pyrolysis, the reactor a was discharged from cooling the gas (g p) comprising a thermal decomposition product of the organic substance down to room temperature or ambient temperature near, contained in the gas (g p) by some of the thermal decomposition products of the organic material by liquefying and separating unit B for separating from the gas (g p), is placed through the side wall of the reactor a, the gas (g p) in the separation device B A blow pipe C for blowing at least a part of the separated liquid pyrolysis product (x) (oily substance) into the fluidized bed f is provided. Further, in this embodiment, a water removing device D that removes water from the oily substance separated by the watering type separating device B and at least a part of the oily substance from which the water is removed by the water removing device D are blown. A supply means F (gas) that has a supply means E (oil return pipe 11) for supplying to the pipe C and supplies a part of the mixed gas (g) introduced into the reactor A as a fluidized gas to the blow pipe C. A branch pipe 17) is provided.

流動層式の反応器A(熱分解炉)内の分散板1上には、流動層fを構成する流動媒体が充填されている。分散板1の下方の風箱2には、ガス供給管3を通じて流動化ガスとして混合ガス(g)が導入され、この混合ガス(g)が分散板1から吹き出すことにより、流動媒体による流動層fが形成される。また、反応器Aの上部には有機物質の供給管4が接続され、貯留槽5から定量切出装置6によって切り出された有機物質が、この供給管4を通じて反応器A内に定量供給される。なお、供給管4には、反応器A内のガスが貯留槽5に流出しないようするための弁機構などが設けられる。 The flow medium constituting the fluidized bed f is filled on the dispersion plate 1 in the fluidized bed type reactor A (pyrolysis furnace). A mixed gas (g) is introduced as a fluidized gas through the gas supply pipe 3 into the air box 2 below the dispersion plate 1, and the mixed gas (g) is blown out from the dispersion plate 1 to form a fluidized bed in a fluidized medium. f is formed. A supply pipe 4 for an organic substance is connected to the upper part of the reactor A, and the organic substance cut out from the storage tank 5 by the quantitative cutting device 6 is quantitatively supplied into the reactor A through the supply pipe 4. .. The supply pipe 4 is provided with a valve mechanism or the like for preventing the gas in the reactor A from flowing out to the storage tank 5.

反応器Aは、反応温度までの昇温やガス化に伴う吸熱反応の熱補償のため、ヒーター7で加熱される。なお、反応器Aの加熱手段の形式は任意であり、例えば、流動媒体の一部を反応器Aの外部に取り出してキルンなどの加熱炉で加熱し、この加熱された流動媒体を再び反応器A内に戻す循環式加熱システムを用いてもよい。
所定温度に昇温され且つ流動層fが形成された反応器A内に供給管4を通じて有機物質が定量供給され、有機物質の熱分解が開始される。反応器A内で生成した有機物質の熱分解生成物(ガス状物質及びガス化した油状物質)を含むガス(g)は、ガス取出管8で反応器Aから取り出され、分離装置Bに送られる。なお、反応器Aから取り出されるガス(g)には、通常、混合ガス(g)の未反応ガス成分が含まれる。
The reactor A is heated by the heater 7 in order to raise the temperature to the reaction temperature and to compensate for the endothermic reaction accompanying gasification. The type of heating means of the reactor A is arbitrary. For example, a part of the flow medium is taken out of the reactor A and heated in a heating furnace such as a kiln, and the heated flow medium is recombined with the reactor. A circulating heating system that returns to the inside of A may be used.
A fixed amount of the organic substance is supplied through the supply pipe 4 into the reactor A which has been heated to a predetermined temperature and the fluidized bed f is formed, and the thermal decomposition of the organic substance is started. The reactor thermal decomposition products of organic substances produced in the A (gaseous substances and gasified oil) gas containing (g p) is withdrawn from the reactor A with a gas take-out pipe 8, the separator B Sent. Note that the gas (g p) being removed from the reactor A, typically include unreacted gas components of the mixed gas (g).

分離装置Bでは油状物質がガスから分離されるが、本実施形態の分離装置Bは、図2に示すような散水式のもので構成されている。この分離装置Bでは、高温のガス(g)に水供給管12により供給される水をノズル13から散水することにより、ガス(g)の温度は常温付近まで冷却され、有機物質の熱分解生成物のうち常温で液体である熱分解生成物が液化して油状物質となる。すなわち、ガス(g)から油状物質が分離される。分離装置Bで油状物質が分離されたガス(ガス状物質)は、製品ガスとしてガス輸送管9により系外に輸送され、種々の用途に利用される。 The oily substance is separated from the gas in the separation device B, but the separation device B of the present embodiment is composed of a sprinkling type as shown in FIG. In the separating apparatus B, by sprinkling the water supplied from the nozzle 13 by the water supply pipe 12 to the hot gas (g p), temperature of the gas (g p) it is cooled to about room temperature, the organic material thermally Of the decomposition products, the thermal decomposition products that are liquid at room temperature are liquefied into oily substances. In other words, oil is separated from the gas (g p). The gas (gaseous substance) from which the oily substance is separated by the separation device B is transported to the outside of the system as a product gas by the gas transport pipe 9, and is used for various purposes.

一方、油状物質は油分輸送管10により水分除去装置Dに送られ、ここで油状物質と水分の分離が行われる。図3に示す本実施形態の水分除去装置Dは、分離装置Bにおいて散水に用いた水と油状物質を分離するための比重分離槽14を備えており、この比重分離槽14に油分輸送管10を通じて油状物質が水とともに供給される。比重分離槽14内では、比重の大きい水が沈み、比重の小さい油状物質が浮上することにより油水分離を行う。比重分離槽14内で浮上した油状物質はオーバーフローさせて回収し、沈んだ水は水回収バルブ15により抜き出され、水回収管16を通じて水処理装置(図示しない)等へ輸送され、必要に応じて分離装置Bにて再利用される。 On the other hand, the oily substance is sent to the water removing device D by the oil transport pipe 10, where the oily substance and the water are separated. The water removing device D of the present embodiment shown in FIG. 3 is provided with a specific gravity separation tank 14 for separating the water used for watering and the oily substance in the separation device B, and the oil content transport pipe 10 is provided in the specific gravity separation tank 14. Oily substances are supplied with water through. In the specific gravity separation tank 14, water having a large specific gravity sinks and an oily substance having a small specific gravity floats to separate oil and water. The oily substance floating in the specific gravity separation tank 14 overflows and is recovered, and the submerged water is extracted by the water recovery valve 15 and transported to a water treatment device (not shown) or the like through the water recovery pipe 16 as needed. Is reused in the separator B.

比重分離槽14からオーバーフローさせて回収された油状物質は、供給手段Eである油分還流管11を通じて吹込み管Cに供給され、この吹込み管Cから反応器Aの流動層f内に吹き込まれるが、本実施形態では、ガス供給管3から分岐したガス分岐管17(供給手段F)を通じて混合ガス(g)の一部が吹込み管Cに供給され、油状物質ともに吹込み管Cから流動層f内に吹き込まれる。
吹込み管Cは、ランス式の管体であり、反応器Aの側壁部を水平に貫通して設置されている。この吹込み管Cは、油状物質を反応器A(流動層f)の中心領域に送り込むことで、流動層f全体に拡散させるようするため、その先端側が反応器Aの中心方向に延出(突出)している。この吹込み管Cの突出長に特別な制限はないが、突出長が長すぎると吹込み管の摩耗等が生じ、吹込み管の寿命が短くなり、突出長が短すぎると反応器壁面に付着物が堆積することもあるため、反応器Aの内径をR、吹込み管Cの炉内への突出長をrとしたとき、0.01≦r/R≦0.3程度とするのが望ましい。
The oily substance overflowed from the specific gravity separation tank 14 and recovered is supplied to the blowing pipe C through the oil recirculation pipe 11 which is the supply means E, and is blown into the fluidized bed f of the reactor A from the blowing pipe C. However, in the present embodiment, a part of the mixed gas (g) is supplied to the blowing pipe C through the gas branch pipe 17 (supply means F) branched from the gas supply pipe 3, and both the oily substance flows from the blowing pipe C. It is blown into the layer f.
The blow pipe C is a lance type pipe body, and is installed so as to horizontally penetrate the side wall portion of the reactor A. In this blow tube C, the oily substance is sent to the central region of the reactor A (fluidized bed f) so that it is diffused throughout the fluidized bed f, so that the tip side thereof extends toward the center of the reactor A ( (Protruding). There is no particular limitation on the protrusion length of the blow pipe C, but if the protrusion length is too long, the blow pipe will be worn, the life of the blow pipe will be shortened, and if the protrusion length is too short, the reactor wall surface will be covered. Since deposits may accumulate, when the inner diameter of the reactor A is R and the protrusion length of the blow pipe C into the furnace is r, it is set to about 0.01 ≦ r / R ≦ 0.3. Is desirable.

反応器Aに対して吹込み管Cは1本以上設けることができ、2本以上設ける場合には、反応器Aの周方向で適宜間隔をおいて設けることが好ましい。吹込み管Cを複数本設ける場合、例えば、2〜16本程度の吹込み管Cを反応器Aの周方向でほぼ等間隔で設けることができる。
吹込み管Cとしては、例えば、(i)単管構造を有し、混合ガス(g)と油状物質を単管から混合状態で吹き込むもの、(ii)内管と外管からなる二重管構造を有し、内管と外管のうちの一方から混合ガス(g)を、他方から油状物質を、それぞれ吹き込むもの、などを用いることができる。
One or more blow tubes C can be provided with respect to the reactor A, and when two or more are provided, it is preferable to provide them at appropriate intervals in the circumferential direction of the reactor A. When a plurality of blow pipes C are provided, for example, about 2 to 16 blow pipes C can be provided at substantially equal intervals in the circumferential direction of the reactor A.
Examples of the blow pipe C include (i) a pipe having a single pipe structure and blowing a mixed gas (g) and an oily substance from the single pipe in a mixed state, and (ii) a double pipe composed of an inner pipe and an outer pipe. It has a structure and can be used such that a mixed gas (g) is blown from one of the inner pipe and the outer pipe, and an oily substance is blown from the other pipe.

図4は、そのような吹込み管Cの種々の実施形態を模式的に示す構成図(縦断面図)である。図4(1)に示す吹込み管Cは単管構造のものであり、単管20の後端に油分還流管11とガス分岐管17がそれぞれ接続され、ガス分岐管17から供給された混合ガス(g)と油分還流管11から供給された油状物質が管内で混合され、混合状態で流動層f内に吹き込まれるようにしてある。また、図4(2)に示す吹込み管Cは、図4(1)と同様に単管構造のものであるが、反応器A内は高温雰囲気であるため、ランス保護のために水冷構造としたものであり、単管20の外側に冷却水流路用の管体23を設け、この管体23に冷却水供給管18を接続したものである。 FIG. 4 is a configuration diagram (longitudinal sectional view) schematically showing various embodiments of such a blow pipe C. The blow pipe C shown in FIG. 4 (1) has a single pipe structure, and the oil recirculation pipe 11 and the gas branch pipe 17 are connected to the rear end of the single pipe 20, respectively, and the mixing supplied from the gas branch pipe 17 is provided. The gas (g) and the oily substance supplied from the oil recirculation pipe 11 are mixed in the pipe and blown into the fluidized bed f in a mixed state. Further, the blow pipe C shown in FIG. 4 (2) has a single pipe structure as in FIG. 4 (1), but since the inside of the reactor A has a high temperature atmosphere, it has a water-cooled structure to protect the lance. The cooling water supply pipe 18 is connected to the pipe body 23 provided with the cooling water flow path outside the single pipe 20.

また、図4(3)に示す吹込み管Cは、内管21と外管22からなる二重管構造のものであり、内管21の後端にガス分岐管17が、外管22の後端に油分還流管11がそれぞれ接続され、ガス分岐管17により供給された混合ガス(g)が内管21の先端から、油分還流管11により供給された油状物質が外管22の先端から、それぞれ噴射され、吹込み管Cの先端で混合した状態で流動層f内に吹き込まれるようにしてある。また、図4(4)に示す吹込み管Cは、図4(3)と同様に二重管構造のものであるが、ランス保護のために水冷構造としたものであり、外管22の外側に冷却水流路用の管体23を設け、この管体23に冷却水供給管18を接続したものである。
なお、図4(3)、(4)に示すような二重管構造を有する吹込み管Cでは、内管21から混合ガス(g)を、外管22から油状物質を、それぞれ吹き込むようにしてもよい。
なお、例えば図4(3)、(4)のように油状物質を単独で吹込む場合には、送液用のポンプ(図示せず)が用いられる。また、例えば図4(1)、(2)のように油状物質を気体を同時に吹込む場合には、送液用のポンプ(図示せず)を用いてもよいし、気体によるエジェクター作用などを利用してもよい。
Further, the blow pipe C shown in FIG. 4 (3) has a double pipe structure including an inner pipe 21 and an outer pipe 22, and a gas branch pipe 17 is provided at the rear end of the inner pipe 21 of the outer pipe 22. The oil return pipe 11 is connected to the rear end, and the mixed gas (g) supplied by the gas branch pipe 17 is from the tip of the inner pipe 21, and the oily substance supplied by the oil return pipe 11 is from the tip of the outer pipe 22. , Each of which is injected and is blown into the flow layer f in a state of being mixed at the tip of the blowing pipe C. Further, the blow pipe C shown in FIG. 4 (4) has a double pipe structure as in FIG. 4 (3), but has a water-cooled structure for lance protection, and the outer pipe 22 has a water-cooled structure. A pipe body 23 for a cooling water flow path is provided on the outside, and a cooling water supply pipe 18 is connected to the pipe body 23.
In the blow pipe C having the double pipe structure as shown in FIGS. 4 (3) and 4 (4), the mixed gas (g) is blown from the inner pipe 21 and the oily substance is blown from the outer pipe 22. You may.
When the oily substance is blown alone as shown in FIGS. 4 (3) and 4 (4), a liquid feeding pump (not shown) is used. Further, for example, when a gas is simultaneously blown into an oily substance as shown in FIGS. 4 (1) and 4 (2), a pump for liquid feeding (not shown) may be used, or an ejector action by the gas may be used. You may use it.

本実施形態のように、油状物質を混合ガス(g)とともに吹込み管Cから流動層fに吹き込むことにより、(i)油状物質とガス化剤である混合ガス(g)とが近接した状態で流動層f内に供給されること、(ii)油状物質が混合ガス(g)とともに吹き込まれることにより流動層f内で拡散しやすくなること、により流動層f内での油状物質の熱分解が効率的に生じ、ガス状物質の収率が飛躍的に高められる。 By blowing the oily substance together with the mixed gas (g) into the fluidized bed f from the blowing pipe C as in the present embodiment, (i) the oily substance and the mixed gas (g) which is a gasifying agent are in close proximity to each other. (Ii) The oily substance is blown into the fluidized bed f together with the mixed gas (g) so that it can be easily diffused in the fluidized bed f. Is efficiently generated, and the yield of gaseous substances is dramatically increased.

本発明者らは、吹込み管Cを通じて反応器A内に吹き込む混合ガス(g)の流速について検討した結果、吹込み管Cの設置高さよりも上部側の領域での反応器内空塔速度をu(m/sec)、下部側の領域での反応器内空塔速度をu*(m/sec)とした場合、吹込み管Cを通じて反応器A内に吹き込む混合ガス(g)の流速u(m/sec)を、下記(1)式及び(2)式を満足するように制御することが好ましく、これよりガス状物質の収率をより向上させることができることを見出した。
≧u …(1)
*≧u/2 …(2)
As a result of examining the flow velocity of the mixed gas (g) blown into the reactor A through the blow pipe C, the present inventors examined the superficial velocity in the reactor in the region above the installation height of the blow pipe C. When u 0 (m / sec) and the superficial velocity in the reactor in the lower region is u * (m / sec), the mixed gas (g) blown into the reactor A through the blow pipe C It has been found that the flow velocity u L (m / sec) is preferably controlled so as to satisfy the following equations (1) and (2), and the yield of the gaseous substance can be further improved.
u L ≧ u 0 … (1)
u * ≧ u 0 /2… (2)

図5は、吹込み管Cの設置高さよりも上部側の領域での反応器内空塔速度uと、下部側の領域での反応器内空塔速度u*と、吹込み管Cを通じて反応器A内に吹き込む混合ガス(g)の流速uを示している。
吹込み管Cから反応器A内に導入する混合ガス(g)の流速uが小さすぎると、流動層f内に油状物質が十分に拡散せず(吹込み管先端付近に油状物質の濃度が極端に高い領域が形成される)、油状物質と流動媒体や流動化ガスとの接触が不十分となり、結果としてガス状物質の収率の向上効果は小さくなる。一方、吹込み管Cから導入する混合ガスの流速uを高めるためには、ガス分岐管17(供給手段F)を通じて吹込み管Cに供給する混合ガス(g)の量を増やす必要があるが、これに伴い反応器Aの風箱2に導入される混合ガス(g)の量は減少することになり、吹込み管Cの設置高さよりも下部側の領域での反応器内空塔速度u*が低下する。空塔速度が低下すると流動媒体の運動量も低下するため、吹込み管Cの設置高さよりも下部側の領域での流動層(流動媒体)の流動性が低下し、ガス状物質の収率も低下する。
FIG. 5 shows the reactor superficial velocity u 0 in the region above the installation height of the blow pipe C, the reactor superficial velocity u * in the region below the installation height, and the blow pipe C. The flow velocity u L of the mixed gas (g) blown into the reactor A is shown.
When the flow velocity u L of the mixed gas (g) introducing into the reactor A from the blowing tube C is too small, the concentration of oil in the (near blow tube tip without oil is not sufficiently diffused into the fluidized bed f The extremely high region is formed), the contact between the oily substance and the fluidized medium or the fluidized gas becomes insufficient, and as a result, the effect of improving the yield of the gaseous substance becomes small. Meanwhile, in order to increase the flow velocity u L of the mixed gas to be introduced from the blowing duct C, it is necessary to increase the amount of gas branch pipe 17 (supply unit F) through a mixed gas supplied to the blow tube C (g) However, the amount of the mixed gas (g) introduced into the air box 2 of the reactor A is reduced accordingly, and the empty tower inside the reactor in the region below the installation height of the blow pipe C. The speed u * decreases. When the superficial velocity decreases, the momentum of the fluidized medium also decreases, so the fluidity of the fluidized bed (fluid medium) in the region below the installation height of the blow pipe C decreases, and the yield of gaseous substances also decreases. descend.

以上のような問題を回避するために、吹込み管Cに供給する混合ガス(g)の量を調整して吹込み管Cから吹き込む混合ガス(g)の流速uを適正化することが好ましい。すなわち、まず、上記(1)式のように、吹込み管Cから吹き込む混合ガス(g)の流速uを、吹込み管Cの設置高さよりも上部側の領域での反応器内空塔速度u以上とすることにより(u≧u)、油状物質を流動層f内に十分に拡散させることができる。さらに、混合ガス(g)の一部を吹込み管Cを通じて流動層f内に吹き込むことにより、反応器Aの風箱2に導入される混合ガス(g)の量が減少し、吹込み管Cの設置高さよりも下部側の領域での流動性が過度に低下しないようにするため、上記(2)式のように、下部側の領域での反応器内空塔速度u*が上部側の領域での反応器内空塔速度uの1/2以上となるように(u*≧u/2)、吹込み管Cから吹き込む混合ガス(g)の流速u(吹込み管Cから吹き込む混合ガス(g)のガス量)を制御する。
混合ガス(g)の流速uを制御するには、例えば、ガス分岐管17に流量制御弁(図示せず)を設け、吹込み管Cに供給するガス量を調整する。
In order to avoid the above problems, it is possible to adjust the amount of the mixed gas (g) supplied to the blowing pipe C to optimize the flow velocity u L of the mixed gas (g) blown from the blowing pipe C. preferable. That is, first, as in the above equation (1), the flow velocity u L of the mixed gas (g) blown from the blow pipe C is set to the space inside the reactor in the region above the installation height of the blow pipe C. By setting the flow rate to u 0 or more (ul L ≧ u 0 ), the oily substance can be sufficiently diffused into the fluidized bed f. Further, by blowing a part of the mixed gas (g) into the fluidized bed f through the blowing pipe C, the amount of the mixed gas (g) introduced into the air box 2 of the reactor A is reduced, and the blowing pipe is used. In order to prevent the fluidity in the region below the installation height of C from dropping excessively, the superficial velocity u * in the reactor in the region on the lower side is on the upper side as in Eq. (2) above. so that 1/2 or more of the reactor superficial velocity u 0 at the region of the (u * ≧ u 0/2 ), the flow velocity u L (blow pipe of the mixed gas blown from the blow pipe C (g) The amount of mixed gas (g) blown from C) is controlled.
To control the flow rate u L of the mixed gas (g), for example, the flow control valve to the gas branch pipe 17 (not shown) is provided to adjust the amount of gas supplied to the blow tube C.

上述したように、混合ガス(g)の一部を吹込み管Cから吹き込むと、吹込み管Cの設置高さよりも下部側の領域での流動性が低下するので、このような領域をなるべく小さくするため、吹込み管Cの反応器Aの側壁部での設置高さ(油状物質の吹込み高さ)はなるべく低い方が好ましい。また、油状物質の吹込み高さが低い方が、吹込まれた油状物質の流動層f内での滞留時間が長くなり、熱分解効率が高くなるので、この点からも、吹込み管Cの設置高さはなるべく低い方が好ましい。具体的には、図5に示すように、吹込み管Cの設置高さh(分散板上面からの高さ)は、流動層fの高さH(分散板上面からの高さ)の1/2以下の位置とすることが好ましい。 As described above, when a part of the mixed gas (g) is blown from the blowing pipe C, the fluidity in the region lower than the installation height of the blowing pipe C decreases, so such a region is as much as possible. In order to make it smaller, it is preferable that the installation height (the height at which the oily substance is blown) at the side wall of the reactor A of the blow pipe C is as low as possible. Further, the lower the blowing height of the oily substance, the longer the residence time of the blown oily substance in the fluidized bed f and the higher the thermal decomposition efficiency. Therefore, from this point as well, the blowing pipe C It is preferable that the installation height is as low as possible. Specifically, as shown in FIG. 5, the installation height h of the blow pipe C (height from the upper surface of the dispersion plate) is 1 of the height H of the fluidized bed f (height from the upper surface of the dispersion plate). The position is preferably 1/2 or less.

本発明法で得られるガス状物質は、可燃成分が一酸化炭素とC1〜C4程度の炭化水素からなり、そのLHVは約4〜8Mcal/Nmで高い発熱量を有する。このため、本発明法で得られるガス状物質は気体燃料として好適であり、また、天然ガス代替として高炉の還元剤や焼結鉱製造プロセスの凝結剤などとしても使用できる。 The gaseous substance obtained by the method of the present invention is composed of carbon monoxide and hydrocarbons of about C1 to C4 as combustible components, and its LHV is about 4 to 8 Mcal / Nm 3 and has a high calorific value. Therefore, the gaseous substance obtained by the method of the present invention is suitable as a gaseous fuel, and can also be used as a reducing agent for a blast furnace or a coagulant for a sinter production process as a substitute for natural gas.

・発明例1
精製サーモセレクト方式のガス化溶融炉(Thermoselect Waste Gasification and Reforming Process)から発生し、塩化水素などの不純物を除去した後の排ガス(以下、サーモガス(Purified synthesis gas)という。)に水蒸気を添加したガスを有機物質熱分解用の混合ガス(g)として用いた。このためサーモガスの払出し配管に分岐管を設け、この分岐管を通じてサーモガスの一部を抜き出すことができるようにするとともに、この分岐管の下流側には流量調節弁、スチーム混合器、ガス予熱器を配置した。
・ Invention Example 1
Gas generated from a refined thermoselect gasification and melting furnace (Thermoselect Waste Gasification and Reforming Process), and after removing impurities such as hydrogen chloride, water vapor is added to the exhaust gas (hereinafter referred to as "Purified synthesis gas"). Was used as a mixed gas (g) for thermal decomposition of organic substances. For this reason, a branch pipe is provided in the thermogas discharge pipe so that a part of the thermogas can be taken out through this branch pipe, and a flow control valve, a steam mixer, and a gas preheater are installed on the downstream side of this branch pipe. Placed.

サーモガスの平均組成は、H:31vol%、CO:33vol%、CO:30vol%、HO:<1vol%、N:6vol%であった。スチーム混合器に対してサーモガスを108Nm/hr、水蒸気として圧力10kg/cmGのスチームを64Nm/hr供給し、予熱器で430℃まで昇温した。水蒸気混合後のガス組成は、H:20vol%、CO:21vol%、CO:19vol%、HO:37vol%、N:4vol%であり、流量は172Nm/hr(質量流量では171kg/hr)であった。このガスを有機物質熱分解用の混合ガス(g)として用い、図1〜図3に示す設備構成において廃プラスチックの熱分解処理を実施した。流動媒体は珪砂を用いた。 The average composition of the thermogas was H 2 : 31 vol%, CO: 33 vol%, CO 2 : 30 vol%, H 2 O: <1 vol%, N 2 : 6 vol%. The thermogas was supplied to the steam mixer at 108 Nm 3 / hr, and steam at a pressure of 10 kg / cm 2 G was supplied as steam at 64 Nm 3 / hr, and the temperature was raised to 430 ° C. with a preheater. The gas composition after mixing with water vapor is H 2 : 20 vol%, CO: 21 vol%, CO 2 : 19 vol%, H 2 O: 37 vol%, N 2 : 4 vol%, and the flow rate is 172 Nm 3 / hr (mass flow rate). It was 171 kg / hr). This gas was used as a mixed gas (g) for thermal decomposition of organic substances, and thermal decomposition treatment of waste plastic was carried out in the equipment configurations shown in FIGS. 1 to 3. Quartz sand was used as the fluid medium.

反応器Aは、内径が1.2mの円筒形であり(高さ方向で径は一定)、反応器A内の流動層fの高さ(分散板上端から流動層上端までの高さ)は3mとした。
吹込み管Cは、図4(3)に示すものを用い、内管21から混合ガス(g)が、外管22から油状物質が、それぞれ吹込まれるようにした。吹込み管Cを構成する内管21は、内径60mm、外径62mmとし、外管22は内径80mmとした。吹込み管Cは反応器Aの周方向でほぼ等間隔で20本設置し、それらの設置高さは流動層fの高さの1/3の高さ(分散板上端から1mの高さ)とした。
The reactor A has a cylindrical shape with an inner diameter of 1.2 m (the diameter is constant in the height direction), and the height of the fluidized bed f in the reactor A (height from the upper end of the dispersion plate to the upper end of the fluidized bed) is It was set to 3 m.
As the blowing pipe C, the one shown in FIG. 4 (3) was used so that the mixed gas (g) was blown from the inner pipe 21 and the oily substance was blown from the outer pipe 22. The inner pipe 21 constituting the blow pipe C has an inner diameter of 60 mm and an outer diameter of 62 mm, and the outer pipe 22 has an inner diameter of 80 mm. Twenty blow pipes C are installed at approximately equal intervals in the circumferential direction of the reactor A, and their installation height is 1/3 of the height of the fluidized bed f (height 1 m from the upper end of the dispersion plate). And said.

流動層式の反応器Aはヒーター7により予め600℃に予熱されており、反応器A内に混合ガス(g)を導入するとともに、廃プラスチックのモデル物質として粒状に破砕処理した廃プラスチックを880kg/hrで供給し、計画反応温度である620℃まで昇温した。620℃に到達後、10日間、廃プラスチックの熱分解処理を継続した。この際、分離装置Bで分離された油状物質を水分除去装置Dで水分を除去した後、吹込み管Cを通じて反応器Aに還流させた。反応状態は廃プラスチックの供給開始から約27時間後、定常状態に達した。 The fluidized bed type reactor A is preheated to 600 ° C. by the heater 7, and a mixed gas (g) is introduced into the reactor A, and 880 kg of waste plastic crushed into particles as a model substance of waste plastic is used. It was supplied at / hr and the temperature was raised to the planned reaction temperature of 620 ° C. After reaching 620 ° C., the thermal decomposition treatment of the waste plastic was continued for 10 days. At this time, the oily substance separated by the separation device B was removed with the water removal device D, and then refluxed to the reactor A through the blow pipe C. The reaction state reached a steady state about 27 hours after the start of supply of waste plastic.

吹込み管Cの内管21から反応器A内に吹き込む混合ガス(g)の流速uを、上部側領域での反応器内空塔速度u(3.5cm/s)以上である15.2cm/sとし、且つ下部側領域での反応器内空塔速度u*(3.2cm/s)が上部側領域での反応器内空塔速度u(3.5cm/s)の1/2以上となるように制御した。
ガス輸送管9を通過するガス状物質の成分分析を行うとともに、LHVを求めた。また、油分還流管11から油状物質を一定時間抜き出して油状物質の還流量を定量した。この発明例における操業条件を表1に、ガス状物質の生成量、組成及びLHVを表2にそれぞれ示す。
The flow velocity u L of the mixed gas (g) blown into the reactor A from the inner pipe 21 of the blow pipe C is equal to or higher than the superficial velocity u 0 (3.5 cm / s) in the reactor in the upper region 15 .2 cm / s, and the reactor superficial velocity u * (3.2 cm / s) in the lower region is 1 of the reactor superficial velocity u 0 (3.5 cm / s) in the upper region. It was controlled to be / 2 or more.
The components of the gaseous substance passing through the gas transport pipe 9 were analyzed, and the LHV was determined. Further, the oily substance was extracted from the oil reflux pipe 11 for a certain period of time, and the amount of reflux of the oily substance was quantified. Table 1 shows the operating conditions in this invention example, and Table 2 shows the amount, composition, and LHV of the gaseous substance produced.

定常状態において原料として供給したサーモガス、水蒸気、廃プラスチック及び油分吸着剤の合計量は1051kg/hrであり、ガス状物質の生成量は988kg/hrであるので、収率は94mass%であった。油状物質の還流量は300kg/hrと比較的少ない量に抑えることができた。生成したガス状物質のLHVは7.2Mcal/Nmであり、サーモガス(1.8Mcal/Nm)の4.0倍に増熱していた。 The total amount of thermogas, water vapor, waste plastic and oil adsorbent supplied as raw materials in the steady state was 1051 kg / hr, and the amount of gaseous substance produced was 988 kg / hr, so the yield was 94 mass%. The amount of reflux of the oily substance could be suppressed to a relatively small amount of 300 kg / hr. The LHV of the produced gaseous substance was 7.2 Mcal / Nm 3 , which was 4.0 times higher than that of the thermogas (1.8 Mcal / Nm 3 ).

Figure 0006777110
Figure 0006777110

Figure 0006777110
Figure 0006777110

・発明例2
製鉄所の転炉から発生したガスに水蒸気を添加してシフト反応を行わせ、これにより得られたガスを有機物質熱分解用の混合ガス(g)として用いた。このため転炉ガスの払出し配管に分岐管を設け、この分岐管を通じて転炉ガスの一部を抜き出すことができるようにするとともに、この分岐管の下流側には流量調節弁、スチーム混合器、ガス予熱器、Fe−Cr系高温シフト触媒を充填したシフト反応器(円筒竪型)を配置した。
-Invention Example 2
Water vapor was added to the gas generated from the converter of the steelworks to carry out a shift reaction, and the gas obtained by this was used as a mixed gas (g) for thermal decomposition of organic substances. For this reason, a branch pipe is provided in the linz-Donaw gas discharge pipe so that part of the linz-Donaw gas can be extracted through this branch pipe, and a flow control valve, steam mixer, etc. are located downstream of this branch pipe. A gas preheater and a shift reactor (cylindrical vertical type) filled with a Fe-Cr high-temperature shift catalyst were arranged.

転炉ガスの平均組成は、H:1vol%、CO:65vol%、CO:15vol%、HO:1vol%、N:18vol%であった。スチーム混合器に対して転炉ガスを70Nm/hr、水蒸気として圧力10kg/cmGのスチームを101Nm/hr供給し、予熱器で320℃まで予熱した後、シフト反応器に導入した。シフト反応は発熱反応であり、シフト反応器温度は430℃まで上昇した。シフト反応後のガス組成は、H:26vol%、CO:0vol%、CO:30vol%、HO:35vol%、N:9vol%であり、流量は171Nm/hr(質量流量では171kg/hr)であった。このガスを有機物質熱分解用の混合ガス(g)として用い、図1〜図3に示す設備構成において廃プラスチックの熱分解処理を実施した。流動媒体は珪砂を用いた。 The average composition of the linz-Donaw gas was H 2 : 1 vol%, CO: 65 vol%, CO 2 : 15 vol%, H 2 O: 1 vol%, N 2 : 18 vol%. Linz-Donaw gas was supplied to the steam mixer at 70 Nm 3 / hr, and steam at a pressure of 10 kg / cm 2 G was supplied as steam at 101 Nm 3 / hr. The shift reaction was an exothermic reaction and the shift reactor temperature rose to 430 ° C. The gas composition after the shift reaction was H 2 : 26 vol%, CO: 0 vol%, CO 2 : 30 vol%, H 2 O: 35 vol%, N 2 : 9 vol%, and the flow rate was 171 Nm 3 / hr (mass flow rate). It was 171 kg / hr). This gas was used as a mixed gas (g) for thermal decomposition of organic substances, and thermal decomposition treatment of waste plastic was carried out in the equipment configurations shown in FIGS. 1 to 3. Quartz sand was used as the fluid medium.

反応器Aは、内径が1.0mの円筒形であり(高さ方向で径は一定)、反応器A内の流動層fの高さ(分散板上端から流動層上端までの高さ)は3mとした。
吹込み管Cは、図4(3)に示すものを用い、内管21から混合ガス(g)が、外管22から油状物質が、それぞれ吹込まれるようにした。吹込み管Cを構成する内管21は、内径100mm、外径103mmとし、外管22は内径120mmとした。吹込み管Cは反応器Aの周方向でほぼ等間隔で25本設置し、それらの設置高さは流動層fの高さの1/3の高さ(分散板上端から1mの高さ)とした。
The reactor A has a cylindrical shape with an inner diameter of 1.0 m (the diameter is constant in the height direction), and the height of the fluidized bed f in the reactor A (height from the upper end of the dispersion plate to the upper end of the fluidized bed) is It was set to 3 m.
As the blowing pipe C, the one shown in FIG. 4 (3) was used so that the mixed gas (g) was blown from the inner pipe 21 and the oily substance was blown from the outer pipe 22. The inner pipe 21 constituting the blow pipe C has an inner diameter of 100 mm and an outer diameter of 103 mm, and the outer pipe 22 has an inner diameter of 120 mm. Twenty-five blow pipes C are installed at approximately equal intervals in the circumferential direction of the reactor A, and their installation height is 1/3 of the height of the fluidized bed f (height 1 m from the upper end of the dispersion plate). And said.

流動層式の反応器Aはヒーター7により予め600℃に予熱されており、反応器A内に混合ガス(g)を導入するとともに、廃プラスチックのモデル物質として粒状に破砕処理した廃プラスチックを880kg/hrで供給し、計画反応温度である620℃まで昇温した。620℃に到達後、10日間、廃プラスチックの熱分解処理を継続した。この際、分離装置Bで分離された油状物質を水分除去装置Dで水分を除去した後、吹込み管Cを通じて反応器Aに還流させた。反応状態は廃プラスチックの供給開始から約27時間後、定常状態に達した。 The fluidized bed type reactor A is preheated to 600 ° C. by the heater 7, and a mixed gas (g) is introduced into the reactor A, and 880 kg of waste plastic crushed into particles as a model substance of waste plastic is used. It was supplied at / hr and heated to the planned reaction temperature of 620 ° C. After reaching 620 ° C., the thermal decomposition treatment of the waste plastic was continued for 10 days. At this time, the oily substance separated by the separation device B was removed with the water removal device D, and then refluxed to the reactor A through the blow pipe C. The reaction state reached a steady state about 27 hours after the start of supply of waste plastic.

吹込み管Cの内管21から反応器A内に吹き込む混合ガス(g)の流速uを、上部側領域での反応器内空塔速度u(5.0cm/s)以下である4.4cm/sとし、且つ下部側領域での反応器内空塔速度u*(4.6cm/s)が上部側領域での反応器内空塔速度u(5.0cm/s)の1/2以上となるように制御した。
ガス輸送管9を通過するガス状物質の成分分析を行うとともに、LHVを求めた。また、油分還流管11から油状物質を一定時間抜き出して油状物質の還流量を定量した。この発明例における操業条件を表3に、ガス状物質の生成量、組成及びLHVを表4にそれぞれ示す。
The flow velocity u L of the mixed gas (g) blown into the reactor A from the inner pipe 21 of the blow pipe C is equal to or less than the superficial velocity u 0 (5.0 cm / s) in the reactor in the upper region 4 .4 cm / s, and the reactor superficial velocity u * (4.6 cm / s) in the lower region is 1 of the reactor superficial velocity u 0 (5.0 cm / s) in the upper region. It was controlled to be / 2 or more.
The components of the gaseous substance passing through the gas transport pipe 9 were analyzed, and the LHV was determined. Further, the oily substance was extracted from the oil reflux pipe 11 for a certain period of time, and the amount of reflux of the oily substance was quantified. Table 3 shows the operating conditions in this invention example, and Table 4 shows the amount, composition, and LHV of the gaseous substance produced.

定常状態において原料として供給したサーモガス、水蒸気、廃プラスチック及び油分吸着剤の合計量は1051kg/hrであり、ガス状物質の生成量は975kg/hrであるので、収率は93mass%であった。油状物質の還流量は302kg/hrと比較的少ない量に抑えることができた。生成したガス状物質のLHVは5.7Mcal/Nmであり、転炉ガス(2.0Mcal/Nm)の2.9倍に増熱していた。 The total amount of thermogas, water vapor, waste plastic and oil adsorbent supplied as raw materials in the steady state was 1051 kg / hr, and the amount of gaseous substance produced was 975 kg / hr, so the yield was 93 mass%. The amount of reflux of the oily substance could be suppressed to a relatively small amount of 302 kg / hr. The LHV of the produced gaseous substance was 5.7 Mcal / Nm 3 , which was 2.9 times higher than that of the linz-Donaw gas (2.0 Mcal / Nm 3 ).

Figure 0006777110
Figure 0006777110

Figure 0006777110
Figure 0006777110

・発明例3
発明例1と同様に、サーモガスに水蒸気を添加したガスを有機物質熱分解用の混合ガス(g)として用いた。このためサーモガスの払出し配管に分岐管を設け、この分岐管を通じてサーモガスの一部を抜き出すことができるようにするとともに、この分岐管の下流側には流量調節弁、スチーム混合器、ガス予熱器を配置した。
・ Invention Example 3
Similar to Invention Example 1, a gas obtained by adding water vapor to thermogas was used as a mixed gas (g) for thermal decomposition of organic substances. For this reason, a branch pipe is provided in the thermogas discharge pipe so that a part of the thermogas can be taken out through this branch pipe, and a flow control valve, a steam mixer, and a gas preheater are installed on the downstream side of this branch pipe. Placed.

サーモガスの平均組成は、H:31vol%、CO:33vol%、CO:30vol%、HO:<1vol%、N:6vol%であった。スチーム混合器に対してサーモガスを108Nm/hr、水蒸気として圧力10kg/cmGのスチームを64Nm/hr供給し、予熱器で430℃まで昇温した。水蒸気混合後のガス組成は、H:20vol%、CO:21vol%、CO:19vol%、HO:37vol%、N:4vol%であり、流量は172Nm/hr(質量流量では171kg/hr)であった。このガスを有機物質熱分解用の混合ガス(g)として用い、図1〜図3に示す設備構成において廃プラスチックの熱分解処理を実施した。流動媒体は珪砂を用いた。 The average composition of the thermogas was H 2 : 31 vol%, CO: 33 vol%, CO 2 : 30 vol%, H 2 O: <1 vol%, N 2 : 6 vol%. The thermogas was supplied to the steam mixer at 108 Nm 3 / hr, and steam at a pressure of 10 kg / cm 2 G was supplied as steam at 64 Nm 3 / hr, and the temperature was raised to 430 ° C. with a preheater. The gas composition after mixing with water vapor is H 2 : 20 vol%, CO: 21 vol%, CO 2 : 19 vol%, H 2 O: 37 vol%, N 2 : 4 vol%, and the flow rate is 172 Nm 3 / hr (mass flow rate). It was 171 kg / hr). This gas was used as a mixed gas (g) for thermal decomposition of organic substances, and thermal decomposition treatment of waste plastic was carried out in the equipment configurations shown in FIGS. 1 to 3. Quartz sand was used as the fluid medium.

反応器Aは、内径が1.2mの円筒形であり(高さ方向で径は一定)、反応器A内の流動層fの高さ(分散板上端から流動層上端までの高さ)は3mとした。
吹込み管Cは、図4(3)に示すものを用い、内管21から混合ガス(g)が、外管22から油状物質が、それぞれ吹込まれるようにした。吹込み管Cを構成する内管21は、内径100mm、外径103mmとし、外管22は内径120mmとした。吹込み管Cは反応器Aの周方向でほぼ等間隔で20本設置し、それらの設置高さは流動層fの高さの1/3の高さ(分散板上端から1mの高さ)とした。
The reactor A has a cylindrical shape with an inner diameter of 1.2 m (the diameter is constant in the height direction), and the height of the fluidized bed f in the reactor A (height from the upper end of the dispersion plate to the upper end of the fluidized bed) is It was set to 3 m.
As the blowing pipe C, the one shown in FIG. 4 (3) was used so that the mixed gas (g) was blown from the inner pipe 21 and the oily substance was blown from the outer pipe 22. The inner pipe 21 constituting the blow pipe C has an inner diameter of 100 mm and an outer diameter of 103 mm, and the outer pipe 22 has an inner diameter of 120 mm. Twenty blow pipes C are installed at approximately equal intervals in the circumferential direction of the reactor A, and their installation height is 1/3 of the height of the fluidized bed f (height 1 m from the upper end of the dispersion plate). And said.

流動層式の反応器Aはヒーター7により予め600℃に予熱されており、反応器A内に混合ガス(g)を導入するとともに、廃プラスチックのモデル物質として粒状に破砕処理した廃プラスチックを880kg/hrで供給し、計画反応温度である620℃まで昇温した。620℃に到達後、10日間、廃プラスチックの熱分解処理を継続した。この際、分離装置Bで分離された油状物質を水分除去装置Dで水分を除去した後、吹込み管Cを通じて反応器Aに還流させた。反応状態は廃プラスチックの供給開始から約27時間後、定常状態に達した。 The fluidized bed type reactor A is preheated to 600 ° C. by the heater 7, and a mixed gas (g) is introduced into the reactor A, and 880 kg of waste plastic crushed into particles as a model substance of waste plastic is used. It was supplied at / hr and heated to the planned reaction temperature of 620 ° C. After reaching 620 ° C., the thermal decomposition treatment of the waste plastic was continued for 10 days. At this time, the oily substance separated by the separation device B was removed with the water removal device D, and then refluxed to the reactor A through the blow pipe C. The reaction state reached a steady state about 27 hours after the start of supply of waste plastic.

吹込み管Cの内管21から反応器A内に吹き込む混合ガス(g)の流速uを、上部側領域での反応器内空塔速度u(3.5cm/s)以上である51cm/sとし、且つ下部側領域での反応器内空塔速度u*(1.2cm/s)が上部側領域での反応器内空塔速度u(3.5cm/s)の1/2未満となるように制御した。
ガス輸送管9を通過するガス状物質の成分分析を行うとともに、LHVを求めた。また、油分還流管11から油状物質を一定時間抜き出して油状物質の還流量を定量した。この発明例における操業条件を表5に、ガス状物質の生成量、組成及びLHVを表6にそれぞれ示す。
The flow velocity u L of the mixed gas (g) blown into the reactor A from the inner pipe 21 of the blow pipe C is 51 cm, which is equal to or higher than the superficial velocity u 0 (3.5 cm / s) in the reactor in the upper region. / S, and the reactor superficial velocity u * (1.2 cm / s) in the lower region is 1/2 of the reactor superficial velocity u 0 (3.5 cm / s) in the upper region. It was controlled to be less than.
The components of the gaseous substance passing through the gas transport pipe 9 were analyzed, and the LHV was determined. Further, the oily substance was extracted from the oil reflux pipe 11 for a certain period of time, and the amount of reflux of the oily substance was quantified. Table 5 shows the operating conditions in this invention example, and Table 6 shows the amount of gaseous substance produced, the composition, and LHV.

定常状態において原料として供給したサーモガス、水蒸気、廃プラスチック及び油分吸着剤の合計量は1051kg/hrであり、ガス状物質の生成量は970kg/hrであるので、収率は92mass%であった。油状物質の還流量は307kg/hrと比較的少ない量に抑えることができた。生成したガス状物質のLHVは7.2Mcal/Nmであり、サーモガス(1.8Mcal/Nm)の4倍に増熱していた。 The total amount of thermogas, water vapor, waste plastic and oil adsorbent supplied as raw materials in the steady state was 1051 kg / hr, and the amount of gaseous substance produced was 970 kg / hr, so the yield was 92 mass%. The amount of reflux of the oily substance could be suppressed to a relatively small amount of 307 kg / hr. The LHV of the produced gaseous substance was 7.2 Mcal / Nm 3 , which was four times as high as that of the thermogas (1.8 Mcal / Nm 3 ).

Figure 0006777110
Figure 0006777110

Figure 0006777110
Figure 0006777110

・発明例4
発明例1と同様に、サーモガスに水蒸気を添加したガスを有機物質熱分解用の混合ガス(g)として用いた。このためサーモガスの払出し配管に分岐管を設け、この分岐管を通じてサーモガスの一部を抜き出すことができるようにするとともに、この分岐管の下流側には流量調節弁、スチーム混合器、ガス予熱器を配置した。
・ Invention Example 4
Similar to Invention Example 1, a gas obtained by adding water vapor to thermogas was used as a mixed gas (g) for thermal decomposition of organic substances. For this reason, a branch pipe is provided in the thermogas discharge pipe so that a part of the thermogas can be taken out through this branch pipe, and a flow control valve, a steam mixer, and a gas preheater are installed on the downstream side of this branch pipe. Placed.

サーモガスの平均組成は、H:31vol%、CO:33vol%、CO:30vol%、HO:<1vol%、N:6vol%であった。スチーム混合器に対してサーモガスを108Nm/hr、水蒸気として圧力10kg/cmGのスチームを64Nm/hr供給し、予熱器で430℃まで昇温した。水蒸気混合後のガス組成は、H:20vol%、CO:21vol%、CO:19vol%、HO:37vol%、N:4vol%であり、流量は172Nm/hr(質量流量では171kg/hr)であった。このガスを有機物質熱分解用の混合ガス(g)として用い、図1〜図3に示す設備構成において廃プラスチックの熱分解処理を実施した。流動媒体は珪砂を用いた。 The average composition of the thermogas was H 2 : 31 vol%, CO: 33 vol%, CO 2 : 30 vol%, H 2 O: <1 vol%, N 2 : 6 vol%. The thermogas was supplied to the steam mixer at 108 Nm 3 / hr, and steam at a pressure of 10 kg / cm 2 G was supplied as steam at 64 Nm 3 / hr, and the temperature was raised to 430 ° C. with a preheater. The gas composition after mixing with water vapor is H 2 : 20 vol%, CO: 21 vol%, CO 2 : 19 vol%, H 2 O: 37 vol%, N 2 : 4 vol%, and the flow rate is 172 Nm 3 / hr (mass flow rate). It was 171 kg / hr). This gas was used as a mixed gas (g) for thermal decomposition of organic substances, and thermal decomposition treatment of waste plastic was carried out in the equipment configurations shown in FIGS. 1 to 3. Quartz sand was used as the fluid medium.

反応器Aは、内径が0.8mの円筒形であり(高さ方向で径は一定)、反応器A内の流動層fの高さ(分散板上端から流動層上端までの高さ)は3mとした。
吹込み管Cは、図4(3)に示すものを用いたが、発明例1〜3とは逆に、内管21から油状物質が、外管22から混合ガス(g)が、それぞれ吹込まれるようにした。吹込み管Cを構成する内管21は、内径32mm、外径34mmとし、外管22は内径200mmとした。吹込み管Cは反応器Aの周方向でほぼ等間隔で30本設置し、それらの設置高さは流動層fの高さの1/3の高さ(分散板上端から1mの高さ)とした。
The reactor A has a cylindrical shape with an inner diameter of 0.8 m (the diameter is constant in the height direction), and the height of the fluidized bed f in the reactor A (height from the upper end of the dispersion plate to the upper end of the fluidized bed) is It was set to 3 m.
As the blowing pipe C, the one shown in FIG. 4 (3) was used, but contrary to Invention Examples 1 to 3, an oily substance was blown from the inner pipe 21 and a mixed gas (g) was blown from the outer pipe 22. I tried to get involved. The inner pipe 21 constituting the blow pipe C has an inner diameter of 32 mm and an outer diameter of 34 mm, and the outer pipe 22 has an inner diameter of 200 mm. Thirty blow pipes C are installed at approximately equal intervals in the circumferential direction of the reactor A, and their installation height is 1/3 of the height of the fluidized bed f (height 1 m from the upper end of the dispersion plate). And said.

流動層式の反応器Aはヒーター7により予め600℃に予熱されており、反応器A内に混合ガス(g)を導入するとともに、廃プラスチックのモデル物質として粒状に破砕処理した廃プラスチックを880kg/hrで供給し、計画反応温度である620℃まで昇温した。620℃に到達後、10日間、廃プラスチックの熱分解処理を継続した。この際、分離装置Bで分離された油状物質を水分除去装置Dで水分を除去した後、吹込み管Cを通じて反応器Aに還流させた。反応状態は廃プラスチックの供給開始から約27時間後、定常状態に達した。 The fluidized bed type reactor A is preheated to 600 ° C. by the heater 7, and a mixed gas (g) is introduced into the reactor A, and 880 kg of waste plastic crushed into granules as a model substance of waste plastic is used. It was supplied at / hr and heated to the planned reaction temperature of 620 ° C. After reaching 620 ° C., the thermal decomposition treatment of the waste plastic was continued for 10 days. At this time, the oily substance separated by the separation device B was removed with the water removal device D, and then refluxed to the reactor A through the blow pipe C. The reaction state reached a steady state about 27 hours after the start of supply of waste plastic.

吹込み管Cの外管22から反応器A内に吹き込む混合ガス(g)の流速uを、上部側領域での反応器内空塔速度u(7.7cm/s)以下である7.1cm/sとし、且つ下部側領域での反応器内空塔速度u*(3.6cm/s)が上部側領域での反応器内空塔速度u(7.7cm/s)の1/2未満となるように制御した。
ガス輸送管9を通過するガス状物質の成分分析を行うとともに、LHVを求めた。また、油分還流管11から油状物質を一定時間抜き出して油状物質の還流量を定量した。この発明例における操業条件を表7に、ガス状物質の生成量、組成及びLHVを表8にそれぞれ示す。
The flow velocity u L of the mixed gas (g) blown into the reactor A from the outer pipe 22 of the blow pipe C is equal to or less than the superficial velocity u 0 (7.7 cm / s) in the reactor in the upper region 7 .1 cm / s, and the reactor superficial velocity u * (3.6 cm / s) in the lower region is 1 of the reactor superficial velocity u 0 (7.7 cm / s) in the upper region. It was controlled to be less than / 2.
The components of the gaseous substance passing through the gas transport pipe 9 were analyzed, and the LHV was determined. Further, the oily substance was extracted from the oil reflux pipe 11 for a certain period of time, and the amount of reflux of the oily substance was quantified. Table 7 shows the operating conditions in this invention example, and Table 8 shows the amount of gaseous substance produced, the composition, and the LHV.

定常状態において原料として供給したサーモガス、水蒸気、廃プラスチック及び油分吸着剤の合計量は1051kg/hrであり、ガス状物質の生成量は951kg/hrであるので、収率は90mass%であった。油状物質の還流量は310kg/hrと比較的少ない量に抑えることができた。生成したガス状物質のLHVは7.2Mcal/Nmであり、サーモガス(1.8Mcal/Nm)の4倍に増熱していた。 The total amount of thermogas, water vapor, waste plastic and oil adsorbent supplied as raw materials in the steady state was 1051 kg / hr, and the amount of gaseous substance produced was 951 kg / hr, so the yield was 90 mass%. The amount of reflux of the oily substance could be suppressed to a relatively small amount of 310 kg / hr. The LHV of the produced gaseous substance was 7.2 Mcal / Nm 3 , which was four times as high as that of the thermogas (1.8 Mcal / Nm 3 ).

Figure 0006777110
Figure 0006777110

Figure 0006777110
Figure 0006777110

・比較例1
発明例1と同様に、サーモガスに水蒸気を添加したガスを有機物質熱分解用の混合ガス(g)として用いた。すなわち、使用したサーモガスの平均組成は、H:31vol%、CO:33vol%、CO:30vol%、HO:<1vol%、N:6vol%であり、このサーモガスをスチーム混合器に108Nm/hr導入し、水蒸気として圧力10kg/cmGのスチームを64Nm/hr供給し、予熱器で430℃まで昇温した。水蒸気混合後のガス組成は、H:20vol%、CO:21vol%、CO:19vol%、HO:37vol%、N:4vol%であり、流量は172Nm/hr(質量流量では171kg/hr)であった。このガスを有機物質熱分解用の混合ガス(g)として用い、図1に示す設備構成において、油状物質を反応器Aに還流させることなく、廃プラスチックの熱分解処理を実施した。反応器Aは、内径が0.8mの円筒形であり(高さ方向で径は一定)、反応器A内の流動層fの高さ(分散板上端から流動層上端までの高さ)は3mとした。
・ Comparative example 1
Similar to Invention Example 1, a gas obtained by adding water vapor to thermogas was used as a mixed gas (g) for thermal decomposition of organic substances. That is, the average composition of the thermogas used was H 2 : 31 vol%, CO: 33 vol%, CO 2 : 30 vol%, H 2 O: <1 vol%, N 2 : 6 vol%, and this thermo gas was used in the steam mixer. 108 Nm 3 / hr was introduced, steam at a pressure of 10 kg / cm 2 G was supplied as steam at 64 Nm 3 / hr, and the temperature was raised to 430 ° C. with a preheater. The gas composition after mixing with water vapor is H 2 : 20 vol%, CO: 21 vol%, CO 2 : 19 vol%, H 2 O: 37 vol%, N 2 : 4 vol%, and the flow rate is 172 Nm 3 / hr (mass flow rate). It was 171 kg / hr). This gas was used as a mixed gas (g) for thermal decomposition of organic substances, and in the equipment configuration shown in FIG. 1, the thermal decomposition treatment of waste plastic was carried out without refluxing the oily substance to the reactor A. The reactor A has a cylindrical shape with an inner diameter of 0.8 m (the diameter is constant in the height direction), and the height of the fluidized bed f in the reactor A (height from the upper end of the dispersion plate to the upper end of the fluidized bed) is It was set to 3 m.

流動層式の反応器Aはヒーター7により予め600℃に予熱されており、反応器Aに混合ガス(g)を導入するとともに、廃プラスチックのモデル物質として粒状に破砕処理した廃プラスチックを880kg/hrで供給し、計画反応温度である620℃まで昇温した。620℃に到達後、10日間、廃プラスチックの熱分解処理を継続した。この際、油状物質は反応器Aに還流させなかった。反応状態は廃プラスチックの供給開始から約22時間後、定常状態に達した。 The fluidized bed type reactor A is preheated to 600 ° C. by the heater 7, and a mixed gas (g) is introduced into the reactor A, and 880 kg / kg of waste plastic crushed into granules as a model substance of waste plastic. It was supplied at hr and heated to the planned reaction temperature of 620 ° C. After reaching 620 ° C., the thermal decomposition treatment of the waste plastic was continued for 10 days. At this time, the oily substance was not refluxed to the reactor A. The reaction state reached a steady state about 22 hours after the start of supply of waste plastic.

発明例1と同様の方法で、得られたガス状物質と油状物質の生成量と組成を求めるとともに、ガス状物質についてはLHVを求めた。この比較例における原料供給条件を表9に、ガス状物質の生成量、組成及びLHVを表10に、それぞれ示す。
この比較例では、供給原料総量に対するガス状物質の収率は33mass%と低い値となった。生成したガス状物質のLHVは7.2Mcal/Nmであり、サーモガスの4.0倍に増熱していた。
以上のように、この比較例では油状物質を反応器Aに還流させて再熱分解させなかったため、ガス状物質の生成量が大幅に減少する結果となった。
The amount and composition of the obtained gaseous substance and oily substance produced were determined by the same method as in Invention Example 1, and LHV was determined for the gaseous substance. Table 9 shows the raw material supply conditions in this comparative example, and Table 10 shows the amount of gaseous substance produced, the composition, and the LHV.
In this comparative example, the yield of the gaseous substance with respect to the total amount of raw materials supplied was as low as 33 mass%. The LHV of the produced gaseous substance was 7.2 Mcal / Nm 3 , which was 4.0 times higher than that of the thermogas.
As described above, in this comparative example, since the oily substance was refluxed to the reactor A and was not rethermally decomposed, the amount of gaseous substance produced was significantly reduced.

Figure 0006777110
Figure 0006777110

Figure 0006777110
Figure 0006777110

・比較例2
発明例1と同様に、サーモガスに水蒸気を添加したガスを有機物質熱分解用の混合ガス(g)として用いた。すなわち、使用したサーモガスの平均組成は、H:31vol%、CO:33vol%、CO:30vol%、HO:<1vol%、N:6vol%であり、このサーモガスをスチーム混合器に108Nm/hr、水蒸気として圧力10kg/cmGのスチームを64Nm/hr供給し、予熱器で430℃まで昇温した。水蒸気混合後のガス組成は、H:20vol%、CO:21vol%、CO:19vol%、HO:37vol%、N:4vol%であり、流量が172Nm/hr(質量流量では171kg/hr)であった。このガスを有機物質熱分解用の混合ガス(g)として用い、図1〜図3に示す設備構成において廃プラスチックの熱分解処理を実施した。流動媒体は珪砂を用いた。
・ Comparative example 2
Similar to Invention Example 1, a gas obtained by adding water vapor to thermogas was used as a mixed gas (g) for thermal decomposition of organic substances. That is, the average composition of the thermogas used was H 2 : 31 vol%, CO: 33 vol%, CO 2 : 30 vol%, H 2 O: <1 vol%, N 2 : 6 vol%, and this thermo gas was used in the steam mixer. Steam of 108 Nm 3 / hr and a pressure of 10 kg / cm 2 G as steam was supplied at 64 Nm 3 / hr, and the temperature was raised to 430 ° C. with a preheater. The gas composition after mixing with steam is H 2 : 20 vol%, CO: 21 vol%, CO 2 : 19 vol%, H 2 O: 37 vol%, N 2 : 4 vol%, and the flow rate is 172 Nm 3 / hr (mass flow rate). It was 171 kg / hr). This gas was used as a mixed gas (g) for thermal decomposition of organic substances, and thermal decomposition treatment of waste plastic was carried out in the equipment configurations shown in FIGS. 1 to 3. Quartz sand was used as the fluid medium.

反応器Aは、内径が1.0mの円筒形であり(高さ方向で径は一定)、反応器A内の流動層fの高さ(分散板上端から流動層上端までの高さ)は3mとした。
吹込み管Cは、図4(3)に示すものを用い、内管21から油状物質を吹込み、外管22からは何も吹込まなかった(混合ガス(g)は全量を分散板1を介して反応器Aに導入した)。吹込み管Cを構成する内管21は、内径32mm、外径34mmとした。吹込み管Cは反応器Aの周方向でほぼ等間隔で20本設置し、それらの設置高さは流動層fの高さを超えて、分散板上端から3.5mとした。すなわち、この比較例では、吹込み管Cから流動層f内ではなく、流動層fの上方の空間に油状物質の吹き込みを行った。
The reactor A has a cylindrical shape with an inner diameter of 1.0 m (the diameter is constant in the height direction), and the height of the fluidized bed f in the reactor A (height from the upper end of the dispersion plate to the upper end of the fluidized bed) is It was set to 3 m.
As the blowing pipe C, the one shown in FIG. 4 (3) was used, and an oily substance was blown from the inner pipe 21 and nothing was blown from the outer pipe 22 (the entire amount of the mixed gas (g) was dispersed in the dispersion plate 1). Introduced into reactor A via The inner pipe 21 constituting the blow pipe C has an inner diameter of 32 mm and an outer diameter of 34 mm. Twenty blow pipes C were installed at substantially equal intervals in the circumferential direction of the reactor A, and the height of their installation exceeded the height of the fluidized bed f and was 3.5 m from the upper end of the dispersion plate. That is, in this comparative example, the oily substance was blown from the blowing pipe C not into the fluidized bed f but into the space above the fluidized bed f.

流動層式の反応器Aはヒーター7により予め600℃に予熱されており、反応器A内に混合ガス(g)を導入するとともに、廃プラスチックのモデル物質として粒状に破砕処理した廃プラスチックを880kg/hrで供給し、計画反応温度である620℃まで昇温した。620℃に到達後、10日間、廃プラスチックの熱分解処理を継続した。この際、分離装置Bで分離された油状物質を水分除去装置Dで水分を除去した後、反応器Aに還流させた。反応状態は廃プラスチックの供給開始から約27時間後、定常状態に達した。
ガス輸送管9を通過するガス状物質の成分分析を行うとともに、LHVを求めた。また、油分還流管11から油状物質を一定時間抜き出して油状物質の還流量を定量した。この発明例における操業条件を表11に、ガス状物質の生成量、組成及びLHVを表12にそれぞれ示す。
The fluidized bed type reactor A is preheated to 600 ° C. by the heater 7, and a mixed gas (g) is introduced into the reactor A, and 880 kg of waste plastic crushed into particles as a model substance of waste plastic is used. It was supplied at / hr and heated to the planned reaction temperature of 620 ° C. After reaching 620 ° C., the thermal decomposition treatment of the waste plastic was continued for 10 days. At this time, the oily substance separated by the separation device B was returned to the reactor A after removing the water content by the water removal device D. The reaction state reached a steady state about 27 hours after the start of supply of waste plastic.
The components of the gaseous substance passing through the gas transport pipe 9 were analyzed, and the LHV was determined. Further, the oily substance was extracted from the oil reflux pipe 11 for a certain period of time, and the amount of reflux of the oily substance was quantified. Table 11 shows the operating conditions in this invention example, and Table 12 shows the amount of gaseous substance produced, the composition, and the LHV.

この比較例では、油状物質を反応器A内の流動層f内へ吹込むことなく反応器Aの上部(流動層fの上方の空間)に還流させているため、ほぼ全量をガス状物質として回収できたものの、油状物質の還流量は3500kg/hrと非常に多く、油状物質の還流に大きな設備的負担(費用)が必要となった。 In this comparative example, since the oily substance is refluxed to the upper part of the reactor A (the space above the fluidized bed f) without being blown into the fluidized bed f in the reactor A, almost the entire amount is treated as a gaseous substance. Although it was recovered, the amount of reflux of the oily substance was very large at 3500 kg / hr, and a large equipment burden (cost) was required for the reflux of the oily substance.

Figure 0006777110
Figure 0006777110

Figure 0006777110
Figure 0006777110

A 反応器
B 分離装置
C 吹込み管
D 水分除去装置
E 供給手段
F 供給手段
1 分散板
2 風箱
3 ガス供給管
4 供給管
5 貯留槽
6 定量切出装置
7 ヒーター
8 ガス取出管
9 ガス輸送管
10 油分輸送管
11 油分還流管
12 水供給管
13 ノズル
14 比重分離槽
15 水回収バルブ
16 水回収管
17 ガス分岐管
18 冷却水供給管
20 単管
21 内管
22 外管
23 管体
f 流動層
A Reactor B Separator C Blow-in pipe D Moisture removal device E Supply means F Supply means 1 Dispersion plate 2 Air box 3 Gas supply pipe 4 Supply pipe 5 Storage tank 6 Quantitative cutting device 7 Heater 8 Gas take-out pipe 9 Gas transport Pipe 10 Oil transport pipe 11 Oil recirculation pipe 12 Water supply pipe 13 Nozzle 14 Specific gravity separation tank 15 Water recovery valve 16 Water recovery pipe 17 Gas branch pipe 18 Cooling water supply pipe 20 Single pipe 21 Inner pipe 22 Outer pipe 23 Pipe body f Flow layer

Claims (10)

流動化ガスとして少なくとも水素及び二酸化炭素を含む混合ガス(g)が導入される流動層式の反応器(A)において、有機物質を混合ガス(g)と接触させることにより熱分解させる方法であって、
反応器(A)から取り出された有機物質の熱分解生成物のうち、常温で液体である熱分解生成物(x)の少なくとも一部を、液体の状態で、反応器(A)の側壁部を貫通して設置された吹込み管(C)を通じて流動層(f)内に吹き込み、反応器(A)内で熱分解させるにあたり、
流動化ガスとして反応器(A)に導入される混合ガス(g)の一部を、液状の熱分解生成物(x)とともに吹込み管(C)を通じて流動層(f)内に吹き込むことを特徴とする有機物質の熱分解方法。
In a fluidized bed type reactor (A) in which a mixed gas (g) containing at least hydrogen and carbon dioxide is introduced as a fluidized gas, a method of thermally decomposing an organic substance by contacting it with the mixed gas (g). hand,
Of the pyrolysis products of organic substances taken out from the reactor (A), at least a part of the pyrolysis product (x) which is liquid at room temperature is in a liquid state, and the side wall portion of the reactor (A). In order to blow into the fluidized bed (f) through the blow pipe (C) installed through the reactor and thermally decompose it in the reactor (A) .
A part of the mixed gas (g) introduced into the reactor (A) as a fluidized gas is blown into the fluidized bed (f) together with the liquid pyrolysis product (x) through the blowing pipe (C). A characteristic method for thermally decomposing organic substances.
吹込み管(C)が単管構造又は内管と外管からなる二重管構造を有し、単管構造を有する吹込み管(C)の場合には、混合ガス(g)と液状の熱分解生成物(x)を単管から混合状態で吹き込み、二重管構造を有する吹込み管(C)の場合には、内管と外管のうちの一方から混合ガス(g)を、他方から液状の熱分解生成物(x)を、それぞれ吹き込むことを特徴とする請求項に記載の有機物質の熱分解方法。 In the case of the blow pipe (C) having a single pipe structure or a double pipe structure composed of an inner pipe and an outer pipe and having a single pipe structure, the mixed gas (g) and the liquid The thermal decomposition product (x) is blown from a single pipe in a mixed state, and in the case of a blow pipe (C) having a double pipe structure, a mixed gas (g) is blown from one of the inner pipe and the outer pipe. The method for thermally decomposing an organic substance according to claim 1 , wherein a liquid thermal decomposition product (x) is blown from the other side. 吹込み管(C)の設置高さよりも上部側の領域での反応器内空塔速度をu(m/sec)、下部側の領域での反応器内空塔速度をu*(m/sec)とした場合、吹込み管(C)を通じて反応器(A)内に吹き込む混合ガス(g)の流速u(m/sec)を、下記(1)式及び(2)式を満足するように制御することを特徴とする請求項1又は2に記載の有機物質の熱分解方法。
≧u …(1)
*≧u/2 …(2)
The reactor space velocity in the area above the installation height of the blow pipe (C) is u 0 (m / sec), and the reactor space velocity in the area below is u * (m / m / sec). When sec) is set, the flow velocity u L (m / sec) of the mixed gas (g) blown into the reactor (A) through the blow pipe (C) satisfies the following equations (1) and (2). The method for thermally decomposing an organic substance according to claim 1 or 2 , wherein the method is controlled in such a manner.
u L ≧ u 0 … (1)
u * ≧ u 0 /2… (2)
有機物質が廃プラスチック、含油スラッジ、廃油、バイオマスの中から選ばれる1種以上であることを特徴とする請求項1〜に記載の有機物質の熱分解方法。 The method for thermally decomposing an organic substance according to claim 1 to 3 , wherein the organic substance is one or more selected from waste plastic, oil-containing sludge, waste oil, and biomass. 混合ガス(g)は、さらに水蒸気を含むことを特徴とする請求項1〜のいずれかに記載の有機物質の熱分解方法。 The method for thermally decomposing an organic substance according to any one of claims 1 to 4 , wherein the mixed gas (g) further contains water vapor. 混合ガス(g)は、水蒸気濃度が20〜70vol%、水素濃度が10〜40vol%、二酸化炭素濃度が10〜40vol%であることを特徴とする請求項に記載の有機物質の熱分解方法。 The method for thermally decomposing an organic substance according to claim 5 , wherein the mixed gas (g) has a water vapor concentration of 20 to 70 vol%, a hydrogen concentration of 10 to 40 vol%, and a carbon dioxide concentration of 10 to 40 vol%. .. 請求項1〜のいずれかに記載の熱分解方法において生成した、常温で気体である熱分解生成物を有用ガス状物質として回収することを特徴とするガス状物質の製造方法。 A method for producing a gaseous substance, which comprises recovering a pyrolysis product which is a gas at room temperature as a useful gaseous substance, which is produced by the thermal decomposition method according to any one of claims 1 to 6 . 流動化ガスとして少なくとも水素及び二酸化炭素を含む混合ガス(g)が導入される流動層式の反応器であって、有機物質を混合ガス(g)と接触させることにより熱分解させる反応器(A)と、
該反応器(A)から排出された、有機物質の熱分解生成物を含むガス(g)を常温又は常温近傍まで冷却し、ガス(g)に含まれる有機物質の熱分解生成物の一部を液化させてガス(g)から分離する分離装置(B)と、
反応器(A)の側壁部を貫通して設置され、分離装置(B)でガス(g)から分離された液状の熱分解生成物(x)の少なくとも一部を流動層(f)内に吹き込む吹込み管(C)と、
流動化ガスとして反応器(A)に導入される混合ガス(g)の一部を吹込み管(C)に供給する供給手段(F)を有し、
該供給手段(F)で吹込み管(C)に供給された混合ガス(g)が、液状の熱分解生成物(x)とともに流動層(f)内に吹き込まれるようにしたことを特徴とする有機物質の熱分解設備。
A fluidized bed reactor in which a mixed gas (g) containing at least hydrogen and carbon dioxide is introduced as a fluidized gas, and a reactor (A) that thermally decomposes an organic substance by contacting it with the mixed gas (g). )When,
The reactor (A) discharged from the gas containing pyrolysis products of the organic substance (g p) and cooled to room temperature or ambient temperature near the thermal decomposition products of organic substances contained in the gas (g p) a separation device by liquefying a portion separated from the gas (g p) (B),
The reactor (A) is installed through the side wall portion of the separation device (B) in a fluidized bed at least a portion of the gas (g p) thermal decomposition products of the liquid separated from the (x) (f) the a blow tube (C) blown into,
It has a supply means (F) for supplying a part of the mixed gas (g) introduced into the reactor (A) as a fluidized gas to the blow pipe (C).
The mixed gas (g) supplied to the blow pipe (C) by the supply means (F) is blown into the fluidized bed (f) together with the liquid pyrolysis product (x). Pyrolysis equipment for organic substances.
分離装置(B)が散水式の装置からなる熱分解設備であって、
さらに、分離装置(B)で分離された液状の熱分解生成物(x)から水分を除去する水分除去装置(D)と、該水分除去装置(D)で水分が除去された液状の熱分解生成物(x)の少なくとも一部を吹込み管(C)に供給する供給手段(E)を有することを特徴とする請求項に記載の有機物質の熱分解設備。
The separation device (B) is a pyrolysis facility consisting of a sprinkler type device.
Further, a water removing device (D) for removing water from the liquid thermal decomposition product (x) separated by the separating device (B) and a liquid thermal decomposition in which the water is removed by the water removing device (D). The pyrolysis facility for an organic substance according to claim 8 , further comprising a supply means (E) for supplying at least a part of the product (x) to the blow pipe (C).
吹込み管(C)が単管構造又は内管と外管からなる二重管構造を有し、単管構造を有する吹込み管(C)の場合には、混合ガス(g)と液状の熱分解生成物(x)が単管から混合状態で吹き込まれ、二重管構造を有する吹込み管(C)の場合には、内管と外管のうちの一方から混合ガス(g)が、他方から液状の熱分解生成物(x)が、それぞれ吹き込まれるようにしたことを特徴とする請求項8又は9に記載の有機物質の熱分解設備。 In the case of the blow pipe (C) having a single pipe structure or a double pipe structure composed of an inner pipe and an outer pipe and having a single pipe structure, the mixed gas (g) and the liquid In the case of a blown pipe (C) having a double pipe structure in which the thermal decomposition product (x) is blown from a single pipe in a mixed state, the mixed gas (g) is emitted from one of the inner pipe and the outer pipe. The thermal decomposition equipment for organic substances according to claim 8 or 9 , wherein a liquid thermal decomposition product (x) is blown from the other side.
JP2018032375A 2018-02-26 2018-02-26 Pyrolysis method and equipment for organic substances Active JP6777110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018032375A JP6777110B2 (en) 2018-02-26 2018-02-26 Pyrolysis method and equipment for organic substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018032375A JP6777110B2 (en) 2018-02-26 2018-02-26 Pyrolysis method and equipment for organic substances

Publications (2)

Publication Number Publication Date
JP2019147871A JP2019147871A (en) 2019-09-05
JP6777110B2 true JP6777110B2 (en) 2020-10-28

Family

ID=67850202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018032375A Active JP6777110B2 (en) 2018-02-26 2018-02-26 Pyrolysis method and equipment for organic substances

Country Status (1)

Country Link
JP (1) JP6777110B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI130263B (en) * 2020-08-20 2023-05-19 Teknologian Tutkimuskeskus Vtt Oy Method and process arrangement for producing hydrocarbons and use

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4648794B2 (en) * 2005-08-05 2011-03-09 新日鉄エンジニアリング株式会社 Gasification gas purification method and apparatus
JP4540628B2 (en) * 2006-03-16 2010-09-08 三井造船株式会社 Waste gasifier
JP5835006B2 (en) * 2012-02-27 2015-12-24 Jfeスチール株式会社 Organic substance gasification method and organic substance gasification apparatus
JP6227293B2 (en) * 2012-07-18 2017-11-08 Jfeスチール株式会社 Method for reducing the molecular weight of organic substances

Also Published As

Publication number Publication date
JP2019147871A (en) 2019-09-05

Similar Documents

Publication Publication Date Title
KR100445363B1 (en) Waste treatment apparatus and method through vaporization
US6333015B1 (en) Synthesis gas production and power generation with zero emissions
US20100156104A1 (en) Thermal Reduction Gasification Process for Generating Hydrogen and Electricity
KR101643792B1 (en) Two stage dry feed gasification system and process
EP3808830B1 (en) Double-melt bath organic solid waste blowing gasification device
US20150152344A1 (en) Melt gasifier system
JP6070580B2 (en) Method and system for reducing the molecular weight of organic substances
JP5999114B2 (en) Method and system for reducing the molecular weight of organic substances
JP6777110B2 (en) Pyrolysis method and equipment for organic substances
CN104136580B (en) The degraded method of organic substance
US4078914A (en) Gasification of coal and refuse in a vertical shaft furnace
AU2012100987A4 (en) Containerized Gassifier System
JP6638661B2 (en) Organic substance pyrolysis method and pyrolysis equipment
JP6369694B2 (en) Method for reducing molecular weight of organic substance and facility for reducing molecular weight
Sergeev et al. Gasification and plasma gasification as type of the thermal waste utilization
JP6540645B2 (en) Method and apparatus for thermal decomposition of organic substance
JP4734776B2 (en) Organic or hydrocarbon waste recycling method and blast furnace equipment suitable for recycling
JPH10148317A (en) Furnace and method for gasification of wastes
JP2007224206A (en) Method for forming high-calorie gas
JP5906805B2 (en) How to operate a blast furnace or steelworks
JP6904388B2 (en) Pyrolysis method of organic substances
JP6369693B2 (en) Method for reducing molecular weight of organic substance and facility for reducing molecular weight
EP3186342B1 (en) Msw plasma gasification reactor
JP5569666B2 (en) Fuel gas reforming method
JPH11263980A (en) Treatment of waste plastic with coke oven

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200921

R150 Certificate of patent or registration of utility model

Ref document number: 6777110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250