WO2023027179A9 - Vertical-type furnace system and method and other system and method for achieving sdgs and biocarbon neutrality - Google Patents

Vertical-type furnace system and method and other system and method for achieving sdgs and biocarbon neutrality Download PDF

Info

Publication number
WO2023027179A9
WO2023027179A9 PCT/JP2022/032239 JP2022032239W WO2023027179A9 WO 2023027179 A9 WO2023027179 A9 WO 2023027179A9 JP 2022032239 W JP2022032239 W JP 2022032239W WO 2023027179 A9 WO2023027179 A9 WO 2023027179A9
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
biomass
vertical furnace
vertical
gas
Prior art date
Application number
PCT/JP2022/032239
Other languages
French (fr)
Japanese (ja)
Other versions
WO2023027179A8 (en
WO2023027179A1 (en
Inventor
正一 久米
Original Assignee
一般財団法人科学技術振興育英財団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般財団法人科学技術振興育英財団 filed Critical 一般財団法人科学技術振興育英財団
Publication of WO2023027179A1 publication Critical patent/WO2023027179A1/en
Publication of WO2023027179A9 publication Critical patent/WO2023027179A9/en
Publication of WO2023027179A8 publication Critical patent/WO2023027179A8/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel

Definitions

  • the present invention relates to a vertical furnace system using biomass and other raw materials and a method of using the vertical furnace.
  • Japanese Patent No. 6206822 two or more vertical furnaces are connected in series, the first vertical furnace is called “fore-furnace 1", and the furnaces after the first vertical furnace are called “post-furnace 2". , and a multi-stage vertical furnace system with a pressure control system that raises the outlet outflow gas pressure of the forehearth to +49.03 Pa or more and +88257.42 Pa or less than the pressure inside the afterfurnace.
  • Japanese Patent Application Laid-Open No. 2009-46726 discloses that in an arc furnace steelmaking method in which a cold iron source 9 such as iron scrap is melted in an arc furnace 1 to produce molten steel, it is a carbide obtained by dry distillation of coconut husks of coconut palms or oil palms. , the use of a carbide having a bulk density of 0.50 tons/m 3 or more on a dry basis and a fixed carbon content of 75% by mass or more on a dry basis as an auxiliary fuel or recarburizer is described.
  • Japanese Unexamined Patent Application Publication No. 2010-265485 includes a melting chamber 2 and a shaft-shaped preheating chamber 3 directly connected to the upper portion of the melting chamber 2. Exhaust gas generated in the melting chamber 2 is introduced into the preheating chamber 3 for preheating.
  • the method of operating the arc furnace is used, characterized in that the carbon concentration of the molten metal discharged from the arc furnace 1 is 1 mass% or more. Further, it is described that it is preferable to add a carbonaceous material to the melting chamber 2 and that the carbonaceous material added to the melting chamber 2 is derived from biomass.
  • biomass A is carbonized to produce biomass coal D having a hard glove grindability index (HGI) of 45 or more, and a mixture of the biomass coal D and coal B is pulverized and pulverized. and blowing the pulverized material from the tuyere 15 into the blast furnace 14 as an auxiliary reducing material. It is described that it is preferable to produce biomass charcoal D by dry distillation for a time of 30 minutes or longer.
  • HGI hard glove grindability index
  • Conventional vertical furnaces for refining iron include the blast furnace shown in FIG. 1 of Japanese Patent No. 6206822, the cupola shown in FIG. 2, the fluidized bed shown in FIG.
  • waste treatment furnaces including electric furnaces
  • hydrogen reduction iron smelting furnaces have used.
  • the exhaust gas discharged from the upper part of the vertical furnace which may contain CO2
  • the exhaust gas discharged from the upper part of the vertical furnace may be accompanied by metal oxides, incineration ash, oxidized melts, etc., and toxic substances that may be contained therein. .
  • the high-temperature melt that flows out from the bottom of conventional fluidized beds, gasification melting furnaces, waste treatment furnaces (electric furnaces), etc. may contain harmful metal oxides.
  • Biomass has been converted into energy in the past, but the water in biomass has been discharged into the atmosphere as steam as an unnecessary waste.
  • the charcoalization of biomass most of the liquid components such as lignin in the biomass were released into the atmosphere as H 2 .
  • the solid content in biomass has been released as an effluent called digestive fluid together with water in biomass.
  • the purpose of the present invention is to provide a vertical furnace system and a method of using a vertical furnace that can obtain energy resources by using biomass and other raw materials and contribute to solving global environmental problems.
  • the present invention can be expressed, for example, as follows.
  • a vertical furnace whose height is 1.5 times or more the diameter or equivalent diameter of the lower part of the furnace inside the furnace; Equipped with a charging device for charging biomass or biomass and non-biomass material into the vertical furnace from the upper part of the vertical furnace or above the lower part of the furnace,
  • the vertical furnace system wherein the biomass and non-biomass materials charged into the vertical furnace by the charging device are 15 to 100% by mass of the biomass and 0 to 85% by mass of the remaining non-biomass materials.
  • a vertical furnace Inside the furnace, a vertical furnace whose height is 1.5 times or more the diameter or equivalent diameter of the lower part of the furnace is charged with biomass or biomass and non-biomass materials from the upper part of the vertical furnace or above the lower part of the furnace. process and a step of processing the input biomass or biomass and non-biomass material in the vertical furnace; A method of using a vertical furnace, wherein the biomass and non-biomass materials charged into the vertical furnace are 15 to 100% by mass of the biomass and 0 to 85% by mass of the non-biomass material as the balance.
  • biomass and other raw materials can be processed to obtain energy resources and contribute to solving global environmental problems.
  • FIG. 4 is a schematic cross-sectional view of a vertical furnace operating state
  • FIG. 3 is a diagram showing an example of the relationship between the maximum temperature in the lower part of a vertical furnace (horizontal axis) and the concentration of hydrogen gas in the upper furnace gas (vertical axis).
  • FIG. 4 is a diagram showing an example of the relationship between the ratio of the height inside the vertical furnace to the diameter of the lower part of the furnace (horizontal axis) and the concentration of hydrogen gas in the upper furnace gas (vertical axis).
  • FIG. 2 is a diagram showing an example of the relationship between the maximum temperature in the lower part of a vertical furnace (horizontal axis) and the metal iron ratio (% by mass) in the melt (vertical axis).
  • FIG. 3 is a diagram showing an example of the relationship between the maximum temperature in the lower part of a vertical furnace (horizontal axis) and the concentration of hydrogen gas in the upper furnace gas (vertical axis).
  • FIG. 4 is a diagram showing an example of the
  • FIG. 2 is a diagram showing an example of the relationship between the ratio of the height inside the vertical furnace to the diameter of the bottom of the furnace (horizontal axis) and the metal iron ratio (mass %) in the melt (vertical axis).
  • FIG. 4 is a front view showing another example of a vertical furnace;
  • FIG. 5 is a front view showing still another example of the vertical furnace;
  • FIG. 5 is a front view showing still another example of the vertical furnace;
  • FIG. 4 is a diagram showing changes in the oxidation reaction zone and the reduction reaction zone depending on the furnace temperature in the reaction of carbon C in biomass and non-biomass material charged into a vertical furnace.
  • the vertical furnace system of the present invention comprises a vertical furnace and a charging device for charging biomass and non-biomass into the vertical furnace.
  • a method of using a vertical furnace includes the steps of charging biomass and non-biomass material into the vertical furnace, and processing the biomass or the biomass and non-biomass material in the vertical furnace.
  • Biomass and non-biomass materials can act as an energy source for melting iron oxides and metal oxides, and as a reducing agent for those metal oxides.
  • a vertical furnace is a furnace whose height inside the furnace is 1.5 times or more the diameter or equivalent diameter (if the horizontal cross-sectional shape is other than circular) of the lower part of the furnace (for example, the hearth, the hearth, or the upper part thereof) is.
  • Examples of vertical furnaces include blast furnaces, cupolas, fluidized bed shaft furnaces, vertical gasification melting furnaces, waste treatment furnaces (including electric furnaces), hydrogen reduction iron smelting furnaces, etc.
  • Examples include, but are not limited to, blast furnaces for producing molten iron and furnaces for producing various types of pig iron.
  • biomass in the present invention examples include vegetable husks (such as rice husks), bamboo, broad leaves, needles, root stumps, thick trees, thinned wood, waste wood from forest trees, decayed wood from forests and other waste plants, and waste wood. , bark and offcuts generated in wood factories, furniture lumber, tatami mats, waste paper materials, plant-derived substances adhering to metals and soil, food residues, waste food, cow dung, horse dung, and other livestock Excrement, human feces, sedimentary biomass deposited on the bottom of dams, lakes, ponds, rivers, paddy fields, fields, oceans, etc., dumped sediment, biological substances mixed with sediment, etc., but not limited to these. do not have.
  • Such biomass can be fed into the vertical furnace individually or in combination of two or more.
  • the biomass to be fed into the vertical furnace in the present invention may be not only solids substantially free of water or other liquids, but also biomass containing or accompanied by water or other liquids. It may be mixed with other liquids, metals, metal oxides, mud, earth, stone, brick dust, glass or gas.
  • the biomass to be put into the vertical furnace in the present invention before the biomass is put into the furnace, if it contains water, the amount of water is reduced, or it is dried, carbonized, or reduced to a predetermined size or less in advance (for example, it does not require pretreatment such as chopping, agglomeration or pelletization.
  • the non-biomass material is charged into the vertical furnace in an amount of 0 to 85% by mass (or 0 to 70% by mass), which is the balance of 15 to 100% by mass (or 30 to 100% by mass) of the biomass. For example, 30% by mass of biomass and 70% by mass of non-biomass material can be charged into a vertical furnace.
  • the non-biomass material preferably includes a carbon-containing fuel material that can act as a reducing agent.
  • non-biomass materials include: Fossil raw materials such as coke, coal/heavy oil/kerosene/light oil, natural gas, peat or other low grade coal, low grade petroleum residues; solid or solid or liquid petroleum- and/or coal-based substances such as plastics and tires, including packaging made of various plastic materials; various carbonaceous materials; Metals in various metal products, electrical products made of metal materials, etc.; Dirt, dirt, stones, brick shavings, glass, etc.; and water contained in or associated with non-biomass materials such as those described above, and other water. Such non-biomass materials can be fed into the vertical furnace individually or in combination of two or more.
  • non-biomass materials to be input in the case of a vertical furnace for iron refining include: Fossil fuels such as coke coal; Iron ore, metals, iron molds, scrap iron, sponge iron and other metal oxides; Limestone can be mentioned as an auxiliary raw material, but it is not limited to these.
  • the input biomass is 15 to 100% by mass (e.g., as a percentage in the input amount per fixed time or as a percentage in a fixed volume or mass), and the input non-biomass material is the balance 0 to 100%. 85% by weight (eg, as a percentage of the input per unit time or as a percentage of the volume or mass).
  • Input of biomass and non-biomass materials is, for example, input using various conveying devices such as conveyors and / or chutes (including turning chutes), etc., or using pipelines and necessary pumps, valves, etc. Liquids, gases, and other fluids/semi-liquids can be introduced.
  • biomass can be mixed with coal and/or coke, which are non-biomass substances, and other necessary substances, and charged or swirled from the top of the furnace and/or the upper part of the vertical furnace. It is also possible to separate the charging of coal and/or coke, which is a biomass material, from the charging of biomass (separate charging).
  • coal and/or coke which is a biomass material
  • Such mixed charging and separate charging can be performed while being controlled by a charging amount control device.
  • non-biomass materials such as iron ore, sintered pellets, reduced iron, die pig iron, and scrap are charged, they can be mixed with biomass or mixed with coal and/or coke.
  • the type and content of the contained materials are analyzed as necessary, and input amount control equipment using computers, etc. (For example, control such as increase/decrease of input amount per unit time, control of start/stop of input, etc.) can be performed. It suffices to analyze the types and contents of the contained substances within the necessary limits and with the necessary accuracy.
  • Examples of the types and amounts of substances contained in such analyzes include the amount of various solid substances, the amount of metals, mud, soil, moisture, tar, etc. in biomass or mixed with biomass, water and various other substances. Examples include amounts of liquids and semi-liquids, and amounts of various gases, but are not limited to these.
  • Control by the input amount control device is, for example, temperature sensors (thermocouples, etc.) and other necessary various sensors (for example, hydrogen concentration sensors, carbon monoxide concentration sensors, Based on the data acquired by the image sensor), for example, the temperature at a predetermined location such as the bottom or top of the vertical furnace, the temperature distribution in a predetermined range, the hydrogen concentration at a predetermined location, the carbon monoxide concentration, etc. It can be done to understand the operational status of the system and control them.
  • the amount of various solids, moisture or other liquids in biomass or non-biomass material, or the amount of various gases can be provided with an input amount control device that controls each.
  • an input amount control device that controls each.
  • a lower furnace temperature control device and a furnace top temperature control device described below can be realized.
  • the charging device based on the temperature detected by the temperature sensor in the lower part of the vertical furnace, the charging device is installed so that the required type and amount of biomass or non-biomass material is charged into the vertical furnace from the required location. Controlling dosage controllers may be mentioned.
  • a charging device is installed so that the required type and amount of biomass or non-biomass material is charged into the vertical furnace from the required location. Controlling dosage controllers may be mentioned.
  • a gas ignition burner or other device for supplementally raising the temperature in the furnace may be provided at a required location of the vertical furnace as a device that can constitute at least a part of the lower furnace temperature control device and the furnace top temperature control device.
  • a gas igniter may be provided.
  • the temperature inside the furnace can be increased supplementarily.
  • the combusted gas becomes reduced gas in a furnace under a reducing atmosphere (a certain range or a wide range of the furnace can be a reducing atmosphere, as described later).
  • hydrogen gas is combusted into water vapor in a furnace, and hydrogen gas is generated from the water vapor in a furnace under a reducing atmosphere.
  • Carbon monoxide gas is burned into carbon dioxide in the furnace, and carbon monoxide gas is generated from the carbon dioxide in the furnace under a reducing atmosphere.
  • Air or other oxygen-containing gas (heated as necessary) can be blown into the upper part of the lower part of the furnace at the required flow rate.
  • the maximum temperature of at least a part of the inside of the lower part of the vertical furnace is 1. Smelting reduction of metal oxide when it has metal oxide 2. Generation of hydrogen gas by reduction of water when it is present 3. 1 or 2 or more (preferably 1 and 2, 2 and 3, or 1 and 3 or 1 to 3 all) of the 3 of the production of carbon monoxide gas by reduction of oxycarbide when it has oxycarbide It may have a lower furnace temperature control device to maintain the high temperature possible.
  • the present invention further provides for controlling the temperature of at least a part of the inside of the top of the vertical furnace (for example, a part in a certain range in the radial direction and / or the height direction) to a required temperature of normal temperature (equivalent to the ambient air temperature) or higher It may have a furnace top temperature control device.
  • the furnace lower part temperature control device for example, can set the maximum temperature of at least a part of the inside of the furnace lower part of the vertical furnace to 1050 to 1280 ° C. (1050 ° C. or 1280 ° C., or a temperature between them ) to maintain above.
  • the furnace top temperature control device can control, for example, the temperature of at least a part of the inside of the top of the vertical furnace to a required temperature of 1000 to 1050° C. or higher from room temperature.
  • the temperature can be controlled to any temperature between normal temperature and 1000 to 1050° C. or within a certain range, but the temperature is not limited to this.
  • the lower limit of the range of 1000 to 1050°C above room temperature is, for example, room temperature, 40°C, 60°C, 80°C, 100°C, 120°C, 150°C, 200°C, 300°C, or 400°C.
  • the upper limit is, for example, 60°C, 80°C, 100°C, 120°C, 150°C, 200°C, 300°C, 400°C, 500°C, 600°C, 800°C, 1000°C, and 1050°C. but not limited to these.
  • the reaction between carbon (C) and oxygen (O 2 ) is The oxidation reaction (exothermic reaction) due to the burning of biomass becomes an endothermic reaction when the temperature exceeds about 1050°C to 1280°C, and a reduction reaction occurs in which CO2 reacts with carbon.
  • other substances such as water ( H2O ) can also cause a reduction reaction between H2 and CO to produce high-concentration hydrogen gas, or convert CO2 to CO It is possible to produce an energy gas such as charcoal, or to make products with a high degree of graphitization such as charcoal.
  • the incinerated ash and foreign matter in the biomass are melted or reduced and melted in this high temperature part to become metal, and reduced slag is obtained.
  • metallic iron is obtained from iron oxide, metallic tin from tin oxide, metallic lead from lead oxide, and metallic copper from copper oxide, and the energy gas CO is obtained. ).
  • incineration ash that is, industrial waste containing metal oxides
  • This reduced slag is not an industrial waste that requires treatment costs, but can be recycled as a raw material for cement or used as an agricultural material that contains mineral components necessary for plant growth.
  • FIG. 1 shows high hydrogen gas using biomass or biomass and non-biomass substances (hereinafter also referred to as “biomass etc.”) by a vertical furnace 10 whose height is 1.5 times or more the diameter of the lower furnace part 10a. (Hydrogen-rich gas) and metallic iron manufacturing processes (not excluding other manufacturing processes).
  • Biomass or the like having a water content of 15 to 60% by mass (30% by mass of biomass, 70% by mass of non-biomass containing iron oxide) is charged into the vertical furnace 10 from the furnace top 10t.
  • the blank part around the letters "bio boiler" in the upper part of the vertical furnace 10 shown in FIG. Also, there is biomass and the like introduced from the furnace top 10t.
  • the biomass or the like (in-furnace input 50) introduced from the furnace top 10t is gradually lowered to the lower furnace 10a while the temperature is raised in the furnace, and at one or more locations in the furnace of the lower furnace 10a.
  • the biomass itself is heated to 1050° C. to 1280° C. or above as all or part of the energy source in a combustion control zone having a depth (including stages).
  • the hydrogen (H 2 ) concentration in the gas in the upper furnace portion 10u sharply increases.
  • the hydrogen (H 2 ) concentration in the gas in the furnace upper portion 10u can reach a high concentration of 5% or higher.
  • the furnace height ratio (furnace height/hearth diameter), which is the ratio of the furnace height to the diameter of the lower furnace part 10a inside the furnace, is about 1.5 or more
  • the upper part of the furnace The hydrogen (H 2 ) concentration in the 10 u gas increases and moves from the oxidation zone to the reduction zone.
  • the furnace height ratio is about 1.5 to 1.8 or more
  • the hydrogen (H 2 ) concentration in the gas in the furnace upper portion 10u further increases to a high concentration of 5% or more, forming a reduction zone.
  • the metal iron ratio in the melt inside the furnace lower portion 10a increases.
  • the metallic iron ratio in the melt inside the furnace lower portion 10a can be about 15% or more.
  • the metal iron ratio in the melt inside the furnace lower portion 10a increases.
  • the metallic iron ratio in the melt inside the furnace lower part 10a can be about 15% or more.
  • the horizontal axis indicates the maximum temperature in the furnace
  • the vertical axis above the horizontal axis indicates the degree of oxidation reaction
  • the horizontal axis below indicates the degree of reduction reaction. Show degree. Therefore, the area above the horizontal axis indicates an oxidation reaction zone (combustion zone of biomass or the like), which is an exothermic reaction
  • the area below the horizontal axis indicates a reduction reaction zone (carbonization zone of biomass, etc.), which is an endothermic reaction.
  • a furnace temperature of about 950° C. to 1300° C. (for example, about 1050° C.) is the redox conversion boundary temperature of biomass or the like in the furnace.
  • the range of the Boudouard reaction is about 1500°C to 2600°C.
  • the biomass or the like (containing water) put into the furnace moves countercurrently (downward) to the gas in the furnace, and the temperature in the furnace rises from 950° C. to 1300° C., as shown in FIG.
  • the temperature is raised to about 1050° C.
  • the oxidation reaction zone shifts to the reduction reaction zone.
  • An energetic gas such as H2 is produced.
  • the residual material is not incineration ash (i.e. industrial waste), but molten reduction slag, i.e. metals (e.g. iron oxides). Recycled products such as smelted and reduced metallic iron) or raw materials for recycled products.
  • molten reduction slag i.e. metals (e.g. iron oxides).
  • Recycled products such as smelted and reduced metallic iron) or raw materials for recycled products.
  • Such reduced slag is discharged from the furnace lower part 10a (for example, the smelting-reduced slag/metal outlet 10s in FIGS. 1, 6, 7, and 8) into the vertical furnace 10 (soil, stone, brick waste, etc.). (Including substances derived from earth and sand, stones, brick waste, etc. when substances containing substances are thrown in) can be discharged in a molten state. Therefore, almost no industrial waste such as incineration ash containing metal oxide is generated.
  • the range of the oxidation reaction zone and the range of the reduction reaction zone in the furnace can be changed according to the type, content, properties, etc. of the substances contained in the input biomass. For example, if the biomass contains a high proportion of carbon (Carbon C), the extent of the oxidation reaction zone can be small or relatively small and the extent of the reduction reaction zone can be large or relatively large. Also, for example, when the biomass contains a large amount of water, the range of the oxidation reaction zone can be large or relatively large, and the range of the reduction reaction zone can be small or relatively small.
  • the vertical furnace 10 in FIG. On the outer peripheral wall portion 10w of the vertical furnace 10 in FIG. (by embedding in the wall portion 10w). In that case, it can be used as a boiler (bio-boiler) that heats water or other liquids by flowing them through the heat exchange pipes 30 or generates steam from them.
  • a boiler biological-boiler
  • the heat exchange means and its use are not limited to this example.
  • the vertical furnace 10 of the present invention includes the furnace lower part 10a, the upper part of the furnace lower part 10a (for example, the vertical middle position [furnace middle part 10m] or the vertical middle position and the upper part [furnace upper part 10u]) of the vertical furnace 10, or , from the top of the vertical furnace 10 (furnace top 10t and/or the top of the vertical furnace 10 located below the furnace top 10t), H 2 (hydrogen gas), CO (carbon monoxide gas), their Energy gas such as mixed gas (which may contain other gas such as nitrogen gas) can be recovered.
  • H 2 hydrogen gas
  • CO carbon monoxide gas
  • their Energy gas such as mixed gas (which may contain other gas such as nitrogen gas) can be recovered.
  • Figures 1, 6, 7 and 8 show an example and position (Figure 1) of the gas outlet 10g for energy gas recovery.
  • the gas outlet can also be provided at positions other than these.
  • a gas ignition burner 10v is provided at a position equivalent to the inlet 10h or the gas outlet 10g in FIGS.
  • the vertical furnace 10 (countercurrent moving furnace) of the present invention uses biomass to produce a high hydrogen gas (hydrogen-rich gas) with a concentration (volumetric concentration) of 5% or more hydrogen gas and 0.5% or less oxygen gas. It is preferable to be able to generate
  • High-concentration H 2 and/or CO gas should be removed by providing a gas outlet in the bottom furnace 10a. Therefore, it is desirable to take out from the furnace lower part 10a. High-concentration hydrogen gas is also useful for ammonia production.
  • the biomass and the non-biomass material (in the input material including the biomass and the non-biomass material) to be put into the vertical furnace 10 can contain water at a predetermined ratio.
  • the proportion of water in the input can be, for example, 15 to 60% by weight, 20 to 60% by weight, 25 to 60% by weight, 30 to 60% by weight, or 40 to 60% by weight. It should be noted that it is not necessary for any portion of the input material to have this moisture ratio. is sufficient as long as it has
  • the moisture content of the input to the vertical furnace 10 for example, moisture control by moisture-containing biomass or other input moisture
  • the moisture content (H 2 O) for example, the concentration and amount of hydrogen gas (H 2 ) produced by reduction from water (H 2 O).
  • the control of the moisture content of the materials charged into the vertical furnace 10 can be performed, for example, by the above-described charging amount control device.
  • iron oxide (or other metal oxide) in the in-furnace input 50 is refined (or refined) into metallic iron (or other metal) by the hydrogen gas (H 2 ) produced. control) is also possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Provided is a vertical-type furnace system provided with, in the inside thereof, a vertical-type furnace having a height that is 1.5 times or more larger than the diameter of the lower part of the furnace and a charging device for charging 15 to 100% by mass of a water-containing biomass and the remainder thereof, i.e., 0 to 85% by mass of a non-biomass substance, into the vertical-type furnace from an upper part of the vertical-type furnace. Also provided is a method for using a vertical-type furnace, the method comprising a step for charging 15 to 100% by mass of a water-containing biomass and the remainder thereof, i.e., 0 to 85% by mass of a non-biomass substance, into a vertical-type furnace from an upper part of the vertical-type furnace in the inside of the furnace, in which the vertical-type furnace has a height that is 1.5 times or more larger than the diameter of the lower part of the furnace.

Description

[規則91に基づく訂正 27.03.2023]SDGs及びバイオカーボンニュートラル実現のための竪型炉システム及び方法並びにその他のシステム及び方法[Correction based on Regulation 91 27.03.2023] Vertical furnace systems and methods and other systems and methods for achieving SDGs and biocarbon neutrality
 本発明は、バイオマス及びその他の原料等を用いる竪型炉システム及び竪型炉の使用方法に関する。 The present invention relates to a vertical furnace system using biomass and other raw materials and a method of using the vertical furnace.
 特許第6206822号公報には、竪型炉を2基以上の複数基で直列につなぎ、最初の竪型炉を「前炉1」とし、最初の竪型炉以降の炉を「後炉2」とし、その前炉の出口流出ガス圧力を後炉の炉内圧力よりも+49.03Pa以上、+88257.42Pa以下と高める圧力制御システムの多段竪型炉システムが開示されている。 In Japanese Patent No. 6206822, two or more vertical furnaces are connected in series, the first vertical furnace is called "fore-furnace 1", and the furnaces after the first vertical furnace are called "post-furnace 2". , and a multi-stage vertical furnace system with a pressure control system that raises the outlet outflow gas pressure of the forehearth to +49.03 Pa or more and +88257.42 Pa or less than the pressure inside the afterfurnace.
 特開2009-46726号公報には、アーク炉1で鉄スクラップなどの冷鉄源9を溶解して溶鋼を製造するアーク炉製鋼方法において、ココナツヤシまたはアブラヤシのヤシガラを乾溜して得られる炭化物であって、無水ベースでのかさ密度が0.50トン/m3以上で且つ無水ベースでの固定炭素分が75質量%以上である炭化物を、補助燃料または加炭材として使用することが記載されている。 Japanese Patent Application Laid-Open No. 2009-46726 discloses that in an arc furnace steelmaking method in which a cold iron source 9 such as iron scrap is melted in an arc furnace 1 to produce molten steel, it is a carbide obtained by dry distillation of coconut husks of coconut palms or oil palms. , the use of a carbide having a bulk density of 0.50 tons/m 3 or more on a dry basis and a fixed carbon content of 75% by mass or more on a dry basis as an auxiliary fuel or recarburizer is described. there is
 特開2010-265485号公報には、溶解室2と、溶解室2の上部に直結するシャフト型の予熱室3とを具備し、溶解室2で発生する排ガスを予熱室3に導入して予熱室3内の冷鉄源15を予熱するアーク炉1を用い、冷鉄源15が予熱室3と溶解室2とに存在する状態を保つように冷鉄源15を予熱室3へ供給しながら、溶解室2でアーク加熱にて冷鉄源15を溶解する際に、アーク炉1から出湯する溶湯の炭素濃度を1mass%以上とすることを特徴とするアーク炉の操業方法を用いることが記載され、また、溶解室2内に炭材を添加すること、溶解室2内に添加する炭材がバイオマス由来であることが好ましい旨、記載されている。 Japanese Unexamined Patent Application Publication No. 2010-265485 includes a melting chamber 2 and a shaft-shaped preheating chamber 3 directly connected to the upper portion of the melting chamber 2. Exhaust gas generated in the melting chamber 2 is introduced into the preheating chamber 3 for preheating. Using the arc furnace 1 for preheating the cold iron source 15 in the chamber 3, while supplying the cold iron source 15 to the preheating chamber 3 so as to maintain the state where the cold iron source 15 exists in the preheating chamber 3 and the melting chamber 2 , when melting the cold iron source 15 by arc heating in the melting chamber 2, the method of operating the arc furnace is used, characterized in that the carbon concentration of the molten metal discharged from the arc furnace 1 is 1 mass% or more. Further, it is described that it is preferable to add a carbonaceous material to the melting chamber 2 and that the carbonaceous material added to the melting chamber 2 is derived from biomass.
 特開2011-117074号公報には、微粉炭を補助還元材として羽口から吹き込む高炉操業において、バイオマス1を2で乾留して得られるバイオマス炭3を粉砕して粉砕物を生成し、該バイオマス炭の粉砕物と微粉炭4とを羽口から吹き込むことを特徴とする高炉操業方法を用いることが記載され、また、バイオマス炭の粉砕物と微粉炭とを混合装置5で混合して羽口から吹き込むこと、バイオマス炭の粉砕物と微粉炭との揮発分濃度の合計が10mass%以上になるように羽口から吹き込むことが好ましい旨、記載されている。 In Japanese Patent Laid-Open No. 2011-117074, in a blast furnace operation in which pulverized coal is blown into a tuyere as an auxiliary reducing agent, biomass coal 3 obtained by carbonizing biomass 1 in 2 is pulverized to produce a pulverized product, and the biomass It describes using a blast furnace operating method characterized by blowing pulverized charcoal and pulverized coal 4 through a tuyere, and furthermore, pulverized biomass coal and pulverized coal are mixed in a mixing device 5 to form a tuyere. It is described that it is preferable to blow from the tuyere so that the total concentration of volatile matter of pulverized biomass coal and pulverized coal is 10 mass% or more.
 特開2011-117075号公報には、バイオマスAを乾留してハードグローブ粉砕性指数(HGI)が45以上を示すバイオマス炭Dを製造し、該バイオマス炭Dと石炭Bの混合物を粉砕して粉砕物を生成し、該粉砕物を高炉14の補助還元材として羽口15から吹き込むことを特徴とするバイオマスの高炉利用方法を用いることが記載され、また、バイオマスAを450℃以上の乾留温度、30分以上の乾留時間で乾留してバイオマス炭Dを製造することが好ましい旨、記載されている。 In Japanese Patent Laid-Open No. 2011-117075, biomass A is carbonized to produce biomass coal D having a hard glove grindability index (HGI) of 45 or more, and a mixture of the biomass coal D and coal B is pulverized and pulverized. and blowing the pulverized material from the tuyere 15 into the blast furnace 14 as an auxiliary reducing material. It is described that it is preferable to produce biomass charcoal D by dry distillation for a time of 30 minutes or longer.
 「資源循環型農業を実現するもみ殻ガス化発電システムの実証を開始」(2019年11月14日 ヤンマー株式会社)には、稲作において発生する廃棄物である籾殻を活用して熱と電気を供給するもみ殻ガス化発電システムについて開示されている。同文献に記載の技術は、入手し得なかった「籾穀ガス化発電技術」(バイオマス活用推進専門会議発表資料)[2019年3月29日ヤンマーエネルギーシステム株式会社ソリューション推進室 技術開発部ガス化グループ 脇坂 裕昭]にも記載されていた。 “Start of Demonstration of Rice Husk Gasification Power Generation System to Realize Resource Recycling Agriculture” (November 14, 2019, Yanmar Co., Ltd.) uses rice husks, which are waste generated in rice cultivation, to generate heat and electricity. A supplied rice husk gasification power generation system is disclosed. The technology described in the document is the "rice grain gasification power generation technology" (published by the Biomass Utilization Promotion Expert Meeting) [March 29, 2019 Yanmar Energy System Co., Ltd. Solution Promotion Office Technology Development Department Gasification It was also listed in Group Hiroaki Wakisaka].
 「鉄と鋼」第68年(1982)第15号[解説]ブラジル木炭製鉄(1982年 ISIJ 川崎製鉄 谷口良一 芹沢保文)には、ブラジルにおいて、コークス高炉の銑鉄生産量が木炭高炉のそれを大幅に上回るようになったのは1976年以降であり、1982年においても木炭銑の生産量は全銑鉄生産量の35-40%と大きな分野を占めていたこと等が記載されている。 "Tetsu to Hagane" 68th (1982) No. 15 [Commentary] Brazil Charcoal Iron & Steel (1982, ISIJ, Kawasaki Steel, Ryoichi Taniguchi, Yasufumi Serizawa) states that the pig iron production volume of coke blast furnaces in Brazil exceeds that of charcoal blast furnaces. It is from 1976 onwards that the production of charcoal pig iron greatly surpassed it, and even in 1982, the production of charcoal pig iron accounted for 35-40% of the total pig iron production.
 これまでの鉄を精錬する竪型炉としては、特許第6206822号公報の図1に従来例として挙げられている高炉、同じく図2のキューポラ、同じく図3の流動床、同じく図4のガス化溶解炉の他、廃棄物処理炉(電気炉を含む)、水素還元鉄精錬炉などがあるが、いずれも石炭系燃料、石油系燃料、天然ガス系燃料、木炭系燃料やその他のエネルギーを主として使用してきた。 Conventional vertical furnaces for refining iron include the blast furnace shown in FIG. 1 of Japanese Patent No. 6206822, the cupola shown in FIG. 2, the fluidized bed shown in FIG. In addition to melting furnaces, there are waste treatment furnaces (including electric furnaces) and hydrogen reduction iron smelting furnaces. have used.
 これらのうち地下埋蔵の化石燃料の使用は、CO発生、による地球温暖化に繋がり得るものであり、木炭系燃料の使用は、森林の伐採による森林の削減(アマゾン川流域等)に繋がり得るものであった。 Of these, the use of underground fossil fuels can lead to global warming due to the generation of CO2 , and the use of charcoal-based fuels can lead to the reduction of forests (Amazon river basin, etc.) through deforestation. It was something.
 また従来、竪型炉の上部から排出される、COを含み得る排ガスには、酸化金属、焼却灰、酸化溶融物等、並びにそれらに含まれ得る有毒性の物質を伴う可能性があった。 Also, conventionally, the exhaust gas discharged from the upper part of the vertical furnace, which may contain CO2 , may be accompanied by metal oxides, incineration ash, oxidized melts, etc., and toxic substances that may be contained therein. .
 更に、従来の流動床、ガス化溶融炉、廃棄物処理炉(電気炉)等の下部から流出する高温溶融物には、有害な酸化金属が含まれる可能性があった。 In addition, the high-temperature melt that flows out from the bottom of conventional fluidized beds, gasification melting furnaces, waste treatment furnaces (electric furnaces), etc., may contain harmful metal oxides.
 バイオマスは、従来よりエネルギー化されてきたが、バイオマス中の水は、不要なものとして蒸気として大気に放出していた。また、バイオマスの木炭化においては、バイオマス中のリグニン等の液分はその多くを大気にHとして放出していた。また、バイオマスのメタン等のガス化においては、バイオマス中の固形分はバイオマス中の水分と共に消化液という排出物として放出されてきた。更に、バイオマスの活用においては、事前にバイオマスの種類を選定したり、サイズや粒度を整える上で破砕したりする必要性が高かった。 Biomass has been converted into energy in the past, but the water in biomass has been discharged into the atmosphere as steam as an unnecessary waste. In addition, in the charcoalization of biomass, most of the liquid components such as lignin in the biomass were released into the atmosphere as H 2 . In addition, in the gasification of biomass such as methane, the solid content in biomass has been released as an effluent called digestive fluid together with water in biomass. Furthermore, in the utilization of biomass, it was highly necessary to select the type of biomass in advance and crush it to adjust the size and particle size.
特許第6206822号公報Japanese Patent No. 6206822 特開2009-46726号公報JP 2009-46726 A 特開2010-265485号公報JP 2010-265485 A 特開2011-117074号公報JP 2011-117074 A 特開2011-117075号公報JP 2011-117075 A
 本発明は、バイオマス及びその他の原料等を用いて、エネルギー資源を得ると共に、地球環境の課題解決に資することができる竪型炉システム及び竪型炉の使用方法を提供することを目的とする。 The purpose of the present invention is to provide a vertical furnace system and a method of using a vertical furnace that can obtain energy resources by using biomass and other raw materials and contribute to solving global environmental problems.
 本発明は、例えば次のように表すことができる。 The present invention can be expressed, for example, as follows.
 炉内部において、高さが炉下部の直径又は相当直径の1.5倍以上である竪型炉と、
当該竪型炉に対し、その竪型炉の上部又は炉下部よりも上方からバイオマス又はバイオマス及び非バイオマス物質を投入する投入装置を備え、
当該投入装置により前記竪型炉に投入する前記バイオマス及び非バイオマス物質は、前記バイオマスが15乃至100質量%、前記非バイオマス物質は残部の0乃至85質量%である
竪型炉システム。
A vertical furnace whose height is 1.5 times or more the diameter or equivalent diameter of the lower part of the furnace inside the furnace;
Equipped with a charging device for charging biomass or biomass and non-biomass material into the vertical furnace from the upper part of the vertical furnace or above the lower part of the furnace,
The vertical furnace system, wherein the biomass and non-biomass materials charged into the vertical furnace by the charging device are 15 to 100% by mass of the biomass and 0 to 85% by mass of the remaining non-biomass materials.
 炉内部において、高さが炉下部の直径又は相当直径の1.5倍以上である竪型炉に、当該竪型炉の上部又は炉下部よりも上方からバイオマス又はバイオマス及び非バイオマス物質を投入する工程と、
前記投入されたバイオマス又はバイオマス及び非バイオマス物質を前記竪型炉内で処理する工程を有し、
前記竪型炉に投入する前記バイオマス及び非バイオマス物質は、前記バイオマスが15乃至100質量%、前記非バイオマス物質は残部としての0乃至85質量%である
竪型炉の使用方法。
Inside the furnace, a vertical furnace whose height is 1.5 times or more the diameter or equivalent diameter of the lower part of the furnace is charged with biomass or biomass and non-biomass materials from the upper part of the vertical furnace or above the lower part of the furnace. process and
a step of processing the input biomass or biomass and non-biomass material in the vertical furnace;
A method of using a vertical furnace, wherein the biomass and non-biomass materials charged into the vertical furnace are 15 to 100% by mass of the biomass and 0 to 85% by mass of the non-biomass material as the balance.
 本発明の竪型炉システム及び竪型炉の使用方法によれば、バイオマス及びその他の原料等を処理して、エネルギー資源を得ると共に、地球環境の課題解決に資することができる。 According to the vertical furnace system and the method of using the vertical furnace of the present invention, biomass and other raw materials can be processed to obtain energy resources and contribute to solving global environmental problems.
竪型炉稼働状態の模式的断面図である。FIG. 4 is a schematic cross-sectional view of a vertical furnace operating state; 竪型炉の炉下部の最高温度(横軸)と炉上部ガス中の水素ガス濃度(縦軸)の関係の例を示す図である。FIG. 3 is a diagram showing an example of the relationship between the maximum temperature in the lower part of a vertical furnace (horizontal axis) and the concentration of hydrogen gas in the upper furnace gas (vertical axis). 竪型炉内部の高さと炉下部の直径との比率(横軸)と炉上部ガス中の水素ガス濃度(縦軸)の関係の例を示す図である。FIG. 4 is a diagram showing an example of the relationship between the ratio of the height inside the vertical furnace to the diameter of the lower part of the furnace (horizontal axis) and the concentration of hydrogen gas in the upper furnace gas (vertical axis). 竪型炉の炉下部の最高温度(横軸)と溶融物中の金属鉄比(質量%)(縦軸)の関係の例を示す図である。FIG. 2 is a diagram showing an example of the relationship between the maximum temperature in the lower part of a vertical furnace (horizontal axis) and the metal iron ratio (% by mass) in the melt (vertical axis). 竪型炉内部の高さと炉下部の直径との比率(横軸)と溶融物中の金属鉄比(質量%)(縦軸)の関係の例を示す図である。FIG. 2 is a diagram showing an example of the relationship between the ratio of the height inside the vertical furnace to the diameter of the bottom of the furnace (horizontal axis) and the metal iron ratio (mass %) in the melt (vertical axis). 竪型炉の別の例を示す正面図である。FIG. 4 is a front view showing another example of a vertical furnace; 竪型炉の更に別の例を示す正面図である。FIG. 5 is a front view showing still another example of the vertical furnace; 竪型炉の更に別の例を示す正面図である。FIG. 5 is a front view showing still another example of the vertical furnace; 竪型炉内に投入されたバイオマス及び非バイオマス物質中の炭素Cの反応の炉内温度による酸化反応帯と還元反応帯の推移を示す図である。FIG. 4 is a diagram showing changes in the oxidation reaction zone and the reduction reaction zone depending on the furnace temperature in the reaction of carbon C in biomass and non-biomass material charged into a vertical furnace.
 本発明の竪型炉システムは、竪型炉と、その竪型炉にバイオマス及び非バイオマス物質を投入する投入装置を備える。また竪型炉の使用方法は、竪型炉にバイオマス及び非バイオマス物質を投入する工程と、そのバイオマス又はバイオマス及び非バイオマス物質を前記竪型炉内で処理する工程を有する。 The vertical furnace system of the present invention comprises a vertical furnace and a charging device for charging biomass and non-biomass into the vertical furnace. A method of using a vertical furnace includes the steps of charging biomass and non-biomass material into the vertical furnace, and processing the biomass or the biomass and non-biomass material in the vertical furnace.
 バイオマス及び非バイオマス物質は、酸化鉄や酸化金属等の溶融のためのエネルギー源として、またそれらの酸化金属等の還元剤として作用し得る。 Biomass and non-biomass materials can act as an energy source for melting iron oxides and metal oxides, and as a reducing agent for those metal oxides.
 (1) 竪型炉 (1) Vertical furnace
 竪型炉は、炉内部において、高さが炉下部(例えば炉床若しくは炉底又はそれらの上側部分)の直径又は相当直径(水平断面形状が円形以外の場合)の1.5倍以上の炉である。 A vertical furnace is a furnace whose height inside the furnace is 1.5 times or more the diameter or equivalent diameter (if the horizontal cross-sectional shape is other than circular) of the lower part of the furnace (for example, the hearth, the hearth, or the upper part thereof) is.
 竪型炉の例としては、高炉、キューポラ、流動床のシャフト炉、竪型ガス化溶融炉、廃棄物処理炉(電気炉を含む)、水素還元鉄精錬炉等の、鉄鉱石を精練して溶鉄を製造する溶鉱炉や各種の銑鉄を製造するための炉を挙げることができるが、これらに限るものではない。 Examples of vertical furnaces include blast furnaces, cupolas, fluidized bed shaft furnaces, vertical gasification melting furnaces, waste treatment furnaces (including electric furnaces), hydrogen reduction iron smelting furnaces, etc. Examples include, but are not limited to, blast furnaces for producing molten iron and furnaces for producing various types of pig iron.
 (2) バイオマス (2) Biomass
 竪型炉に対し、バイオマスを15乃至100質量%(或いは30乃至100質量%)投入する。 15 to 100% by mass (or 30 to 100% by mass) of biomass is put into the vertical furnace.
 本発明におけるバイオマスの例としては、植物性の殻(もみ殻など)、竹、広葉、針葉、根株、太樹、間伐材、林木の廃材、森林の腐食した木材やその他の廃植物、廃材木、木材工場で生じる樹皮や端材、家具木材、畳、廃紙材料、金属や土砂等に付着した植物由来物等の植物由来物の他、食料残渣、廃棄食品、牛糞、馬糞、その他の家畜糞、人糞、ダム・湖・池・川・水田・畑・海洋などの底に堆積した堆積バイオマス、投棄土砂、土砂と混合した生物由来物質等を挙げることができるが、これらに限るものではない。このようなバイオマスは、例えば、それぞれ個別に又は2種以上を混合して竪型炉に投入することができる。 Examples of biomass in the present invention include vegetable husks (such as rice husks), bamboo, broad leaves, needles, root stumps, thick trees, thinned wood, waste wood from forest trees, decayed wood from forests and other waste plants, and waste wood. , bark and offcuts generated in wood factories, furniture lumber, tatami mats, waste paper materials, plant-derived substances adhering to metals and soil, food residues, waste food, cow dung, horse dung, and other livestock Excrement, human feces, sedimentary biomass deposited on the bottom of dams, lakes, ponds, rivers, paddy fields, fields, oceans, etc., dumped sediment, biological substances mixed with sediment, etc., but not limited to these. do not have. Such biomass can be fed into the vertical furnace individually or in combination of two or more.
 本発明において竪型炉に対し投入するバイオマスは、水又はその他の液体を実質上含まない固体のみならず、水又はその他の液体を含んだ又は伴うバイオマスであってもよく、バイオマスが例えば水又はその他の液体、金属、金属酸化物、泥、土、石、レンガ屑、ガラス又は気体と混合したものであってもよい。 The biomass to be fed into the vertical furnace in the present invention may be not only solids substantially free of water or other liquids, but also biomass containing or accompanied by water or other liquids. It may be mixed with other liquids, metals, metal oxides, mud, earth, stone, brick dust, glass or gas.
 また、本発明において竪型炉に対し投入するバイオマスについては、炉内に投入する前に、水分を含む場合における水分の減量や、予め、乾燥させる・乾留する・所定の大きさ以下にする(例えば、細断、塊状化若しくはペレット化)等の前処理を行うことを要するものではない。 In addition, regarding the biomass to be put into the vertical furnace in the present invention, before the biomass is put into the furnace, if it contains water, the amount of water is reduced, or it is dried, carbonized, or reduced to a predetermined size or less in advance ( For example, it does not require pretreatment such as chopping, agglomeration or pelletization.
 (3) 非バイオマス物質 (3) non-biomass materials
[規則91に基づく訂正 27.03.2023]
 非バイオマス物質は、竪型炉に対し、前記バイオマス15至100質量%(或いは30乃至100質量%)の残部である0乃至85質量%(或いは0乃至70質量%)投入する。例えば、バイオマス30質量%、非バイオマス物質70質量%を竪型炉に投入することができる。
[Correction under Rule 91 27.03.2023]
The non-biomass material is charged into the vertical furnace in an amount of 0 to 85% by mass (or 0 to 70% by mass), which is the balance of 15 to 100% by mass (or 30 to 100% by mass) of the biomass. For example, 30% by mass of biomass and 70% by mass of non-biomass material can be charged into a vertical furnace.
 非バイオマス物質は、還元剤として作用し得る炭素含有燃料物質を含むことが好ましい。 The non-biomass material preferably includes a carbon-containing fuel material that can act as a reducing agent.
 非バイオマス物質の例としては、
コークス、石炭・重油・灯油・軽油、天然ガス、泥炭又はその他の低級石炭、低級の石油残渣物等の化石原料;
各種プラスチック材料製の梱包材を含むプラスチック類やタイヤなどの固体若しくは固形物又は液体状の石油系および/または石炭系物質;
各種炭系物質;
各種金属製品、金属材料製の電気製品等における金属類;
泥、土、石、レンガ屑、ガラスなど;並びに
前記のような非バイオマス物質に含まれる又は伴う水、それ以外の水
を挙げることができるが、これらに限るものではない。このような非バイオマス物質は、例えば、それぞれ個別に又は2種以上を混合して竪型炉に対し投入することができる。
Examples of non-biomass materials include:
Fossil raw materials such as coke, coal/heavy oil/kerosene/light oil, natural gas, peat or other low grade coal, low grade petroleum residues;
solid or solid or liquid petroleum- and/or coal-based substances such as plastics and tires, including packaging made of various plastic materials;
various carbonaceous materials;
Metals in various metal products, electrical products made of metal materials, etc.;
Dirt, dirt, stones, brick shavings, glass, etc.; and water contained in or associated with non-biomass materials such as those described above, and other water. Such non-biomass materials can be fed into the vertical furnace individually or in combination of two or more.
 例えば鉄精錬のための竪型炉の場合に投入する非バイオマス物質の例としては、
コークス石炭等の化石燃料;
鉄鉱石、金属、型銑、鉄スクラップ、スポンジアイアンン、その他の金属酸化物;
副原料として石灰石
を挙げることができるが、これらに限るものではない。
For example, non-biomass materials to be input in the case of a vertical furnace for iron refining include:
Fossil fuels such as coke coal;
Iron ore, metals, iron molds, scrap iron, sponge iron and other metal oxides;
Limestone can be mentioned as an auxiliary raw material, but it is not limited to these.
 (4) 投入装置 (4) Input device
 竪型炉の上部(炉頂部および/または炉頂部よりも下方に位置する竪型炉の上方部)又は炉下部よりも上方(例えば、竪型炉の上下中間位置または上下中間位置及び上部)から、その竪型炉に対し(すなわち竪型炉内に)、バイオマス又はバイオマス及び非バイオマス物質を投入する(「投入」は、「装入」を含むものとする。)。投入は、例えば、連続的に行うこと又は間隔おきに行うことできる。 From the upper part of the vertical furnace (the furnace top and/or the upper part of the vertical furnace located below the furnace top) or above the lower part of the furnace (for example, the vertical middle position or the vertical middle position and the upper part of the vertical furnace) , charging biomass or biomass and non-biomass material into (ie, into) the vertical furnace ("input" shall include "charging"). Dosing can be done continuously or at intervals, for example.
 投入するバイオマスは15乃至100質量%(例えば、一定時間当たりの投入量中の比率として、又は、一定の体積若しくは質量中の比率として)であり、投入する非バイオマス物質は、残部である0乃至85質量%(例えば、一定時間当たりの投入量中の比率として、又は、一定の体積若しくは質量中の比率として)である。 The input biomass is 15 to 100% by mass (e.g., as a percentage in the input amount per fixed time or as a percentage in a fixed volume or mass), and the input non-biomass material is the balance 0 to 100%. 85% by weight (eg, as a percentage of the input per unit time or as a percentage of the volume or mass).
 バイオマス及び非バイオマス物質の投入は、例えば、各種のコンベア等の運搬装置および/またはシュート(旋回シュートを含む)等を用いて投入するもの、或いは、管路及び必要なポンプやバルブ等を用いて液体、気体、その他の流動体・半流動体を投入するものとすることができる。 Input of biomass and non-biomass materials is, for example, input using various conveying devices such as conveyors and / or chutes (including turning chutes), etc., or using pipelines and necessary pumps, valves, etc. Liquids, gases, and other fluids/semi-liquids can be introduced.
 例えば、非バイオマス物質である石炭および/またはコークス並びにその他の必要な物質と、バイオマスを、混合して、炉頂部および/または竪型炉の上方部より投入又は旋回投入することができるほか、非バイオマス物質である石炭および/またはコークスの投入とバイオマスの投入を時期および/または位置を分離して投入すること(分離投入)も可能である。 For example, biomass can be mixed with coal and/or coke, which are non-biomass substances, and other necessary substances, and charged or swirled from the top of the furnace and/or the upper part of the vertical furnace. It is also possible to separate the charging of coal and/or coke, which is a biomass material, from the charging of biomass (separate charging).
 このような混合投入や分離投入は、投入量制御装置により制御しつつ行い得る。鉄鉱石、焼結ペレット、還元鉄、型銑、スクラップ等の非バイオマス物質を投入する場合も、バイオマスと混合投入することや石炭および/またはコークスと混合投入することも可能である。 Such mixed charging and separate charging can be performed while being controlled by a charging amount control device. When non-biomass materials such as iron ore, sintered pellets, reduced iron, die pig iron, and scrap are charged, they can be mixed with biomass or mixed with coal and/or coke.
 バイオマス及び非バイオマス物質の投入は、例えば、含有する物質の種類や含有量(例えば単位体積又は単位質量中の含有量)を、必要に応じ分析した上で、コンピュータ等を利用した投入量制御装置により制御(例えば単位時間当たりの投入量の増減・投入開始停止等の制御)しつつ行うことができる。前記含有する物質の種類や含有量の分析は、必要な限度において必要な精度で行えば足りる。 For input of biomass and non-biomass materials, for example, the type and content of the contained materials (e.g., content per unit volume or unit mass) are analyzed as necessary, and input amount control equipment using computers, etc. (For example, control such as increase/decrease of input amount per unit time, control of start/stop of input, etc.) can be performed. It suffices to analyze the types and contents of the contained substances within the necessary limits and with the necessary accuracy.
 このような分析を行う含有する物質の種類や含有量の例としては、各種固体物質の量、バイオマス中の又はバイオマスと混合した金属・泥・土・水分・タール等の量、水その他の各種液体や半流動体の量、各種気体の量等を挙げることができるが、これらに限るものではない。 Examples of the types and amounts of substances contained in such analyzes include the amount of various solid substances, the amount of metals, mud, soil, moisture, tar, etc. in biomass or mixed with biomass, water and various other substances. Examples include amounts of liquids and semi-liquids, and amounts of various gases, but are not limited to these.
 投入量制御装置による制御は、例えば、竪型炉又はその周辺部の所要箇所に設けられた、温度センサ(熱電対等)及びその他の必要な各種センサ(例えば水素濃度センサや一酸化炭素濃度センサ、画像センサ)により取得したデータ等に基づいて、例えば竪型炉内の炉下部や頂部等の所定箇所の温度や所定範囲の温度分布、所定箇所の水素濃度や一酸化炭素濃度等の竪型炉システムの運用状況を把握しそれらを制御するために行うことができる。 Control by the input amount control device is, for example, temperature sensors (thermocouples, etc.) and other necessary various sensors (for example, hydrogen concentration sensors, carbon monoxide concentration sensors, Based on the data acquired by the image sensor), for example, the temperature at a predetermined location such as the bottom or top of the vertical furnace, the temperature distribution in a predetermined range, the hydrogen concentration at a predetermined location, the carbon monoxide concentration, etc. It can be done to understand the operational status of the system and control them.
 すなわち、本発明の竪型炉システムは、投入装置により所要箇所より炉内に投入する、バイオマス中又は非バイオマス物質中の各種固体、水分若しくはその他の各種液体量、又は各種気体の量を(必要に応じ含有物質の種類や含有量を含めて)それぞれ制御する投入量制御装置を有するものとすることができる。これらにより、例えば下記の炉下部温度制御装置及び炉頂部温度制御装置を実現することもできる。前者の例としては、竪型炉内の炉下部について温度センサにより検知した温度等に基づき、所要の種類及び量のバイオマス又は非バイオマス物質を所要箇所より竪型炉内に投入するよう投入装置を制御する投入量制御装置を挙げることができる。後者の例としては、竪型炉内の炉頂部について温度センサにより検知した温度等に基づき、所要の種類及び量のバイオマス又は非バイオマス物質を所要箇所より竪型炉内に投入するよう投入装置を制御する投入量制御装置を挙げることができる。 That is, in the vertical furnace system of the present invention, the amount of various solids, moisture or other liquids in biomass or non-biomass material, or the amount of various gases (required (Including the type and content of the contained substance depending on the situation) can be provided with an input amount control device that controls each. With these, for example, a lower furnace temperature control device and a furnace top temperature control device described below can be realized. As an example of the former, based on the temperature detected by the temperature sensor in the lower part of the vertical furnace, the charging device is installed so that the required type and amount of biomass or non-biomass material is charged into the vertical furnace from the required location. Controlling dosage controllers may be mentioned. As an example of the latter, based on the temperature detected by the temperature sensor at the top of the furnace in the vertical furnace, a charging device is installed so that the required type and amount of biomass or non-biomass material is charged into the vertical furnace from the required location. Controlling dosage controllers may be mentioned.
 なお、炉下部温度制御装置及び炉頂部温度制御装置としては、それぞれ、他の公知手段を用いることもできる。 It should be noted that other well-known means can also be used as the lower furnace temperature control device and the furnace top temperature control device, respectively.
 また例えば、炉下部温度制御装置及び炉頂部温度制御装置の少なくとも一部を構成し得るものとして、竪型炉の所要箇所に、炉内の温度を補助的に上げるためのガス点火バーナー又はその他のガス点火装置を設けることができる。 Further, for example, a gas ignition burner or other device for supplementally raising the temperature in the furnace may be provided at a required location of the vertical furnace as a device that can constitute at least a part of the lower furnace temperature control device and the furnace top temperature control device. A gas igniter may be provided.
 炉内において生成した水素ガスや一酸化炭素ガスなどの燃焼可能ガスを、ガス点火バーナー等を用いて必要に応じ炉内で燃焼させることにより、炉内温度を補助的に上げることができる。燃焼したガスは、還元雰囲気下の炉内(後述のように炉内のある程度の範囲又は広範囲が還元雰囲気であるものとすることができる)において、還元されたガスとなる。例えば、水素ガスは、炉内において、燃焼により水蒸気となるが、還元雰囲気下の炉内においては、その水蒸気から水素ガスが生成する。また、一酸化炭素ガスは、炉内において、燃焼により二酸化炭素となるが、還元雰囲気下の炉内においては、その二酸化炭素から一酸化炭素ガスが生成する。 By burning combustible gases such as hydrogen gas and carbon monoxide gas generated in the furnace in the furnace as necessary using a gas ignition burner or the like, the temperature inside the furnace can be increased supplementarily. The combusted gas becomes reduced gas in a furnace under a reducing atmosphere (a certain range or a wide range of the furnace can be a reducing atmosphere, as described later). For example, hydrogen gas is combusted into water vapor in a furnace, and hydrogen gas is generated from the water vapor in a furnace under a reducing atmosphere. Carbon monoxide gas is burned into carbon dioxide in the furnace, and carbon monoxide gas is generated from the carbon dioxide in the furnace under a reducing atmosphere.
 炉下部のうち上方部に対しては、(必要に応じ加熱した)空気又はその他の酸素含有ガスを、所要流量で吹き込むものとすることができる。 Air or other oxygen-containing gas (heated as necessary) can be blown into the upper part of the lower part of the furnace at the required flow rate.
 (5) 炉下部温度制御装置及び炉頂部温度制御装置 (5) Furnace bottom temperature control device and furnace top temperature control device
 本発明は、竪型炉の炉下部の内部の少なくとも一部の最高温度を、炉内において、
1. 酸化金属を有する場合における当該酸化金属の溶融還元
2. 水を有する場合における当該水の還元による水素ガス生成
3. 酸化炭化物を有する場合における酸化炭化物の還元による一酸化炭素ガスの生成
の3つのうちの1又は2以上(好ましくは、1と2、2と3、若しくは1と3又は1乃至3全て)が可能な高温に維持するための炉下部温度制御装置を有するものとすることができる。
In the present invention, the maximum temperature of at least a part of the inside of the lower part of the vertical furnace is
1. Smelting reduction of metal oxide when it has metal oxide
2. Generation of hydrogen gas by reduction of water when it is present
3. 1 or 2 or more (preferably 1 and 2, 2 and 3, or 1 and 3 or 1 to 3 all) of the 3 of the production of carbon monoxide gas by reduction of oxycarbide when it has oxycarbide It may have a lower furnace temperature control device to maintain the high temperature possible.
 本発明は更に、
前記竪型炉の頂部の内部の少なくとも一部(例えば径方向および/または高さ方向における一定範囲の部分)の温度を常温(周囲の大気と同等の温度)以上の所要温度に制御するための炉頂部温度制御装置
を有するものとすることができる。
The present invention further provides
for controlling the temperature of at least a part of the inside of the top of the vertical furnace (for example, a part in a certain range in the radial direction and / or the height direction) to a required temperature of normal temperature (equivalent to the ambient air temperature) or higher It may have a furnace top temperature control device.
 前記炉下部温度制御装置は、例えば、竪型炉の炉下部の内部の少なくとも一部の最高温度を1050乃至1280℃(1050℃若しくは1280℃とすること又はそれらの間の温度とすることもできる)以上に維持するためのものとすることができる。 The furnace lower part temperature control device, for example, can set the maximum temperature of at least a part of the inside of the furnace lower part of the vertical furnace to 1050 to 1280 ° C. (1050 ° C. or 1280 ° C., or a temperature between them ) to maintain above.
 また前記炉頂部温度制御装置は、例えば、前記竪型炉の頂部の内部の少なくとも一部の温度を常温以上で1000乃至1050℃以下の所要温度に制御するものとすることができる。例えば、本発明のシステム及び方法の目的に応じ、常温以上1000乃至1050℃以下の何れかの温度又は一定範囲の温度に制御するものとすることができるが、これに限るものではない。前記常温以上で1000乃至1050℃以下の範囲の下限は、例えば、常温、40℃、60℃、80℃、100℃、120℃、150℃、200℃、300℃、又は400℃とすることができ、また、上限は、例えば、60℃、80℃、100℃、120℃、150℃、200℃、300℃、400℃、500℃、600℃、800℃、1000℃、1050℃とすることができるが、これらに限るものではない。 Further, the furnace top temperature control device can control, for example, the temperature of at least a part of the inside of the top of the vertical furnace to a required temperature of 1000 to 1050° C. or higher from room temperature. For example, depending on the purpose of the system and method of the present invention, the temperature can be controlled to any temperature between normal temperature and 1000 to 1050° C. or within a certain range, but the temperature is not limited to this. The lower limit of the range of 1000 to 1050°C above room temperature is, for example, room temperature, 40°C, 60°C, 80°C, 100°C, 120°C, 150°C, 200°C, 300°C, or 400°C. The upper limit is, for example, 60°C, 80°C, 100°C, 120°C, 150°C, 200°C, 300°C, 400°C, 500°C, 600°C, 800°C, 1000°C, and 1050°C. but not limited to these.
 バイオマス(及び必要な非バイオマス物質)を用いた本発明の竪型炉の実験装置において、カーボン(C)と酸素(O)との反応は、常温から、1050℃乃至1280℃程度までは、バイオマスの燃焼による酸化反応(発熱反応)だが、1050℃乃至1280℃程度を越えると吸熱反応となり、COがカーボンと反応する還元反応になる。このカーボンと酸素の反応を活用することにより、他の物質、例えば水(HO)も、HとCOという還元反応を起こさせて高濃度の水素ガスを製造したり、COからCOというエネルギーガスを製造したり、あるいは木炭等の、黒鉛化度が高い製品を作ることができる。 In the vertical furnace experimental apparatus of the present invention using biomass (and necessary non-biomass substances), the reaction between carbon (C) and oxygen (O 2 ) is The oxidation reaction (exothermic reaction) due to the burning of biomass becomes an endothermic reaction when the temperature exceeds about 1050°C to 1280°C, and a reduction reaction occurs in which CO2 reacts with carbon. By utilizing this reaction between carbon and oxygen, other substances such as water ( H2O ) can also cause a reduction reaction between H2 and CO to produce high-concentration hydrogen gas, or convert CO2 to CO It is possible to produce an energy gas such as charcoal, or to make products with a high degree of graphitization such as charcoal.
 炉下部が1050℃又はそれ以上(例えば1280℃又はそれ以上)の高温である場合、バイオマス中の焼却灰や異物は、この高温部において溶融、又は還元溶融して金属となり、還元スラグが得られる(例えば、
Fe+3C→2Fe+3CO;
SnO+C→Sn+CO;
PbO+C→Pb+CO;
CuO+C→2Cu+CO
の場合、酸化鉄から金属鉄、酸化錫から金属錫、酸化鉛から金属鉛、酸化銅から金属銅が得られ、更に、エネルギーガスCOが得られる。)。
When the lower part of the furnace is at a high temperature of 1050° C. or higher (for example, 1280° C. or higher), the incinerated ash and foreign matter in the biomass are melted or reduced and melted in this high temperature part to become metal, and reduced slag is obtained. (for example,
Fe2O3 + 3C →2Fe+3CO;
SnO+C→Sn+CO;
PbO+C→Pb+CO;
Cu2O +C→2Cu+CO
In the case of , metallic iron is obtained from iron oxide, metallic tin from tin oxide, metallic lead from lead oxide, and metallic copper from copper oxide, and the energy gas CO is obtained. ).
 そのため、従来のバイオマス燃焼発電などにおいて発生していた焼却灰(すなわち、酸化金属を含む産業廃棄物)の発生が効果的に防がれる。 Therefore, the generation of incineration ash (that is, industrial waste containing metal oxides), which is generated in conventional biomass combustion power generation, is effectively prevented.
 この還元スラグは、処理費用を要する産業廃棄物ではなく、セメントの原料として再生することや、植物生育に必要なミネラル成分を含む農業資材として活用することができる。 This reduced slag is not an industrial waste that requires treatment costs, but can be recycled as a raw material for cement or used as an agricultural material that contains mineral components necessary for plant growth.
 (6) 高水素ガス及び金属鉄等製造プロセス (6) Manufacturing process for high-hydrogen gas and metallic iron
 図1は、高さが炉下部10aの直径の1.5倍以上である竪型炉10による、バイオマス又はバイオマス及び非バイオマス物質(以下、「バイオマス等」とも言う。)を用いた高水素ガス(富水素ガス)及び金属鉄製造プロセス(これら以外の製造を伴うことを排除するものではない。)の例を示す。 FIG. 1 shows high hydrogen gas using biomass or biomass and non-biomass substances (hereinafter also referred to as “biomass etc.”) by a vertical furnace 10 whose height is 1.5 times or more the diameter of the lower furnace part 10a. (Hydrogen-rich gas) and metallic iron manufacturing processes (not excluding other manufacturing processes).
[規則91に基づく訂正 27.03.2023]
 水分を15乃至60質量%有するバイオマス等(バイオマス30質量%、酸化鉄を含む非バイオマス物質70質量%)を、炉頂部10tより竪型炉10内に投入する。なお、図1に示す竪型炉10内の上部における「バイオボイラー」の文字の周囲の空白部分は、「バイオボイラー」の文字を明記するために設けたものであり、この空白部分及び文字部分にも、炉頂部10tより投入されたバイオマス等が存在する。
[Correction under Rule 91 27.03.2023]
Biomass or the like having a water content of 15 to 60% by mass (30% by mass of biomass, 70% by mass of non-biomass containing iron oxide) is charged into the vertical furnace 10 from the furnace top 10t. In addition, the blank part around the letters "bio boiler" in the upper part of the vertical furnace 10 shown in FIG. Also, there is biomass and the like introduced from the furnace top 10t.
 炉頂部10tより投入したバイオマス等(炉内投入物50)を、炉内で昇温させつつ、次第に炉下部10aへ降下させ、炉下部10aの炉内における1箇所又は複数箇所の、複数の高さ(段を含む)を有する燃焼制御帯において、バイオマス自体をエネルギー源の全部又は部分として1050℃乃至1280℃以上に昇温させる。 The biomass or the like (in-furnace input 50) introduced from the furnace top 10t is gradually lowered to the lower furnace 10a while the temperature is raised in the furnace, and at one or more locations in the furnace of the lower furnace 10a. The biomass itself is heated to 1050° C. to 1280° C. or above as all or part of the energy source in a combustion control zone having a depth (including stages).
 炉下部10aの内部の少なくとも一部の最高温度が1050℃乃至1280℃以上に維持されるように、すなわち、炉内において、
1. 酸化金属を有する場合における当該酸化金属の溶融還元
2. 水の還元による水素ガス生成
3. 酸化炭化物を有する場合における酸化炭化物の還元による一酸化炭素ガスの生成
が可能な高温に制御すると共に、竪型炉10の炉頂部10tの内部の一部の温度を常温以上で1000乃至1050℃以下の所定温度に制御する。
In order to maintain the maximum temperature of at least part of the interior of the lower furnace part 10a at 1050° C. to 1280° C. or higher, that is, in the furnace,
1. Smelting reduction of metal oxide when it has metal oxide
2. Generation of hydrogen gas by reduction of water
3. Controlling to a high temperature at which carbon monoxide gas can be generated by reduction of oxidized carbides in the case of containing oxidized carbides, and raising the temperature of a part of the interior of the furnace top 10t of the vertical furnace 10 to 1000 to 1050 at room temperature or higher. °C or lower.
 図2に示されるように、本発明における竪型炉10の炉下部10aの内部の最高温度を1000℃程度以上とすると、炉上部10uのガス中の水素(H)濃度が、かなり急に上昇し、1050℃程度以上にすると、炉上部10uのガス中の水素(H)濃度は5%以上の高濃度となり得る。 As shown in FIG. 2, when the maximum temperature inside the lower furnace portion 10a of the vertical furnace 10 in the present invention is about 1000° C. or higher, the hydrogen (H 2 ) concentration in the gas in the upper furnace portion 10u sharply increases. When the temperature rises to about 1050° C. or higher, the hydrogen (H 2 ) concentration in the gas in the furnace upper portion 10u can reach a high concentration of 5% or higher.
 図3に示されるように、炉内部における炉の高さと炉下部10aの直径の比率である炉高さ比率(炉の高さ/炉床直径)が1.5程度以上である場合、炉上部10uのガス中の水素(H)濃度が増大して酸化帯から還元帯へと移る。炉高さ比率が1.5から1.8程度以上になると炉上部10uのガス中の水素(H)濃度が更に増大して5%以上の高濃度となり得、還元帯となる。 As shown in FIG. 3, when the furnace height ratio (furnace height/hearth diameter), which is the ratio of the furnace height to the diameter of the lower furnace part 10a inside the furnace, is about 1.5 or more, the upper part of the furnace The hydrogen (H 2 ) concentration in the 10 u gas increases and moves from the oxidation zone to the reduction zone. When the furnace height ratio is about 1.5 to 1.8 or more, the hydrogen (H 2 ) concentration in the gas in the furnace upper portion 10u further increases to a high concentration of 5% or more, forming a reduction zone.
 図4に示されるように、本発明における竪型炉10の炉下部10aの内部の最高温度を1280℃に近い高温にすると、炉下部10aの内部の溶融物中の金属鉄比が増大する。竪型炉10の炉下部10aの内部の最高温度を1280℃程度又はそれ以上の高温にすると、炉下部10aの内部の溶融物中の金属鉄比は15%程度以上となり得る。 As shown in FIG. 4, when the maximum temperature inside the furnace lower portion 10a of the vertical furnace 10 in the present invention is increased to a high temperature close to 1280° C., the metal iron ratio in the melt inside the furnace lower portion 10a increases. When the maximum temperature inside the furnace lower portion 10a of the vertical furnace 10 is set to a high temperature of about 1280° C. or higher, the metallic iron ratio in the melt inside the furnace lower portion 10a can be about 15% or more.
 図5に示されるように、炉高さ比率が大きくなるに従い、炉下部10aの内部の溶融物中の金属鉄比が増大する。炉高さ比率が1.5程度以上になると、炉下部10aの内部の溶融物中の金属鉄比は15%程度以上となり得る。 As shown in FIG. 5, as the furnace height ratio increases, the metal iron ratio in the melt inside the furnace lower portion 10a increases. When the furnace height ratio is about 1.5 or more, the metallic iron ratio in the melt inside the furnace lower part 10a can be about 15% or more.
 本発明における竪型炉10には、炉頂部10tから(図1)、或いは、炉頂部10t並びに竪型炉10の上下中間位置及び上部にそれぞれ設けられた投入口10hから(図6、図7、図8)、バイオマス等を炉内に投入することができる。なお、図6、図7、図8中における図1と同じ符号は、図1における意義と同意義である。 In the vertical furnace 10 of the present invention, from the furnace top 10t (FIG. 1), or from the furnace top 10t and the charging port 10h provided at the upper and lower intermediate positions and upper portions of the vertical furnace 10 (FIGS. 6 and 7) , FIG. 8), biomass or the like can be introduced into the furnace. 6, 7, and 8 have the same meanings as those in FIG.
 バイオマス等中の炭素Cの反応に関する図9において、横軸は炉内最高温度を示し、縦軸のうち横軸よりも上側は酸化反応の度合を示し、横軸よりも下側は還元反応の度合を示す。従って、横軸よりも上方は酸化反応帯(バイオマス等の燃焼帯域)を示し発熱反応、横軸よりも下方は還元反応帯(バイオマス等の炭化帯)を示し吸熱反応となる。炉内温度950℃乃至1300℃程度(例えば1050℃程度。)が、炉内のバイオマス等の酸化還元転換境界温度である。また1500℃乃至2600℃程度は、Boudouard反応の範囲である。 In FIG. 9 regarding the reaction of carbon C in biomass etc., the horizontal axis indicates the maximum temperature in the furnace, the vertical axis above the horizontal axis indicates the degree of oxidation reaction, and the horizontal axis below indicates the degree of reduction reaction. Show degree. Therefore, the area above the horizontal axis indicates an oxidation reaction zone (combustion zone of biomass or the like), which is an exothermic reaction, and the area below the horizontal axis indicates a reduction reaction zone (carbonization zone of biomass, etc.), which is an endothermic reaction. A furnace temperature of about 950° C. to 1300° C. (for example, about 1050° C.) is the redox conversion boundary temperature of biomass or the like in the furnace. The range of the Boudouard reaction is about 1500°C to 2600°C.
 炉内に投入されたバイオマス等(水を有するもの)は、炉内をガスに対し向流移動(下降)する過程で、図9に示されるように、炉内の温度が950℃乃至1300℃程度(例えば1050℃程度)に昇温すると、酸化反応帯から還元反応帯へ推移する。投入されたバイオマスが還元反応帯に移行すると、バイオマスにおいて、カーボンやタール又はその他の化学物質等へ移行する成分が多くなり、投入されたバイオマス等に有していた水の還元反応により、CO、H等のエネルギーガスが生成する。 The biomass or the like (containing water) put into the furnace moves countercurrently (downward) to the gas in the furnace, and the temperature in the furnace rises from 950° C. to 1300° C., as shown in FIG. When the temperature is raised to about 1050° C., the oxidation reaction zone shifts to the reduction reaction zone. When the input biomass moves to the reduction reaction zone, the amount of components in the biomass that migrate to carbon, tar, or other chemical substances increases. An energetic gas such as H2 is produced.
 竪型炉10への投入物中に酸化鉄を含む場合、竪型炉10内の上部(炉上部10u)や上下中間部(炉中間部10m)では溶融金属鉄の比率は小さいが、炉内の下部(炉下部10a)においては、酸化鉄が溶融還元された溶融金属鉄の比率が増大する。 When iron oxide is included in the material put into the vertical furnace 10, the ratio of molten metal iron is small in the upper part (furnace upper part 10u) and the upper and lower middle parts (furnace middle part 10m) in the vertical furnace 10, but (furnace lower part 10a), the proportion of molten metal iron in which iron oxide is smelted and reduced increases.
 竪型炉10の炉下部10a内の全部又は部分を含む還元反応帯においては、残渣物質は、焼却灰(すなわち産業廃棄物)ではなく、溶融された還元スラグ、すなわち、金属(例えば酸化鉄が溶融還元された金属鉄)等の再生産物又は再生産物の原料となる。このような還元スラグは、炉下部10a(例えば、図1、図6、図7、図8における溶融還元スラグ・メタル流出口10s)より、(竪型炉10へ土砂・石・レンガ屑等を含む物質が投入された場合の土砂・石・レンガ屑等由来の物質を含めて)溶融状態で流出させることができる。そのため、酸化金属を含んだ焼却灰のような産業廃棄物は、ほとんど発生しないものとなる。 In the reduction reaction zone, which includes all or part of the furnace lower portion 10a of the vertical furnace 10, the residual material is not incineration ash (i.e. industrial waste), but molten reduction slag, i.e. metals (e.g. iron oxides). Recycled products such as smelted and reduced metallic iron) or raw materials for recycled products. Such reduced slag is discharged from the furnace lower part 10a (for example, the smelting-reduced slag/metal outlet 10s in FIGS. 1, 6, 7, and 8) into the vertical furnace 10 (soil, stone, brick waste, etc.). (Including substances derived from earth and sand, stones, brick waste, etc. when substances containing substances are thrown in) can be discharged in a molten state. Therefore, almost no industrial waste such as incineration ash containing metal oxide is generated.
 投入するバイオマスが含有する物質の種類・含有量・性状等に応じて、炉内における酸化反応帯の範囲と還元反応帯の範囲を変化させることができる。例えば、バイオマスが含有する炭素(カーボンC)の比率が高い場合、酸化反応帯の範囲を小さく又は比較的に小さく、還元反応帯の範囲を大きく又は比較的に大きくすることができる。また例えば、バイオマスが含有する水分量が多い場合、酸化反応帯の範囲を大きく又は比較的に大きく、還元反応帯の範囲を小さく又は比較的に小さくすることができる。 The range of the oxidation reaction zone and the range of the reduction reaction zone in the furnace can be changed according to the type, content, properties, etc. of the substances contained in the input biomass. For example, if the biomass contains a high proportion of carbon (Carbon C), the extent of the oxidation reaction zone can be small or relatively small and the extent of the reduction reaction zone can be large or relatively large. Also, for example, when the biomass contains a large amount of water, the range of the oxidation reaction zone can be large or relatively large, and the range of the reduction reaction zone can be small or relatively small.
 図1の竪型炉10の外周壁部10wには、竪型炉10の上下方向の軸線のまわりに螺旋を描くように熱交換パイプ30が(例えば、不定形耐火物等により形成された外周壁部10wに埋設することにより)設けられたものとすることができる。その場合、熱交換パイプ30に水やその他の液体を流すことにより、それらの加熱又はそれらからの蒸気発生等を行なうボイラー(バイオボイラー)として用いることができる。尤も、熱交換手段及びその利用はこの例に限るものではない。 On the outer peripheral wall portion 10w of the vertical furnace 10 in FIG. (by embedding in the wall portion 10w). In that case, it can be used as a boiler (bio-boiler) that heats water or other liquids by flowing them through the heat exchange pipes 30 or generates steam from them. However, the heat exchange means and its use are not limited to this example.
 (7) エネルギーガス又は再生産物若しくはその原料の生成・回収 (7) Generation/recovery of energy gas or recycled products or their raw materials
 本発明の竪型炉10は、炉下部10a、炉下部10aよりも上方(例えば、竪型炉10の上下中間位置[炉中間部10m]または上下中間位置及び上部[炉上部10u])、又は、竪型炉10の上部(炉頂部10tおよび/または炉頂部10tよりも下方に位置する竪型炉10の上方部)から、H(水素ガス)、CO(一酸化炭素ガス)、それらの混合ガス等(窒素ガス等のその他のガスを含むものであってもよい)のエネルギーガスを回収し得るものとすることができる。 The vertical furnace 10 of the present invention includes the furnace lower part 10a, the upper part of the furnace lower part 10a (for example, the vertical middle position [furnace middle part 10m] or the vertical middle position and the upper part [furnace upper part 10u]) of the vertical furnace 10, or , from the top of the vertical furnace 10 (furnace top 10t and/or the top of the vertical furnace 10 located below the furnace top 10t), H 2 (hydrogen gas), CO (carbon monoxide gas), their Energy gas such as mixed gas (which may contain other gas such as nitrogen gas) can be recovered.
 図1、図6、図7、図8に、エネルギーガス回収のためのガス排出口10gの例及び位置(図1)が示されている。ガス排出口は、これら以外の位置に設けることもできる。また、図6、図7、図8における投入口10h又はガス排出口10gと同等の位置には、炉内の温度を補助的に上げるためのガス点火バーナー10vが設けられている。  Figures 1, 6, 7 and 8 show an example and position (Figure 1) of the gas outlet 10g for energy gas recovery. The gas outlet can also be provided at positions other than these. A gas ignition burner 10v is provided at a position equivalent to the inlet 10h or the gas outlet 10g in FIGS.
 本発明の竪型炉10(向流移動炉)は、バイオマスを用いて、水素ガスが5%以上、酸素ガスが0.5%以下の濃度(容積濃度)の高水素ガス(富水素ガス)を生成し得るものであることが好ましい。 The vertical furnace 10 (countercurrent moving furnace) of the present invention uses biomass to produce a high hydrogen gas (hydrogen-rich gas) with a concentration (volumetric concentration) of 5% or more hydrogen gas and 0.5% or less oxygen gas. It is preferable to be able to generate
 H、COの濃度は、一般に、竪型炉10内の下部から上部に向かって濃度が下がるので、高濃度のHおよび/またはCOガスは、炉下部10aにガス排出口を設けることなどにより、炉下部10aから取り出すことが望ましい。高濃度の水素ガスは、アンモニアの製造にも有用である。 Since the concentrations of H 2 and CO generally decrease from the bottom to the top in the vertical furnace 10, high-concentration H 2 and/or CO gas should be removed by providing a gas outlet in the bottom furnace 10a. Therefore, it is desirable to take out from the furnace lower part 10a. High-concentration hydrogen gas is also useful for ammonia production.
 本発明においては、竪型炉10に投入するバイオマス及び非バイオマス物質中(バイオマスと非バイオマス物質を併せた投入物中)に水分を所定比率で有するものとすることができる。投入物中に有する水分の比率は、例えば15乃至60質量%、20乃至60質量%、25乃至60質量%、30乃至60質量%、又は40乃至60質量%とすることができる。なお、投入物は、その何れの部分についてもこの水分比率であることを要するものではなく、例えば、一定時間当たりの投入物中に、又は、一定の体積若しくは質量の投入物中に所要の水分を有するものであれば足りる。 In the present invention, the biomass and the non-biomass material (in the input material including the biomass and the non-biomass material) to be put into the vertical furnace 10 can contain water at a predetermined ratio. The proportion of water in the input can be, for example, 15 to 60% by weight, 20 to 60% by weight, 25 to 60% by weight, 30 to 60% by weight, or 40 to 60% by weight. It should be noted that it is not necessary for any portion of the input material to have this moisture ratio. is sufficient as long as it has
 竪型炉10への投入物の水分制御(例えば水分含有バイオマスやその他の投入水分による水分制御)によって、投入物(バイオマスおよび/または非バイオマス物質)が炉下部10aまで下降する過程における水分(HO)を制御すること、及び、水分(HO)から還元生成する水素ガス(H)の濃度及び量を制御することが可能となる。このような竪型炉10への投入物の水分制御は、例えば前記投入量制御装置により行い得る。 By controlling the moisture content of the input to the vertical furnace 10 (for example, moisture control by moisture-containing biomass or other input moisture), the moisture content (H 2 O), and the concentration and amount of hydrogen gas (H 2 ) produced by reduction from water (H 2 O). The control of the moisture content of the materials charged into the vertical furnace 10 can be performed, for example, by the above-described charging amount control device.
 更には、生成する水素ガス(H)により、炉内投入物50中の酸化鉄(又はその他の酸化金属)の全部又は部分を金属鉄(又はその他の金属)に精錬すること(又は精錬を制御すること)も可能となる。 Furthermore, all or part of the iron oxide (or other metal oxide) in the in-furnace input 50 is refined (or refined) into metallic iron (or other metal) by the hydrogen gas (H 2 ) produced. control) is also possible.
[規則91に基づく訂正 27.03.2023]
 バイオマスに伴う水分(又はその他の炉内投入物50中の水分)が炉下部10aまで降下することによって、炉下部10aの水素ガス濃度が高くなり、鉄鉱石の酸化鉄(又はその他の酸化金属)の還元が水素ガス還元により行われ(又は水素ガス還元により行われる比率が高くなり)、炭素還元により行われる比率を減少させることが可能となる。これによって必要カーボン量を減少させること、二酸化炭素排出量の低減や実質的に二酸化炭素排出量をなくすゼロカーボン化、バイオマスを利用するカーボンニュートラル(バイオカーボンニュートラル)の取り組みにも適合するものとすることができる。
[Correction under Rule 91 27.03.2023]
Moisture associated with the biomass (or moisture in other furnace inputs 50) descends to the lower furnace portion 10a, increasing the concentration of hydrogen gas in the lower furnace portion 10a and increasing the concentration of iron ore iron oxides (or other metal oxides). reduction is carried out by hydrogen gas reduction (or a higher proportion is carried out by hydrogen gas reduction), making it possible to reduce the proportion carried out by carbon reduction. This will reduce the amount of carbon required, reduce carbon dioxide emissions, achieve zero carbon emissions that virtually eliminate carbon dioxide emissions, and be compatible with carbon neutral (bio carbon neutral) initiatives that use biomass. be able to.
10  竪型炉
10a 炉下部
10g ガス排出口
10h 投入口
10m 炉中間部
10s 溶融還元スラグ・メタル流出口
10t 炉頂部
10u 炉上部
10v ガス点火バーナー
10w 外周壁部
30  熱交換パイプ
50  炉内投入物
10 Vertical furnace 10a Lower furnace 10g Gas outlet 10h Input port 10m Middle furnace 10s Smelting reduction slag/metal outlet 10t Furnace top 10u Furnace upper 10v Gas ignition burner 10w Outer wall 30 Heat exchange pipe 50 Furnace input

Claims (20)

  1.  炉内部において、高さが炉下部の直径又は相当直径の1.5倍以上である竪型炉と、
    当該竪型炉に対し、その竪型炉の上部又は炉下部よりも上方からバイオマス又はバイオマス及び非バイオマス物質を投入する投入装置を備え、
    当該投入装置により前記竪型炉に投入する前記バイオマス及び非バイオマス物質は、前記バイオマスが15乃至100質量%、前記非バイオマス物質は残部としての0乃至85質量%である
    竪型炉システム。
    A vertical furnace whose height is 1.5 times or more the diameter or equivalent diameter of the lower part of the furnace inside the furnace;
    Equipped with a charging device for charging biomass or biomass and non-biomass material into the vertical furnace from the upper part of the vertical furnace or above the lower part of the furnace,
    A vertical furnace system in which the biomass and non-biomass materials charged into the vertical furnace by the charging device are 15 to 100% by mass of the biomass and 0 to 85% by mass of the non-biomass material as the balance.
  2.  上記竪型炉の炉下部の内部の少なくとも一部の最高温度を、炉内において、下記1乃至3の3つのうちの1又は2以上が可能な高温に維持するための炉下部温度制御装置を有する請求項1記載のシステム。
    1. 酸化金属を有する場合における当該酸化金属の溶融還元
    2. 水を有する場合における当該水の還元による水素ガス生成
    3. 酸化炭化物を有する場合における酸化炭化物の還元による一酸化炭素ガスの生成
    A furnace lower part temperature control device for maintaining the maximum temperature of at least a part of the interior of the lower part of the vertical furnace at a high temperature in which one or more of the following three items 1 to 3 can be achieved. 2. The system of claim 1, comprising:
    1. Smelting reduction of metal oxide when it has metal oxide
    2. Generation of hydrogen gas by reduction of water when it is present
    3. Generation of carbon monoxide gas by reduction of oxidized carbides in the presence of oxidized carbides
  3.  上記竪型炉の炉下部の内部の少なくとも一部の最高温度を1050乃至1280℃以上に維持するための炉下部温度制御装置を有する請求項1又は2記載のシステム。  The system according to claim 1 or 2, comprising a furnace lower part temperature control device for maintaining a maximum temperature of at least a part of the interior of the lower part of the vertical furnace at 1050 to 1280°C or higher.
  4.  上記竪型炉の頂部の内部の少なくとも一部の温度を常温以上1000乃至1050℃以下の所要温度に制御するための炉頂部温度制御装置を有する請求項2又は3記載のシステム。 The system according to claim 2 or 3, comprising a furnace top temperature control device for controlling the temperature of at least part of the inside of the top of the vertical furnace to a required temperature of 1000 to 1050°C above room temperature.
  5.  下記1乃至3の3つのうちの1又は2以上を産出するための請求項1乃至4の何れか1項に記載のシステム。
    1. 酸化金属が溶融還元された金属
    2. 水の還元による水素ガス
    3. 酸化炭化物の還元による一酸化炭素ガス
    5. A system as claimed in any one of claims 1 to 4 for producing one or more of the following three.
    1. Metals obtained by smelting and reducing metal oxides
    2. Hydrogen gas by reduction of water
    3. Carbon monoxide gas from reduction of oxidized carbides
  6.  上記竪型炉に投入するバイオマス及び非バイオマス物質中に、水分を15乃至60質量%有する請求項1乃至5の何れか1項に記載のシステム。 The system according to any one of claims 1 to 5, wherein the biomass and non-biomass materials charged into the vertical furnace contain 15 to 60% by mass of water.
  7.  上記竪型炉が、水素ガスが5%以上、酸素ガスが0.5%以下の濃度のガスを生成し得るものである請求項1乃至6の何れか1項に記載のシステム。 The system according to any one of claims 1 to 6, wherein the vertical furnace is capable of producing a gas with a hydrogen gas concentration of 5% or more and an oxygen gas concentration of 0.5% or less.
  8.  上記竪型炉に酸化鉄又はその他の酸化金属が投入された場合に、その酸化鉄又はその他の酸化金属の全て又は部分を、上記生成した水素ガスにより還元精錬し得るものである請求項7記載のシステム。 8. The method according to claim 7, wherein when iron oxide or other metal oxides are charged into the vertical furnace, all or part of the iron oxide or other metal oxides can be reduced and refined by the hydrogen gas generated. system.
  9.  上記竪型炉の炉下部から残渣物質を溶融状態で流出させることができるものである請求項1乃至8の何れか1項に記載のシステム。 The system according to any one of claims 1 to 8, wherein the residual material can be discharged in a molten state from the bottom of the vertical furnace.
  10.  上記竪型炉の所要箇所に、炉内の生成ガスを燃焼させることにより炉内温度を補助的に上げることができるガス点火装置を有する請求項1乃至9の何れか1項に記載のシステム。 The system according to any one of claims 1 to 9, wherein the vertical furnace has a gas ignition device at a required location that can supplementally increase the temperature inside the furnace by burning the produced gas in the furnace.
  11.  炉内部において、高さが炉下部の直径又は相当直径の1.5倍以上である竪型炉に、当該竪型炉の上部又は炉下部よりも上方からバイオマス又はバイオマス及び非バイオマス物質を投入する工程と、
    前記投入されたバイオマス又はバイオマス及び非バイオマス物質を前記竪型炉内で処理する工程を有し、
    前記竪型炉に投入する前記バイオマス及び非バイオマス物質は、前記バイオマスが15乃至100質量%、前記非バイオマス物質は残部としての0乃至85質量%である竪型炉の使用方法。
    Inside the furnace, a vertical furnace whose height is 1.5 times or more the diameter or equivalent diameter of the lower part of the furnace is charged with biomass or biomass and non-biomass materials from the upper part of the vertical furnace or above the lower part of the furnace. process and
    a step of processing the input biomass or biomass and non-biomass material in the vertical furnace;
    A method of using a vertical furnace, wherein the biomass and non-biomass materials charged into the vertical furnace are 15 to 100% by mass of the biomass and 0 to 85% by mass of the non-biomass material as the balance.
  12.  上記竪型炉の炉下部の内部の少なくとも一部の最高温度を、炉内において、下記1乃至3の3つのうちの1又は2以上が可能な高温に維持する請求項11記載の方法。
    1. 酸化金属を有する場合における当該酸化金属の溶融還元
    2. 水を有する場合における当該水の還元による水素ガス生成
    3. 酸化炭化物を有する場合における酸化炭化物の還元による一酸化炭素ガスの生成
    12. The method according to claim 11, wherein the maximum temperature of at least part of the interior of the lower portion of the vertical furnace is maintained at a high temperature in which one or more of the following three conditions 1 to 3 are possible.
    1. Smelting reduction of metal oxide when it has metal oxide
    2. Generation of hydrogen gas by reduction of water when it is present
    3. Generation of carbon monoxide gas by reduction of oxidized carbides in the presence of oxidized carbides
  13.  上記竪型炉の炉下部の内部の少なくとも一部の最高温度を1050乃至1280℃以上に維持する請求項11又は12記載の方法。 The method according to claim 11 or 12, wherein the maximum temperature of at least part of the interior of the lower part of the vertical furnace is maintained at 1050 to 1280°C or higher.
  14.  上記竪型炉の頂部の内部の少なくとも一部の温度を常温以上1000乃至1050℃以下の所要温度に制御する請求項12又は13記載の方法。  The method according to claim 12 or 13, wherein the temperature of at least part of the inside of the top of the vertical furnace is controlled to a required temperature of 1000 to 1050°C above room temperature.
  15.  下記1乃至3の3つのうちの1又は2以上を産出するための請求項11乃至15の何れか1項に記載の方法。
    1. 酸化金属が溶融還元された金属
    2. 水の還元による水素ガス
    3. 酸化炭化物の還元による一酸化炭素ガス
    16. A method according to any one of claims 11 to 15 for producing one or more of the following three.
    1. Metals obtained by smelting and reducing metal oxides
    2. Hydrogen gas by reduction of water
    3. Carbon monoxide gas from reduction of oxidized carbides
  16.  上記竪型炉に投入するバイオマス及び非バイオマス物質中に、水分を15乃至60質量%有する請求項11乃至15の何れか1項に記載の方法。 The method according to any one of claims 11 to 15, wherein the biomass and non-biomass materials charged into the vertical furnace contain 15 to 60% by mass of water.
  17.  上記竪型炉において、水素ガスが5%以上、酸素ガスが0.5%以下の濃度のガスを生成する請求項11乃至16の何れか1項に記載の方法。 The method according to any one of claims 11 to 16, wherein the vertical furnace produces a gas with a concentration of 5% or more of hydrogen gas and 0.5% or less of oxygen gas.
  18.  上記竪型炉に酸化鉄又はその他の酸化金属を投入し、その酸化鉄又はその他の酸化金属の全て又は部分を、上記生成した水素ガスにより還元精錬する請求項17記載の方法。  The method according to claim 17, wherein iron oxide or other metal oxide is charged into the vertical furnace, and all or part of the iron oxide or other metal oxide is reduced and refined by the hydrogen gas produced above.
  19.  上記竪型炉の炉下部から残渣物質を溶融状態で流出させる請求項11乃至18の何れか1項に記載の方法。 The method according to any one of claims 11 to 18, wherein the residual material is discharged in a molten state from the bottom of the vertical furnace.
  20.  上記竪型炉の所要箇所において、必要に応じ炉内の生成ガスに点火して燃焼させることにより炉内温度を補助的に上げる請求項11乃至19の何れか1項に記載の方法。 20. The method according to any one of claims 11 to 19, wherein the temperature inside the furnace is supplementarily raised by igniting and burning the generated gas in the furnace as necessary at a required location in the vertical furnace.
PCT/JP2022/032239 2021-08-27 2022-08-26 Vertical-type furnace system and method and other system and method for achieving sdgs and biocarbon neutrality WO2023027179A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021160072 2021-08-27
JP2021-160072 2021-08-27
JP2021180626 2021-10-08
JP2021-180626 2021-10-08

Publications (3)

Publication Number Publication Date
WO2023027179A1 WO2023027179A1 (en) 2023-03-02
WO2023027179A9 true WO2023027179A9 (en) 2023-06-08
WO2023027179A8 WO2023027179A8 (en) 2023-07-27

Family

ID=85322930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032239 WO2023027179A1 (en) 2021-08-27 2022-08-26 Vertical-type furnace system and method and other system and method for achieving sdgs and biocarbon neutrality

Country Status (1)

Country Link
WO (1) WO2023027179A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6030430A (en) * 1998-07-24 2000-02-29 Material Conversions, Inc. Blast furnace with narrowed top section and method of using
JP2002285172A (en) * 2001-03-27 2002-10-03 Fuji Electric Systems Co Ltd Method for gasifying solid biomass fuel and gasifier therefor
GB0325668D0 (en) * 2003-11-04 2003-12-10 Dogru Murat Intensified and minaturized gasifier with multiple air injection and catalytic bed
JP2005325322A (en) * 2004-05-13 2005-11-24 Kangen Yoyu Gijutsu Kenkyusho:Kk Energy recovery method of reducing gasified wood biomass
JP4589226B2 (en) * 2005-12-22 2010-12-01 新日鉄エンジニアリング株式会社 Method for producing fuel carbide and fuel gas

Also Published As

Publication number Publication date
WO2023027179A8 (en) 2023-07-27
WO2023027179A1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
JP4377824B2 (en) Waste melting treatment method using biomass
KR101663343B1 (en) Method for producing cast iron or semi steel with reducing gas
EP1114190B1 (en) Blast furnace with narrowed top section and method of using
JP2023542552A (en) Bioreduction of metal ores integrated with biomass pyrolysis
CN108350370A (en) The manufacturing method of the gasification process of carbonaceous fuel, the operating method of iron-smelter and gasifying gas
US5066325A (en) Cogeneration process for production of energy and iron materials, including steel
SU1138036A3 (en) Method of operation of blast furnace and system for producing molten iron and reducing gas
JP4397783B2 (en) Waste disposal method using molded lump
JP4276559B2 (en) Waste melting treatment method using biomass
WO2023027179A9 (en) Vertical-type furnace system and method and other system and method for achieving sdgs and biocarbon neutrality
US4078914A (en) Gasification of coal and refuse in a vertical shaft furnace
JP4191636B2 (en) Waste melting treatment method using bulk biomass
JP4829708B2 (en) Waste melting treatment method
KR101322903B1 (en) Apparatus for manufacturing molten iron and method for manufacturing the same
WO2023181585A1 (en) Energy gas/liquid generation vertical furnace system and generation method, fuel production method, transport device, and method
JP4734776B2 (en) Organic or hydrocarbon waste recycling method and blast furnace equipment suitable for recycling
EP0377636A1 (en) Congeneration process for production of energy and iron materials, including steel
JP3597714B2 (en) Small melting furnace with carbonization device and smelting reduction method
US20230012217A1 (en) Low-water-intensity biocarbon products, and processes for producing low-water-intensity biocarbon products
US20230151280A1 (en) Biocarbon compositions with optimized compositional parameters, and processes for producing the same
CN106678811A (en) Method of disposing waste
CA1296192C (en) Cogeneration process for production of energy and iron materials, including steel
JPH01247535A (en) Method for recovering valuable metal from by-product in production of stainless steel
JP3293431B2 (en) Scrap melting method
Lampe et al. Biocoal Preparation–Biomass a Sustainable Fuel for Industrial Processes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE