JP4377824B2 - Waste melting treatment method using biomass - Google Patents

Waste melting treatment method using biomass Download PDF

Info

Publication number
JP4377824B2
JP4377824B2 JP2005019304A JP2005019304A JP4377824B2 JP 4377824 B2 JP4377824 B2 JP 4377824B2 JP 2005019304 A JP2005019304 A JP 2005019304A JP 2005019304 A JP2005019304 A JP 2005019304A JP 4377824 B2 JP4377824 B2 JP 4377824B2
Authority
JP
Japan
Prior art keywords
waste
furnace
biomass
oxygen
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005019304A
Other languages
Japanese (ja)
Other versions
JP2005274122A (en
Inventor
吉浩 石田
猛 西
也寸彦 加藤
健次 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2005019304A priority Critical patent/JP4377824B2/en
Publication of JP2005274122A publication Critical patent/JP2005274122A/en
Application granted granted Critical
Publication of JP4377824B2 publication Critical patent/JP4377824B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Coke Industry (AREA)
  • Air Supply (AREA)

Description

本発明は、一般廃棄物・産業廃棄物等の廃棄物の溶融処理方法に関し、特にバイオマスを利用する廃棄物溶融処理方法に関する。     The present invention relates to a method for melting waste such as general waste and industrial waste, and more particularly to a method for melting waste using biomass.

一般廃棄物・産業廃棄物、あるいはそれらを乾燥、焼却、破砕処理等によって得られた処理物、これらを一度埋め立て処理後、再度掘り起こした土砂分を含む埋め立てごみ等の廃棄物を処理する方法として、これらの廃棄物をシャフト炉式廃棄物溶融炉で溶融処理してスラグ、メタルとして再資源化する方法が実施されている。     As a method for treating waste such as landfill waste including earth and sand that has been dug up again after landfill processing once, after treating these wastes by general waste and industrial waste, or those obtained by drying, incineration, crushing, etc. These waste materials are melted in a shaft furnace type waste melting furnace and recycled as slag and metal.

廃棄物を溶融処理する方法にシャフト炉式廃棄物溶融炉が使用される(特許文献1参照)。これは図2に示すように、炉本体1は、シャフト部1aと下部の朝顔部5とからなり、朝顔部5の下端には燃焼溶融帯用の下段羽口3を設けると共に、その上方には熱分解帯用の複数段の上段羽口2を有している。下段羽口3からは酸素または酸素富化空気を供給し、上段羽口2からは燃焼支持ガスとして空気を供給している。   A shaft furnace type waste melting furnace is used as a method for melting waste (see Patent Document 1). As shown in FIG. 2, the furnace body 1 includes a shaft portion 1 a and a lower morning glory portion 5, and a lower tuyere 3 for a combustion melting zone is provided at the lower end of the morning glory portion 5. Has a plurality of upper tuyere 2 for the pyrolysis zone. Oxygen or oxygen-enriched air is supplied from the lower tuyere 3, and air is supplied from the upper tuyere 2 as a combustion support gas.

炉本体の上部には処理対象となる廃棄物や助燃剤としてのコークス、塩基度調整剤としての石灰石等を炉内に装入する、シール弁を備えた装入装置11が設けられ、炉本体下端部には廃棄物を溶融処理した後のスラグ、メタルの出滓口13が設けられている。   At the top of the furnace body, there is provided a charging device 11 having a seal valve for charging waste to be treated, coke as a combustion aid, limestone as a basicity adjusting agent, etc. into the furnace. The lower end portion is provided with a slag and metal outlet 13 after melting the waste.

上記構成にあって、装入された廃棄物1bは、溶融炉本体1の上層から乾燥・予熱帯6(約300〜400℃)、熱分解帯7(約300〜1000℃)、燃焼・溶融帯8(約1700〜1800℃)を通過して溶融処理される。   In the above configuration, the charged waste 1b is dried from the upper layer of the melting furnace main body 1 and dried / pre-trophic 6 (about 300 to 400 ° C.), pyrolysis zone 7 (about 300 to 1000 ° C.), combustion and melting It melt-processes by passing through band 8 (about 1700-1800 ° C.).

下段羽口3から供給した酸素又は酸素富化空気によってコークス4や熱分解残渣14を高温で燃焼し、溶融熱源とし、一方、上段羽口2からは空気を供給して主に廃棄物の熱分解残渣14を燃焼し、発生したガスで廃棄物の乾燥・予熱及び熱分解を行う。溶融した廃棄物はスラグ、メタルを溶融物として出滓口13より排出される。   The coke 4 and the pyrolysis residue 14 are burned at a high temperature by the oxygen supplied from the lower tuyere 3 or oxygen-enriched air, and used as a heat source for melting. On the other hand, air is supplied from the upper tuyere 2 to mainly generate heat from waste. The decomposition residue 14 is combusted, and the waste gas is dried, preheated and thermally decomposed with the generated gas. The molten waste is discharged from the outlet 13 with slag and metal as melt.

高温の燃焼排ガスは、シャフト炉内の廃棄物の充填層を対向流として上昇し、溶融炉本体上部の排ガス管12から可燃ガスとして燃焼室へ導入されて燃焼され、燃焼排ガスは、排ガス管を通ってボイラーへ導入され、廃熱が回収された後、減温塔で温度を調整して集塵機に通し、更には、触媒反応塔で公害物質を除去した後、煙突から排出される。   The high-temperature combustion exhaust gas rises as a counterflow through the waste bed in the shaft furnace, is introduced into the combustion chamber as a combustible gas from the exhaust gas pipe 12 at the upper part of the melting furnace body, and is combusted. After passing through the boiler and recovering waste heat, the temperature is adjusted in a temperature reducing tower and passed through a dust collector. Further, pollutants are removed in a catalytic reaction tower and then discharged from a chimney.

一方で、地球温暖化防止の観点から石炭などの化石燃料に由来するCO削減のための開発が推進されている。直接溶融炉設備においても、化石燃料に由来するコークスを溶融熱源として用いるので、環境に対するCO負荷を削減することができるコークス使用量削減技術が提案されている。例えば、コークスを出来るだけ少なくして被処理物を効率よく燃焼熔融させるための手段として、炉頂から排出した可燃性ダスト(チャー)を捕集して再度熔融炉本体へ羽口を介して装入する方法(特許文献2、3参照)、また、廃プラスチックを破砕し、同じく羽口から又は大きなものは炉頃から装入して熱源として利用する方法(特許文献4参照)等がある。
特開2001−90923号公報 特開平8−285250号公報 特開2001−21123号公報 特開平11−153309号公報
On the other hand, development for reducing CO 2 derived from fossil fuels such as coal is being promoted from the viewpoint of preventing global warming. Also in the direct melting furnace equipment, coke derived from fossil fuel is used as a melting heat source, and therefore, a coke usage reduction technique capable of reducing the CO 2 load on the environment has been proposed. For example, as a means to efficiently burn and melt the object to be processed with as little coke as possible, flammable dust (char) discharged from the top of the furnace is collected and loaded again into the melting furnace body via the tuyere. There is a method of entering (see Patent Documents 2 and 3), a method of crushing waste plastic, and charging from a tuyere or a large one from the furnace and using it as a heat source (see Patent Document 4).
JP 2001-90923 A JP-A-8-285250 JP 2001-21123 A JP 11-153309 A

従来の羽口吹き込み技術では、コークス消費量を低減することは可能であるが、C+CO→2CO、C+HO→H+COに代表される固定炭素分のガス化反応により、コークス消費を完全に抑えることができないため、また、コークスでコークスベットを形成して火格子機能を維持するため、コークス使用量の削減には限界があった。 Although the conventional tuyere blowing technology can reduce the coke consumption, the coke consumption is completely achieved by the gasification reaction of the fixed carbon, represented by C + CO 2 → 2CO and C + H 2 O → H 2 + CO. In addition, since coke bets are formed from coke to maintain the grate function, there is a limit to the reduction of coke usage.

本発明は、廃棄物の溶融処理に使用されている化石燃料に由来するコークスの代替としてバイオマスを利用して、コークス使用量の削減をするとともに、環境に対するCO負荷を削減することができるバイオマスを利用する廃棄物溶融処理方法を提供するものである。 The present invention uses biomass as an alternative to coke derived from fossil fuels used for melting treatment of waste, thereby reducing the amount of coke used and reducing the CO 2 load on the environment. The present invention provides a waste melting treatment method using the above.

本発明のバイオマスを利用する廃棄物溶融処理方法は、シャフト炉式廃棄物溶融炉に廃棄物を装入し、炉底部送風口から酸素もしくは酸素富化空気を吹き込んで、廃棄物を乾燥、熱分解、燃焼、溶融する廃棄物溶融処理方法において、木質系バイオマス、家畜糞尿・下水汚泥・し尿汚泥等のバイオマス粉状物もしくはそれらの粉状炭化物、溶融炉炉頂部から飛散する可燃ダストのいずれか、もしくはそれらの混合物を添加して加圧成形したブリケットを炉上部から廃棄物と共に投入し、炉底部送風羽口から送風する酸素もしくは酸素富化空気で廃棄物と共に還元燃焼することによって発生した無酸素の燃焼ガスで、バイオマス固形物をシャフト炉内で乾燥、乾留することによって炭化物化させ、シャフト炉下部で炭火物層を形成し、該炭火物層内で前記還元燃焼を行い、廃棄物中灰分の溶融用熱源とすることを特徴とする。 In the waste melting method using biomass according to the present invention, waste is charged into a shaft furnace type waste melting furnace, oxygen or oxygen-enriched air is blown from the furnace bottom blower, and the waste is dried, heated In the waste melting treatment method that decomposes, burns, and melts , either woody biomass, biomass powder such as livestock manure / sewage sludge / human waste sludge, or powdered carbides thereof, or combustible dust scattered from the top of the melting furnace Or, a briquette that has been pressure-molded with the addition of a mixture of these is introduced together with waste from the top of the furnace, and reduced or burned together with waste with oxygen or oxygen-enriched air blown from the furnace bottom blowing tuyere. The biomass solids are carbonized by drying and dry distillation in the shaft furnace with oxygen combustion gas, and a charcoal layer is formed at the lower part of the shaft furnace. It performs the reduction combustion in the inner, characterized by a melting heat source for in the waste ash.

廃棄物溶融処理方法では、廃棄物をシャフト炉式溶融炉で廃棄物中灰分を溶融する際に、炉底部から上昇する高温燃焼ガスにより廃棄物は、乾燥、乾留(熱分解)されて揮発分は炉上部から可燃性ガスとして排出され、揮発せずに残って乾留された固定炭素分を主体とする熱分解後の残渣は炉底に降下し、炉底部において下段送風羽口前で下段送風羽口から供給される酸素と反応し高温で燃焼し、廃棄物中の灰分を溶融する溶融熱源となる。しかしながら、廃棄物中の可燃分はその大部分が紙やプラスチック等であって、乾留により細粒化するため、乾留後の固定炭素分を含む残渣は、ガス流によって炉頂より多くの割合で飛散するので、炉底で溶融熱源として燃焼する比率は多くない。   In the waste melting treatment method, when the ash content in the waste is melted in the shaft furnace type melting furnace, the waste is dried and dry-distilled (pyrolyzed) by the high-temperature combustion gas rising from the bottom of the furnace, and the volatile content is reduced. Is discharged as combustible gas from the upper part of the furnace, and the residue after pyrolysis mainly composed of fixed carbon that has not been volatilized and is carbonized falls to the bottom of the furnace, and the lower stage blows in front of the lower blower tuyeres at the bottom of the furnace. It reacts with oxygen supplied from the tuyere and burns at a high temperature to become a melting heat source that melts the ash in the waste. However, most of the combustibles in waste are paper, plastic, etc., and are finely divided by dry distillation. Therefore, residues containing fixed carbon after dry distillation are in a larger proportion than the top of the furnace due to gas flow. Since it scatters, there is not much ratio which burns as a melting heat source at the furnace bottom.

ところが、本発明のバイオマスを利用する廃棄物溶融処理方法では、炉内に装入されたバイオマス固形物は、廃棄物と同様に乾燥、乾留を経て乾留により炭化(コークス化)により生成した固定炭素分は炉底に降下し、例えば、木の場合、細粒化する割合が小さく、大部分が炉底に降下して溶融熱源として利用できる。そのため、通常、補助溶融熱源として化石燃料に由来するコークスを廃棄物と共に用いる場合においては、バイオマス固化物の乾留後の固定炭素分は溶融熱源の代替として機能する。   However, in the waste melting treatment method using biomass according to the present invention, the solid biomass charged into the furnace is dried, carbonized and carbonized (coking) by carbonization (coking) by dry distillation as in the case of waste. For example, in the case of wood, the proportion of fine particles is small, and most of it falls to the furnace bottom and can be used as a heat source for melting. Therefore, when using coke derived from fossil fuel as an auxiliary melting heat source together with waste, the fixed carbon content after dry distillation of the biomass solidified product functions as an alternative to the melting heat source.

バイオマス固化物は、粉状のバイオマスを加圧成形してブリケットにすることにより炉内で乾燥、乾留を経ても細粒化が抑制され、炉底での溶融熱源として利用できる。バイオマスを加圧成形すると、摩擦熱もしくは外熱によりバイオマス中のリグニン、セルロース、ヘミセルロースが油化し油分がバインダーとなって、さらに加圧することで、油分が成形品の全般に行き渡り緻密になるために成形物の強度を強めることができる。   The biomass solidified product can be used as a heat source for melting at the furnace bottom by pressing powdery biomass into briquettes to suppress fine granulation even after drying and dry distillation in the furnace. When biomass is pressure-molded, the lignin, cellulose, and hemicellulose in the biomass are converted into oil by frictional heat or external heat, and the oil becomes a binder. By further pressurizing, the oil reaches the entire molded product and becomes dense. The strength of the molded product can be increased.

また、バイオマス固化物として、家畜糞尿、下水汚泥、し尿汚泥等のバイオマス粉状物もしくはこれらを乾留して炭化(コークス化)した粉状炭化物を溶融炉の燃料として利用する場合、これらのバイオマス単独では加圧成形不可能な場合、粉状の木質系バイオマス望ましくはオガクズをバインダーとして添加し、加圧成形することで、成形品の強度を得ることができ、溶融炉内で粉化することなく炉底部での廃棄物の灰分を溶融する溶融用熱源として利用できる。   In addition, when using biomass powders such as livestock manure, sewage sludge, human waste sludge, etc., or powdered carbides carbonized by carbonization (coking) as a biomass solidified product, these biomasses alone In the case where pressure molding is impossible, powdery woody biomass, preferably sawdust is added as a binder, and pressure molding can be performed to obtain the strength of the molded product without pulverization in the melting furnace. It can be used as a heat source for melting to melt waste ash at the bottom of the furnace.

また、バイオマス固化物を予め乾留処理して固形炭化物とすることで、溶融炉内での乾燥・乾留帯での熱履歴に関わらず、安定して炉底部に下降し、溶融用熱源として利用可能となる。即ち、固形炭化物の種別に適した乾留の温度、昇温速度で乾留処理をすることで、熱間でも十分な強度を得ることが可能となる。   Also, by solidifying the biomass solidified in advance into solid carbide, it can be stably lowered to the bottom of the furnace and used as a heat source for melting regardless of the heat history in the drying / dry distillation zone in the melting furnace. It becomes. That is, it is possible to obtain sufficient strength even in the hot state by performing the carbonization process at a carbonization temperature and a temperature rising rate suitable for the type of solid carbide.

また、バインダーとして木質系バイオマス以外にタールピッチ系バインダー、プラスチック、水、デンプン、リグニン、セルロース、ヘミセルロースのいずれかもしくはその混合物を添加することができる。例えば、粉状炭化物の固化の際は、固形物が十分な強度を得るために必要な油分が不足する場合には、バインダーとして望ましくは、タールピッチ系バインダーを適量添加するとよい。   In addition to woody biomass, tar pitch binder, plastic, water, starch, lignin, cellulose, hemicellulose, or a mixture thereof can be added as a binder. For example, when the powdered carbide is solidified, if the oil necessary for obtaining a sufficient strength of the solid is insufficient, an appropriate amount of a tar pitch binder is preferably added as a binder.

バイオマスを加圧成形してブリケットを製造する際には、バイオマスの固体温度が50℃〜350℃となるように加熱し、約0.5t〜5t/cmの圧力で加圧する。成形機には、例えばダブルロール成形機を使用する。加熱による固体温度には、バイオマス中のリグニン、セルロース、ヘミセルロース成分が油化し、バインダーとなるためには50℃以上の温度が必要であり、一方、350℃を超えると成形時に熱分解が始まり、ガスの生成により膨張するため成形が困難となり、固化物の強度が低下する。 When manufacturing a briquette by press-molding biomass, it is heated so that the solid temperature of the biomass is 50 ° C. to 350 ° C., and pressurized at a pressure of about 0.5 t to 5 t / cm 2 . For example, a double roll molding machine is used as the molding machine. The solid temperature by heating is that the lignin, cellulose, and hemicellulose components in the biomass become oily, and a temperature of 50 ° C. or higher is necessary to become a binder. On the other hand, if it exceeds 350 ° C., thermal decomposition starts during molding, Since it expand | swells by the production | generation of gas, shaping | molding becomes difficult and the intensity | strength of solidified material falls.

また、加圧成形により得られたブリケットをロータリーキルンあるいはコークス炉などで約500℃以上、乾留温度が低いと乾留時間が長くなるため、好ましくは生産性の向上から800℃以上の乾留温度で乾留することにより炭化(コークス化)して炭化物として利用することもできる。バイオマス固形物を廃棄物溶融炉で利用するためには、バイオマス固形物の粒径を20mm以上(容積で4cc以上)とすることが必要であり、これによりコークスベットが形成されて火格子の機能により炉底部での溶融物の通液性、燃焼ガスの通気性を確保することができる。   Also, the briquette obtained by pressure molding is about 500 ° C. or higher in a rotary kiln or coke oven, and the carbonization time becomes longer when the carbonization temperature is low. Therefore, it is preferably carbonized at a carbonization temperature of 800 ° C. or higher in order to improve productivity. Therefore, it can be carbonized (coked) and used as a carbide. In order to use biomass solids in a waste melting furnace, it is necessary to set the particle size of the biomass solids to 20 mm or more (4 cc or more in volume), thereby forming a coke bed and the function of the grate Thus, it is possible to ensure the liquid permeability of the melt and the breathability of the combustion gas at the bottom of the furnace.

本発明により、コークスを火格子とするコークスベッド式の溶融炉においては、コークス消費量が抑制できるため、化石燃料起源のCO発生が抑制できるだけでなく、溶融炉での廃棄物処理量を低下させることなく、バイオマス起源の燃料の利用を行うことができる。また、溶融炉後段でボイラーによる蒸気回収発電を行えば、電気エネルギーへの変換も可能であり、その結果、化石燃料起源のCO発生を抑制できる。また、コークスベッド式以外の溶融炉においては、廃棄物の性状に関わらず、炉底部に安定して溶融用熱源を供給できるため、安定した溶融処理が可能となる。 According to the present invention, in a coke bed type melting furnace using coke as a grate, since the coke consumption can be suppressed, not only the generation of CO 2 derived from fossil fuels can be suppressed, but also the amount of waste treated in the melting furnace is reduced. It is possible to use a fuel derived from biomass without causing it. Further, if steam recovery power generation by a boiler is performed at the latter stage of the melting furnace, conversion to electric energy is possible, and as a result, generation of CO 2 originating from fossil fuel can be suppressed. Further, in a melting furnace other than the coke bed type, a melting heat source can be stably supplied to the bottom of the furnace regardless of the properties of the waste, so that a stable melting process is possible.

図1は本発明による廃棄物溶融処理設備を示す図で、図1に示す従来の廃棄物溶融処理設備と実質的に同一であり、同一構成に同一符号を付して、その説明は省略する。本発明による操業は従来と比較して、化石燃料に由来するコークスをバイオマスで代替する点で大きく異なるが、その他は実質的に変わるところはない。   FIG. 1 is a diagram showing a waste melting treatment facility according to the present invention, which is substantially the same as the conventional waste melting treatment facility shown in FIG. 1, and the same components are denoted by the same reference numerals and description thereof is omitted. . The operation according to the present invention is greatly different from the conventional one in that the coke derived from fossil fuel is replaced with biomass, but the others are not substantially changed.

バイオマスはFAO(国際食料農業機関)によって分類されており、本発明では、林地残材、間伐材、未利用樹、製材残材、建設廃材、稲わら、籾殻等の木質系バイオマス、さらに、製紙系バイオマス、農業残渣、家畜糞尿、食品廃棄物等の未利用バイオマス資源、または、それらの乾留処理後の炭化物を利用する。   Biomass is classified by the FAO (International Food and Agriculture Organization). In the present invention, woody biomass such as forest land residue, thinned wood, unused trees, lumber residue, construction waste, rice straw, rice husks, and papermaking Biomass biomass, agricultural residues, livestock manure, unused biomass resources such as food waste, or carbides after their dry distillation treatment are used.

炭化物の製造は、例えば木質系バイオマスの場合、木質系バイオマスを微粉砕し、150〜350℃で加熱し成形してバイオマス成形物とし、このバイオマス成形物を乾留炉としてロータリーキルンあるいはコークス炉などで乾留することにより製造する。   For example, in the case of woody biomass, the woody biomass is pulverized and heated at 150 to 350 ° C. to form a biomass molded product. This biomass molded product is used as a dry distillation furnace for dry distillation in a rotary kiln or coke oven. It is manufactured by doing.

図1に示すシャフト炉式廃棄物溶融炉1に廃棄物、コークス、石灰石、バイオマス固形物を装入し、上段送風羽口2から空気を、下段送風口3から酸素富化空気を吹き込んで廃棄物を溶融処理した。   The shaft furnace type waste melting furnace 1 shown in FIG. 1 is charged with waste, coke, limestone, and biomass solids, and is discarded by blowing air from the upper blower tuyere 2 and oxygen-enriched air from the lower blower vent 3. The product was melt processed.

バイオマス固形物は、木材加工時に発生するおがくずを、固体温度が約200℃となるように加熱し、約1t/cmで加圧成形により約40mm径のブリケットとしたものを使用した。また、比較のため、石炭コークスを熱源とした試験も行った。バイオマス固化物及び石炭コークス使用時の操業条件及び結果を表1に示す。 As the biomass solid, sawdust generated during wood processing was heated so that the solid temperature was about 200 ° C., and a briquette having a diameter of about 40 mm was formed by pressure molding at about 1 t / cm 2 . For comparison, a test using coal coke as a heat source was also conducted. Table 1 shows the operating conditions and results when using the biomass solidified product and coal coke.

いずれも上段送風量(空気)350Nm/h、下段送風量(空気)250Nm/h、酸素を富化するために、下段送酸量(純酸素)60Nm/hとし、下段羽口での送風は酸素濃度36.3%の一定条件、また、バイオマス固化物を使用する場合、その揮発分を見越して、燃料使用量を石炭コークスで40kg/廃棄物tに対し、180kg/廃棄物tで操業した。 In each case, the upper air flow rate (air) is 350 Nm 3 / h, the lower air flow rate (air) is 250 Nm 3 / h, and the oxygen concentration is lower, the lower acid feed amount (pure oxygen) is 60 Nm 3 / h. Blasting is a constant condition with an oxygen concentration of 36.3%, and when using biomass solidified, the amount of fuel used is 180 kg / waste t against 40 kg / waste t of coal coke in anticipation of its volatile content. Operated at.

廃棄物の処理量は、石炭コークス使用時に比べ、800kg/hに若干低下したが、試験の結果、バイオマス固化物は、従来熱源として使用していた石炭コークスに比べ溶融能力としては何ら変わりなく操業可能であることが確認できた。   Although the amount of waste was slightly reduced to 800 kg / h compared to when coal coke was used, as a result of the test, the biomass solidified product was operated without any change in melting capacity compared to coal coke used as a conventional heat source. It was confirmed that it was possible.

バイオマス固化物は、木材加工時に発生するおがくずを、固体温度が約200℃となるように加熱し、約1t/cmで加圧成形により約40mm径のブリケットとし、さらに、得られたブリケットを乾留炉に装入して、800℃、20時間で乾留した炭化物を使用した、操業条件及び結果を表1に示す。 The biomass solidified product is produced by heating sawdust generated during wood processing so that the solid temperature becomes about 200 ° C., and forming a briquette having a diameter of about 40 mm by pressure molding at about 1 t / cm 2. Table 1 shows the operating conditions and results using carbides charged in a carbonization furnace and carbonized at 800 ° C. for 20 hours.

操業条件としては、上段送風量(空気)350Nm/h、下段送風量(空気)250Nm/h、酸素を富化するために、下段送風量(純酸素)60Nm/hとし、下段羽口での送風は酸素濃度36.3%の一定条件、また、バイオマス固化物の乾留物を使用する場合、その揮発分は石炭コークス並に少ないので、燃料使用量を石炭コークスと同じ40kg/廃棄物tで操業した。 The operating conditions, the upper air volume (air) 350 Nm 3 / h, the lower air volume (air) 250 Nm 3 / h, oxygen to enrich, and lower air volume (pure oxygen) 60 Nm 3 / h, the lower blade Blowing at the mouth is a constant condition with an oxygen concentration of 36.3%, and when using solidified biomass, the volatile content is as low as that of coal coke. It operated with the thing t.

試験の結果、廃棄物の処理量は、石炭コークス使用時と同等の、850kg/hを達成し、溶融物の排出温度も石炭コークスと同等であった。即ち、バイオマス固化物の乾留物は従来熱源として使用していた石炭コークスに比べ溶融能力としては何等変わりなく操業可能であることが確認できた。   As a result of the test, the amount of waste treated was 850 kg / h, which was the same as when using coal coke, and the discharge temperature of the melt was also equivalent to that of coal coke. That is, it was confirmed that the solidified product of biomass solidified product can be operated without any change in melting capacity compared to coal coke that has been used as a heat source.

バイオマス固化物は、木材加工時に発生するおがくずと共に、鶏糞の炭化物(粉状)を重量比で80:20として十分混合し、固体温度が約200℃となるように加熱し、約1t/cmで加圧成形により約40mm径のブリケットとし、さらに、得られたブリケットを乾留炉に装入して、800℃、20時間で乾留した炭化物を使用した、操業条件及び結果を表1に示す。 The biomass solidified product is mixed with sawdust generated at the time of wood processing together with charcoal of chicken dung (powder) in a weight ratio of 80:20 and heated to a solid temperature of about 200 ° C., and about 1 t / cm 2. Table 1 shows the operating conditions and results obtained by forming a briquette having a diameter of about 40 mm by pressure molding, and further using the obtained briquette in a carbonization furnace and carbonized at 800 ° C. for 20 hours.

操業条件としては、上段送風量(空気)350Nm/h、下段送風量(空気)250Nm/h、酸素を富化するために、下段送酸量(純酸素)60Nm/hとし、下段羽口での送風は酸素濃度約36.3%の一定条件、また、バイオマス固化物の揮発分は石炭コークス並に少ないが、鶏糞炭化物中の増加による固定酸素分の減少を考慮し、燃料使用量を50kg/廃棄物tで操業した。 As operating conditions, the upper air flow rate (air) is 350 Nm 3 / h, the lower air flow rate (air) is 250 Nm 3 / h, and in order to enrich oxygen, the lower oxygen supply amount (pure oxygen) is 60 Nm 3 / h. The air blowing at the tuyere is a constant condition with an oxygen concentration of about 36.3%, and the volatile content of the biomass solidified product is as low as that of coal coke. The quantity was operated at 50 kg / waste t.

試験の結果、廃棄物の処理量は、石炭コークス使用時と同等の、830kg/hを達成し、鶏糞炭化物中灰分の増加量は廃棄物中灰分量に比し微小であるために溶融物の排出温度も石炭コークスと同等であった。   As a result of the test, the amount of waste treated reached 830 kg / h, which is the same as when using coal coke, and the increased amount of ash in chicken manure carbide is very small compared to the amount of ash in waste. The discharge temperature was also equivalent to coal coke.

即ち、バイオマスと鶏糞炭化物の混合固化物の乾留物は、従来熱源として機能し、また、鶏糞の炭化物は飛散することなく、炉底において石炭コークスの代替として機能することが確認できた。   That is, it was confirmed that the dry-distilled product of the mixed solidified product of biomass and chicken dung charcoal functioned as a heat source in the past, and the charcoal of chicken dung did not scatter and functioned as an alternative to coal coke at the furnace bottom.

下段に設置する下段羽口は、シャフト炉の下部に形成させた炭火物層15内に酸素又は酸素富化空気を送風できれば良いので下段羽口の位置は特に限定されるものではない。

Figure 0004377824
The position of the lower tuyere is not particularly limited as long as oxygen or oxygen-enriched air can be blown into the charcoal layer 15 formed in the lower part of the shaft furnace.
Figure 0004377824

本発明の操業方法を実施するシャフト炉式廃棄物溶融設備を示す図である。It is a figure which shows the shaft furnace type waste melting equipment which enforces the operating method of this invention. 従来のシャフト炉式廃棄物溶融処理設備を示す図である。It is a figure which shows the conventional shaft furnace type waste melting processing equipment.

符号の説明Explanation of symbols

1:溶融炉本体
1a:シャフト部
1b:廃棄物
2:上段羽口
3:下段羽口
4:コークス
5:朝顔部
6:乾燥帯
7:熱分解帯
8:燃焼溶融帯
10:炉床部
11:装入装置
12:排ガス管
13:出滓口
14:熱分解残渣
15:炭化物層
1: Melting furnace body 1a: Shaft portion 1b: Waste 2: Upper tuyere 3: Lower tuyere 4: Coke 5: Morning glory 6: Drying zone 7: Pyrolysis zone 8: Combustion melting zone 10: Hearth portion 11 : Charging device 12: exhaust gas pipe 13: outlet 14: pyrolysis residue 15: carbide layer

Claims (5)

シャフト炉式廃棄物溶融炉に廃棄物を装入し、炉底部送風口から酸素もしくは酸素富化空気を吹き込んで、廃棄物を乾燥、熱分解、燃焼、溶融する廃棄物溶融処理方法において、
木質系バイオマス、家畜糞尿・下水汚泥・し尿汚泥等のバイオマス粉状物もしくはそれらの粉状炭化物、溶融炉炉頂部から飛散する可燃ダストのいずれか、もしくはそれらの混合物を添加して加圧成形したブリケットを炉上部から廃棄物と共に投入し、炉底部送風羽口から送風する酸素もしくは酸素富化空気で廃棄物と共に還元燃焼することによって発生した無酸素の燃焼ガスで、バイオマス固形物をシャフト炉内で乾燥、乾留することによって炭化物化させ、シャフト炉下部で炭火物層を形成し、該炭火物層内で前記還元燃焼を行い、廃棄物中灰分の溶融用熱源とすることを特徴とするバイオマスを利用する廃棄物溶融処理方法。
In a waste melting treatment method in which waste is charged into a shaft furnace type waste melting furnace, oxygen or oxygen-enriched air is blown from the furnace bottom blower, and the waste is dried, pyrolyzed, burned, and melted.
Pressurized by adding woody biomass, biomass powder such as livestock manure, sewage sludge, human waste sludge, etc. or powdered carbides thereof, combustible dust scattered from the top of the melting furnace, or a mixture thereof An anoxic combustion gas generated by introducing briquettes with waste from the top of the furnace and reducing and burning with waste using oxygen or oxygen-enriched air blown from the bottom of the furnace. The biomass is characterized in that it is carbonized by drying and carbonization, forming a charcoal layer at the bottom of the shaft furnace, performing the reduction combustion in the charcoal layer, and using as a heat source for melting ash in waste Waste melting treatment method using
シャフト炉式廃棄物溶融炉に廃棄物を装入し、炉底部送風口から酸素もしくは酸素富化空気を吹き込んで、廃棄物を乾燥、熱分解、燃焼、溶融する廃棄物溶融処理方法において、
バイオマスを加圧成形したブリケット、あるいは、木質系バイオマス、家畜糞尿・下水汚泥・し尿汚泥等のバイオマス粉状物もしくはそれらの粉状炭化物、溶融炉炉頂部から飛散する可燃ダストのいずれか、もしくはそれらの混合物を添加して加圧成形したブリケットを乾留処理した固形炭化物を炉上部から廃棄物と共に投入し、炉底部送風羽口から送風する酸素もしくは酸素富化空気で廃棄物と共に還元燃焼することによって発生した無酸素の燃焼ガスで、バイオマス固形物をシャフト炉内で乾燥、乾留することによって炭化物化させ、シャフト炉下部で炭火物層を形成し、該炭火物層内で前記還元燃焼を行い、廃棄物中灰分の溶融用熱源とすることを特徴とするバイオマスを利用する廃棄物溶融処理方法。
In a waste melting treatment method in which waste is charged into a shaft furnace type waste melting furnace, oxygen or oxygen-enriched air is blown from a furnace bottom blower, and the waste is dried, pyrolyzed, burned, and melted.
Either a briquette obtained by pressure molding of biomass, or woody biomass, biomass powder such as livestock manure / sewage sludge / sewage sludge, or powdered carbides thereof, or combustible dust scattered from the top of the melting furnace, or these The solid carbide obtained by dry distillation of the briquette that was pressure-molded with the mixture of the above was added together with the waste from the top of the furnace, and reduced and burned with the waste with oxygen or oxygen-enriched air blown from the blower tuyeres at the bottom of the furnace With the generated oxygen-free combustion gas, the biomass solids are carbonized by drying and dry distillation in the shaft furnace, forming a charcoal layer at the bottom of the shaft furnace, and performing the reduction combustion in the charcoal layer, A waste melting treatment method using biomass, characterized by being a heat source for melting ash in waste.
加圧成型用添加剤として、タール・ピッチ系バインダー、プラスチック、水、デンプン、リグニン、セルロースのいずれかもしくはその混合物が添加されていることを特徴とする請求項1又は2記載のバイオマスを利用する廃棄物溶融処理方法。 The biomass according to claim 1 or 2, wherein a tar / pitch binder, plastic, water, starch, lignin, cellulose, or a mixture thereof is added as an additive for pressure molding. Waste melting treatment method. 加圧成形の際に50〜350℃の固体温度に加熱して加圧することを特徴とする請求項1〜3のいずれか1項に記載のバイオマスを利用する廃棄物溶融処理方法。 The waste melting treatment method using biomass according to any one of claims 1 to 3, wherein a pressure is applied by heating to a solid temperature of 50 to 350 ° C during pressure molding . 加圧成型したバイオマス固形物を廃棄物溶融炉に装入する前に事前乾留し、その乾留温度は500℃以上とすることを特徴とする請求項1〜4のいずれか1項に記載のバイオマスを利用する廃棄物溶融処理方法。 The biomass according to any one of claims 1 to 4, wherein the solid biomass subjected to pressure molding is subjected to prior dry distillation before charging into a waste melting furnace, and the dry distillation temperature is 500 ° C or higher. Waste melting treatment method using
JP2005019304A 2004-02-26 2005-01-27 Waste melting treatment method using biomass Expired - Fee Related JP4377824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005019304A JP4377824B2 (en) 2004-02-26 2005-01-27 Waste melting treatment method using biomass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004052359 2004-02-26
JP2005019304A JP4377824B2 (en) 2004-02-26 2005-01-27 Waste melting treatment method using biomass

Publications (2)

Publication Number Publication Date
JP2005274122A JP2005274122A (en) 2005-10-06
JP4377824B2 true JP4377824B2 (en) 2009-12-02

Family

ID=35173981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005019304A Expired - Fee Related JP4377824B2 (en) 2004-02-26 2005-01-27 Waste melting treatment method using biomass

Country Status (1)

Country Link
JP (1) JP4377824B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4950609B2 (en) * 2006-09-13 2012-06-13 新日鉄エンジニアリング株式会社 Asbestos waste treatment equipment
JP4811597B2 (en) * 2007-01-12 2011-11-09 Jfeエンジニアリング株式会社 Simultaneous treatment of combustible waste and low calorific value waste
EP2158978B1 (en) * 2008-08-26 2012-05-16 Litesso-Anstalt Method for manufacturing solid particles
JP2012145272A (en) * 2011-01-12 2012-08-02 Jfe Engineering Corp Waste gasification melting treatment method
JP5794662B2 (en) * 2011-01-13 2015-10-14 新日鉄住金エンジニアリング株式会社 Waste melting treatment method
JP5692853B2 (en) * 2011-01-13 2015-04-01 新日鉄住金エンジニアリング株式会社 How to dry wood chips
WO2012161203A1 (en) 2011-05-23 2012-11-29 Jfeエンジニアリング株式会社 Waste-melting method
JP6058469B2 (en) * 2013-05-29 2017-01-11 Jfeエンジニアリング株式会社 Method for producing waste molded fuel
JP6168287B2 (en) * 2013-06-04 2017-07-26 Jfeエンジニアリング株式会社 Waste melting treatment method
JP6153089B2 (en) * 2014-03-31 2017-06-28 Jfeエンジニアリング株式会社 Waste gasification and melting apparatus and waste gasification and melting method
CN106765139A (en) * 2017-01-23 2017-05-31 广西威荣环保科技有限公司 House refuse direct gasification melting incinerating tower
JP6445208B1 (en) * 2018-07-24 2018-12-26 中井産業株式会社 Biomass power generator
CN116161996A (en) * 2023-02-21 2023-05-26 昆明理工大学 High-heat-value combustible solid waste improved calcium magnesium phosphate fertilizer and preparation method thereof

Also Published As

Publication number Publication date
JP2005274122A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP4377824B2 (en) Waste melting treatment method using biomass
JP5458219B2 (en) Waste melting treatment method and coal coke usage reduction method for waste melting furnace
WO2001010978A1 (en) Method for treating combustible waste
WO1997049953A1 (en) Method for fusion treating a solid waste for gasification
JP5319980B2 (en) Method for producing coke for waste melting furnace
JP5464355B2 (en) Biomass carbonization apparatus and biomass carbonization method
JP2006057082A (en) Method for producing carbon-containing molded product and method for melting treatment of waste using the carbon-containing molded product
JP4731988B2 (en) Gasification method and apparatus for carbonaceous resources
JP4276559B2 (en) Waste melting treatment method using biomass
JP4191636B2 (en) Waste melting treatment method using bulk biomass
JP4397783B2 (en) Waste disposal method using molded lump
JP4829708B2 (en) Waste melting treatment method
JP2007093069A (en) Waste melting furnace operating method
JP4486377B2 (en) Waste melting treatment method using powdery biomass
JP6168287B2 (en) Waste melting treatment method
JP5945929B2 (en) Waste gasification and melting equipment
JP5811501B2 (en) Waste melting treatment method
JP4811597B2 (en) Simultaneous treatment of combustible waste and low calorific value waste
KR20130058845A (en) Recarburizer using wasted tire
JP4791889B2 (en) Waste melting treatment method
JP2004347257A (en) Operation method of gasification melting furnace
WO2023027179A9 (en) Vertical-type furnace system and method and other system and method for achieving sdgs and biocarbon neutrality
JP5794662B2 (en) Waste melting treatment method
CN118240578A (en) Method for generating electricity by coupling waste incineration in biomass activated carbon production
JP6100097B2 (en) Waste melting treatment method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090911

R150 Certificate of patent or registration of utility model

Ref document number: 4377824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees