JP5794662B2 - Waste melting treatment method - Google Patents

Waste melting treatment method Download PDF

Info

Publication number
JP5794662B2
JP5794662B2 JP2011004990A JP2011004990A JP5794662B2 JP 5794662 B2 JP5794662 B2 JP 5794662B2 JP 2011004990 A JP2011004990 A JP 2011004990A JP 2011004990 A JP2011004990 A JP 2011004990A JP 5794662 B2 JP5794662 B2 JP 5794662B2
Authority
JP
Japan
Prior art keywords
waste
furnace
coke
wood chip
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011004990A
Other languages
Japanese (ja)
Other versions
JP2012145291A (en
Inventor
一隆 真名子
一隆 真名子
愛弘 岩堀
愛弘 岩堀
康一 野田
康一 野田
秀樹 福間
秀樹 福間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Nippon Steel Environmental Plant Solutions Corp
Original Assignee
Nippon Steel Engineering Co Ltd
Nippon Steel Environmental Plant Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd, Nippon Steel Environmental Plant Solutions Corp filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2011004990A priority Critical patent/JP5794662B2/en
Publication of JP2012145291A publication Critical patent/JP2012145291A/en
Application granted granted Critical
Publication of JP5794662B2 publication Critical patent/JP5794662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Description

本発明は、シャフト炉式ガス化溶融炉による廃棄物溶融処理方法において、木材チップを投入してコークス使用量を削減する廃棄物溶融処理方法に関する。   TECHNICAL FIELD The present invention relates to a waste melting method using a shaft furnace type gasification melting furnace, in which wood chips are introduced to reduce the amount of coke used.

シャフト炉式ガス化溶融炉(以下「ガス化溶融炉」という。)では、一般廃棄物、産業廃棄物、焼却灰、掘り起こした埋立ごみあるいは汚泥等の各種廃棄物が溶融処理される。ガス化溶融炉では、廃棄物が炉内にコークス等の副原料とともに投入され、ガス化溶融炉内の乾燥・予熱帯、熱分解帯、燃焼・溶融帯を下降する過程で乾燥、予熱、熱分解、燃焼、溶融されてスラグやメタルとして排出される。   In a shaft furnace type gasification melting furnace (hereinafter referred to as “gasification melting furnace”), various kinds of waste such as general waste, industrial waste, incinerated ash, excavated landfill waste, and sludge are melted. In gasification and melting furnaces, waste is put into the furnace together with coke and other auxiliary materials, and drying, preheating and heat are generated in the process of descending the drying / pretropical zone, pyrolysis zone, and combustion / melting zone in the gasification melting furnace It is decomposed, burned and melted and discharged as slag and metal.

図4に示す一般的なガス化溶融炉の炉本体1は、シャフト部1aと下部の朝顔部5とを備え、朝顔部5の下端には燃焼・溶融帯用の下段羽口3を設けると共に、その上方には熱分解帯用の上段羽口2を設けている。下段羽口3からは酸素又は酸素富化空気を供給し、上段羽口2からは燃焼ガスとして空気を供給する。   A furnace body 1 of a general gasification melting furnace shown in FIG. 4 includes a shaft portion 1 a and a lower morning glory portion 5, and a lower tuyere 3 for combustion / melting zone is provided at the lower end of the morning glory portion 5. Above this, an upper tuyere 2 for the pyrolysis zone is provided. Oxygen or oxygen-enriched air is supplied from the lower tuyere 3, and air is supplied as combustion gas from the upper tuyere 2.

炉本体1の上部から廃棄物、助燃剤としてコークス、塩基度調整剤として石灰石等が炉内に装入される。この装入のために炉本体1の上部にはシール弁を備えた装入装置9が設けられ、また、炉本体1の下端部には廃棄物を溶融処理した後のスラグやメタルの出湯口11が設けられている。   From the upper part of the furnace main body 1, waste, coke as a combustion aid, limestone as a basicity adjuster, etc. are charged into the furnace. For this charging, a charging device 9 having a seal valve is provided at the top of the furnace body 1, and a slag or metal outlet after melting the waste at the lower end of the furnace body 1. 11 is provided.

上記構成において、炉内に装入された廃棄物1bは、炉本体1の上層から乾燥・予熱帯6、熱分解帯7、燃焼・溶融帯8を下降する。下段羽口3から供給した酸素又は酸素富化空気によってコークスの火格子であるコークスベッド4や熱分解残渣12を高温で燃焼して、これが溶融熱源となる。一方、上段羽口2からは空気を供給して主に廃棄物の熱分解残渣12を燃焼し、発生したガスで廃棄物の乾燥・予熱及び熱分解を行う。溶融した廃棄物はスラグやメタルの溶融物となって出湯口11より排出される。   In the above configuration, the waste 1 b charged in the furnace descends from the upper layer of the furnace body 1 through the dry / pre-tropical zone 6, the pyrolysis zone 7, and the combustion / melting zone 8. The coke bed 4 and the pyrolysis residue 12 which are coke grates are burned at a high temperature by oxygen supplied from the lower tuyere 3 or oxygen-enriched air, and this becomes a melting heat source. On the other hand, air is supplied from the upper tuyere 2 to mainly burn the thermal decomposition residue 12 of the waste, and the generated gas is used for drying / preheating and thermal decomposition of the waste. The molten waste is discharged from the tap 11 as a slag or metal melt.

ガス化溶融炉内で発生する高温の熱分解ガスは、炉本体1上部のガス管10から可燃ガスとして燃焼室へ導入されて燃焼され、その燃焼排ガスは、排ガス管を通ってボイラへ導入され、廃熱が回収された後、減温塔で温度を調整して集じん機に通し、さらには、触媒反応塔で公害物質を除去した後、煙突から排出される。   The high-temperature pyrolysis gas generated in the gasification melting furnace is introduced into the combustion chamber as a combustible gas from the gas pipe 10 at the top of the furnace body 1 and burned, and the combustion exhaust gas is introduced into the boiler through the exhaust pipe. After the waste heat is recovered, the temperature is adjusted in a temperature reducing tower, passed through a dust collector, and further, pollutants are removed in a catalytic reaction tower, and then discharged from a chimney.

ガス化溶融炉では、化石燃料に由来するコークスにより炉底部にコークスベッドを形成して溶融熱源として用いるが、地球温暖化防止の観点から石炭などの化石燃料に由来するCO削減のため、ガス化溶融炉においてもコークスの使用量を削減する技術が提案されている。 In a gasification and melting furnace, coke bed derived from fossil fuel is used to form a coke bed at the bottom of the furnace and used as a heat source for melting. From the viewpoint of preventing global warming, gas is used to reduce CO 2 derived from fossil fuels such as coal. Technology has also been proposed to reduce the amount of coke used in chemical melting furnaces.

例えば、特許文献1には、廃棄物の溶融処理に使用されている化石燃料であるコークスの代替としてバイオマスを利用して、コークス使用量の削減をするとともに、環境に対するCO負荷を削減する廃棄物溶融処理方法が開示されている。この処理方法は、加圧成形されたバイオマス固形物を炉上部から廃棄物と共に投入し、炉底部送風羽口から送風する酸素もしくは酸素富化空気で廃棄物と共に還元燃焼することによって発生した無酸素の燃焼ガスで、バイオマス固形物をシャフト炉内で乾燥、乾留することによって炭化物化させてシャフト炉下部で炭火物層を形成して燃焼を行い、溶融用熱源とするものである。この方法により、コークス消費量が抑制できるので化石燃料起源のCO発生を抑制できるというものである。 For example, Patent Literature 1 discloses that biomass is used as an alternative to coke, which is a fossil fuel used for melting treatment of waste, to reduce the amount of coke used and to reduce CO 2 load on the environment. A material melting treatment method is disclosed. This treatment method is an oxygen-free generated by putting pressure-molded biomass solids together with waste from the top of the furnace and reducing and burning together with waste with oxygen or oxygen-enriched air blown from the bottom of the furnace. With this combustion gas, biomass solids are carbonized by drying and dry distillation in a shaft furnace, a charcoal layer is formed at the lower part of the shaft furnace, and burned to form a heat source for melting. By this method, the coke consumption can be suppressed, so that the generation of CO 2 originating from fossil fuel can be suppressed.

特開平2005−274122号公報JP-A-2005-274122

しかし、前記特許文献1の技術では、粉状の木材等のバイオマスにバインダーを混ぜ、加圧成形して固めたバイオマス固形物が必要である。そのため、バイオマスの加圧成形のために新たな設備が必要となり、バイオマスの前処理に手間がかかるとともに、処理コストも増加するという問題がある。   However, the technique of Patent Document 1 requires a biomass solid material obtained by mixing a biomass such as powdered wood with a binder and pressing and solidifying it. Therefore, a new facility is required for the pressure molding of biomass, and there is a problem that the pretreatment of the biomass takes time and the processing cost increases.

そこで、本発明は、ガス化溶融炉において、木材チップを前処理することなく廃棄物と共に炉内に投入してコークスの使用量削減を可能とする廃棄物溶融処理方法を提供するものである。   Therefore, the present invention provides a waste melting method in a gasification melting furnace, in which wood chips are thrown into the furnace together with waste without pretreatment, and the amount of coke used can be reduced.

本発明の廃棄物溶融処理方法は、シャフト炉式廃棄物溶融炉に廃棄物をコークス、石灰石とともに装入し、炉底部送風口から酸素もしくは酸素富化空気を吹き込んで、廃棄物を乾燥、熱分解、燃焼、溶融する廃棄物溶融処理方法であって、木材チップを加圧成形することなく廃棄物に混合して炉内に装入し、木材チップを炭化させてコークスベットの上に炭化物粒子層からなる通気抵抗層を形成してコークスと固定炭素量で等価に代替する廃棄物溶融処理方法において、前記木材チップ寸法の最大部を100mm以下とし、前記木材チップの水分含有量を投入するごみ総量の2.5質量%以下とし、前記木材チップを廃棄物に対して30質量%以下の割合で混合して炉内に装入することを特徴とする。 In the waste melting method of the present invention, waste is charged into a shaft furnace type waste melting furnace together with coke and limestone, and oxygen or oxygen-enriched air is blown from the furnace bottom blower to dry the waste, heat A waste melting treatment method that decomposes, burns, and melts. Wood chips are mixed with waste without pressure molding and charged into a furnace, and the wood chips are carbonized to form carbide particles on the coke bed. In a waste melting treatment method in which a ventilation resistance layer comprising layers is formed and equivalently substituted with coke and fixed carbon amount, the maximum part of the wood chip dimension is set to 100 mm or less, and the water content of the wood chip is input. The total amount is 2.5% by mass or less, and the wood chips are mixed in a ratio of 30% by mass or less with respect to the waste and charged into the furnace .

廃棄物と共に木材チップをガス化溶融炉内に単に投入しても、木材チップの性状のばらつきにより、充分なコークス削減効果が得られない状況が見られたが、本発明では、完全に炭化した木材チップ炭化物を生成することにより、コークスのみの運転時と同等の溶融スラグ温度を確保して、コークスを木材チップの固定炭素量で等価の割合で削減することができる。   Even if wood chips were simply put into the gasification melting furnace together with the waste, there was a situation where a sufficient coke reduction effect could not be obtained due to variations in the properties of the wood chips, but in the present invention it was completely carbonized. By producing the wood chip carbide, it is possible to secure a molten slag temperature equivalent to that when only the coke is operated, and to reduce the coke at an equivalent ratio by the fixed carbon amount of the wood chip.

木材チップ水分含有率を25%以下、廃棄物との混合率を10〜30%とすることで、ガス化溶融炉内を下降していく過程での木材チップの水分蒸発時間が短くなり、炉下部到達までに木材チップが速やかに昇温され、完全に炭化した木材チップ炭化物を生成可能となった。   By setting the wood chip moisture content to 25% or less and the mixing ratio with the waste to 10 to 30%, the moisture evaporation time of the wood chip in the process of descending the gasification melting furnace is shortened, and the furnace The wood chip was quickly heated up to the bottom, making it possible to produce fully carbonized wood chip carbide.

加えて、木材チップ寸法の最長部を100mm以下とすることで、木材チップ内部まで充分に加熱・昇温され、チップ内部まで完全に炭化された木材チップ炭化物を生成可能となった。このように、本発明は、適正な性状の木材チップを廃棄物と適正割合で混合して投入することで、完全に炭化された木材チップ炭化物の生成が可能となり、コークスを木材チップの固定炭素量で等価の割合で削減することができる。   In addition, by setting the longest part of the wood chip size to 100 mm or less, it is possible to generate wood chip carbide that is sufficiently heated and heated up to the inside of the wood chip and completely carbonized to the inside of the chip. In this way, the present invention enables the generation of completely carbonized wood chip carbide by mixing wood chips with appropriate properties in an appropriate ratio with waste, and the coke is fixed carbon of the wood chips. The amount can be reduced at an equivalent rate.

また、完全に炭化された炭化物が炉内を降下し、ガス化溶融炉下部にて形成される炭化物粒子層が通気抵抗層として機能するため、炉内ガスが充填物層を吹き抜ける現象抑制効果も確実に得られる。   In addition, since the completely carbonized carbide descends in the furnace, and the carbide particle layer formed in the lower part of the gasification melting furnace functions as a ventilation resistance layer, the phenomenon that the furnace gas blows through the filler layer is also suppressed. It is definitely obtained.

ガス化溶融炉に炭化物粒子層が形成された状態を示す模式図である。It is a schematic diagram which shows the state by which the carbide particle layer was formed in the gasification melting furnace. 木材チップ中水分と溶融スラグ温度の関係を示すグラフである。It is a graph which shows the relationship between the water | moisture content in a wood chip | tip, and molten slag temperature. 木材チップと炭化物粒子層との関係を示すグラフである。It is a graph which shows the relationship between a wood chip and a carbide particle layer. 従来のガス化溶融炉の一例を示す概略図である。It is the schematic which shows an example of the conventional gasification melting furnace.

図1に示すガス化溶融炉は、図4に示した従来のガス化溶融炉と実質的に同一であり、同一構成には同一符号を付して、その説明は省略する。本発明による廃棄物溶融処理方法は、図4に示す従来の廃棄物溶融処理方法と比較すると、本発明は適正な性状の木材チップを廃棄物と適正割合で混合して投入する点で従来の廃棄物溶融処理方法と異なるが、その他は実質的に変わるところはない。   The gasification / melting furnace shown in FIG. 1 is substantially the same as the conventional gasification / melting furnace shown in FIG. Compared with the conventional waste melting treatment method shown in FIG. 4, the present invention is different from the conventional waste melting treatment method in that the present invention mixes and introduces wood chips of appropriate properties with waste at an appropriate ratio. Although different from the waste melting method, the others are not substantially changed.

ガス化溶融炉で廃棄物を処理する場合、所定量のコークス、石灰石の副原料と共に炉内に投入された廃棄物と木材チップは、炉内を降下するに従い、対向して流れる高温ガスにより乾燥、熱分解される。廃棄物の乾燥、熱分解のための熱源は、上段羽口2から吹き込まれた空気による廃棄物の燃焼熱と、下段羽口3から吹き込まれた空気又は酸素富化空気によるコークスの燃焼熱が使われる。   When processing waste in a gasification and melting furnace, the waste and wood chips that have been put into the furnace together with a predetermined amount of coke and limestone auxiliary materials are dried by the high-temperature gas that flows oppositely as they descend in the furnace. , Pyrolyzed. The heat source for drying and pyrolysis of waste is the heat of combustion of waste by air blown from the upper tuyere 2 and the heat of combustion of coke by air blown from the lower tuyere 3 or oxygen-enriched air. used.

廃棄物や木材チップが熱分解・ガス化することによる乾留残渣は、灰分や不燃成分とともにコークスベッド4の上面に堆積して炭化物粒子層13を形成する。通気抵抗層として機能する炭化物粒子層13は、下段羽口3から吹き込まれるガスや乾留ガスなどの炉内ガスが局所的に吹き抜けることを妨げ、ガスの流れを整流化する。   The dry distillation residue resulting from pyrolysis and gasification of waste and wood chips is deposited on the upper surface of the coke bed 4 together with ash and incombustible components to form a carbide particle layer 13. The carbide particle layer 13 functioning as a ventilation resistance layer prevents the in-furnace gas such as the gas blown from the lower tuyere 3 or the dry distillation gas from being blown locally, and rectifies the gas flow.

コークス及び可燃性乾留残渣の燃焼ガスは炉下部に形成されるコークスベッド4の上端で最高温度となり、この領域で灰分が溶融され、溶融物は火格子を形成するコークスベッド4の空隙を滴下する。滴下した溶融物は炉底部の液溜まりに一時的に貯留され、出湯口11を開放することで間欠的に排出される。   The combustion gas of coke and combustible carbonization residue reaches the maximum temperature at the upper end of the coke bed 4 formed in the lower part of the furnace, the ash is melted in this region, and the molten material drops in the voids of the coke bed 4 forming a grate. . The dripped melt is temporarily stored in a liquid pool at the bottom of the furnace, and is intermittently discharged by opening the hot water outlet 11.

本発明において、ガス化溶融炉で処理する廃棄物は、一般廃棄物、産業廃棄物、掘り起こしごみ、焼却灰、汚泥などの単体又は混合物など従来から溶融処理されている廃棄物である。   In the present invention, the waste to be treated in the gasification melting furnace is a waste that has been conventionally melt-treated, such as general waste, industrial waste, excavated waste, incinerated ash, sludge and the like.

木材チップは、特に限定されるものではなく、チップの製造メーカにおいて、カッティングされた切削チップ、破砕され棒状になった破砕チップ、あるいはチップを生産した際の副産物としてできる1mm程度のオガコも利用できる。木材チップは、最大部寸法100mm以下が好ましい。   The wood chip is not particularly limited, and the chip manufacturer can use a cutting chip that has been cut, a crushed chip that has been crushed into a rod shape, or a sawdust of about 1 mm that can be used as a by-product when the chip is produced. . The wood chip preferably has a maximum dimension of 100 mm or less.

表1は各種炭化物の固定炭素濃度を示し、運転実績サンプルは最大部寸法100mm以下の木材チップを廃棄物との混合率10質量%(以下「%」は「質量%」である。)で運転を実施した例である。   Table 1 shows the fixed carbon concentration of various carbides, and the operation results sample is operated with a wood chip having a maximum part size of 100 mm or less and a mixing ratio of 10% by mass with waste (hereinafter, “%” is “% by mass”). It is the example which implemented.

Figure 0005794662
Figure 0005794662

表1において、木材チップ炭化物の運転実績サンプル及び乾留試験サンプルの固定炭素は77〜84質量%であり、コークスとほぼ同等の固定炭素濃度となっており、木材チップの最大部の寸法が100mm以下であれば完全に炭化でき、コークスと同等の熱源機能を代替できると考えられる。   In Table 1, the fixed carbon in the operation sample and dry distillation test sample of wood chip carbide is 77 to 84% by mass, the fixed carbon concentration is almost equal to that of coke, and the dimension of the maximum part of the wood chip is 100 mm or less. If so, it can be completely carbonized and the heat source function equivalent to coke can be substituted.

Figure 0005794662
Figure 0005794662

表2は、コークスのみの運転実績であるコークス固定炭素3.4%運転時と同等の溶融スラグ温度(1350℃以上)を確保できる木材チップの条件について検討した結果を示すものである。   Table 2 shows the results of examining the conditions of wood chips that can ensure the same molten slag temperature (1350 ° C. or higher) as in the operation of 3.4% coke fixed carbon, which is the actual operation of coke.

表2の安定運転実績限界(ベース条件)に示すように、コークス固定炭素を2%(投入量2.5%×固定炭素量割合(0.808)=2%)とし、木材チップ混合率10%とした試験条件において、木材チップ含水率を10%、20%、25%に変化させて、溶融スラグ温度を確認した。   As shown in the stable operation performance limit (base condition) in Table 2, coke fixed carbon is 2% (input amount 2.5% × fixed carbon amount ratio (0.808) = 2%), wood chip mixing ratio 10 Under the test conditions of%, the wood chip moisture content was changed to 10%, 20%, and 25%, and the molten slag temperature was confirmed.

その結果、木材チップ含水率が25%で、木材チップの固定炭素量が1.4%(木材チップ中固定炭素13.6%×投入量割合0.1=1.4%)の時に、コークス固定炭素3.4%運転時と同等の溶融スラグ温度を確保できた。   As a result, when the moisture content of the wood chip is 25% and the fixed carbon content of the wood chip is 1.4% (fixed carbon in the wood chip 13.6% × input ratio 0.1 = 1.4%), coke A molten slag temperature equivalent to that at the time of fixed carbon 3.4% operation could be secured.

このことから、木材チップの固定炭素1.4%は(3.4%−コークス固定量2%=木材チップの固定炭素量1.4%=コークスの固定炭素1.4%)より、コークスの固定炭素1.4%と同量で代替できたことになるので、木材チップとコークスとは、固定炭素を等量で置換できることが分かった。   From this, 1.4% of fixed carbon in wood chips is (3.4%-fixed amount of coke 2% = fixed carbon amount of wood chips 1.4% = fixed carbon of coke 1.4%). It was found that wood chips and coke can be replaced with equal amounts of fixed carbon because they could be replaced with the same amount as fixed carbon of 1.4%.

木材チップ混合率10質量%(100mm以下のサイズ)での運転を実施して木材チップ中水分と溶融スラグ温度の関係を求めた図2において、木材チップ中の水分は、チップ性状が変化して水分が25質量%超えると溶融スラグ管理温度を下回り、安定運転に支障が出る状況が見られており、木材チップを完全に炭化して熱源代替効果を得るには、水分25質量%以下を維持することが必要である。これは、木材チップ混合率10%での値なので、木材チップ中の水分量は25%×10%=投入するごみ総量の2.5%まで含有しても問題ないことが分かる。   In FIG. 2 in which the operation at a wood chip mixing ratio of 10% by mass (size of 100 mm or less) was carried out to determine the relationship between the moisture in the wood chip and the molten slag temperature, the moisture in the wood chip changed its chip properties. When the water content exceeds 25% by mass, the temperature is below the molten slag control temperature, and there is a situation where stable operation is hindered. It is necessary to. Since this is a value at a wood chip mixing ratio of 10%, it can be seen that there is no problem even if the amount of water in the wood chips is 25% × 10% = 2.5% of the total amount of waste to be added.

木材チップは、図3に示すように、木材チップの投入量を、投入する廃棄物に対して30質量%以下の混合率にすることが好ましい。但し、廃棄物自体に乾留残渣を生成する成分が含まれている場合、廃棄物の種類(特に、廃棄物に含まれる固定炭素の量)に応じて、炭化物粒子層の層厚が変動する場合がある。従って、図3に一例を示すように、廃棄物の種類等に基づく層厚の変動幅を考慮し、投入する廃棄物に対して10〜30質量%の混合率とすることが好ましい。図3は、木材チップの投入量に対応付けて、固定炭素量が多い廃棄物の場合と、固定炭素量が少ない廃棄物の場合の炭化物粒子層の厚み(固定炭素量ベース)を例示したものであり、実際に試験を行って確認した結果の一例である。この結果から示されるように、木材チップを投入しない場合においても、廃棄物の種類等によって層厚25〜40mmに相当する乾留残渣量の生成変動があるので、この生成変動を考慮した木材チップ投入量の適正範囲は10〜30質量%である。   As shown in FIG. 3, it is preferable that the input amount of the wood chip is a mixing ratio of 30% by mass or less with respect to the waste to be input. However, when the waste itself contains components that generate dry distillation residue, the thickness of the carbide particle layer varies depending on the type of waste (especially the amount of fixed carbon contained in the waste). There is. Therefore, as shown in FIG. 3, it is preferable that the mixing ratio is 10 to 30% by mass with respect to the waste to be charged in consideration of the fluctuation range of the layer thickness based on the type of waste. FIG. 3 exemplifies the thickness of the carbide particle layer (based on a fixed carbon amount) in the case of waste with a large amount of fixed carbon and waste with a small amount of fixed carbon in association with the input amount of wood chips. It is an example of the result confirmed by actually conducting a test. As can be seen from this result, even when wood chips are not charged, there are fluctuations in the amount of dry distillation residue corresponding to a layer thickness of 25 to 40 mm depending on the type of waste. An appropriate range of the amount is 10 to 30% by mass.

炭化物粒子層13は、図1の模式図に示されているように、炉下部に形成されるコークスベッド4の上面に形成されることが好ましい。コークスベッド4には酸素あるいは酸素富化空気が吹き込まれるので、炭化物粒子層13は下段羽口3よりも上方に位置するように形成される。   As shown in the schematic diagram of FIG. 1, the carbide particle layer 13 is preferably formed on the upper surface of the coke bed 4 formed in the lower part of the furnace. Since oxygen or oxygen-enriched air is blown into the coke bed 4, the carbide particle layer 13 is formed to be positioned above the lower tuyere 3.

コークスベッドの上に形成される炭化物粒子層13は、炭化した木材チップの乾留残渣は微細で空隙が少ない炭化物粒子層であるため、炉内ガスが通過する際に通気抵抗層として機能することとなる。   The carbide particle layer 13 formed on the coke bed is a carbide particle layer in which carbonized wood chip carbonization residue is fine and has few voids, and therefore functions as a ventilation resistance layer when gas in the furnace passes through. Become.

可燃性である炭化物粒子層13は、このコークスベッド4によって層下部側から順次燃焼される。本実施形態において、炭化物粒子層13が炉内ガスの通気抵抗層として効果的に機能するには、層厚が40〜80mmであることが好ましい。図3に示すように、層厚が40mmよりも小さい場合には、炉内ガスの吹き抜け現象を充分に抑えることができない。反対に、層厚が80mmよりも大きい場合には、充填物層の圧力損失が増大し、羽口からの送風が困難となる。 The combustible carbide particle layer 13 is sequentially burned by the coke bed 4 from the lower layer side. In the present embodiment, in order for the carbide particle layer 13 to function effectively as a ventilation resistance layer for the in-furnace gas, the layer thickness is preferably 40 to 80 mm. As shown in FIG. 3 , when the layer thickness is smaller than 40 mm, the in-furnace gas blow-through phenomenon cannot be sufficiently suppressed. On the other hand, when the layer thickness is larger than 80 mm, the pressure loss of the filler layer increases and it becomes difficult to blow air from the tuyere.

以上のように、本発明の廃棄物溶融処理方法によれば、廃棄物及びコークスなどの副原料とともに、木材チップを廃棄物に混合して投入し、炉内に形成される充填物層中に炭化物粒子層を形成することにより、この炭化物粒子層が通気抵抗層として機能し、炉内ガスの流れが整流化されることにより、炉内ガスと廃棄物との接触がより均一化され、熱交換効率が向上する。その結果、熱源であるコークスを過剰に投入しなくとも、廃棄物の熱分解残渣の持つ熱量と少量のコークスの熱量によって完全溶融を達成することが可能となる。すなわち、炭化物粒子層によるガスの整流化によって熱交換効率が向上するため、灰分等の溶融以外の廃棄物の乾燥や乾留のために使用されていたコークスの使用量を低減することが可能である。   As described above, according to the waste melting treatment method of the present invention, wood chips are mixed with waste materials and co-raw materials such as coke, and then charged into the waste layer formed in the furnace. By forming the carbide particle layer, this carbide particle layer functions as a ventilation resistance layer, and the flow of the gas in the furnace is rectified, so that the contact between the gas in the furnace and the waste is made more uniform, and the heat Exchange efficiency is improved. As a result, even if coke as a heat source is not added excessively, complete melting can be achieved by the amount of heat of the pyrolysis residue of waste and the amount of heat of a small amount of coke. That is, since the heat exchange efficiency is improved by rectifying the gas by the carbide particle layer, it is possible to reduce the amount of coke used for drying and dry distillation of waste other than melting such as ash. .

また、炭化物粒子層の形成により炉内ガスの流れが整流化されるので、炉内ガスの吹き抜け現象の発生を抑制することが可能となる。すなわち、従来において発生する吹き抜け現象は、廃棄物の乾燥・乾留が効率的に行われない結果として発生すると考えるが、これに対し、本発明では、所定の水分含有率以下の木材チップを廃棄物に所定量混合投入して炭化物粒子層13を形成してガスを整流化することにより、廃棄物の乾燥・乾留が効率的に行われ、その結果、吹き抜け現象の発生を抑制することも可能となる。 Moreover, since the flow of the in-furnace gas is rectified by the formation of the carbide particle layer, the occurrence of the blow-in phenomenon of the in-furnace gas can be suppressed. That is, the blow-through phenomenon that occurs in the past is considered to occur as a result of inefficient drying and dry distillation of the waste. On the other hand, in the present invention, wood chips having a predetermined moisture content or less are disposed of as waste. By mixing and charging a predetermined amount to form a carbide particle layer 13 and rectifying the gas, waste can be efficiently dried and dry-distilled, and as a result, the occurrence of a blow-through phenomenon can be suppressed. Become.

1:炉本体
1a:シャフト部
1b:廃棄物
2:上段羽口
3:下段羽口
4:コークスベッド
5:朝顔部
6:乾燥・予熱帯
7:熱分解帯
8:燃焼・溶融帯
9:装入装置
10:ガス管
11:出湯口
12:熱分解残渣
13:炭化物粒子層
1: Furnace body 1a: Shaft portion 1b: Waste 2: Upper tuyere 3: Lower tuyere 4: Coke bed 5: Morning glory 6: Drying / pre-tropical zone 7: Pyrolysis zone 8: Combustion / melting zone 9: Equipment Entry device 10: Gas pipe 11: Outlet 12: Thermal decomposition residue 13: Carbide particle layer

Claims (1)

シャフト炉式廃棄物溶融炉に廃棄物をコークス、石灰石とともに装入し、炉底部送風口から酸素もしくは酸素富化空気を吹き込んで、廃棄物を乾燥、熱分解、燃焼、溶融する廃棄物溶融処理方法であって
木材チップを加圧成形することなく廃棄物に混合して炉内に装入し、木材チップを炭化させてコークスベットの上に炭化物粒子層からなる通気抵抗層を形成してコークスと固定炭素量で等価に代替する廃棄物溶融処理方法において、
前記木材チップ寸法の最大部を100mm以下とし、前記木材チップの水分含有量を投入するごみ総量の2.5質量%以下とし、前記木材チップを廃棄物に対して30質量%以下の割合で混合して炉内に装入することを特徴とする廃棄物溶融処理方法。
Waste melting process in which waste is dried, pyrolyzed, combusted, and melted by introducing oxygen or oxygen-enriched air into the shaft furnace waste melting furnace together with coke and limestone, and blowing oxygen or oxygen-enriched air from the blower at the bottom of the furnace there is provided a method,
Wood chips are mixed with waste without pressure molding and charged into the furnace, and the wood chips are carbonized to form a ventilation resistance layer consisting of carbide particle layers on the coke bed, and coke and fixed carbon content In the waste melting treatment method equivalently replaced by
The maximum part of the wood chip size is set to 100 mm or less, the moisture content of the wood chip is set to 2.5% by mass or less of the total amount of waste, and the wood chip is mixed at a rate of 30% by mass or less with respect to waste. Then , the waste melting treatment method , which is charged into a furnace .
JP2011004990A 2011-01-13 2011-01-13 Waste melting treatment method Active JP5794662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011004990A JP5794662B2 (en) 2011-01-13 2011-01-13 Waste melting treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011004990A JP5794662B2 (en) 2011-01-13 2011-01-13 Waste melting treatment method

Publications (2)

Publication Number Publication Date
JP2012145291A JP2012145291A (en) 2012-08-02
JP5794662B2 true JP5794662B2 (en) 2015-10-14

Family

ID=46789022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011004990A Active JP5794662B2 (en) 2011-01-13 2011-01-13 Waste melting treatment method

Country Status (1)

Country Link
JP (1) JP5794662B2 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650985B2 (en) * 2001-08-06 2011-03-16 ヤンマー株式会社 Biomass gasification method and apparatus
JP3930718B2 (en) * 2001-10-19 2007-06-13 新日本製鐵株式会社 How to use woody and / or agricultural biomass in coke dry fire extinguishing equipment
JP3679084B2 (en) * 2002-10-09 2005-08-03 株式会社神戸製鋼所 Method for producing molten metal raw material and method for producing molten metal
JP2004263256A (en) * 2003-03-03 2004-09-24 Nippon Steel Corp Method for charging raw material into blast furnace
JP4486377B2 (en) * 2004-02-24 2010-06-23 新日鉄エンジニアリング株式会社 Waste melting treatment method using powdery biomass
JP4377824B2 (en) * 2004-02-26 2009-12-02 新日鉄エンジニアリング株式会社 Waste melting treatment method using biomass
JP4276559B2 (en) * 2004-03-03 2009-06-10 新日鉄エンジニアリング株式会社 Waste melting treatment method using biomass
JP4191636B2 (en) * 2004-03-04 2008-12-03 新日鉄エンジニアリング株式会社 Waste melting treatment method using bulk biomass
JP2005329382A (en) * 2004-05-17 2005-12-02 Kangen Yoyu Gijutsu Kenkyusho:Kk Melting furnace for treating waste in relation with final disposal site and method therefor
JP4589832B2 (en) * 2005-06-29 2010-12-01 株式会社ニッショー機工 Incinerator
JP2007093069A (en) * 2005-09-28 2007-04-12 Nippon Steel Engineering Co Ltd Waste melting furnace operating method
EP1990577A1 (en) * 2006-03-02 2008-11-12 Taiheiyo Cement Corporation Method of handling substance from which combustible gas volatilizes, process for producing solid fuel, method of storing solid fuel, method of using solid fuel, and apparatus using solid fuel
JP4829708B2 (en) * 2006-07-21 2011-12-07 新日鉄エンジニアリング株式会社 Waste melting treatment method
JP2008104973A (en) * 2006-10-26 2008-05-08 Kangen Yoyu Gijutsu Kenkyusho:Kk Method and system for treating waste biomass
TR200705430A2 (en) * 2007-08-03 2008-12-22 Detes Maden Enerji̇ Ve Çevre Teknoloji̇si̇ Si̇stemleri̇ Li̇mi̇ted Şi̇rketi̇ Solid fuel gasification and gas cleaning system.
JP5166213B2 (en) * 2008-11-11 2013-03-21 株式会社ナニワ炉機研究所 Melting furnace

Also Published As

Publication number Publication date
JP2012145291A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
JP4377824B2 (en) Waste melting treatment method using biomass
JP5458219B2 (en) Waste melting treatment method and coal coke usage reduction method for waste melting furnace
JP5180917B2 (en) Waste melting treatment method and waste melting treatment apparatus
JP2010255890A (en) Waste melting treatment method and waste melting treatment device
JP5319980B2 (en) Method for producing coke for waste melting furnace
JP4276559B2 (en) Waste melting treatment method using biomass
JP2006057082A (en) Method for producing carbon-containing molded product and method for melting treatment of waste using the carbon-containing molded product
JP4191636B2 (en) Waste melting treatment method using bulk biomass
JP2007093069A (en) Waste melting furnace operating method
JP5510782B2 (en) Waste melting treatment method and waste melting treatment apparatus
JP5490488B2 (en) Waste melting treatment method
JP5794662B2 (en) Waste melting treatment method
JP4829708B2 (en) Waste melting treatment method
JP2007254863A (en) Sintered material with the use of organic waste, method for producing the sintered material, and refining method
JP5811501B2 (en) Waste melting treatment method
JP4486377B2 (en) Waste melting treatment method using powdery biomass
JP6168287B2 (en) Waste melting treatment method
JP5692853B2 (en) How to dry wood chips
JP5605576B2 (en) Waste gasification and melting equipment
JPH10169944A (en) Fluidized layer control method in waste thermal decomposition furnace
JP2004347257A (en) Operation method of gasification melting furnace
JP5601688B2 (en) Blow-off elimination method in shaft furnace type gasification melting furnace
JP2010038535A (en) Waste melting treatment method and waste melting treatment device
JPH05126327A (en) Method for processing dusts generated under combustion of waste material
JP4791889B2 (en) Waste melting treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150807

R150 Certificate of patent or registration of utility model

Ref document number: 5794662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250