JP4650985B2 - Biomass gasification method and apparatus - Google Patents

Biomass gasification method and apparatus Download PDF

Info

Publication number
JP4650985B2
JP4650985B2 JP2001238186A JP2001238186A JP4650985B2 JP 4650985 B2 JP4650985 B2 JP 4650985B2 JP 2001238186 A JP2001238186 A JP 2001238186A JP 2001238186 A JP2001238186 A JP 2001238186A JP 4650985 B2 JP4650985 B2 JP 4650985B2
Authority
JP
Japan
Prior art keywords
combustion
air
gas
heat
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001238186A
Other languages
Japanese (ja)
Other versions
JP2003049177A (en
Inventor
和男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Nippon Koei Co Ltd
Original Assignee
Yanmar Co Ltd
Nippon Koei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd, Nippon Koei Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2001238186A priority Critical patent/JP4650985B2/en
Publication of JP2003049177A publication Critical patent/JP2003049177A/en
Application granted granted Critical
Publication of JP4650985B2 publication Critical patent/JP4650985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/58Construction or demolition [C&D] waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Description

【0001】
【発明の属する技術分野】
本発明は、特に、間伐材、流木材、剪定材、建築廃材などの木材チップ、雑草、牧草、砂糖きびなどの草本系物、RDF、籾殻、牛糞、その他の廃棄物を原料としてバイオマスから合成ガスを得るためのバイオマスからのガス化方法及びその装置に関するものである。
【0002】
【従来の技術】
廃棄物を材料として再利用するマテリアルリサイクルに適さない廃棄物については、エネルギー源として有効利用するサーマルリサイクルが推進されており、未利用エネルギー資源の有効活用や廃棄物の減量効果などの利点がある。
【0003】
廃棄物のサーマルリサイクルは、廃棄物発電が最も有効であるとされているが、これまでは、大型の廃棄物処理施設にその適用が限定されいる。しかし、住民の反対から、大規模な産業廃棄物処理施設の建設が極めて困難な現状に鑑み、廃棄物が保有するエネルギーを効率よく回収できる小規模なバイオマスのガス化方法及び装置の出現が望まれている。
【0004】
【発明が解決しようとする課題】
木材、草本などを原料としてバイオマスからガス燃料を作り出す方法は、既に知られている。このガス燃料の主成分は、水素(H)と一酸化炭素(CO)からなる合成ガスである。この合成ガスからメタノール(CHOH)を合成できる。
【0005】
しかし、バイオマスからメタノールを製造するための小規模で、工業的な装置の実績はまだ無い。これは、原料として天然ガス(CH)が安いので、経済的に対応できないこと、技術的にバイオマスから有効な合成ガスを作り出すことに成功していないこと、などの理由からである。
【0006】
本発明は、有効な合成ガスを、小規模な装置で、効率よく作り出すことのできるバイオマスのガス化方法及び装置を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明は、上端を燃料投入口とし、中間部を投入されたバイオマス燃料の熱分解ゾーンとし、下端を温水予熱部とした燃焼ガス化炉筒と、この燃焼ガス化炉筒内の前記熱分解ゾーンの下部に設けた熱分解ガスの通過可能な熱保持材の収納部と、この熱保持材の収納部から熱分解ガスを下向きに吸引しつつ外部へ導出するガス導出手段と、このガス導出手段における底部の灰仕切り板の下方から前記温水予熱部までの空間部からなる水蒸気室と、上端部に一体に燃焼ノズルを設け、下端部に前記水蒸気室と連通する開口端を設け、前記燃焼ガス化炉筒内で前記燃焼ノズルを位置調整自在に設けた燃焼筒とを具備し、前記燃焼ノズルには、火炎を放射する火炎口と前記水蒸気室からの空気と水蒸気の混合気を供給する空気・水蒸気供給孔を設けてなることを特徴とするバイオマスのガス化装置である。
【0008】
上述のような構成において、バイオマス燃料12を燃焼ガス化炉筒10内の熱分解ゾーンで燃焼して熱分解ガス化を行い、この熱分解ガスを前記熱分解ゾーンの下方位置の燃焼層ゾーンに吸引して高温の水蒸気と空気の混合気に反応させて酸化し、さらに、その下方の還元層、改質層で改質ガスを得、この改質ガスから灰分と未反応タール分を除去して精製ガスを得る。
また、精製ガスを得た後に、通過する精製ガスの顕熱による改質層ゾーンへ供給する水蒸気と空気を加熱してエネルギーを有効利用する。
【0009】
【発明の実施の形態】
本発明の一実施例を図1ないし図3に基づき説明する。
10は、上端が燃料投入口11で、下端が温水予熱部27とした燃焼ガス化炉筒である。この燃焼ガス化炉筒10の内部の中間位置には、格子の粗い上部ロストル35と、格子の密な下部ロストル36とが互いにやや間隔をおいて配置固着されている。また、前記下部ロストル36より下方で、かつ、燃焼ガス化炉筒10の中心部には、上下貫通したガイド筒21が固定的に設けられ、このガイド筒21に、燃焼筒16が上下動自在に設けられている。
【0010】
この燃焼筒16の中心部には、ガス供給管22が一体に取り付けられ、このガス供給管22の上端部には、燃焼ノズル13を構成するバーナー14が仕切り板17で仕切られて設けられ、このバーナー14の収納された燃焼筒16の全周囲には、多数個の火炎口15が開口している。
また、この燃焼筒16における火炎口15の下方には、前記仕切り板17と前記上部ロストル35の間に位置して外周に多数個の空気・水蒸気供給孔18が開口している。
前記上部ロストル35と下部ロストル36との間には、800〜1000℃の温度を保持するための溶解しないセラミック、金属塊などからなる熱保持材54が収納されている。
【0011】
前記ガス供給管22は、前記温水予熱部27の中央部をパッキン52を介して下方部まで液密に貫通し、燃焼筒16と一体にガイド筒21内で上下位置を調節できるようになっている。また、このガス供給管22の下端部に導出した部分には、ガス導入孔23と空気導入孔24が設けられるとともに、ガス供給管22を貫通して点火用ケーブル25が設けられ、前記バーナー14に接続されている。
【0012】
前記燃焼ガス化炉筒10には、前記燃焼ノズル13と略同一高さに、副空気供給管19が連結され、この副空気供給管19は、弁20を介して後述する空気ポンプ41に連結されている。
また、前記燃焼ガス化炉筒10には、前記下部ロストル36の下方部に位置して引き出し形式の灰受け引き出し40が進退可能で、かつ、ガス通路となるように側方に開口されている。さらに、前記下部ロストル36の下方部における燃焼ガス化炉筒10の内部に、この灰受け引き出し40に向けて傾斜した灰仕切り板48が前記ガイド筒21に固定的に設けられている。
【0013】
前記燃焼ガス化炉筒10において、灰受け引き出し40と灰仕切り板48の下方から温水予熱部27までの空間部は、水蒸気室53を構成しており、この水蒸気室53における燃焼ガス化炉筒10の側面部には、前記灰仕切り板48のやや下方に位置して後述する空気供給管33の連結される空気供給口34が開口されるとともに、水蒸気供給管31が連結されている。前記温水予熱部27の入口側に給水管29が連結されるとともに、温水28を循環するための温水取り出し管30が連結されている。
【0014】
前記燃焼ガス化炉筒10における上方外部には、保温筒46が断熱材47を充填して形成されている。また、この保温筒46の下方であって、前記上部ロストル35,下部ロストル36,灰受け引き出し40の外周に位置してガス・空気熱交換筒50が形成され、さらに、前記水蒸気室53の外周に位置して空気予熱筒51が形成されている。
【0015】
前記ガス・空気熱交換筒50と燃焼ガス化炉筒10との間には、前記灰受け引き出し40の上部に位置して灰トラップ37が取り付けられ、また、180度反対側には、タールトラップ38が設けられ、このタールトラップ38から改質ガス取り出し管39を経て外部に導出されている。
【0016】
前記改質ガス取り出し管39と温水取り出し管30は、外部で熱交換器42に連結され、この熱交換器42のガスの出口側には、吸引ポンプ43を介してエンジン44とメタノール製造装置45に接続され、熱交換器42における温水出口側には、吸入ポンプ32を介して水蒸気供給管31に接続されている。
以上の装置全体が架台49に載せられている。
【0017】
次に、本発明の装置によるガス化の作用を説明する。
(1)バイオマスとして、間伐材、流木材、剪定材、建築廃材などの木材チップ、雑草、牧草、砂糖きび廃材などの草本系物、RDF、籾殻、牛糞、その他の廃棄物を燃焼ガス化炉筒10の燃料投入口11に、ホッパー(図示せず)から連続的に投入する。
燃焼筒16は、起動直後は、火炎口15が上部ロストル35と下部ロストル36との間に位置せしめるように下降している。この状態で、ガス導入孔23からガスを送るとともに、空気導入孔24から空気を送り、点火用ケーブル25からの電流でバーナー14を点火する。すると、火炎口15から火炎が熱保持材54に向かって放射し、この熱保持材54が800〜1000℃に達するまで加熱される。
給水管29から温水予熱部27に水を供給して温水28を作り、熱交換器42で水蒸気化し、吸入ポンプ32で水蒸気供給管31から水蒸気室53に水蒸気を供給する。バイオマス燃料12の水分含有量が多い場合には、水蒸気供給管31から水蒸気室53に水蒸気を供給することなく、吸入ポンプ32の出口側の排出路を開いて外部に逃がすこともある。
さらに、空気ポンプ41で空気供給管33から空気供給口34を経て水蒸気室53内に空気を供給するとともに、改質ガス取り出し管39に連結された吸引ポンプ43にて燃焼ガス化炉筒10内の空気を吸引する。
【0018】
(2)熱保持材54が十分加熱されたら、燃焼筒16をバイオマス燃料12の収納された燃焼ガス化炉筒10の略中央位置(図1の位置)まで上昇させる。すると、火炎口15から火炎が燃焼ガス化炉筒10内部に放射され、バイオマス燃料12が燃焼を開始する。
また、空気ポンプ41による空気の圧入と、吸引ポンプ43の吸引により、水蒸気室53内の水蒸気と空気の混合気が燃焼筒16の内部を上昇して、空気・水蒸気供給孔18から燃焼ガス化炉筒10内部へ供給される。
【0019】
(3)火炎口15の周りの熱分解層ゾーンでは、完全燃焼に必要な空気量よりも十分絞った空気が供給されることにより、300〜600℃という比較的低い温度で加熱されて熱分解ガス化が行われる。ここで発生した熱分解ガス中には、COやHなどの可燃性ガスに加えてタール分やすすなどの可燃分が含まれており、特に、タール分は、冷却すると凝固するため、加熱したまま吸引ポンプ43の作用により吸引され、空気・水蒸気供給孔18の周りの下方の燃焼層(酸化層)ゾーンに送られる。この燃焼層ゾーンでは、800〜1000℃で、主に以下の反応により燃焼が行われる。
C+O→CO
【0020】
(4)燃焼層ゾーンの下方の還元層ゾーンでは、酸素が奪われ、さらに、この還元層ゾーンの下方の改質層ゾーンでは、以下の反応で、タール分をCOとHへと改質する。
C+CO→2CO
C+HO→CO+H
+nHO→nCO+(n+1/2・m)H
これらの反応は、800℃程度以上の高温でなければ起こらず、しかも、吸熱反応であるため、水蒸気に空気を混ぜて、次の反応によって改質に必要なエネルギーを供給する。
C+O→CO
C+1/2・O→CO
熱分解したガスが下方へ吸引されて燃焼されたり、まだ、燃焼されていないバイオマス燃料12の隙間を通過する際、一度形成されたガスの通路は、固定されて、燃焼ガス化炉筒10内において、熱分解が十分に行われない個所が生じることがある。そこで、空気ポンプ41から副空気供給管19を介して弁20を開いて空気を供給することで、ガス流路を強制的に変更して万遍なくガス化が行われるようにする。
【0021】
(5)タール分の改質は、上部ロストル35と下部ロストル36との間の予め加熱されている熱保持材54を通過することにより、より一層確実に行われる。
上部ロストル35と下部ロストル36を通過した灰分は、灰仕切り板48に落下し、灰受け引き出し40に溜まる。改質ガスは、灰受け引き出し40から灰トラップ37を通るときに、灰の微粉末が除かれ、さらに、タールトラップ38により改質されていない微量のタール分が除かれて精製ガスとなり、改質ガス取り出し管39を経て熱交換器42に送られる。
【0022】
(6)高温の精製ガスが改質ガス取り出し管39を通るときにガス・空気熱交換筒50及び空気予熱筒51内で熱交換し、その熱で水蒸気室53内の空気を暖め、かつ、高温の水蒸気を発生させる。さらに、改質ガス取り出し管39から熱交換器42に送られた高温の精製ガスにより、温水取り出し管30から吸入ポンプ32で吸引された温水28を加熱して、水蒸気化し、水蒸気供給管31から水蒸気室53へ水蒸気を供給する。
【0023】
(7)吸引ポンプ43で吸引した精製ガスは、工業炉、ボイラ、内燃機関のエンジン44などの燃料ガスとして利用するとともに、メタノール製造装置45により、メタノール(CHOH)が合成される。
【0024】
前記実施例において、燃焼ガス化炉筒10内における熱分解、酸化、還元、改質の各工程をより完全に行わせるためには、利用されるバイオマス燃料12の種類、水分含有量、筒内温度などによって、火炎口15の位置、空気・水蒸気供給孔18の位置、空気・水蒸気の供給量などを最適に制御しなければならない。
そこで、本発明では、熱分解層、燃焼層(酸化層)、還元層、改質層の各位置に、温度、湿度などの検出センサーを取り付け、このデータに基づきCPUにより、燃焼筒16の上下位置を調整したり、ガス導入孔23からのガスと、空気導入孔24からの空気の供給量などを制御できるようになっている。また、バーナー14から放射される火炎は、点火用としてのみならず、バイオマス燃料12の水分含有量が大きいときなど、燃焼用としても利用されることも前記データに基づきCPUにより制御する。
【0025】
【発明の効果】
請求項1記載の発明によれば、燃焼ガス化炉筒の下部の改質層ゾーンにおける熱保持材を燃焼ノズルで加熱する工程と、前記燃焼ガス化炉筒内の改質層ゾーンより上方位置の熱分解ゾーンに投入されたバイオマス燃料を前記燃焼ノズルにより点火後一部燃焼して、その熱によりバイオマス燃料の熱分解ガス化を行う工程と、この熱分解ガスを前記熱分解ゾーンの下方位置の燃焼層ゾーンで前記熱分解ゾーンより高温で燃焼し、この過程で発生する灰分中の高温の炭素分を、前記燃焼層ゾーンの下方位置の前記改質層ゾーンに吸引して高温の水蒸気と空気の混合気に反応させて改質ガスを得る工程と、この改質ガスから灰分と未反応タール分を改質・除去して精製ガスを得る工程とからなるので、熱分解ガスを下方へ吸引することで、特に熱保持材の加熱されたところを通過することで、タールやすすを自動的に、かつ、確実に除去できる。
【0026】
請求項2記載の発明によれば、予め熱保持材54を加熱する工程の加熱と、バイオマス燃料12を熱分解ゾーンで燃焼して熱分解ガス化を行う工程の点火とを同一の燃焼ノズル13で行うことができる。
【0027】
請求項3記載の発明によれば、精製ガスを得る工程の後に、通過する精製ガスの顕熱による改質層ゾーンへ供給する空気を加熱する工程を付加したので、熱分解ガスのもつ顕熱を有効利用できる。
【0028】
請求項4記載の発明によれば、最初に燃焼ノズルで熱保持材を十分に加熱し、ついで、燃焼ノズルの位置を調整してバイオマス燃料に点火するようにしたので、燃焼ガス化炉筒、燃焼ノズル、空気・水蒸気供給孔、温水予熱部、水蒸気室、ガス導出手段の構造が簡単で、特に、小規模のバイオマスのガス化装置として安価に提供することができる。また、生成ガスが下向きに吸引されることで、水蒸気室の混合気と十分に反応し、酸化・還元・改質が確実に行われる。
【0029】
請求項5記載の発明によれば、燃焼ガス化炉筒の熱保持材の収納部の下方位置に灰分除去手段としての灰受け引き出しを設け、この灰受け引き出しを、前記熱保持材の収納部の外周に位置して設けられたガス・空気熱交換筒の一端部に灰トラップを介して連結し、このガス・空気熱交換筒の他端部にタールトラップを介して改質ガス取り出し管を連結し、この改質ガス取り出し管を、水蒸気室の外周に設けられた空気予熱筒で熱交換するように貫通して外部へ導出してなるので、水蒸気室内の空気と水蒸気の混合気を効果的に加熱して、熱分解ガスの改質作用を十分行わせることができる。
【0030】
請求項6記載の発明によれば、温水予熱部から温水取り出し管,熱交換器,吸入ポンプ,水蒸気供給管を経て水蒸気室に水蒸気を供給せしめるように連結し、燃焼筒の空気・水蒸気供給孔から湿り気を持たせた空気をバイオマス燃料に供給することで熱分解ガスの水蒸気改質をするようにしたので、温水を効率よく精製後のガスのもつ顕熱で水蒸気化することができる。
【0031】
請求項7記載の発明によれば、水蒸気室に外部の空気ポンプから空気を供給する空気供給管を連結したので、点火時から必要、かつ、十分な空気を供給して、熱分解ガスの発生を確実に行わせることができる。
【0032】
請求項8記載の発明によれば、燃焼ガス化炉筒における燃焼ノズルに臨ませて、外部の空気ポンプから空気を供給する副空気供給管を連結し、供給された空気により燃焼ガス化炉筒の内部に生じたガス流路を強制的に変更するようにしたので、燃焼筒内で万遍なく熱分解ガス化と改質反応を行わせることができる。
【図面の簡単な説明】
【図1】本発明によるバイオマスのガス化方法及び装置の一実施例を示す図である。
【図2】図1におけるA−A線断面図である。
【図3】図1におけるB−B線断面図である。
【符号の説明】
10…燃焼ガス化炉筒、11…燃料投入口、12…バイオマス燃料、13…燃焼ノズル、14…バーナー、15…火炎口、16…燃焼筒、17…仕切り板、18…空気・水蒸気供給孔、19…副空気供給管、20…弁、21…ガイド筒、22…ガス供給管、23…ガス導入孔、24…空気導入孔、25…点火用ケーブル、26…開口端、27…温水予熱部、28…温水、29…給水管、30…温水取り出し管、31…水蒸気供給管、32…吸入ポンプ、33…空気供給管、34…空気供給口、35…上部ロストル、36…下部ロストル、37…灰トラップ、38…タールトラップ、39…改質ガス取り出し管、40…灰受け引き出し、41…空気ポンプ、42…熱交換器、43…吸引ポンプ、44…エンジン、45…メタノール製造装置、46…保温筒、47…断熱材、48…灰仕切り板、49…架台、50…ガス・空気熱交換筒、51…空気予熱筒、52…パッキン、53…水蒸気室、54…熱保持材。
[0001]
BACKGROUND OF THE INVENTION
In particular, the present invention provides synthetic gas from biomass using, as raw materials, wood chips such as thinned wood, driftwood, pruned wood, construction waste, herbaceous materials such as weeds, grass, sugar cane, RDF, rice husk, cow dung, and other wastes The present invention relates to a gasification method from biomass and an apparatus therefor.
[0002]
[Prior art]
Waste that is not suitable for material recycling that reuses waste as a material is being promoted by thermal recycling that effectively uses it as an energy source, and there are advantages such as effective use of unused energy resources and the effect of reducing waste. .
[0003]
It is said that waste power generation is most effective for thermal recycling of waste, but so far, its application has been limited to large waste treatment facilities. However, in view of the current situation in which it is extremely difficult to construct a large-scale industrial waste treatment facility because of opposition from residents, it is hoped that a small-scale biomass gasification method and apparatus capable of efficiently recovering the energy held by waste will emerge. It is rare.
[0004]
[Problems to be solved by the invention]
A method for producing gas fuel from biomass using wood, herbaceous material, etc. as a raw material is already known. The main component of this gas fuel is a synthesis gas composed of hydrogen (H 2 ) and carbon monoxide (CO). Methanol (CH 3 OH) can be synthesized from this synthesis gas.
[0005]
However, there is still no track record of small-scale industrial equipment for producing methanol from biomass. This is because natural gas (CH 4 ) is cheap as a raw material and cannot be economically handled, and technically it has not been successful in producing effective syngas from biomass.
[0006]
An object of the present invention is to provide a biomass gasification method and apparatus capable of efficiently producing effective synthesis gas with a small-scale apparatus.
[0007]
[Means for Solving the Problems]
The present invention, an upper end and fuel input port, an intermediate portion and the pyrolysis zone of the input biomass fuel, the combustion gasification furnace tube was hot water preheating unit to the lower end, the thermal decomposition of the combustion gasification furnace cylinder a housing portion of the passable heat retaining material of the pyrolysis gas which is provided in the lower zone, gas outlet means for deriving outside while sucking from the housing portion of the heat retaining material of fumes downwards, the gas outlet A steam chamber comprising a space from the bottom of the bottom ash partition plate to the hot water preheating portion , a combustion nozzle integrally provided at the upper end, and an open end communicating with the steam chamber at the lower end, and the combustion A combustion cylinder in which the position of the combustion nozzle is freely adjustable in a gasification furnace cylinder, and the combustion nozzle is supplied with a mixture of air and water vapor from a flame outlet for radiating a flame and the water vapor chamber. Air / steam supply holes are provided. A gasifier biomass characterized by Rukoto.
[0008]
In the configuration as described above, the biomass fuel 12 is burned in the pyrolysis zone in the combustion gasification furnace cylinder 10 to perform pyrolysis gasification, and this pyrolysis gas is put into the combustion layer zone below the pyrolysis zone. It is sucked and reacted with a mixture of high-temperature steam and air to oxidize, and further, a reformed gas is obtained in the reduction layer and reforming layer below it, and ash and unreacted tar are removed from the reformed gas. To obtain purified gas.
In addition, after obtaining the purified gas, the steam and air supplied to the reformed layer zone by the sensible heat of the purified gas passing through are heated to effectively use the energy.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
Reference numeral 10 denotes a combustion gasification furnace cylinder whose upper end is the fuel inlet 11 and whose lower end is the hot water preheating portion 27. At an intermediate position inside the combustion gasification furnace cylinder 10, a coarse upper rosttle 35 and a dense lower rooster 36 with a lattice are arranged and fixed at a slight distance from each other. A guide cylinder 21 penetrating vertically is fixedly provided below the lower rooster 36 and at the center of the combustion gasification furnace cylinder 10, and the combustion cylinder 16 is movable up and down in the guide cylinder 21. Is provided.
[0010]
A gas supply pipe 22 is integrally attached to the center of the combustion cylinder 16, and a burner 14 constituting the combustion nozzle 13 is provided at the upper end of the gas supply pipe 22 by a partition plate 17. A large number of flame openings 15 are opened around the entire circumference of the combustion cylinder 16 in which the burner 14 is housed.
A number of air / water vapor supply holes 18 are opened on the outer periphery of the combustion cylinder 16 below the flame opening 15 between the partition plate 17 and the upper rooster 35.
Between the upper rooster 35 and the lower rooster 36, a heat retaining material 54 made of an insoluble ceramic, a metal lump or the like for maintaining a temperature of 800 to 1000 ° C. is accommodated.
[0011]
The gas supply pipe 22 penetrates the central part of the hot water preheating part 27 liquid-tightly to the lower part through the packing 52 and can adjust the vertical position within the guide cylinder 21 integrally with the combustion cylinder 16. Yes. In addition, a gas introduction hole 23 and an air introduction hole 24 are provided in a portion led to the lower end portion of the gas supply pipe 22, and an ignition cable 25 is provided through the gas supply pipe 22. It is connected to the.
[0012]
An auxiliary air supply pipe 19 is connected to the combustion gasification furnace cylinder 10 at substantially the same height as the combustion nozzle 13, and the auxiliary air supply pipe 19 is connected to an air pump 41 to be described later via a valve 20. Has been.
The combustion gasification furnace cylinder 10 has a drawer-type ash receiving drawer 40 which is positioned below the lower rooster 36 and is open to the side so as to be a gas passage. . Further, an ash partition plate 48 inclined toward the ash receiving drawer 40 is fixedly provided on the guide cylinder 21 inside the combustion gasification furnace cylinder 10 at the lower part of the lower rooster 36.
[0013]
In the combustion gasification furnace cylinder 10, the space from the lower part of the ash receiving drawer 40 and the ash partition plate 48 to the hot water preheating part 27 constitutes a steam chamber 53, and the combustion gasification furnace cylinder in the steam chamber 53. An air supply port 34 connected to an air supply pipe 33 which will be described later is opened at the side of the ash partition plate 48 and is connected to the water vapor supply pipe 31. A water supply pipe 29 is connected to the inlet side of the hot water preheating unit 27 and a hot water take-out pipe 30 for circulating the hot water 28 is connected.
[0014]
A heat insulating cylinder 46 is formed on the upper outside of the combustion gasification furnace cylinder 10 by filling it with a heat insulating material 47. Further, a gas / air heat exchange cylinder 50 is formed below the heat retaining cylinder 46 and positioned on the outer circumference of the upper rostr 35, the lower rooster 36, and the ash receiving drawer 40. Further, the outer circumference of the water vapor chamber 53 is formed. An air preheating cylinder 51 is formed at the position.
[0015]
Between the gas / air heat exchange cylinder 50 and the combustion gasification furnace cylinder 10, an ash trap 37 is mounted at the upper part of the ash receiving drawer 40. 38 is provided and led out from the tar trap 38 through a reformed gas take-out pipe 39.
[0016]
The reformed gas take-out pipe 39 and the hot water take-out pipe 30 are externally connected to a heat exchanger 42, and an engine 44 and a methanol production apparatus 45 are connected to a gas outlet side of the heat exchanger 42 via a suction pump 43. The hot water outlet side of the heat exchanger 42 is connected to the water vapor supply pipe 31 via the suction pump 32.
The entire apparatus described above is mounted on the mount 49.
[0017]
Next, the operation of gasification by the apparatus of the present invention will be described.
(1) Combustion gasification furnace cylinders such as thinned wood, driftwood, pruned wood, wood chips such as building waste, herbaceous materials such as weed, grass, sugarcane waste, RDF, rice husk, cow dung, and other waste Ten fuel inlets 11 are continuously supplied from a hopper (not shown).
Immediately after activation, the combustion cylinder 16 is lowered so that the flame opening 15 is positioned between the upper rooster 35 and the lower rooster 36. In this state, gas is sent from the gas introduction hole 23 and air is sent from the air introduction hole 24, and the burner 14 is ignited by the current from the ignition cable 25. Then, a flame radiates | emits from the flame opening 15 toward the heat holding material 54, and this heat holding material 54 is heated until it reaches 800-1000 degreeC.
Water is supplied from the water supply pipe 29 to the hot water preheating unit 27 to make hot water 28, steamed by the heat exchanger 42, and steam is supplied from the steam supply pipe 31 to the steam chamber 53 by the suction pump 32. When the moisture content of the biomass fuel 12 is large, the discharge path on the outlet side of the suction pump 32 may be opened to escape to the outside without supplying water vapor from the water vapor supply pipe 31 to the water vapor chamber 53.
Further, air is supplied from the air supply pipe 33 through the air supply port 34 to the water vapor chamber 53 by the air pump 41, and at the inside of the combustion gasification furnace cylinder 10 by the suction pump 43 connected to the reformed gas take-out pipe 39. Aspirate the air.
[0018]
(2) When the heat retaining material 54 is sufficiently heated, the combustion cylinder 16 is raised to a substantially central position (position in FIG. 1) of the combustion gasification furnace cylinder 10 in which the biomass fuel 12 is stored. Then, a flame is radiated | emitted from the flame opening 15 inside the combustion gasification furnace cylinder 10, and the biomass fuel 12 starts combustion.
In addition, due to the press-fitting of air by the air pump 41 and the suction of the suction pump 43, the mixture of water vapor and air in the water vapor chamber 53 rises inside the combustion cylinder 16 and is converted into combustion gas from the air / water vapor supply hole 18. It is supplied into the furnace tube 10.
[0019]
(3) In the pyrolysis layer zone around the flame opening 15, air that is sufficiently throttled than the amount of air necessary for complete combustion is supplied, so that it is heated at a relatively low temperature of 300 to 600 ° C. and pyrolyzed. Gasification is performed. The pyrolysis gas generated here contains flammable gas such as tar and soot in addition to flammable gas such as CO and H 2. The air is sucked by the action of the suction pump 43 and sent to the lower combustion layer (oxidation layer) zone around the air / water vapor supply hole 18. In this combustion layer zone, combustion is performed mainly at 800 to 1000 ° C. by the following reaction.
C + O 2 → CO 2
[0020]
(4) In the reduction layer zone below the combustion layer zone, oxygen is deprived, and in the reformed layer zone below the reduction layer zone, the tar content is reformed to CO and H 2 by the following reaction. To do.
C + CO 2 → 2CO
C + H 2 O → CO + H 2
C n H m + nH 2 O → nCO + (n + 1/2 · m) H 2
These reactions occur only at a high temperature of about 800 ° C. or more, and are endothermic reactions. Therefore, air is mixed with water vapor, and energy necessary for reforming is supplied by the next reaction.
C + O 2 → CO 2
C + 1/2 · O 2 → CO
When the pyrolyzed gas is sucked downward and burned, or when passing through the gaps in the biomass fuel 12 that has not yet been burned, the gas passage once formed is fixed, and the inside of the combustion gasification furnace cylinder 10 is fixed. In some cases, the thermal decomposition may not be sufficiently performed. Therefore, by opening the valve 20 from the air pump 41 via the auxiliary air supply pipe 19 and supplying air, the gas flow path is forcibly changed so that gasification is performed uniformly.
[0021]
(5) The reforming of the tar is more reliably performed by passing through the preheated heat retaining material 54 between the upper rooster 35 and the lower rooster 36.
The ash that has passed through the upper rooster 35 and the lower rooster 36 falls to the ash partition plate 48 and accumulates in the ash receiving drawer 40. When the reformed gas passes through the ash trap 37 from the ash receiving drawer 40, the fine ash powder is removed, and further, a small amount of tar that has not been reformed by the tar trap 38 is removed to become a refined gas. It is sent to the heat exchanger 42 through the quality gas take-out pipe 39.
[0022]
(6) When high-temperature purified gas passes through the reformed gas take-out pipe 39, heat is exchanged in the gas / air heat exchange cylinder 50 and the air preheating cylinder 51, and the air in the water vapor chamber 53 is warmed by the heat, and Generates hot water vapor. Further, the hot water 28 sucked from the hot water take-off pipe 30 by the suction pump 32 is heated by the high-temperature purified gas sent from the reformed gas take-out pipe 39 to the heat exchanger 42, and is vaporized. Water vapor is supplied to the water vapor chamber 53.
[0023]
(7) The purified gas sucked by the suction pump 43 is used as a fuel gas for an industrial furnace, a boiler, an engine 44 of an internal combustion engine, and the like, and methanol (CH 3 OH) is synthesized by the methanol manufacturing apparatus 45.
[0024]
In the above-described embodiment, in order to perform the thermal decomposition, oxidation, reduction, and reforming steps in the combustion gasification furnace cylinder 10 more completely, the type of biomass fuel 12 to be used, the water content, the cylinder interior The position of the flame opening 15, the position of the air / water vapor supply hole 18, the supply amount of air / water vapor, and the like must be optimally controlled depending on the temperature and the like.
Therefore, in the present invention, detection sensors such as temperature and humidity are attached to the respective positions of the thermal decomposition layer, the combustion layer (oxidation layer), the reduction layer, and the reforming layer. The position can be adjusted, and the amount of gas supplied from the gas introduction hole 23 and the amount of air supplied from the air introduction hole 24 can be controlled. Further, the CPU controls that the flame radiated from the burner 14 is used not only for ignition but also for combustion when the moisture content of the biomass fuel 12 is large, based on the data.
[0025]
【The invention's effect】
According to the first aspect of the present invention, the step of heating the heat retaining material in the reformed layer zone below the combustion gasification furnace cylinder with the combustion nozzle, and the position above the reforming layer zone in the combustion gasification furnace cylinder the pyrolysis zone is turned biomass fuel burning part after ignition by the combustion nozzle, the pyrolysis zone and step, the pyrolysis gas to perform pyrolysis gasification of by Riva biomass fuel to the heat The combustion layer zone below the combustion layer burns at a higher temperature than the pyrolysis zone, and the high-temperature carbon content in the ash generated in this process is sucked into the reforming layer zone below the combustion layer zone to obtain a high temperature. The process comprises a step of obtaining a reformed gas by reacting with a mixture of water vapor and air, and a step of obtaining a purified gas by reforming and removing ash and unreacted tar from the reformed gas. by sucking the downward Netsuho especially By passing through a place which is heated in the wood, tar and soot automatically, and can be reliably removed.
[0026]
According to the second aspect of the present invention, the same combustion nozzle 13 performs the heating in the step of heating the heat retaining material 54 in advance and the ignition in the step of burning the biomass fuel 12 in the pyrolysis zone to perform pyrolysis gasification. Can be done.
[0027]
According to the invention of claim 3, since the step of heating the air supplied to the reformed layer zone by the sensible heat of the purified gas passing after the step of obtaining the purified gas is added, the sensible heat of the pyrolysis gas Can be used effectively.
[0028]
According to the fourth aspect of the invention, the first heat retaining material was sufficiently heated by combustion nozzle, then since such a point fire biomass fuel by adjusting the position of the fuel nozzle, combustion gasification furnace The structure of the cylinder, the combustion nozzle, the air / water vapor supply hole, the hot water preheating unit, the water vapor chamber, and the gas outlet means is simple, and can be provided at a low cost especially as a small-scale biomass gasifier. In addition, since the generated gas is sucked downward, it sufficiently reacts with the air-fuel mixture in the water vapor chamber, and oxidation, reduction, and reforming are reliably performed.
[0029]
According to the fifth aspect of the present invention, the ash receiving drawer as the ash removing means is provided at a lower position of the heat holding material storage portion of the combustion gasification furnace cylinder, and the ash receiving drawer is provided as the heat holding material storage portion. Is connected to one end of a gas / air heat exchange cylinder provided on the outer periphery of the gas via an ash trap, and a reformed gas take-out pipe is connected to the other end of the gas / air heat exchange cylinder via a tar trap. The reformed gas take-out pipe is connected to the outside so as to exchange heat with an air preheating cylinder provided on the outer periphery of the steam chamber, and is led out to the outside, so that the mixture of air and steam in the steam chamber is effective. Heating can be performed sufficiently to effect the reforming action of the pyrolysis gas.
[0030]
According to the invention described in claim 6, the hot water preheating part is connected so as to supply water vapor to the water vapor chamber through the hot water take-out pipe, heat exchanger, suction pump, water vapor supply pipe, and the air / water vapor supply hole of the combustion cylinder Since the steam is reformed from the pyrolysis gas by supplying humidified air to the biomass fuel, the hot water can be efficiently steamed with the sensible heat of the purified gas.
[0031]
According to the invention described in claim 7, since the air supply pipe for supplying air from the external air pump is connected to the water vapor chamber, the necessary and sufficient air is supplied from the time of ignition to generate pyrolysis gas. Can be surely performed.
[0032]
According to the eighth aspect of the present invention, the auxiliary air supply pipe for supplying air from an external air pump is connected to the combustion nozzle in the combustion gasification furnace cylinder, and the combustion gasification furnace cylinder is supplied with the supplied air. since the gas flow path caused inside of the so that to force a change, it is possible to perform a reforming reaction evenly pyrolysis gasification in the combustion cylinder.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a biomass gasification method and apparatus according to the present invention.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a cross-sectional view taken along line BB in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Combustion gasification furnace cylinder, 11 ... Fuel inlet, 12 ... Biomass fuel, 13 ... Combustion nozzle, 14 ... Burner, 15 ... Flame outlet, 16 ... Combustion cylinder, 17 ... Partition plate, 18 ... Air / steam supply hole , 19 ... Sub air supply pipe, 20 ... Valve, 21 ... Guide cylinder, 22 ... Gas supply pipe, 23 ... Gas introduction hole, 24 ... Air introduction hole, 25 ... Ignition cable, 26 ... Open end, 27 ... Hot water preheating 28 ... Warm water, 29 ... Water supply pipe, 30 ... Warm water take-out pipe, 31 ... Steam supply pipe, 32 ... Suction pump, 33 ... Air supply pipe, 34 ... Air supply port, 35 ... Upper rooster, 36 ... Lower rooster, 37 ... Ash trap, 38 ... Tar trap, 39 ... Reformed gas take-out pipe, 40 ... Ash receiver / drawer, 41 ... Air pump, 42 ... Heat exchanger, 43 ... Suction pump, 44 ... Engine, 45 ... Methanol production device, 4 ... heat insulating cylinder, 47 ... heat insulating material, 48 ... ash partition plate 49 ... pedestal, 50 ... gas air heat exchanger tube, 51 ... air preheater tube, 52 ... packing, 53 ... steam chamber, 54 ... heat retaining material.

Claims (8)

燃焼ガス化炉筒の下部の改質層ゾーンにおける熱保持材を燃焼ノズルで加熱する工程と、前記燃焼ガス化炉筒内の改質層ゾーンより上方位置の熱分解ゾーンに投入されたバイオマス燃料を前記燃焼ノズルにより点火後一部燃焼して、その熱によりバイオマス燃料の熱分解ガス化を行う工程と、この熱分解ガスを前記熱分解ゾーンの下方位置の燃焼層ゾーンで前記熱分解ゾーンより高温で燃焼し、この過程で発生する灰分中の高温の炭素分を、前記燃焼層ゾーンの下方位置の前記改質層ゾーンに吸引して高温の水蒸気と空気の混合気に反応させて改質ガスを得る工程と、この改質ガスから灰分と未反応タール分を改質・除去して精製ガスを得る工程とからなることを特徴とするバイオマスのガス化方法。A step of heating the heat retaining material in the reformed layer zone in the lower part of the combustion gasification furnace cylinder with a combustion nozzle, and a biomass fuel introduced into the pyrolysis zone located above the reformed layer zone in the combustion gasification furnace cylinder the burning portion after ignition by the combustion nozzle, and performing pyrolysis gasification of by Riva biomass fuel to the heat, the heat of the pyrolysis gases in the combustion layer zone below the said pyrolysis zone Combusting at a higher temperature than the decomposition zone, the high-temperature carbon content in the ash generated in this process is sucked into the reformed layer zone below the combustion layer zone and reacted with a mixture of high-temperature steam and air. A biomass gasification method comprising: a step of obtaining a reformed gas; and a step of obtaining a purified gas by reforming and removing ash and unreacted tar from the reformed gas. 熱保持材54の加熱工程の加熱とバイオマス燃料12の熱分解ガス化工程の点火とは、同一燃焼ノズル13の位置を移動して行うようにしたことを特徴とする請求項1記載のバイオマスのガス化方法。  The heating of the heat retaining material 54 and the ignition of the pyrolysis gasification step of the biomass fuel 12 are performed by moving the position of the same combustion nozzle 13. Gasification method. 精製ガスを得る工程の後に、通過する精製ガスの顕熱による改質層ゾーンへ供給する空気を加熱する工程と、水を加熱し水蒸気の発生を助ける熱交換工程とを付加してなることを特徴とする請求項1又は2記載のバイオマスのガス化方法。After the step of obtaining the purified gas, the step of heating the air supplied to the reformed layer zone by the sensible heat of the purified gas passing therethrough and the heat exchange step of heating the water and assisting the generation of water vapor are added. The biomass gasification method according to claim 1 or 2 , wherein the biomass gasification method is characterized. 上端を燃料投入口とし、中間部を投入されたバイオマス燃料の熱分解ゾーンとし、下端を温水予熱部とした燃焼ガス化炉筒と、この燃焼ガス化炉筒内の前記熱分解ゾーンの下部に設けた熱分解ガスの通過可能な熱保持材の収納部と、この熱保持材の収納部から熱分解ガスを下向きに吸引しつつ外部へ導出するガス導出手段と、このガス導出手段における底部の灰仕切り板の下方から前記温水予熱部までの空間部からなる水蒸気室と、上端部に一体に燃焼ノズルを設け、下端部に前記水蒸気室と連通する開口端を設け、前記燃焼ガス化炉筒内で前記燃焼ノズルを位置調整自在に設けた燃焼筒とを具備し、前記燃焼ノズルには、火炎を放射する火炎口と前記水蒸気室からの空気と水蒸気の混合気を供給する空気・水蒸気供給孔を設けてなることを特徴とするバイオマスのガス化装置。Combustion gasification furnace cylinder with the upper end as the fuel input port, the middle part as the thermal decomposition zone of the biomass fuel charged, and the lower end as the hot water preheating part, and the lower part of the pyrolysis zone in the combustion gasification furnace cylinder A storage portion for the heat-retaining material through which the pyrolysis gas can pass, a gas lead-out means for sucking the pyrolysis gas downward from the heat- holding material storage portion, and a bottom portion of the gas lead-out means; A steam chamber comprising a space from the lower part of the ash partition plate to the hot water preheating unit; a combustion nozzle provided integrally at the upper end; an opening end communicating with the steam chamber at the lower end; and the combustion gasification furnace tube A combustion cylinder in which the position of the combustion nozzle is freely adjustable, and an air / water vapor supply for supplying a mixture of air and water vapor from a flame port for radiating a flame and the water vapor chamber to the combustion nozzle That the hole is made Gasifier biomass to symptoms. 燃焼ガス化炉筒の熱保持材の収納部の下方位置に灰分除去手段としての灰受け引き出しを設け、この灰受け引き出しを、前記熱保持材の収納部の外周に位置して設けられたガス・空気熱交換筒の一端部に灰トラップを介して連結し、このガス・空気熱交換筒の他端部にタールトラップを介して改質ガス取り出し管を連結し、この改質ガス取り出し管を、水蒸気室の外周に設けられた空気予熱筒で熱交換するように貫通して外部へ導出してなることを特徴とする請求項4記載のバイオマスのガス化装置。 An ash receiving drawer as an ash removal means is provided at a position below the heat holding material storage portion of the combustion gasification furnace cylinder, and the ash receiving drawer is provided on the outer periphery of the heat holding material storage portion. -Connected to one end of the air heat exchange cylinder via an ash trap, and connected to the other end of the gas / air heat exchange cylinder via a tar trap, a reformed gas take-out pipe, 5. The biomass gasification apparatus according to claim 4, wherein the biomass gasification apparatus penetrates through an air preheating cylinder provided on the outer periphery of the water vapor chamber so as to exchange heat . 温水予熱部から温水取り出し管,熱交換器,吸入ポンプ,水蒸気供給管を経て水蒸気室に水蒸気を供給せしめるように連結し、燃焼筒の空気・水蒸気供給孔から湿り気を持たせた空気をバイオマス燃料に供給することで熱分解ガスの水蒸気改質をするようにしたことを特徴とする請求項4又は5記載のバイオマスのガス化装置。The hot water preheating section is connected to supply water vapor to the water vapor chamber via the hot water extraction pipe, heat exchanger, suction pump, and water vapor supply pipe, and the humidified air is supplied from the combustion cylinder air / water vapor supply hole to the biomass fuel. The biomass gasification apparatus according to claim 4 or 5, wherein steam reforming of the pyrolysis gas is performed by supplying to the steam. 水蒸気室に外部の空気ポンプから空気を供給する空気供給管を連結してなることを特徴とする請求項4、5又は6記載のバイオマスのガス化装置。7. The biomass gasification apparatus according to claim 4 , wherein an air supply pipe for supplying air from an external air pump is connected to the water vapor chamber. 燃焼ガス化炉筒における燃焼ノズルに臨ませて、外部の空気ポンプから空気を供給する副空気供給管を連結し、供給された空気により燃焼ガス化炉筒の内部に生じたガス流路を強制的に変更するようにしたことを特徴とする請求項4、5、6又は7記載のバイオマスのガス化装置。A secondary air supply pipe that supplies air from an external air pump is connected to the combustion nozzle in the combustion gasification furnace cylinder, and the gas flow path generated inside the combustion gasification furnace cylinder is forced by the supplied air. gasifier biomass according to claim 4, 5, 6 or 7, wherein it has in so that change basis.
JP2001238186A 2001-08-06 2001-08-06 Biomass gasification method and apparatus Expired - Fee Related JP4650985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001238186A JP4650985B2 (en) 2001-08-06 2001-08-06 Biomass gasification method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001238186A JP4650985B2 (en) 2001-08-06 2001-08-06 Biomass gasification method and apparatus

Publications (2)

Publication Number Publication Date
JP2003049177A JP2003049177A (en) 2003-02-21
JP4650985B2 true JP4650985B2 (en) 2011-03-16

Family

ID=19069148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001238186A Expired - Fee Related JP4650985B2 (en) 2001-08-06 2001-08-06 Biomass gasification method and apparatus

Country Status (1)

Country Link
JP (1) JP4650985B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102161908A (en) * 2011-03-24 2011-08-24 王团群 Biomass energy cracking kettle and biomass energy cracking method

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189932A (en) * 2002-12-12 2004-07-08 Kozo Shionoya Apparatus for gasifying solid fuel
JP2006083293A (en) * 2004-09-16 2006-03-30 Fuji Electric Systems Co Ltd Gasification apparatus of biomass fuel
JP2007186611A (en) * 2006-01-13 2007-07-26 Maywa Co Ltd Biomass gasification and firing system
CN100465512C (en) * 2006-04-27 2009-03-04 王玉志 Energy saving biomass gasifying furnace
KR100784851B1 (en) 2007-01-12 2007-12-14 한국에너지기술연구원 Biomass gasifier producing low tar
CA2704713A1 (en) 2007-10-09 2009-04-16 Silvagas Corporation Systems and methods for oxidation of synthesis gas tar
JP2009108270A (en) * 2007-10-31 2009-05-21 Yanmar Co Ltd Gasification furnace
JP5060912B2 (en) * 2007-10-31 2012-10-31 ヤンマー株式会社 Gasifier
JP5060911B2 (en) * 2007-10-31 2012-10-31 ヤンマー株式会社 Gasifier
KR200448404Y1 (en) * 2009-06-11 2010-04-13 정남철 Portable burner using biomass natural gas
JP5794662B2 (en) * 2011-01-13 2015-10-14 新日鉄住金エンジニアリング株式会社 Waste melting treatment method
KR101452327B1 (en) * 2013-08-23 2014-10-23 삼양에코너지 주식회사 Gasification reacting apparatus using biomass
CN104438297B (en) * 2014-12-10 2016-07-13 密西西比国际水务有限公司 A kind of method and apparatus processing organic waste
CN104949132A (en) * 2015-07-17 2015-09-30 张宝家 Pyrolyzing gasifier
JP7352386B2 (en) * 2019-06-17 2023-09-28 藤森工業株式会社 Raw material processing equipment
CN110375317A (en) * 2019-07-08 2019-10-25 广东宝杰环保科技有限公司 Gasify Split type combustion device
CN113028445A (en) * 2021-03-29 2021-06-25 青岛理工大学 Biomass low-nitrogen combustion boiler based on local gasification technology
CN114369830A (en) * 2021-12-23 2022-04-19 上海荣和环保科技有限公司 Novel method and device for recovering etching solution through iron powder reduction reaction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155291A (en) * 1980-12-27 1982-09-25 Kernforschungsanlage Juelich Method and device for continuously generating combustible gas from organic garbage
JPH09263776A (en) * 1996-03-28 1997-10-07 Mitsubishi Heavy Ind Ltd Process for gasifying organic waste and fixed-bed gasification oven

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155291A (en) * 1980-12-27 1982-09-25 Kernforschungsanlage Juelich Method and device for continuously generating combustible gas from organic garbage
JPH09263776A (en) * 1996-03-28 1997-10-07 Mitsubishi Heavy Ind Ltd Process for gasifying organic waste and fixed-bed gasification oven

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102161908A (en) * 2011-03-24 2011-08-24 王团群 Biomass energy cracking kettle and biomass energy cracking method
CN102161908B (en) * 2011-03-24 2013-11-06 王团群 Biomass energy cracking kettle and biomass energy cracking method

Also Published As

Publication number Publication date
JP2003049177A (en) 2003-02-21

Similar Documents

Publication Publication Date Title
JP4650985B2 (en) Biomass gasification method and apparatus
CN101346455B (en) Biomass gasification facility
JP5631313B2 (en) Thermal reactor
EP0228409A1 (en) Fuel gas-producing pyrolysis reactors.
CA2501841A1 (en) Carbonization and gasification of biomass and power generation system
CN101434846A (en) Method and apparatus for biomass ion catalytic pyrolysis gasification
CN2677376Y (en) Down-draft gasification furnace
JP2006038441A (en) Combustion equipment comprising lower gasification combustion structure for solid biomass, carbonization furnace, and gasification furnace
CN100362084C (en) Internal and external circulation coal gasification method and device
CN102635940B (en) Gasification combined-combustion hot-blast stove
JP2008088310A (en) High temperature carbonization method and high temperature carbonization apparatus
CN102234546A (en) Biomass gasifier
JP5748333B2 (en) Electric heating biomass gasifier
CN2525093Y (en) Gas generating furnace
CN201334451Y (en) Catalytic cracking gasification device of biomass ions
CN208776671U (en) It is a kind of using biomass as the mobile generating device of fuel
CN101962578B (en) Renewable energy generating system
CN201962258U (en) Renewable energy source power generation system
CN201697112U (en) Boiler combusting biomass fuel gas
CN2295754Y (en) Bidirectional gas generating furnace
CN102329647B (en) Generation furnace and production method of heat clean gas
CN102878564B (en) Counter-burning wet combustion furnace
CN212356523U (en) Boiler flue gas modifier
CN211204412U (en) Methanol plasma boiler device applying pyrolysis method
CN102367393B (en) Biomass water-cooling air-vapor gasifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100408

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees