JP2004041848A - Method for gasifying carbonaceous resources and apparatus therefor - Google Patents

Method for gasifying carbonaceous resources and apparatus therefor Download PDF

Info

Publication number
JP2004041848A
JP2004041848A JP2002200001A JP2002200001A JP2004041848A JP 2004041848 A JP2004041848 A JP 2004041848A JP 2002200001 A JP2002200001 A JP 2002200001A JP 2002200001 A JP2002200001 A JP 2002200001A JP 2004041848 A JP2004041848 A JP 2004041848A
Authority
JP
Japan
Prior art keywords
carbonaceous
pyrolysis
gas
furnace
resources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002200001A
Other languages
Japanese (ja)
Other versions
JP3914474B2 (en
Inventor
Shigeru Hashimoto
橋本 茂
Takafumi Kawamura
河村 隆文
Haruyoshi Shioda
汐田 晴是
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002200001A priority Critical patent/JP3914474B2/en
Publication of JP2004041848A publication Critical patent/JP2004041848A/en
Application granted granted Critical
Publication of JP3914474B2 publication Critical patent/JP3914474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Abstract

<P>PROBLEM TO BE SOLVED: To convert carbonaceous resources into gas energy with a high efficiency. <P>SOLUTION: In a gasifying method for a carbonaceous resources, the carbonaceous resources are thermally decomposed to form pyrolyzed gas and tar. The carbonaceous resources are partially gasified by oxygen or oxygen and steam to generate a gasified gas. Either one of oxygen and steam or both of them are introduced into the pyrolyzed gas, pyrolyzed tar and the gasified gas to modify the pyrolyzed gas and tar. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、各種炭素質資源を効率よく原燃料ガスに転換する技術に関するものである。
【0002】
【従来の技術】
近年、3R(reduce:削減、reuse:再使用、recycle:再利用)の考え方が、政策の後押しもあり、共通概念として認知され初めている。使用後または故障・破壊後の製品や製品製造時の副生品等のいわゆる廃棄物は、焼却あるいは埋め立てが主な処理方法であり、最終処分場の逼迫する現実と相まって、それらを有効に利用することは、地球温暖化問題への対応の一つの解答となるであろう。しかしながら廃棄物は、種々雑多な性状を有しており、エネルギー密度の低いものが多く含まれる、処理後のガス精製負担が大きい等の理由で、作業、設備に手間とコストが掛かり、特に小規模で経済的に自立可能なプロセスは少ない。
【0003】
廃棄物の多くは炭素を含んでおり、発熱量は一般的には低いものの、石炭、石油、天然ガス等と変わりないエネルギー資源と見ることができる。
【0004】
廃棄物の処理は、自治体から排出される一般廃棄物ゴミ焼却に蒸気発電を組み合わせて電力として回収するゴミ焼却発電方式が一般的であり、従来の10〜15%の送電端効率から、ボイラ材質改良や原料調整(RDF化)、外部燃料使用による効率向上(スーパーゴミ発電)等により、30%近い送電端効率に向上している焼却炉もある。ただしこれらは、廃棄物の事前処理やボイラ材質、外部燃料導入が必要であり、コスト面、適用面からは特殊解であり、一般化していない。
【0005】
最終処分場の逼迫やダイオキシン規制により自治体での実機採用が増加しつつある処理方法としては、灰分の減容・無害化処理やダイオキシン低減を狙い、高温でガス化溶融して灰分を溶融・スラグ化し、発電まで持ってゆくいわゆる廃棄物ガス化溶融技術がある。この技術は種類が多く、大きく▲1▼直接溶融型(シャフト炉等を使い、熱分解、ガス化、燃焼・溶融を前段の反応器で行い、後段では燃焼してボイラ、蒸気タービンでエネルギー回収を行うものが主。)、▲2▼熱分解+燃焼・溶融型(低温熱分解して生成したガス、タール、チャーを充分な空気で高温燃焼し、ボイラ、蒸気タービンでエネルギー回収。)、▲3▼熱分解+ガス化型(低温熱分解して生成したガス、チャーを高温ガス化し、可燃性ガスを発生させ、ガスタービン、ガスエンジンによる発電または化学原料としてガスを利用。)に分けられる。▲1▼及び▲2▼の燃焼−蒸気発電方式では、廃棄物中に含まれる塩素等による腐食のために回収する蒸気条件に制約があることから、発電効率に限界がある。▲3▼のクリーンアップしたガスを用いる発電では、一般的に発電効率を高められる可能性が高い。例えば石炭利用発電に例を取ると、燃焼ボイラでの送電端効率(38−39%、USCタイプで39−41%)より、ガスタービンと蒸気タービンを組み合わせた複合発電(IGCC)において、高い送電端効率が得られる(通常タイプで43−44%、高温型ガスタービンで46−48%)。さらに、ガス化を燃料電池と組み合わせる次世代技術では、50%を超える送電端効率が見込まれるなど、高効率エネルギー転換方法への展開が見込める等のメリットがあり、今後は廃棄物の分野でもガス化を中心とした技術がさらに広く展開すると予測される。
【0006】
本発明は、廃棄物を含む炭素質原料の高効率エネルギー転換を指向しており、主に前述▲3▼の技術範疇に属する。ガス化を使用した廃棄物利用分野を見ると、特許としては、特開平10−81885号公報では、低温流動層ガス化炉と高温溶融ガス化炉を組み合わせ、廃棄物からアンモニア合成用原料ガス(水素)を製造する方法及び装置が、また特開平10−310783号公報では、内部循環式流動層炉と高温ガス化炉を組み合わせ、廃棄物をガス化して原燃料ガスを製造する方法及び装置が、特開平11−294726号公報では、廃棄物を熱分解し、熱分解チャーの部分酸化ガスで熱分解タールを改質して可燃ガスを製造する方法及び装置が提案されている。▲3▼の熱分解+ガス化に属する技術で実機稼働しているものは少ない。実機化されているものとしては、低温熱分解技術として外熱式のロータリーキルンを用い、生成した熱分解ガスおよびタールを空気で高温改質し、1000kcal/Nm程度の低カロリーガスを得てこれをガスエンジンで発電するプロセスや、低温熱分解技術として、廃棄物を圧密し、プッシャー方式の外熱式熱分解炉で生成した熱分解ガス、タールおよび熱分解残渣を酸素でガス化および改質し、2000kcal/Nm程度の中カロリーガスを得るプロセスがある。これらの技術は、発電を対象とした場合、送電端効率は7〜12%であり、熱効率は高くない。
【0007】
【発明が解決しようとする課題】
上記廃棄物のガス化を中心とした従来技術においては、効率向上を阻害する要因がいくつかある。前述特開平10−81885号公報、特開平10−310783号公報の技術では、熱分解(低温ガス化)に流動層方式を用いている。流動層では、適する流動層状態の維持のため流動ガスが必要であり、一般的には空気、酸素、水蒸気等が用いられる。これらのガスは、反応に関与しないものが大部分であり、高温ガス化炉における不要な加熱(必要酸素量の増加)、熱回収時の効率損等が生じて効率が低くなるという構造的な課題を持つ。現在、実機稼働しているロータリーキルンやプッシャー方式のプロセスは、ガスシール性の点から基本的に加圧ができないこと、低温熱分解炉が外熱方式であるために、設備のコンパクト化が困難でかつ発電には生成ガスの圧縮工程が必要となること、またプロセス熱効率が低いことが課題である。
【0008】
本発明は、炭素質資源のガスエネルギーへの高効率な転換を可能とすることを目的とする。
【0009】
【課題を解決するための手段】
本発明は、以上の課題を解決するに有効な方法であり、
(1)炭素質資源を熱分解し、熱分解ガス及び熱分解タールを生成させ、炭素質資源を酸素、又は酸素及び水蒸気で部分酸化しガス化ガスを発生させ、該熱分解ガス、該熱分解タール、及び該ガス化ガス中に、酸素、水蒸気のいずれか又は双方を導入して該熱分解ガス及び熱分解タールを改質することを特徴とする炭素質資源のガス化方法、
(2)炭素質資源を熱分解して生成した熱分解残渣から金属を分離した炭素質残渣を、炭素質資源と共に酸素、又は酸素及び水蒸気で部分酸化することを特徴とする前記(1)に記載の炭素質資源のガス化方法、
(3)炭素質資源を熱分解する際に、シャフト型の炉を用いて、反応部温度を300℃〜800℃とすることを特徴とする前記(1)又は(2)記載の炭素質資源のガス化方法、
(4)炭素質資源を熱分解して生成した熱分解残渣から金属を分離した炭素質残渣を、炭素質資源と共に部分酸化する際に、反応部温度を1200℃〜1600℃とし、さらに熱分解ガス及び熱分解タールを改質する際に、反応部温度を900℃〜1200℃とすることを特徴とする前記(2)又は(3)記載の炭素質資源のガス化方法、
(5)前記熱分解に必要な熱を、熱分解される炭素質資源自身の燃焼熱でまかなうことを特徴とする前記(1)〜(4)のいずれか1項に記載の炭素質資源のガス化方法、
(6)炭素質資源の熱分解及び部分酸化、並びに熱分解ガス及び熱分解タールの改質を、0.5MPa〜3.0MPaの圧力で行うことを特徴とする前記(1)〜(5)のいずれか1項に記載の炭素質資源のガス化方法、
(7)炭素質資源として、シュレッダーダスト、軟質プラスチック、生木、一般廃棄物ゴミのうちいずれか一つ以上を熱分解し、更に木材及び硬質プラスチックのいずれか又は双方を部分酸化することを特徴とする前記(1)〜(6)のいずれか1項に記載の炭素質資源のガス化方法、
(8)炭素質資源を熱分解するシャフト型熱分解炉と、炭素質資源を熱分解して生成した熱分解残渣から金属を分離した炭素質残渣を炭素質資源と共に酸素、又は酸素及び水蒸気で部分ガス化するガス化炉と、該熱分解炉で生成した熱分解ガス及び熱分解タール、該ガス化炉で発生したガス化ガス中、並びに酸素、水蒸気のいずれか又は双方を導入して該熱分解ガス及び熱分解タールを改質する改質炉を有することを特徴とする炭素質資源のガス化装置、
(9)改質炉で改質された生成ガスを処理するガス精製装置を有することを特徴とする前記(8)記載の炭素質資源のガス化装置、
(10)前記ガス化炉と前記改質炉が連接することを特徴とする前記(8)又は(9)に記載の炭素質資源のガス化装置、
(11)前記熱分解炉で生成した熱分解残渣を破砕する破砕機と、該熱分解残渣から金属を分離する装置と、金属が分離された炭素質残渣を前記ガス化炉へ供給する供給装置を有することを特徴とする前記(8)〜(10)のいずれか1項に記載の炭素質資源のガス化装置、
からなる。
【0010】
尚、本発明における炭素質資源とは、バイオマスやプラスチック、一般廃棄物ゴミ等を指し、具体的には、農業系バイオマス(麦わら、サトウキビ、米糠、草木等)、林業系バイオマス(製紙廃棄物、製材廃材、除間伐材、薪炭林等)、畜産系バイオマス(家畜廃棄物)、水産系バイオマス(水産加工残滓)、廃棄物系バイオマス(生ゴミ、RDF:ゴミ固形化燃料;Refused Derived Fuel、庭木、建設廃材、下水汚泥)、硬質プラスチック、軟質プラスチック、シュレッダーダスト等を指す。特に木材に関しては、製材廃材、建設廃材、木製電柱、木製枕木等、一度乾燥工程を経た、比較的水分が少ない(3〜20質量%)ものを指し、草木、除間伐材に代表される生木類と区別される。プラスチックに関しては、通常曲げ弾性率が定常状態で7000kg/cm以上を硬質プラスチック、700kg/cm以下を軟質プラスチックと区別される(その間の性状のものは半硬質プラスチックとされる)。本発明では、曲げ弾性率のみでは破砕特性が決まらないこともあり、実施経験上から、熱硬化性プラスチック、スチロール樹脂、プロプロピレン、アクリル樹脂、硬質塩ビ樹脂等の破砕時に溶融、融着を示しにくいものを硬質プラスチックとし、ポリエチレン、軟質塩化ビニル樹脂、ウレタン樹脂、発泡スチロール等の、主に溶融性を持つことで破砕に向かないものを軟質プラスチックとする。また一般廃棄物ゴミとは産廃指定19種類以外のゴミのことで、自治体単位で収集する家庭系ゴミや事業者から出る紙類を多く含む事業系ゴミである。ただし、本発明は炭素質のエネルギー転換に関するものであるため、炭素質をほとんど含まないもの、すなわち分別された金属、ガラス類等は対象とはしない。
【0011】
【発明の実施の形態】
前記(1)、(8)及び(9)に係る本発明の基本的プロセスフロー及び設備構成を、図1に示した。炭素質資源1は、ガス化炉2と熱分解炉3の2箇所に供給される。特開平11−294726号公報に開示された方法では、廃棄物は全量熱分解炉に投入され、反応後の残渣をガス化溶融する。本発明では、炭素質資源は主に破砕性、形状によって区別され、ガス化用と熱分解用に並行して供給される。ガス化炉2では、炭素質資源1は、酸素4又は酸素4及び水蒸気5で部分酸化され、ガス化ガス6を生成する。炭素質資源1中の灰分は、ガス化炉2で溶融して、スラグ7としてガス化炉2の下部から排出される。熱分解炉3では、熱分解によって炭素質資源1が熱分解ガス・熱分解タール8と熱分解残渣9に分けられ、熱分解ガス・熱分解タール8はガス化炉2で発生するガス化ガス6が導入されている改質炉10に導入され、ガス化ガス6と共に、蒸気5、酸素4の何れか又は双方によって改質される。熱分解残渣9は金属11を分離して炭素質残渣12となる。改質炉10でされた生成ガス13は、必要に応じガス精製設備14で精製され、精製ガス15となる。
【0012】
前記(2)(5)に係る発明と、前記(2)に係る発明を具体化する設備構成を示した前記(11)に係る発明のフローを図2に示す。熱分解残渣9が、還元状態で原料として使いやすい金属11と、熱分解されることで炭化して破砕性が改善された炭素質残渣12からなることを利用する。熱分解残渣9を熱分解残渣破砕機16で破砕し、金属分離装置17で金属11を分離して炭素質残渣12を炭素質残渣供給装置18でガス化炉2に供給して部分酸化する。炭素質残渣12は、炭素質資源1に含有されている灰分が濃縮されているが、酸素や水素が少なく炭素の多い、いわゆる炭の状態になっており、ガス化原料として優れた炭材である。図2では、打ち込まれた釘や電気配線等の、熱分解前には分離しにくい金属を想定して熱分解残渣破砕機16の後に金属分離装置17を設置しているが、空き缶や抜け落ちた釘、金具等の既に炭素質と分離している金属の混入が想定される場合には、熱分解残渣破砕機16の破砕動力低減のために、熱分解残渣破砕機16の前にも別の金属分離装置を設置しても良い。(5)で示した熱分解用の熱に関しては、熱分解炉3の下部より酸化剤21を導入し、炭素質資源1や熱分解残渣9を一部燃焼して熱源とする。自燃による直接熱交換であり、キルン等での間接加熱方式と比較しても効率が高く、追加燃料を必要としない。
【0013】
炭素質資源のガスへの転換という観点からは、原料の転換率の高さ、熱効率の高さや、反応時間が短時間であることによるコンパクトな設備であることとそれに基づく生産性の高さを考えると、気流層でのガス化が最も有利であり、可能ならば全量をこの方法で処理することが好ましい。ところが、一般廃棄物ゴミに例を見るように、形状、性状が雑多な炭素質資源を、気流搬送向けに均一に乾燥、微粉砕することは技術的には可能であるが、経済的に現実的ではない。従って、現在の主流技術には、形状、性状の許容度が大きいキルンや流動層を使用したものが多い。本発明では、前記(7)でも具体的に示したが、木材や硬質プラ等の、粉砕性がよく、数mmサイズに加工しやすい炭素質資源は直接ガス化炉で高効率ガス化を実施し、シュレッダーダスト、軟質プラスチック等の、熱を受けると溶融して付着性を発現するものや、除間伐材を含む生木等のように繊維方向に強度・靱性が高く、粉砕時に長径と短径の差が大きくて貯留・搬送トラブルを誘発するもの、またシュレッダーダストのように、金属(特に配線)を含むために気流搬送に向かないもの、一般廃棄物ゴミのように水分が多く雑多な性状の集合であり、均一な破砕に向かないものは、熱分解炉で熱分解ガス・熱分解タールと熱分解残渣を分離して熱分解ガス・熱分解タールは改質工程を経て原燃料として使い、熱分解によって粉砕性等が改善した炭素質残渣は、金属を分離の上、そのまま炭素材料として使用するか、粉砕してガス化炉で原料として利用することとした。前記(7)の発明で言う木材とは、乾燥工程を経ている木々を指し、生木と区別している。上記のように炭素質資源毎に最適利用方法を選ぶことで、従来技術の持つ課題である、不必要な加熱や過剰の酸化剤は不要となり、純粋にガスに転換するためのエネルギーだけの使用で済む。
【0014】
前記(3)に係る発明では、熱分解炉3での熱分解に適した反応部温度範囲を示した。図3に熱分解炉3の内部状況を示す。炉のタイプは、鉄鋼業の高炉で使用されているシャフト型の炉を使用した。説明の都合上、図3では主に反応の違いによって下部ゾーン19と上部ゾーン20に分けて示したが、明確に分岐されているわけではなく、概念的なものであり、実際は反応が重なっている区域がある。下部ゾーン19は、炭素質資源1の燃焼を主体としたゾーンであり、上部ゾーン20は炭素質資源1の乾燥、昇温、熱分解を主体としたゾーンである。炭素質資源1は熱分解炉3上部に投入され、下部ゾーン19で発生したガスにより暖められながら徐々に下降する。下部ゾーン19では酸化剤21が導入され、下降してきた炭素質資源1の一部が燃焼して熱を発生する。酸化剤21には酸素又は空気を使用するが、温度調整の役目も含めて蒸気を併用する場合がある。燃焼したガスは、下降する炭素質資源1の間を上昇し、上部ゾーン20に熱を与えて、上部ゾーン20で発生したガス、タールと共に熱分解ガス・熱分解タール8となって改質炉との接続部22から排出される。下部ゾーン19の反応温度は、燃焼反応が起きているため、400℃〜800℃であり、上部ゾーン20の反応温度は、乾燥、昇温、熱分解に燃焼ガスの熱が使われて下がり、300℃〜500℃であることから、熱分解炉3の温度は300〜800℃となる。上部ゾーン20の反応温度が300℃未満のときには、熱分解があまり進まず、また生成した熱分解タールが再凝縮して通気障害等のトラブルを起こすため、操業温度として望ましくない。下部ゾーン19の反応温度は、直接加熱であるため、800℃までで充分上部ゾーンを加熱できる。800℃を越える温度は熱的に不要であり、放熱量が増加することから酸化剤21が多く必要になるデメリットが生じ、結果として熱分解ガス熱量が下がる、耐熱の設備構成に変える必要が出る等の理由で好ましくない。下部ゾーン19で炭素質資源1が一部燃焼した残りの熱分解残渣9は、下部ゾーン19の下部から排出される。
【0015】
前記(4)に係る発明では、ガス化炉の反応部温度範囲と、改質炉の反応部温度範囲を示した。ガス化では、含有灰分をスラグ化して溶融させるために、1200℃〜1600℃の温度が必要で、例えば代表的な例を示すと、稲藁に例を見る農業系バイオマスの場合は反応部温度は1200℃〜1400℃程度、プラスチックでは1300℃〜1500℃、石炭では1400℃〜1600℃と、ガス化対象によって異なる。各物質の灰分溶流点が異なるためであり、使用原料に合わせて酸素4、水蒸気5の量を調整してガス化炉温制御を実施する。1200℃未満の温度では、灰の溶流点が低い農業系バイオマスでも溶融せず、フライアッシュとして後段の工程に流出し、ガス精製設備14のダスト除去設備負荷の増加、精製ガス15の純度低下が起こる。1600℃を越える温度では、放熱の増加や炉壁構造の変更(通常の耐火・断熱材質では長期間の炉壁維持は困難)により、熱効率の悪化と設備費の増大が見込まれ、実用的ではない。
【0016】
改質炉10では、ガス化炉2からのガス化ガス6の温度により改質温度を確保し、ガス化ガス6中の水蒸気と、追加して添加する酸素4、水蒸気5のいずれか一つ以上によって熱分解ガス・熱分解タール8を改質する。改質炉10の温度は900℃〜1200℃が適しており、900℃未満では、分解しきれないタールが後段のガス精製設備14で付着トラブルをおこしたり、発生が懸念されるダイオキシンが分解せずに後段工程まで残存する。一方、1200℃を越えると改質炉からの飛灰の後段の精製設備14への融着・付着が顕著になるため好ましくない。改質炉10での温度調整は酸素4の量と水蒸気5の量で調整する。原料中に明らかに塩素が含まれており、特にダイオキシンの生成をほぼ0にしたい場合は、改質炉10の温度範囲の中でも、ほぼ全量分解可能な1000℃〜1200℃で操業することが望ましい。また、改質反応には、ガス化炉2のガス化ガス6の顕熱を利用している。従来技術では、熱分解後の炭化物は多くとも熱分解原料の10質量%程度しか生成しないため、改質反応のための熱源としては貧弱であり、改質炉10に酸素を大量に投入して燃焼反応熱を生成させる必要がある。本発明では投入量は任意に規定可能であり、最小限の酸素投入で済む(実施例では、熱分解:ガス化=1:1で運転)。
【0017】
前記(6)に係る発明では、熱分解炉3、ガス化炉2、改質炉10の操業圧力をしめした。本発明で示したプロセス全体で適する圧力範囲は、0.5MPa〜3.0MPaである。
【0018】
圧力をかける基本的な効果は、反応速度の上昇による生産性の向上と設備のコンパクト化による熱損失(主に放散熱)の低減である。反応速度は、概略圧力比の0.5乗に比例して上昇するため、圧力による生成物変化の少ない数MPaまででは高ければ高いほどよい。熱損失も圧力が高いほど有利になるが、設備費は高圧ほど高くなるトレード−オフの関係になるため、実機設備の少ない3MPaより高い圧力は、経済的に現実的ではない。
【0019】
本発明の方法及び装置を用いて発生した精製ガス15の主要用途の一つは発電である。圧力の低いものとしてはガスエンジン発電があり、0.3〜0.8MPaの圧力域が最も効率的である。また、圧力の高いものとしては、ガスタービン−蒸気タービンのコンバインドサイクル発電が代表的であり、1.4〜1.7MPaの圧力域が最も効率的である。これら発電設備への利用を考えたとき、熱交換やガス精製等の圧損も考慮して、ガス化炉、熱分解炉、改質炉の操業圧力は、0.5〜1.0MPa(ガスエンジン)、2.4〜3.0MPa(コンバインドサイクル)にするのが好ましい。既存の高効率ガス化発電はほぼ上記の圧力領域に入ることから、0.5〜3.0MPaを本発明における適切な圧力範囲とした。
【0020】
前記(10)に係る発明では、ガス化炉2と改質炉10の最適配置について示した。基本的には高温のガス化ガス6顕熱が改質の熱エネルギーになることが必須の要件であるが、最も熱ロスを防ぎ、ガス化炉2で生成した溶融スラグ7によるスラッギングトラブルを防ぐには、ガス化炉2のすぐ後段に改質炉10が連接することが望ましい。
【0021】
【実施例】
本発明で示した設備において、ガス化炉に建設廃木材破砕品(平均粒度数mm)及び硬質プラスチック破砕品(硬質PE、硬質PP、ABS樹脂混合;平均粒度数mm)を、熱分解炉に軟質プラスチック及びシュレッダーダスト成型品(PEフィルム・シート、PPシート、カーシュレッダーダスト混合品:粒度100mm以下)品を使用した試験を実施した。各炉温は、熱分解炉下部ゾーン温度600℃、上部ゾーン温度300℃、ガス化炉温度1300℃、改質炉温度1000℃及び1100℃の温度条件、0.8MPaの圧力条件で操業した。
【0022】
比較例として、同じ成分の炭素質資源を混合したものを、全量数mmまで破砕して1300℃でガス化した。この比較例では、本発明の装置のうち、ガス化炉部分のみを使用した。
【0023】
比較例との効率比較を表1に示す。比較数値としては、熱回収率(使用した炭素質資源の全発熱量に対し、精製ガスとして回収できた熱量)を使用した。同じ原料を使用したにも関わらず、熱量回収率は、比較例65%に対し、改質炉温度を1100℃とした本発明例1で72%、改質炉温度を1000℃とした本発明例2で78%となり、非常に転換効率の良いプロセスであるといえる。比較例の、ガス化炉部分のみを使用した試験結果において、プロセス数が少ないにもかかわらず効率が悪化するのは、主に▲1▼全量を1300℃まで昇温すること、▲2▼水分の多い低カロリー原料を高カロリー原料と混合していること、による。▲1▼に関しては、原料中の灰分を溶融してスラグとして排出するために1300℃という温度が必要であり、比較例では全ガスはこの温度で排出され、本発明の例では最終的な全ガス温度は1000℃又は1100℃であるため、顕熱の差分が潜熱に転換していると説明できる。本発明の中でも、改質炉温度を下げた本発明例2で更に高い。また▲2▼に関しては、比較例は多く含む水分ごと1300℃に昇温するために、本発明の例に比べ、必要な単位重量あたりの酸素量が増加しており、酸素/炭素質原料比の高い操業をせざるを得ないため、潜熱回収量が減っていると説明できる。
【0024】
【表1】

Figure 2004041848
【0025】
【発明の効果】
本発明により、熱分解炉、ガス化炉、改質炉を組み合わせ、種々の炭素質資源の性状別に、違うエネルギー転換方法を与えることで、高効率な炭素質資源のガスエネルギーへの転換を可能とする。
【図面の簡単な説明】
【図1】本発明の基本的設備構成(プロセスフロー)
【図2】熱分解残渣を利用した炭素質資源利用プロセスフロー
【図3】熱分解炉内部状況
【符号の説明】
1:炭素質資源
2:ガス化炉
3:熱分解炉
4:酸素
5:水蒸気
6:ガス化ガス
7:スラグ
8:熱分解ガス・熱分解タール
9:熱分解残渣
10:改質炉
11:金属
12:炭素質残渣
13:生成ガス
14:ガス精製設備
15:精製ガス
16:熱分解残渣破砕機
17:金属分離装置
18:炭素質残渣供給装置
19:下部ゾーン
20:上部ゾーン
21:酸化剤
22:接続部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technology for efficiently converting various carbonaceous resources into raw fuel gas.
[0002]
[Prior art]
In recent years, the concept of 3R (reduce: reduce, reuse: reuse, recycle: reuse) has begun to be recognized as a common concept, partly due to policy backing. The so-called waste products, such as products after use, breakdown or destruction, and by-products during product manufacturing, are mainly treated by incineration or landfill, and are effectively used in conjunction with the tight realities of final disposal sites. Doing so will be one answer to addressing the issue of global warming. However, wastes have various properties, and many wastes with low energy density are included, and the burden of gas purification after treatment is large. Few processes are economically self-sustaining on a scale.
[0003]
Most of the waste contains carbon, and although the calorific value is generally low, it can be regarded as an energy resource similar to coal, oil, natural gas and the like.
[0004]
In general, waste disposal is based on a garbage incineration power generation system in which steam is generated by combining incineration of municipal solid waste discharged from municipalities and electricity is recovered. Some incinerators have improved the transmission end efficiency to nearly 30% due to improvements, raw material adjustment (RDF conversion), and efficiency improvement by using external fuel (super garbage power generation). However, these require pre-treatment of waste, boiler materials, and introduction of external fuel, and are special solutions in terms of cost and application, and are not generalized.
[0005]
Due to the tightening of final disposal sites and the regulations on dioxins, the use of actual equipment by local governments is increasing.The aim is to reduce the volume and detoxification of ash and to reduce dioxin. There is a so-called waste gasification and melting technology that transforms into power generation. There are many types of this technology, and large (1) direct melting type (using a shaft furnace, etc., performs thermal decomposition, gasification, combustion and melting in the reactor at the first stage, burns in the second stage, and recovers energy with a boiler and steam turbine (2) Pyrolysis + Combustion / Melting type (gas, tar, and char generated by low-temperature pyrolysis are burned at high temperature with sufficient air, and energy is recovered by boilers and steam turbines). (3) Pyrolysis + gasification type (gas generated by low-temperature pyrolysis, char is converted to high-temperature gas to generate flammable gas, and gas turbine or gas engine is used for power generation or gas is used as chemical raw material.) Can be In the combustion-steam power generation methods (1) and (2), the power generation efficiency is limited because steam conditions to be recovered due to corrosion by chlorine and the like contained in wastes are limited. In the power generation using the clean-up gas of (3), there is generally a high possibility that the power generation efficiency can be improved. For example, taking coal-based power generation as an example, the power transmission efficiency in a combined power generation (IGCC) combining a gas turbine and a steam turbine is higher than the power transmission end efficiency of a combustion boiler (38-39%, USC type 39-41%). Edge efficiency is obtained (43-44% for normal type, 46-48% for high-temperature gas turbine). Furthermore, next-generation technologies that combine gasification with fuel cells have the advantage of being able to expand to high-efficiency energy conversion methods, such as a transmission end efficiency of over 50%. It is anticipated that technologies centered on the development will expand more widely.
[0006]
The present invention is directed to high-efficiency energy conversion of carbonaceous raw materials including waste, and mainly belongs to the technical category of the above (3). Looking at the field of waste utilization using gasification, as a patent, Japanese Patent Application Laid-Open No. Hei 10-81885 discloses a combination of a low-temperature fluidized-bed gasification furnace and a high-temperature melt gasification furnace, and a raw material gas for ammonia synthesis from waste ( A method and an apparatus for producing hydrogen) are disclosed in Japanese Patent Application Laid-Open No. 10-310983, and a method and an apparatus for producing a raw fuel gas by gasifying waste and combining an internal circulation type fluidized bed furnace and a high temperature gasification furnace. Japanese Patent Application Laid-Open No. H11-294726 proposes a method and an apparatus for producing a combustible gas by thermally decomposing waste and reforming pyrolysis tar with a partial oxidation gas of a pyrolysis char. There are few technologies that belong to the thermal decomposition and gasification of (3) that are actually operating. The what is actual reduction, using a rotary kiln externally heated as low temperature pyrolysis techniques, the resulting pyrolysis gases and tar reforming high temperature reforming with air, which give a 1000 kcal / Nm 3 as low calorie gas Process using a gas engine or low-temperature pyrolysis technology to consolidate waste and gasify and reform pyrolysis gas, tar, and pyrolysis residue generated in a pusher-type external heat pyrolysis furnace with oxygen Then, there is a process for obtaining a medium calorie gas of about 2000 kcal / Nm 3 . These technologies have a power transmission end efficiency of 7 to 12% and a low thermal efficiency when generating power.
[0007]
[Problems to be solved by the invention]
In the prior art centered on the gasification of the waste, there are several factors that hinder the improvement in efficiency. In the techniques disclosed in JP-A-10-81885 and JP-A-10-310983, a fluidized bed system is used for pyrolysis (low-temperature gasification). In a fluidized bed, a fluidized gas is required to maintain a suitable fluidized bed state, and generally, air, oxygen, steam, or the like is used. Most of these gases do not take part in the reaction, resulting in a low efficiency due to unnecessary heating in the high temperature gasification furnace (increase in the amount of required oxygen), efficiency loss during heat recovery, etc. Have a challenge. At present, rotary kilns and pusher-type processes currently in operation are not able to be pressurized in terms of gas sealing properties, and the low-temperature pyrolysis furnace is of an external heat type. In addition, the power generation requires a compression step of the generated gas, and the process thermal efficiency is low.
[0008]
An object of the present invention is to enable highly efficient conversion of carbonaceous resources to gas energy.
[0009]
[Means for Solving the Problems]
The present invention is an effective method for solving the above problems,
(1) pyrolyze carbonaceous resources to generate pyrolysis gas and pyrolysis tar; partially oxidize carbonaceous resources with oxygen or oxygen and water vapor to generate a gasified gas; Cracking tar, and a gasification method of carbonaceous resources, characterized in that the pyrolysis gas and pyrolysis tar are reformed by introducing one or both of oxygen and steam into the gasification gas,
(2) The method according to the above (1), wherein the carbonaceous residue obtained by separating the metal from the pyrolysis residue generated by pyrolyzing the carbonaceous resource is partially oxidized with oxygen or oxygen and steam together with the carbonaceous resource. Gasification method of the carbonaceous resources described,
(3) The carbonaceous resource according to the above (1) or (2), wherein, when pyrolyzing the carbonaceous resource, the temperature of the reaction section is set to 300 ° C. to 800 ° C. using a shaft furnace. Gasification method,
(4) When partially oxidizing the carbonaceous residue obtained by separating the metal from the pyrolysis residue generated by pyrolyzing the carbonaceous resource together with the carbonaceous resource, the reaction section temperature is set to 1200 ° C to 1600 ° C, and the thermal decomposition is further performed. The method for gasifying carbonaceous resources according to the above (2) or (3), wherein the temperature of the reaction section is set to 900 ° C. to 1200 ° C. when reforming the gas and the pyrolysis tar.
(5) The method according to any one of (1) to (4), wherein the heat required for the pyrolysis is provided by the combustion heat of the pyrolyzed carbonaceous resource itself. Gasification method,
(6) The above (1) to (5), wherein the pyrolysis and partial oxidation of the carbonaceous resource and the reforming of the pyrolysis gas and the pyrolysis tar are performed at a pressure of 0.5 MPa to 3.0 MPa. The method for gasifying a carbonaceous resource according to any one of the above,
(7) Thermally decomposes at least one of shredder dust, soft plastic, raw wood, and general waste as carbonaceous resources, and partially oxidizes one or both of wood and hard plastic. The gasification method for carbonaceous resources according to any one of the above (1) to (6),
(8) A shaft-type pyrolysis furnace for pyrolyzing carbonaceous resources, and a carbonaceous residue obtained by separating metals from a pyrolysis residue generated by pyrolyzing carbonaceous resources with oxygen or oxygen and steam together with the carbonaceous resources. The gasification furnace to be partially gasified, the pyrolysis gas and pyrolysis tar generated in the pyrolysis furnace, the gasification gas generated in the gasification furnace, and / or oxygen and / or steam are introduced and introduced. A gasifier for carbonaceous resources, comprising a reforming furnace for reforming pyrolysis gas and pyrolysis tar,
(9) The gasifier for carbonaceous resources according to the above (8), further comprising a gas purifier that processes the product gas reformed in the reforming furnace.
(10) The gasification apparatus for carbonaceous resources according to (8) or (9), wherein the gasification furnace and the reforming furnace are connected.
(11) A crusher for crushing the pyrolysis residue generated in the pyrolysis furnace, a device for separating metal from the pyrolysis residue, and a supply device for supplying the carbonaceous residue from which the metal has been separated to the gasification furnace The gasifier for a carbonaceous resource according to any one of the above (8) to (10), comprising:
Consists of
[0010]
In the present invention, the carbonaceous resources refer to biomass, plastics, general waste garbage, etc., and specifically, agricultural biomass (straw, sugar cane, rice bran, vegetation, etc.), forestry biomass (papermaking waste, Sawn timber, thinned wood, firewood charcoal forest, etc.), livestock biomass (livestock waste), marine biomass (fish processing residue), waste biomass (raw garbage, RDF: solidified fuel; Refused Derived Fuel, garden tree) , Construction waste, sewage sludge), hard plastic, soft plastic, shredder dust, etc. In particular, wood refers to lumber, construction waste, wooden utility poles, wooden sleepers, etc. that have undergone a drying process and have relatively low water content (3 to 20% by mass). It is distinguished from trees. With respect to plastics, the bending elastic modulus is usually distinguished from a hard plastic in a steady state of 7000 kg / cm 2 or more and a soft plastic from 700 kg / cm 2 or less (a property between them is a semi-hard plastic). In the present invention, the crushing properties may not be determined only by the flexural modulus, and from practical experience, thermosetting plastics, styrene resins, propylene, acrylic resins, melting and fusing when crushing hard PVC resins, etc. Hard materials are hard plastics, and soft plastics such as polyethylene, soft vinyl chloride resin, urethane resin, and styrene foam, which are mainly meltable and are not suitable for crushing, are used. General waste is garbage other than the 19 types designated as industrial waste, and is household garbage collected on a municipal basis or business garbage containing a lot of papers from businesses. However, since the present invention relates to energy conversion of carbonaceous materials, those which hardly contain carbonaceous materials, that is, metals, glasses, and the like that are separated are not included.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows the basic process flow and the equipment configuration of the present invention according to the above (1), (8) and (9). Carbonaceous resources 1 are supplied to two places, a gasification furnace 2 and a pyrolysis furnace 3. In the method disclosed in Japanese Patent Application Laid-Open No. 11-294726, all of the waste is put into a pyrolysis furnace, and the residue after the reaction is gasified and melted. In the present invention, carbonaceous resources are distinguished mainly by their friability and shape, and are supplied in parallel for gasification and for pyrolysis. In the gasification furnace 2, the carbonaceous resource 1 is partially oxidized by oxygen 4 or oxygen 4 and water vapor 5 to generate a gasification gas 6. The ash in the carbonaceous resource 1 is melted in the gasifier 2 and discharged from the lower part of the gasifier 2 as slag 7. In the pyrolysis furnace 3, the carbonaceous resource 1 is separated into a pyrolysis gas / pyrolysis tar 8 and a pyrolysis residue 9 by pyrolysis, and the pyrolysis gas / pyrolysis tar 8 is a gasified gas generated in the gasification furnace 2. 6 is introduced into the reforming furnace 10 in which the gasification gas 6 is introduced, and is reformed by the steam 5 and / or the oxygen 4 together with the gasification gas 6. The pyrolysis residue 9 separates the metal 11 into a carbonaceous residue 12. The generated gas 13 generated in the reforming furnace 10 is purified by a gas purification facility 14 as needed, and becomes a purified gas 15.
[0012]
FIG. 2 shows a flow of the invention according to the above (2) and (5) and the flow of the invention according to the above (11), which shows a facility configuration for embodying the invention according to the above (2). The thermal decomposition residue 9 is composed of a metal 11 which is easy to use as a raw material in a reduced state and a carbonaceous residue 12 which is carbonized by thermal decomposition and has improved friability. The pyrolysis residue 9 is crushed by the pyrolysis residue crusher 16, the metal 11 is separated by the metal separation device 17, and the carbonaceous residue 12 is supplied to the gasification furnace 2 by the carbonaceous residue supply device 18 to be partially oxidized. The ash contained in the carbonaceous resource 1 is concentrated in the carbonaceous residue 12, but is in a so-called charcoal state, which is low in oxygen and hydrogen and high in carbon. is there. In FIG. 2, the metal separation device 17 is installed after the pyrolysis residue crusher 16 assuming a metal that is difficult to separate before pyrolysis, such as a nail or an electric wiring that has been driven in. If it is assumed that a metal such as nails or metal fittings which has already been separated from carbonaceous material is mixed, another crushing machine 16 is provided before the pyrolysis residue crusher 16 in order to reduce the crushing power of the pyrolysis residue crusher 16. A metal separation device may be installed. With respect to the heat for the thermal decomposition shown in (5), the oxidizing agent 21 is introduced from the lower part of the thermal decomposition furnace 3, and the carbonaceous resources 1 and the thermal decomposition residue 9 are partially burned to be a heat source. Direct heat exchange by self-combustion. Higher efficiency than indirect heating system in kilns and the like, and does not require additional fuel.
[0013]
From the viewpoint of the conversion of carbonaceous resources to gas, the high conversion rate of raw materials, the high thermal efficiency, the short reaction time, the compact equipment, and the high productivity based on it. Considering that, gasification in a gas bed is most advantageous and it is preferred to treat the entire amount in this way if possible. However, as seen in the case of general waste, it is technically possible to uniformly dry and finely pulverize carbonaceous resources of various shapes and properties for airflow, but it is economically feasible. Not a target. Accordingly, many of the current mainstream technologies use kilns or fluidized beds with large tolerances in shape and properties. In the present invention, as described in (7) above, carbonaceous resources, such as wood and hard plastic, which have good crushability and are easily processed to a size of several mm, are subjected to high-efficiency gasification directly in a gasification furnace. In addition, shredder dust, soft plastic, etc., which melt when exposed to heat and exhibit adhesiveness, and have high strength and toughness in the fiber direction, such as raw wood including thinned wood, Large differences in diameter cause storage / transportation troubles, shredder dusts that are not suitable for airflow due to the inclusion of metal (especially wiring), and large amounts of moisture such as general waste garbage In the case of aggregates of properties that are not suitable for uniform crushing, pyrolysis gas / pyrolysis tar and pyrolysis residue are separated in a pyrolysis furnace, and pyrolysis gas / pyrolysis tar is converted into raw fuel through a reforming process. Use, thermal decomposition, crushability etc. Good carbonaceous residue, metals over the separation, it may be used as it is as a carbon material, it was decided to use as a raw material in the gasification furnace and pulverized. Wood referred to in the invention (7) refers to trees that have undergone a drying step and are distinguished from raw trees. By selecting the optimal utilization method for each carbonaceous resource as described above, unnecessary heating and excessive oxidizing agents, which are problems of the prior art, are not required, and only energy for pure gas conversion is used. Only needs to be done.
[0014]
In the invention according to the above (3), the temperature range of the reaction section suitable for the thermal decomposition in the thermal decomposition furnace 3 is shown. FIG. 3 shows the internal state of the pyrolysis furnace 3. As the furnace type, a shaft type furnace used in a blast furnace in the steel industry was used. For the sake of explanation, FIG. 3 mainly shows the lower zone 19 and the upper zone 20 separately according to the difference in the reaction, but it is not clearly branched but conceptual, and in fact the reactions overlap. There are areas that are. The lower zone 19 is a zone mainly for combustion of the carbonaceous resource 1, and the upper zone 20 is a zone mainly for drying, heating and pyrolysis of the carbonaceous resource 1. The carbonaceous resource 1 is introduced into the upper part of the pyrolysis furnace 3 and gradually descends while being heated by the gas generated in the lower zone 19. In the lower zone 19, an oxidizing agent 21 is introduced, and a part of the carbonaceous resource 1 that has descended burns to generate heat. Oxygen or air is used as the oxidizing agent 21, but steam may be used in combination with the role of temperature control. The burned gas rises between the descending carbonaceous resources 1 and gives heat to the upper zone 20, and becomes a pyrolysis gas / pyrolysis tar 8 together with the gas and tar generated in the upper zone 20 to form the reforming furnace. Is discharged from the connection part 22 with the The reaction temperature of the lower zone 19 is 400 ° C. to 800 ° C. due to the occurrence of a combustion reaction, and the reaction temperature of the upper zone 20 is lowered by using the heat of the combustion gas for drying, heating, and pyrolysis. Since the temperature is 300 ° C to 500 ° C, the temperature of the thermal decomposition furnace 3 is 300 to 800 ° C. When the reaction temperature of the upper zone 20 is lower than 300 ° C., the thermal decomposition does not proceed very much, and the generated pyrolysis tar recondenses to cause troubles such as ventilation problems, which is not desirable as the operating temperature. Since the reaction temperature in the lower zone 19 is direct heating, the upper zone can be sufficiently heated up to 800 ° C. Temperatures exceeding 800 ° C. are not thermally necessary and increase the amount of heat radiation, resulting in a disadvantage that a large amount of the oxidizing agent 21 is required. As a result, it is necessary to change to a heat-resistant equipment configuration in which the calorific value of the pyrolysis gas decreases. It is not preferred for reasons such as. The remaining pyrolysis residue 9 obtained by partially burning the carbonaceous resource 1 in the lower zone 19 is discharged from the lower part of the lower zone 19.
[0015]
In the invention according to the above (4), the temperature range of the reaction section of the gasification furnace and the temperature range of the reaction section of the reforming furnace are shown. In gasification, a temperature of 1200 ° C. to 1600 ° C. is required in order to slag and melt the contained ash. For example, a typical example is a reaction zone temperature in the case of agricultural biomass which is an example of rice straw. Is about 1200 ° C. to 1400 ° C., 1300 ° C. to 1500 ° C. for plastic, and 1400 ° C. to 1600 ° C. for coal, depending on the gasification target. This is because the ash melt point of each substance is different, and the gasification furnace temperature is controlled by adjusting the amounts of oxygen 4 and steam 5 according to the raw materials used. At a temperature lower than 1200 ° C., even the agricultural biomass having a low melting point of the ash does not melt, but flows out as fly ash to the subsequent process, increases the load on the dust removal equipment of the gas purification equipment 14, and decreases the purity of the purified gas 15. Happens. If the temperature exceeds 1600 ° C, deterioration of thermal efficiency and increase of equipment cost are expected due to increase of heat radiation and change of the furnace wall structure (it is difficult to maintain the furnace wall for a long time with ordinary fireproof and heat-insulating materials). Absent.
[0016]
In the reforming furnace 10, the reforming temperature is secured by the temperature of the gasification gas 6 from the gasification furnace 2, and the steam in the gasification gas 6 and any one of oxygen 4 and steam 5 to be added additionally Thus, the pyrolysis gas / pyrolysis tar 8 is reformed. The temperature of the reforming furnace 10 is preferably from 900 ° C to 1200 ° C. If the temperature is lower than 900 ° C, tar that cannot be decomposed may cause adhesion trouble in the gas purification equipment 14 at the subsequent stage, or dioxin which may be generated may be decomposed. And remain in the subsequent process. On the other hand, if the temperature exceeds 1200 ° C., undesirably, the fusion and adhesion of the fly ash from the reforming furnace to the refining equipment 14 at the subsequent stage becomes remarkable. The temperature adjustment in the reforming furnace 10 is adjusted by the amount of oxygen 4 and the amount of steam 5. In the case where chlorine is clearly contained in the raw material, and particularly when it is desired to reduce the generation of dioxin to almost zero, it is preferable to operate at 1000 ° C. to 1200 ° C. in which the total amount can be decomposed in the temperature range of the reforming furnace 10. . In the reforming reaction, the sensible heat of the gasification gas 6 of the gasification furnace 2 is used. In the prior art, since the carbide after pyrolysis generates at most only about 10% by mass of the pyrolysis raw material, it is poor as a heat source for the reforming reaction. It is necessary to generate heat of combustion reaction. In the present invention, the input amount can be arbitrarily specified, and a minimum oxygen input is required (in the embodiment, the operation is performed with pyrolysis: gasification = 1: 1).
[0017]
In the invention according to (6), the operating pressures of the pyrolysis furnace 3, the gasification furnace 2, and the reforming furnace 10 were reduced. A suitable pressure range for the entire process described in the present invention is 0.5 MPa to 3.0 MPa.
[0018]
The basic effect of applying pressure is to improve productivity by increasing the reaction rate and to reduce heat loss (mainly heat dissipation) by making the equipment compact. Since the reaction rate rises in proportion to the approximately 0.5 power of the pressure ratio, the higher the reaction rate is, the better the pressure is up to several MPa. Although the heat loss is more advantageous as the pressure is higher, the equipment cost has a trade-off relationship in which the pressure becomes higher as the pressure becomes higher. Therefore, a pressure higher than 3 MPa where the actual equipment is small is not economically realistic.
[0019]
One of the primary uses of the purified gas 15 generated using the method and apparatus of the present invention is in power generation. Gas engine power generation has a low pressure, and a pressure range of 0.3 to 0.8 MPa is most efficient. As a high pressure type, a combined cycle power generation of a gas turbine and a steam turbine is typical, and a pressure range of 1.4 to 1.7 MPa is most efficient. Considering the pressure loss of heat exchange and gas purification, the operating pressure of the gasification furnace, pyrolysis furnace, and reforming furnace is 0.5 to 1.0 MPa (gas engine). ) It is preferable to set it to 2.4 to 3.0 MPa (combined cycle). Since the existing high-efficiency gasification power generation almost enters the above-mentioned pressure range, 0.5 to 3.0 MPa is set as an appropriate pressure range in the present invention.
[0020]
In the invention according to (10), the optimal arrangement of the gasification furnace 2 and the reforming furnace 10 has been described. Basically, it is an essential requirement that the sensible heat of the high temperature gasified gas 6 becomes the heat energy of the reforming. However, the heat loss is prevented most and the slagging trouble caused by the molten slag 7 generated in the gasification furnace 2 is prevented. Preferably, the reforming furnace 10 is connected immediately after the gasification furnace 2.
[0021]
【Example】
In the equipment shown in the present invention, a crushed construction waste wood product (average particle size several mm) and a hard plastic crushed product (hard PE, hard PP, ABS resin mixture; average particle size several mm) are put into a pyrolysis furnace in a gasifier. A test using a soft plastic and a shredder dust molded product (PE film / sheet, PP sheet, car shredder dust mixed product: particle size of 100 mm or less) was performed. Each furnace temperature was operated at a lower temperature zone of the pyrolysis furnace of 600 ° C., an upper zone temperature of 300 ° C., a gasification furnace temperature of 1300 ° C., a reforming furnace temperature of 1000 ° C. and 1100 ° C., and a pressure condition of 0.8 MPa.
[0022]
As a comparative example, a mixture of carbonaceous resources of the same components was crushed to a total of several mm and gasified at 1300 ° C. In this comparative example, only the gasification furnace portion of the apparatus of the present invention was used.
[0023]
Table 1 shows an efficiency comparison with the comparative example. As a comparative numerical value, a heat recovery rate (the amount of heat recovered as a purified gas with respect to the total calorific value of the used carbonaceous resources) was used. Despite the use of the same raw materials, the calorie recovery rate was 65% in Comparative Example, 72% in Inventive Example 1 in which the reforming furnace temperature was 1100 ° C., and the present invention in which the reforming furnace temperature was 1000 ° C. It is 78% in Example 2, and it can be said that the process is very efficient. In the test results of the comparative example using only the gasification furnace part, the efficiency deteriorates despite the small number of processes mainly due to (1) raising the temperature of the whole to 1300 ° C., and (2) water content. Low-calorie ingredients that are often mixed with high-calorie ingredients. Regarding (1), a temperature of 1300 ° C. is required to melt the ash in the raw material and discharge it as slag. In Comparative Examples, all gases are discharged at this temperature. Since the gas temperature is 1000 ° C. or 1100 ° C., it can be explained that the difference in sensible heat is converted to latent heat. Among the present invention, the temperature is higher in the present invention example 2 in which the reforming furnace temperature is lowered. Regarding (2), the comparative example raises the temperature to 1300 ° C. together with a large amount of water, so that the required amount of oxygen per unit weight is increased as compared with the example of the present invention, and the oxygen / carbonaceous raw material ratio is increased. It can be explained that the amount of latent heat recovered has been reduced due to the necessity of high-cost operations.
[0024]
[Table 1]
Figure 2004041848
[0025]
【The invention's effect】
According to the present invention, it is possible to efficiently convert carbonaceous resources to gas energy by combining a pyrolysis furnace, a gasification furnace, and a reforming furnace and giving different energy conversion methods according to the properties of various carbonaceous resources. And
[Brief description of the drawings]
FIG. 1 shows the basic equipment configuration (process flow) of the present invention.
[Fig. 2] Process flow of using carbonaceous resources using pyrolysis residue [Fig. 3] Internal state of pyrolysis furnace [Explanation of symbols]
1: Carbonaceous resource 2: Gasification furnace 3: Pyrolysis furnace 4: Oxygen 5: Steam 6: Gasification gas 7: Slag 8: Pyrolysis gas / pyrolysis tar 9: Pyrolysis residue 10: Reforming furnace 11: Metal 12: Carbonaceous residue 13: Product gas 14: Gas purification equipment 15: Purified gas 16: Pyrolysis residue crusher 17: Metal separation unit 18: Carbonaceous residue supply unit 19: Lower zone 20: Upper zone 21: Oxidizing agent 22: Connection part

Claims (11)

炭素質資源を熱分解し、熱分解ガス及び熱分解タールを生成させ、炭素質資源を酸素、又は酸素及び水蒸気で部分酸化しガス化ガスを発生させ、該熱分解ガス、該熱分解タール、及び該ガス化ガス中に、酸素、水蒸気のいずれか又は双方を導入して該熱分解ガス及び熱分解タールを改質することを特徴とする炭素質資源のガス化方法。Thermal decomposition of carbonaceous resources, generating pyrolysis gas and pyrolysis tar, partial oxidation of carbonaceous resources with oxygen, or oxygen and steam to generate gasified gas, the pyrolysis gas, pyrolysis tar, And a method for gasifying carbonaceous resources, comprising introducing one or both of oxygen and steam into the gasified gas to reform the pyrolyzed gas and pyrolyzed tar. 炭素質資源を熱分解して生成した熱分解残渣から金属を分離した炭素質残渣を、炭素質資源と共に酸素、又は酸素及び水蒸気で部分酸化することを特徴とする請求項1に記載の炭素質資源のガス化方法。The carbonaceous material according to claim 1, wherein the carbonaceous residue obtained by separating a metal from a pyrolysis residue generated by pyrolyzing the carbonaceous resource is partially oxidized with oxygen or oxygen and water vapor together with the carbonaceous resource. How to gasify resources. 炭素質資源を熱分解する際に、シャフト型の炉を用いて、反応部温度を300℃〜800℃とすることを特徴とする請求項1又は2記載の炭素質資源のガス化方法。The method for gasifying carbonaceous resources according to claim 1 or 2, wherein when the carbonaceous resources are thermally decomposed, the temperature of the reaction section is set to 300 ° C to 800 ° C using a shaft furnace. 炭素質資源を熱分解して生成した熱分解残渣から金属を分離した炭素質残渣を、炭素質資源と共に部分酸化する際に、反応部温度を1200℃〜1600℃とし、さらに熱分解ガス及び熱分解タールを改質する際に、反応部温度を900℃〜1200℃とすることを特徴とする請求項2又は3記載の炭素質資源のガス化方法。When partially oxidizing the carbonaceous residue obtained by separating the metal from the pyrolysis residue generated by pyrolyzing the carbonaceous resource together with the carbonaceous resource, the temperature of the reaction section is set to 1200 ° C. to 1600 ° C. The method for gasifying carbonaceous resources according to claim 2, wherein the temperature of the reaction section is set to 900 ° C. to 1200 ° C. when reforming the cracked tar. 前記熱分解に必要な熱を、熱分解される炭素質資源自身の燃焼熱でまかなうことを特徴とする請求項1〜4のいずれか1項に記載の炭素質資源のガス化方法。The method for gasifying carbonaceous resources according to any one of claims 1 to 4, wherein heat required for the thermal decomposition is provided by combustion heat of the pyrolyzed carbonaceous resources themselves. 炭素質資源の熱分解及び部分酸化、並びに熱分解ガス及び熱分解タールの改質を、0.5MPa〜3.0MPaの圧力で行うことを特徴とする請求項1〜5のいずれか1項に記載の炭素質資源のガス化方法。The method according to any one of claims 1 to 5, wherein the pyrolysis and partial oxidation of the carbonaceous resource, and the reforming of the pyrolysis gas and the pyrolysis tar are performed at a pressure of 0.5 MPa to 3.0 MPa. The gasification method of the carbonaceous resource described in the above. 炭素質資源として、シュレッダーダスト、軟質プラスチック、生木、一般廃棄物ゴミのうちいずれか一つ以上を熱分解し、更に木材、硬質プラスチックのいずれか又は双方を部分酸化することを特徴とする請求項1〜6のいずれか1項に記載の炭素質資源のガス化方法。As a carbonaceous resource, one or more of shredder dust, soft plastic, raw wood, and general waste are thermally decomposed, and further, one or both of wood and hard plastic are partially oxidized. Item 7. The method for gasifying carbonaceous resources according to any one of Items 1 to 6. 炭素質資源を熱分解するシャフト型熱分解炉と、炭素質資源を熱分解して生成した熱分解残渣から金属を分離した炭素質残渣を炭素質資源と共に酸素、又は酸素及び水蒸気で部分酸化するガス化炉と、該熱分解シャフト炉で生成した熱分解ガス及び熱分解タール、該ガス化炉で発生したガス化ガス、並びに酸素、水蒸気のいずれか又は双方を導入して該熱分解ガス及び熱分解タールを改質する改質炉を有することを特徴とする炭素質資源のガス化装置。A shaft type pyrolysis furnace that pyrolyzes carbonaceous resources, and a carbonaceous residue obtained by separating metals from pyrolysis residues generated by pyrolyzing carbonaceous resources is partially oxidized with oxygen or oxygen and steam together with carbonaceous resources. Gasification furnace, pyrolysis gas and pyrolysis tar generated in the pyrolysis shaft furnace, gasification gas generated in the gasification furnace, and oxygen, either or both of the steam to introduce the pyrolysis gas and An apparatus for gasifying carbonaceous resources, comprising a reforming furnace for reforming pyrolysis tar. 改質炉で改質された生成ガスを処理するガス精製装置を有することを特徴とする請求項8記載の炭素質資源のガス化装置。9. The gasifier for carbonaceous resources according to claim 8, further comprising a gas purifier for processing the product gas reformed in the reforming furnace. 前記ガス化炉と前記改質炉が連接することを特徴とする請求項8又は9に記載の炭素質資源のガス化装置。10. The gasifier for carbonaceous resources according to claim 8, wherein the gasification furnace and the reforming furnace are connected. 前記熱分解炉で生成した熱分解残渣を破砕する破砕機と、該熱分解残渣から金属を分離する装置と、金属が分離された炭素質残渣を前記ガス化炉へ供給する供給装置を有することを特徴とする請求項8〜10のいずれか1項に記載の炭素質資源のガス化装置。A crusher for crushing the pyrolysis residue generated in the pyrolysis furnace, a device for separating metal from the pyrolysis residue, and a supply device for supplying a carbonaceous residue from which the metal is separated to the gasification furnace The gasifier for carbonaceous resources according to any one of claims 8 to 10, characterized in that:
JP2002200001A 2002-07-09 2002-07-09 Gasification method and apparatus for carbonaceous resources Expired - Fee Related JP3914474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002200001A JP3914474B2 (en) 2002-07-09 2002-07-09 Gasification method and apparatus for carbonaceous resources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002200001A JP3914474B2 (en) 2002-07-09 2002-07-09 Gasification method and apparatus for carbonaceous resources

Publications (2)

Publication Number Publication Date
JP2004041848A true JP2004041848A (en) 2004-02-12
JP3914474B2 JP3914474B2 (en) 2007-05-16

Family

ID=31706985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002200001A Expired - Fee Related JP3914474B2 (en) 2002-07-09 2002-07-09 Gasification method and apparatus for carbonaceous resources

Country Status (1)

Country Link
JP (1) JP3914474B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002042A (en) * 2004-06-17 2006-01-05 Central Res Inst Of Electric Power Ind System for carbonizing and gasifying biomass and method for carbonizing or gasifying biomass
JP2006316170A (en) * 2005-05-12 2006-11-24 Nippon Steel Corp Gasification method of carbonaceous resources and apparatus therefor
JP2007136396A (en) * 2005-11-21 2007-06-07 Nippon Steel Engineering Co Ltd Waste material treatment method and waste material treatment device
JP2011068893A (en) * 2010-10-07 2011-04-07 Central Res Inst Of Electric Power Ind System for carbonizing and gasifying biomass and method for carbonizing and gasifying biomass
WO2012055012A1 (en) * 2010-10-29 2012-05-03 Enerkem, Inc. Production of synthesis gas by heating oxidized biomass with a hot gas obtained from the oxidation of residual products

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002042A (en) * 2004-06-17 2006-01-05 Central Res Inst Of Electric Power Ind System for carbonizing and gasifying biomass and method for carbonizing or gasifying biomass
JP2006316170A (en) * 2005-05-12 2006-11-24 Nippon Steel Corp Gasification method of carbonaceous resources and apparatus therefor
JP4731988B2 (en) * 2005-05-12 2011-07-27 新日本製鐵株式会社 Gasification method and apparatus for carbonaceous resources
JP2007136396A (en) * 2005-11-21 2007-06-07 Nippon Steel Engineering Co Ltd Waste material treatment method and waste material treatment device
JP2011068893A (en) * 2010-10-07 2011-04-07 Central Res Inst Of Electric Power Ind System for carbonizing and gasifying biomass and method for carbonizing and gasifying biomass
WO2012055012A1 (en) * 2010-10-29 2012-05-03 Enerkem, Inc. Production of synthesis gas by heating oxidized biomass with a hot gas obtained from the oxidation of residual products
CN103391988A (en) * 2010-10-29 2013-11-13 埃讷肯公司 Production of synthesis gas by heating oxidized biomass with a hot gas obtained from the oxidation of residual products
US8636923B2 (en) 2010-10-29 2014-01-28 Enerkem, Inc. Production of synthesis gas by heating oxidized biomass with a hot gas obtained from oxidation of residual products

Also Published As

Publication number Publication date
JP3914474B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
CA2183326C (en) Process for generating burnable gas
JP4267968B2 (en) Biomass processing method
CA2501841C (en) Carbonization and gasification of biomass and power generation system
CN1249207C (en) Power generation system based on gasification of combustible material
JP4276973B2 (en) Biomass power generation system
JP4377824B2 (en) Waste melting treatment method using biomass
JPH10156314A (en) Method of recovering energy from waste
JP2006282914A (en) Method of manufacturing biomass coke
JP2004149556A (en) Method for gasifying biomass and gasifying apparatus therefor
JP4855539B2 (en) Biomass utilization apparatus using pulverized coal combustion boiler and biomass utilization method using the same
JP4753744B2 (en) Organic waste treatment methods
JP4731988B2 (en) Gasification method and apparatus for carbonaceous resources
JP2004051745A (en) System of gasifying biomass
AU2003261772B2 (en) Method of recovering hydrogen from organic waste
JP3914474B2 (en) Gasification method and apparatus for carbonaceous resources
JP4191636B2 (en) Waste melting treatment method using bulk biomass
JP4155507B2 (en) Biomass gasification method and gasification apparatus
JP2004075852A (en) Method for gasifying carbonaceous resource and apparatus therefor
WO2005080874A1 (en) Waste fusion treatment method utilizing powdery biomass
JP5945929B2 (en) Waste gasification and melting equipment
JP2006265454A (en) Circulating fluidized gasification furnace
JP4993460B2 (en) Method for thermal decomposition of carbonaceous raw materials
JP7291677B2 (en) Water gas generation system, biomass power generation system and biomass hydrogen supply system
JP7334924B2 (en) Biomass gasifier, biomass gasification method and biomass gasification system
JP4028934B2 (en) Waste treatment method and treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees