JP2004051745A - System of gasifying biomass - Google Patents

System of gasifying biomass Download PDF

Info

Publication number
JP2004051745A
JP2004051745A JP2002209710A JP2002209710A JP2004051745A JP 2004051745 A JP2004051745 A JP 2004051745A JP 2002209710 A JP2002209710 A JP 2002209710A JP 2002209710 A JP2002209710 A JP 2002209710A JP 2004051745 A JP2004051745 A JP 2004051745A
Authority
JP
Japan
Prior art keywords
gas
biomass
char
circulating fluidized
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002209710A
Other languages
Japanese (ja)
Inventor
Tetsuya Yanase
柳瀬 哲也
Katsuhiro Yamaya
山家 勝裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2002209710A priority Critical patent/JP2004051745A/en
Publication of JP2004051745A publication Critical patent/JP2004051745A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Industrial Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gasification method and a gasification apparatus which can recover energy in the form of a combustible gas from the process of the incineration of biomass of organic solid matter. <P>SOLUTION: The gasification apparatus has a circulating fluidization heating oven 2 and a gas reforming oven 3 as the major equipment, and in the riser section 21 of the circulating fluidization heating oven 2, sewage sludge b by high-speed diffusion is thermally decomposed while feeding air or oxygen thereinto at an air ratio of 0.3-0.7 by setting the temperature range of preferably higher than 450°C to lower than 850°C at atmospheric pressure, preferably under a pressure of 0.3-2.5 MPa to obtain a thermally decomposed gas d. Then, char is separated by a char recovery cyclone section 32 without substantially cooling this thermally decomposed gas d, and the resulting gas is sent to a gas reforming oven 31 to effect reforming in the presence of oxygen by setting the reaction temperature in the range of preferably from not lower than 1,000°C to lower than 1,200°C. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、有機質固形物であるバイオマスから可燃ガスを製造するガス化方法およびガス化装置などのガス化システムに関する。
【0002】
【従来の技術】
有機質固形物であるバイオマスの発生量は年々増加しており、下水汚泥を例にすると、その発生量は1997年度で約35000万mに達している。これらは脱水・焼却などの処理が行われた後、最終的に約240万トンが埋立てなどで処分されている。この焼却処理には、多段炉や流動床炉を用いた燃焼処理によって行われている。
【0003】
このような燃焼処理では、燃焼ガスから熱エネルギーの回収が行われているが、図2に示すように、流動床炉11の燃焼ガスは熱交換器12によって燃焼処理用空気aの予熱に利用したり、煙突の白煙防止に利用するほか、事例は多くないが、廃熱ボイラ13で得た蒸気によって蒸気タービン14を駆動し発電機15を運転するなどして、発電に利用する場合もあった。
【0004】
ところがこのような蒸気タービン方式の発電設備は、小規模な場合には廃熱ボイラや蒸気タービンの特性上、熱損失が大きくなり効率が著しく低下する傾向があることから、下水処理施設では普及しないという事情があった。また、下水処理施設では前記の通り焼却処理が広く利用されているものの、多くは将来の環境規制強化や老朽化による設備更新に対応するため、高効率かつ環境負荷の少ない設備が要望されており、特に下水汚泥は廃棄物の中でも発生量が多いことから、下水汚泥からエネルギーを回収する技術の開発が特に期待されている。
【0005】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決するためになされたものであり、有機質固形物であるバイオマスの焼却処理の過程からエネルギーを可燃ガスの形態で回収できるガス化方法およびガス化装置を提供する。
【0006】
【課題を解決するための手段】
上記の問題は、本願第1発明である、バイオマスを循環流動加熱炉において空気比0.3〜0.7で熱分解し、得た熱分解ガスからチャーを回収した後、その熱分解ガスをガス改質炉において、前記循環流動加熱炉の熱分解温度より高い温度で酸素と反応、改質させ可燃ガスを製造することを特徴とするバイオマスのガス化方法によって、解決することができ、本発明は、前記循環流動加熱炉の熱分解温度を450℃超え、850℃未満の範囲に設定し、前記ガス改質炉の反応温度を1000℃以上、1200℃未満の範囲に設定した形態に好ましく具体化される。
【0007】
また、上記の問題は、本願第2発明であるところの、前記第1発明を実施するためのガス化装置であって、バイオマスを熱分解する循環流動加熱炉と、その循環流動加熱炉から得た熱分解ガスを改質し可燃ガスを得る縦型円筒形状のガス改質炉とを具備したことを特徴とするバイオマスのガス化装置によって、解決することができ、さらに本発明は、循環流動加熱炉から得た熱分解ガスからチャーを回収して循環流動加熱炉へ返送するチャー回収サイクロンを前記ガス改質炉の下側に連結するとともに、そのチャー回収サイクロンに温度低下防止手段を設けた形態に具体化される。
【0008】
【発明の実施の形態】
次に、本発明のバイオマスのガス化システムに係る実施形態とその作用効果について、構成図である図1を参照しながら、ガス化装置(第2発明)、ガス化方法(第1発明)の順に説明する。
本発明のガス化装置は、バイオマスを熱分解する循環流動加熱炉2と、その循環流動加熱炉2から得た熱分解ガスdを改質し可燃ガスeを得る縦型円筒形状のガス改質炉3とを主要な装置としている点に特徴がある。
【0009】
この循環流動加熱炉2は、原料ホッパ24を経由して原料であるバイオマス、例えば下水汚泥b(脱水または乾燥汚泥)を受け入れ、加熱し、熱分解するライザー部21、熱分解ガスdと珪砂など流動媒体を分離する高温サイクロン部22、および分離された流動媒体をライザー部21に返送するダウンカマー23などのいずれも横幅より縦長形状の装置をその要部として構成されている。
【0010】
この循環流動加熱炉2では、ライザー部21において、空気または酸素を供給しつつ高速拡散による下水汚泥bを、空気比0.3〜0.7の条件下で後記改質炉の温度より低い熱分解温度、好ましくは450℃超え、850℃未満の温度範囲に設定し、大気圧下、好ましくは0.3〜2.5MPaの加圧下で、熱分解して熱分解ガスdを得る。この目的のため、供給される熱分解用空気a(または酸素)を、改質炉3の後段に設けられた予熱装置4によって300〜600℃の温度に予熱するのが効果的である。
【0011】
本発明の縦型の循環流動加熱炉2は、従来の横型のロータリ炉に比較して設置面積は1/2以下となり、また従来の完全燃焼タイプの循環流動加熱炉と比較しても発生ガス量が少なくなるので、設置面積は1/2〜1/3になりよりコンパクト化される。さらに、加圧下で運転すれば実ガス容積が少なくなるのでさらにコンパクト化が可能となる利点が得られる。
【0012】
また、本発明の循環流動加熱炉2で得られる熱分解ガスdは、可燃性ガス成分(炭化水素、一酸化炭素、水素の他、不燃性の窒素、炭酸ガスを含む)、タール成分(重質油分)、チャー(未燃カーボン粒子、無機粒子)からなるが、本発明での前記した熱分解温度は、従来行われている熱分解温度より低温に設定しているので、可燃分が比較的多く得られる利点がある。
【0013】
なお、本発明では下水汚泥を例に説明しているが、これに限定されずいわゆるバイオマス全体に適用可能である。ここでバイオマスとは、下水汚泥、パルプスラッジなど産業廃棄物や家庭ごみ、し尿などの生活廃棄物、農産物の廃材、家畜類の糞尿、あるいは間伐材、材木端材など有機質固体物質を総称する意味で用いている。
【0014】
次に、本発明の改質炉3は、前記循環流動加熱炉2から送給される熱分解ガスdからチャーを分離、回収して循環流動加熱炉2へ返送するチャー回収サイクロン部32と、チャーを分離した熱分解ガス(タール分を含む)を酸素cで改質し可燃ガスeを生成する縦型円筒形状のガス改質炉31を要部として構成されている。
【0015】
本発明では、高温度の熱分解ガスdを実質的に冷却することなくチャー回収サイクロン部32でチャーを分離し、ガス改質炉31に送給して、酸素の存在下で前記循環流動加熱炉2の熱分解温度より高い温度、好ましくは、反応温度を1000℃以上、1200℃未満の範囲に設定して改質する点に特徴がある。
【0016】
かくして、熱分解ガスdと一緒に排出されるタール分がチャー回収サイクロン部32内で捕捉され固着するのを防止でき、かつガス改質炉31における比較的高温、高速(例えば、滞留時間:2〜4秒)の改質反応によって、熱分解ガスd中のタール分が炭化水素、一酸化炭素あるいは水素に熱分解するとともに、同時に送給される熱分解ガスd中の可燃性ガス成分と併せて酸素との反応が進行して、水素と一酸化炭素を主可燃ガス分とする可燃ガスe(ガス成分=CO:25〜45%、H:15〜35%、CH:0〜2%、CO:10〜15%、N:5〜45%)を得ることができるのである。
【0017】
このような改質炉3として、前記ガス改質炉31の下部のガス入口に前記チャー回収サイクロン32のガス出口を近接させて連結するとともに、そのチャー回収サイクロン32を保温耐火物で構成する、あるいは加熱用ジャケットを付設して熱風加熱可能として、熱分解ガスdを実質的に冷却することなく導入し、分離操作できるようにした温度低下防止手段を設けるのが特に好ましい。
【0018】
以上詳細に説明した、前記循環流動加熱炉2および改質炉3で得られた可燃ガスeは、後段に設置された予熱装置4、ガスクーラー5、集塵機6、ガス精製装置7などを経て、精製可燃ガスfとして取り出されるのである。
【0019】
前記予熱装置4は、前述のように循環流動加熱炉2に供給される熱分解用空気a(酸素を使用する場合もある)を粗可燃ガスeの顕熱で300〜600℃に加熱する熱交換機であり、さらに次段に設けられたガスクーラー5は、予熱装置4を経た粗可燃ガスを200℃以下に急冷するものであり、このように急冷操作を行うことにより排気ガス中のダイオキシンの再合成を最小限に押さえることができるのである。
【0020】
冷却された可燃ガスは、次のバグフィルタなどを備えた集塵機6によって無機微粒子が飛灰gとして分離され、次いでガス精製装置7によってガス中の微量有害成分(硫化水素、シアン化水素、アンモニアなど)が廃水hとして除去され、精製可燃ガスfとして取り出される。かくして、精製可燃ガスfは、ガスエンジン、ガスタービン蒸気タービン複合発電、燃料電池、ボイラなどのガス発電装置や熱利用機器の燃料として提供される。また、メタノールやアンモニアなど化学原料の合成用原料として利用することもできるのである。
【0021】
【発明の効果】
本発明のバイオマスのガス化システムは、以上説明したように構成されているので、縦型の循環流動加熱炉および改質炉を要部とするガス化装置をよりコンパクト化された形態で設置面積が少なく設置できるうえ、有機質固形物であるバイオマス、特に下水汚泥の未利用エネルギーを可燃ガスの形態で効果的に回収でき、ガスエンジンなど高効率発電に利用できるので環境負荷低減に寄与できるという優れた効果がある。よって本発明は、従来の問題点を解消したバイオマスのガス化方法およびそのガス化装置として、実用的価値はきわめて大なるものがある。
【図面の簡単な説明】
【図1】本発明の可燃ガス製造設備を示す要部構成図。
【図2】従来の蒸気タービン発電装置の要部構成図。
【符号の説明】
2 循環流動加熱炉、21 ライザー部、22 高温サイクロン部、23 ダウンカマー、24 原料ホッパ、3 ガス改質炉、31 ガス改質炉、32 チャー回収サイクロン部、4 予熱装置、5 ガスクーラー、6 集塵機、7 ガス精製装置、a 空気、b 下水汚泥、c 酸素、d 熱分解ガス、e 可燃ガス、f 精製可燃ガス、g 飛灰、h 廃水。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gasification method for producing combustible gas from biomass, which is an organic solid matter, and a gasification system such as a gasification apparatus.
[0002]
[Prior art]
Generation amount of biomass is organic solids is increasing year by year, when sewage sludge as an example, the generation amount has reached about 350 million m 3 in 1997. After these are dewatered and incinerated, about 2.4 million tons are finally disposed of by landfill. This incineration process is performed by a combustion process using a multistage furnace or a fluidized-bed furnace.
[0003]
In such a combustion process, heat energy is recovered from the combustion gas. However, as shown in FIG. 2, the combustion gas in the fluidized bed furnace 11 is used by the heat exchanger 12 for preheating the combustion process air a. In addition to using it for the prevention of white smoke from the chimney, there are not many cases, but it is also possible to use the steam obtained from the waste heat boiler 13 to drive the steam turbine 14 to operate the generator 15 and use it for power generation. there were.
[0004]
However, such power generation equipment of the steam turbine type is not widely used in sewage treatment facilities because the heat loss tends to increase and the efficiency tends to decrease significantly due to the characteristics of waste heat boilers and steam turbines when the scale is small. There was a situation. In addition, although incineration is widely used in sewage treatment facilities as described above, many facilities are required to have high efficiency and low environmental impact in order to respond to future environmental regulations and equipment replacement due to aging. In particular, since sewage sludge generates a large amount of waste, development of technology for recovering energy from sewage sludge is particularly expected.
[0005]
[Problems to be solved by the invention]
The present invention has been made to solve the above problems, and provides a gasification method and a gasification apparatus capable of recovering energy in the form of combustible gas from the process of incinerating biomass, which is an organic solid substance. .
[0006]
[Means for Solving the Problems]
The above problem is the first invention of the present application, in which biomass is thermally decomposed in a circulating fluidized heating furnace at an air ratio of 0.3 to 0.7, and char is recovered from the obtained pyrolysis gas. In the gas reforming furnace, the problem can be solved by a biomass gasification method characterized by reacting with oxygen and reforming at a temperature higher than the thermal decomposition temperature of the circulating fluidized heating furnace to produce a combustible gas. The present invention is preferable in a mode in which the thermal decomposition temperature of the circulating fluidized heating furnace is set to a range of more than 450 ° C and less than 850 ° C, and the reaction temperature of the gas reforming furnace is set to a range of 1000 ° C or more and less than 1200 ° C. Be embodied.
[0007]
Further, the above problem is a gasification apparatus for carrying out the first invention, which is the second invention of the present application, wherein the gasification apparatus is obtained from a circulating fluidized heating furnace for pyrolyzing biomass and the circulating fluidized heating furnace. And a vertical cylindrical gas reforming furnace for reforming the pyrolysis gas to obtain a combustible gas, which can be solved by a biomass gasifier. The char recovery cyclone for recovering the char from the pyrolysis gas obtained from the heating furnace and returning it to the circulating fluidized heating furnace was connected to the lower side of the gas reforming furnace, and the char recovery cyclone was provided with a means for preventing temperature decrease. It is embodied in a form.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the biomass gasification system of the present invention and its operation and effects will be described with reference to FIG. 1 which is a configuration diagram of a gasification apparatus (second invention) and a gasification method (first invention). It will be described in order.
The gasifier according to the present invention comprises a circulating fluidized heating furnace 2 for thermally decomposing biomass, and a vertical cylindrical gas reformer for reforming a pyrolysis gas d obtained from the circulating fluidized heating furnace 2 to obtain a combustible gas e. It is characterized in that the furnace 3 is used as a main device.
[0009]
The circulating fluidized heating furnace 2 receives a biomass as a raw material, for example, sewage sludge b (dewatered or dried sludge) via a raw material hopper 24, and heats and thermally decomposes a riser section 21, a pyrolysis gas d and silica sand. Each of the high-temperature cyclone section 22 for separating the flowing medium and the downcomer 23 for returning the separated flowing medium to the riser section 21 is constituted by a device having a shape that is longer and shorter than the width.
[0010]
In the circulating fluidized-bed heating furnace 2, the sewage sludge b produced by the high-speed diffusion is supplied to the riser section 21 while supplying air or oxygen, under the condition of an air ratio of 0.3 to 0.7, where the heat is lower than the temperature of the reforming furnace. A pyrolysis gas d is obtained by pyrolysis at a decomposition temperature, preferably in a temperature range of more than 450 ° C. and less than 850 ° C., under atmospheric pressure, preferably under a pressure of 0.3 to 2.5 MPa. For this purpose, it is effective to preheat the supplied pyrolysis air a (or oxygen) to a temperature of 300 to 600 ° C. by the preheating device 4 provided at the subsequent stage of the reforming furnace 3.
[0011]
The vertical circulating fluidized-bed heating furnace 2 of the present invention has an installation area of 1 / or less as compared with the conventional horizontal rotary furnace. Since the volume is reduced, the installation area is reduced to 1/2 to 1/3, and the size is further reduced. Further, when the operation is performed under pressure, there is an advantage that the actual gas volume is reduced, so that the size can be further reduced.
[0012]
The pyrolysis gas d obtained in the circulating fluidized-bed heating furnace 2 of the present invention includes a combustible gas component (including nonflammable nitrogen and carbon dioxide gas in addition to hydrocarbons, carbon monoxide and hydrogen), and a tar component (heavy weight). Oil) and char (unburned carbon particles, inorganic particles). Since the above-mentioned pyrolysis temperature in the present invention is set lower than the conventionally performed pyrolysis temperature, the flammable components are compared. There are advantages that can be obtained.
[0013]
In the present invention, sewage sludge is described as an example, but the present invention is not limited to this, and is applicable to so-called whole biomass. Here, biomass is a general term for sewage sludge, industrial waste such as pulp sludge, household waste, household waste such as human waste, agricultural waste, livestock manure, or organic solid substances such as thinned wood and wood chips. Used in
[0014]
Next, the reforming furnace 3 of the present invention comprises a char recovery cyclone section 32 for separating and recovering char from the pyrolysis gas d supplied from the circulating fluidized heating furnace 2 and returning the char to the circulating fluidized heating furnace 2, A vertical cylindrical gas reforming furnace 31 for reforming a pyrolysis gas (including a tar component) separated from the char with oxygen c to generate a combustible gas e is constituted as a main part.
[0015]
In the present invention, the char is separated in the char recovery cyclone unit 32 without substantially cooling the high-temperature pyrolysis gas d, and is sent to the gas reforming furnace 31 to perform the circulating fluid heating in the presence of oxygen. It is characterized in that the reforming is performed at a temperature higher than the thermal decomposition temperature of the furnace 2, preferably at a reaction temperature in a range of 1000 ° C. or more and less than 1200 ° C.
[0016]
Thus, the tar component discharged together with the pyrolysis gas d can be prevented from being captured and fixed in the char recovery cyclone section 32, and can be maintained at a relatively high temperature and high speed (for example, residence time: 2) in the gas reforming furnace 31. The tar component in the pyrolysis gas d is thermally decomposed into hydrocarbons, carbon monoxide or hydrogen by the reforming reaction of about 4 seconds), and is combined with the flammable gas component in the pyrolysis gas d which is fed at the same time. reaction with oxygen progresses Te, combustible gas e (gas component for hydrogen and carbon monoxide as the main combustible gas partial = CO: 25~45%, H 2 : 15~35%, CH 4: 0~2 %, CO 2 : 10 to 15%, N 2 : 5 to 45%).
[0017]
As such a reforming furnace 3, a gas outlet of the char recovery cyclone 32 is connected to a gas inlet at a lower part of the gas reforming furnace 31 in close proximity, and the char recovery cyclone 32 is formed of a heat-insulating refractory. Alternatively, it is particularly preferable to provide a heating jacket so as to be capable of heating with hot air, to introduce a pyrolysis gas d without substantially cooling it, and to provide a temperature drop prevention means capable of performing a separation operation.
[0018]
The combustible gas e obtained in the circulating fluidized heating furnace 2 and the reforming furnace 3 described in detail above passes through a preheating device 4, a gas cooler 5, a dust collector 6, a gas purification device 7, etc. It is extracted as purified combustible gas f.
[0019]
The preheating device 4 heats the pyrolysis air a (which may use oxygen) supplied to the circulating fluidized heating furnace 2 to 300 to 600 ° C. with the sensible heat of the crude combustible gas e as described above. The gas cooler 5 provided at the next stage, which is an exchanger, is for rapidly cooling the crude combustible gas having passed through the preheating device 4 to 200 ° C. or less. By performing the rapid cooling operation in this way, the dioxin in the exhaust gas is reduced. Re-synthesis can be kept to a minimum.
[0020]
In the cooled combustible gas, inorganic fine particles are separated as fly ash g by a dust collector 6 provided with the following bag filter and the like, and then a trace amount of harmful components (hydrogen sulfide, hydrogen cyanide, ammonia, etc.) in the gas are separated by a gas purifier 7. It is removed as waste water h and taken out as purified combustible gas f. Thus, the purified combustible gas f is provided as fuel for gas power generation devices such as gas engines, gas turbine / steam turbine combined power generation, fuel cells and boilers, and heat utilization equipment. It can also be used as a raw material for synthesizing chemical raw materials such as methanol and ammonia.
[0021]
【The invention's effect】
Since the biomass gasification system of the present invention is configured as described above, the installation area of the gasification apparatus having a vertical circulating fluidized heating furnace and a reforming furnace as a main part is reduced in a more compact form. In addition to being able to install less energy, biomass, which is an organic solid matter, in particular, the unused energy of sewage sludge can be effectively recovered in the form of combustible gas, and it can be used for high-efficiency power generation such as gas engines, contributing to reducing environmental impact. Has an effect. Therefore, the present invention has extremely high practical value as a biomass gasification method and a gasification apparatus which solve the conventional problems.
[Brief description of the drawings]
FIG. 1 is a main part configuration diagram showing a combustible gas production facility of the present invention.
FIG. 2 is a configuration diagram of a main part of a conventional steam turbine power generator.
[Explanation of symbols]
2 circulating fluidized heating furnace, 21 riser section, 22 high temperature cyclone section, 23 downcomer, 24 raw material hopper, 3 gas reforming furnace, 31 gas reforming furnace, 32 char recovery cyclone section, 4 preheating device, 5 gas cooler, 6 Dust collector, 7 gas purification equipment, a air, b sewage sludge, c oxygen, d pyrolysis gas, e flammable gas, f purified flammable gas, g fly ash, h wastewater.

Claims (5)

バイオマスを循環流動加熱炉において空気比0.3〜0.7で熱分解し、得た熱分解ガスからチャーを回収した後、その熱分解ガスをガス改質炉において、前記循環流動加熱炉の熱分解温度より高い温度で酸素と反応、改質させ可燃ガスを製造することを特徴とするバイオマスのガス化方法。The biomass is pyrolyzed in a circulating fluidized heating furnace at an air ratio of 0.3 to 0.7, and char is recovered from the obtained pyrolyzed gas. A biomass gasification method comprising reacting and reforming with oxygen at a temperature higher than a thermal decomposition temperature to produce a combustible gas. 前記循環流動加熱炉の熱分解温度を450℃超え、850℃未満の範囲に設定し、前記ガス改質炉の反応温度を1000℃以上、1200℃未満の範囲に設定した請求項1に記載のバイオマスのガス化方法。The thermal decomposition temperature of the circulating fluidized heating furnace is set in a range of more than 450 ° C and less than 850 ° C, and the reaction temperature of the gas reforming furnace is set in a range of 1000 ° C or more and less than 1200 ° C. Biomass gasification method. 請求項1または2記載のバイオマスのガス化方法を実施するためのガス化装置であって、バイオマスを熱分解する循環流動加熱炉と、その循環流動加熱炉から得た熱分解ガスを改質し可燃ガスを得る縦型円筒形状のガス改質炉とを具備したことを特徴とするバイオマスのガス化装置。It is a gasification apparatus for implementing the biomass gasification method according to claim 1 or 2, wherein a circulating fluidized heating furnace for thermally decomposing biomass and a pyrolysis gas obtained from the circulating fluidized heating furnace are reformed. A biomass gasifier comprising a vertical cylindrical gas reforming furnace for obtaining combustible gas. 循環流動加熱炉から得た熱分解ガスからチャーを回収して循環流動加熱炉へ返送するチャー回収サイクロンを前記ガス改質炉の下側に連結するとともに、そのチャー回収サイクロンに温度低下防止手段を設けたことを特徴とする請求項3に記載のバイオマスのガス化装置。A char recovery cyclone for recovering the char from the pyrolysis gas obtained from the circulating fluidized heating furnace and returning the char to the circulating fluidized heating furnace is connected to the lower side of the gas reforming furnace, and the char recovered cyclone is provided with a temperature reduction prevention means. The biomass gasifier according to claim 3, wherein the gasifier is provided. 前記ガス改質炉の後段に、得られた可燃ガスの顕熱によって流動用空気を300〜600℃に加熱する予熱装置と、予熱装置を経た可燃ガスを200℃以下に急冷するガスクーラーを設けた請求項4に記載のバイオマスのガス化装置。At the latter stage of the gas reforming furnace, a preheater for heating the flowing air to 300 to 600 ° C. by sensible heat of the obtained combustible gas, and a gas cooler for rapidly cooling the combustible gas passing through the preheater to 200 ° C. or less are provided. The biomass gasifier according to claim 4.
JP2002209710A 2002-07-18 2002-07-18 System of gasifying biomass Pending JP2004051745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002209710A JP2004051745A (en) 2002-07-18 2002-07-18 System of gasifying biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002209710A JP2004051745A (en) 2002-07-18 2002-07-18 System of gasifying biomass

Publications (1)

Publication Number Publication Date
JP2004051745A true JP2004051745A (en) 2004-02-19

Family

ID=31933490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002209710A Pending JP2004051745A (en) 2002-07-18 2002-07-18 System of gasifying biomass

Country Status (1)

Country Link
JP (1) JP2004051745A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270716A (en) * 2004-03-23 2005-10-06 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for sewage sludge gasification
JP2007229563A (en) * 2006-02-28 2007-09-13 Ngk Insulators Ltd Treatment method of organic waste
JP2008214542A (en) * 2007-03-06 2008-09-18 Metawater Co Ltd Biomass gasifying method and biomass gasifying equipment
JP2009013184A (en) * 2007-06-29 2009-01-22 Ihi Corp Gasification system
WO2009113270A1 (en) * 2008-03-10 2009-09-17 株式会社Ihi Method and apparatus for reforming tar in gasification equipment
CN101804277A (en) * 2010-05-14 2010-08-18 成都易态科技有限公司 Gas filtering system
CN102012029A (en) * 2010-11-01 2011-04-13 广州迪森热能技术股份有限公司 Heat-storing combustion apparatus and biomass gas heating system
CN102618330A (en) * 2011-12-29 2012-08-01 武汉凯迪工程技术研究总院有限公司 High temperature normal pressure biomass gasification island process
WO2012155314A1 (en) * 2011-05-17 2012-11-22 中国科学院过程工程研究所 Hybrid power generation system and method based on classification of solid fuel pyrolysis and semi-coke combustion
JP2014210840A (en) * 2013-04-17 2014-11-13 清水建設株式会社 Biomass gasification facility
JP2016169341A (en) * 2015-03-13 2016-09-23 三菱日立パワーシステムズ株式会社 Biomass gasification system and boiler plant using the same
WO2019065851A1 (en) 2017-09-29 2019-04-04 株式会社ジャパンブルーエナジー Biomass gasification device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270716A (en) * 2004-03-23 2005-10-06 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for sewage sludge gasification
JP2007229563A (en) * 2006-02-28 2007-09-13 Ngk Insulators Ltd Treatment method of organic waste
JP2008214542A (en) * 2007-03-06 2008-09-18 Metawater Co Ltd Biomass gasifying method and biomass gasifying equipment
JP2009013184A (en) * 2007-06-29 2009-01-22 Ihi Corp Gasification system
WO2009113270A1 (en) * 2008-03-10 2009-09-17 株式会社Ihi Method and apparatus for reforming tar in gasification equipment
JP2009215387A (en) * 2008-03-10 2009-09-24 Ihi Corp Method and apparatus for modifying tar in gasification installation
CN101804277A (en) * 2010-05-14 2010-08-18 成都易态科技有限公司 Gas filtering system
CN102012029A (en) * 2010-11-01 2011-04-13 广州迪森热能技术股份有限公司 Heat-storing combustion apparatus and biomass gas heating system
WO2012155314A1 (en) * 2011-05-17 2012-11-22 中国科学院过程工程研究所 Hybrid power generation system and method based on classification of solid fuel pyrolysis and semi-coke combustion
CN102618330A (en) * 2011-12-29 2012-08-01 武汉凯迪工程技术研究总院有限公司 High temperature normal pressure biomass gasification island process
JP2014210840A (en) * 2013-04-17 2014-11-13 清水建設株式会社 Biomass gasification facility
JP2016169341A (en) * 2015-03-13 2016-09-23 三菱日立パワーシステムズ株式会社 Biomass gasification system and boiler plant using the same
WO2019065851A1 (en) 2017-09-29 2019-04-04 株式会社ジャパンブルーエナジー Biomass gasification device
US11066612B1 (en) 2017-09-29 2021-07-20 Japan Blue Energy Co., Ltd. Biomass gasification device

Similar Documents

Publication Publication Date Title
US6032467A (en) Method and apparatus for recovering energy from wastes
EP1278813B1 (en) A method and a system for decomposition of moist fuel or other carbonaceous materials
US20060260190A1 (en) Method and apparatus for treating organic matter
JP5521187B2 (en) Combustible gas generator for gasifying waste and method for producing combustible gas
US20110035990A1 (en) Method and device for converting carbonaceous raw materials
JP2003504454A5 (en)
JP2003176486A (en) Integrated circulating fluidized bed gasifying furnace
JP2004149556A (en) Method for gasifying biomass and gasifying apparatus therefor
JP2004051745A (en) System of gasifying biomass
US20060137579A1 (en) Gasification system
JP4753744B2 (en) Organic waste treatment methods
JP2008132409A (en) Gasification melting method and apparatus of sludge
JP2002327183A (en) Gasification power generation equipment for waste
JP4731988B2 (en) Gasification method and apparatus for carbonaceous resources
JP7466412B2 (en) Cement manufacturing method and cement manufacturing system
JP4155507B2 (en) Biomass gasification method and gasification apparatus
CA2496907C (en) Method of recovering hydrogen from organic waste
JP2004275901A (en) Pyrolytic gasification device for vegetable organic substance and power generation facility using pyrolytic gasification device
JP2010149079A (en) Treatment method of waste containing highly hydrous waste and treatment device used for the same
JP2009228958A (en) Gasification power generating device
JP2006075693A (en) Combustible gas production method and apparatus
JP6590359B1 (en) Hydrogen production method using biomass as raw material
JP6008514B2 (en) Gas purification equipment for gasification gas
JP2004075779A (en) System for gasifying waste
JP2001348578A (en) Apparatus and method for gasifying carbonaceous fossil fuel and biomass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070302