JP2018023938A - Microwave heating ammonia decomposition catalyst and mixture thereof - Google Patents

Microwave heating ammonia decomposition catalyst and mixture thereof Download PDF

Info

Publication number
JP2018023938A
JP2018023938A JP2016157735A JP2016157735A JP2018023938A JP 2018023938 A JP2018023938 A JP 2018023938A JP 2016157735 A JP2016157735 A JP 2016157735A JP 2016157735 A JP2016157735 A JP 2016157735A JP 2018023938 A JP2018023938 A JP 2018023938A
Authority
JP
Japan
Prior art keywords
microwave heating
ammonia
ammonia decomposition
decomposition catalyst
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016157735A
Other languages
Japanese (ja)
Other versions
JP6789550B2 (en
Inventor
安希 毛利
Aki Mori
安希 毛利
彰一 植松
Shoichi Uematsu
彰一 植松
和弘 豊田
Kazuhiro Toyoda
和弘 豊田
辰夫 戸羽
Tatsuo Toba
辰夫 戸羽
剛一 佐藤
Koichi Sato
剛一 佐藤
西岡 将輝
Masateru Nishioka
将輝 西岡
哲 宮沢
Satoru Miyazawa
哲 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Yazaki Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Yazaki Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2016157735A priority Critical patent/JP6789550B2/en
Publication of JP2018023938A publication Critical patent/JP2018023938A/en
Application granted granted Critical
Publication of JP6789550B2 publication Critical patent/JP6789550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a microwave heating ammonia decomposition catalyst and mixture thereof that have a high ammonia decomposition activity without the use of a noble metal.SOLUTION: The microwave heating ammonia decomposition catalyst comprises a carrier and metal particles supported on the carrier and containing at least one transition metal selected from the group consisting of nickel, cobalt and iron as a main component. And the microwave heating ammonia decomposition catalyst mixture comprises a microwave heating ammonia decomposition catalyst and a heating aid. As a result, the microwave heating ammonia decomposition catalyst and mixture thereof have high ammonia decomposition activity without the use of a noble metal.SELECTED DRAWING: Figure 1

Description

本発明は、マイクロ波加熱用アンモニア分解触媒及びマイクロ波加熱用アンモニア分解触媒混合物に関する。   The present invention relates to an ammonia decomposition catalyst for microwave heating and an ammonia decomposition catalyst mixture for microwave heating.

水素は燃焼による熱エネルギーの生成時や燃料電池などによる電力の生成時に、環境汚染の原因となる有害物質や地球温暖化の原因となる二酸化炭素などを排出しない。そのため、近年、クリーンエネルギーとして、水素利用技術に関する研究開発が盛んに進められている。   Hydrogen does not emit harmful substances that cause environmental pollution or carbon dioxide that causes global warming when generating thermal energy by combustion or generating power by fuel cells. Therefore, in recent years, research and development relating to hydrogen utilization technology has been actively promoted as clean energy.

しかし、水素ガスは天然にはほとんど存在しない。そのため、貯蔵輸送性に優れたアンモニアなどの水素原子含有物質を輸送・貯蔵し、必要な場所で水素ガスに転換することが検討されている。例えば、特許文献1では、アンモニア酸化触媒を有するアンモニア酸化部、及びアンモニア分解触媒を有するアンモニア分解部を有する水素生成装置が開示されている。   However, hydrogen gas hardly exists in nature. For this reason, it has been studied to transport and store a hydrogen atom-containing substance such as ammonia having excellent storage and transport properties, and to convert it into hydrogen gas at a necessary place. For example, Patent Document 1 discloses a hydrogen generator having an ammonia oxidation part having an ammonia oxidation catalyst and an ammonia decomposition part having an ammonia decomposition catalyst.

特開2010−241647号公報JP 2010-241647 A

しかしながら、特許文献1の水素生成装置は、触媒に貴金属を必要とするため、コストが高くなるという課題があった。   However, the hydrogen generator of Patent Document 1 requires a noble metal as a catalyst, and thus has a problem of high cost.

本発明は、上記事情に鑑みてなされたものであり、貴金属を用いなくてもアンモニア分解活性の高いマイクロ波加熱用アンモニア分解触媒及びその混合物を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the ammonia decomposition catalyst for microwave heating with high ammonia decomposition activity, and its mixture, without using a noble metal.

本発明の第1の態様に係るマイクロ波加熱用アンモニア分解触媒は、担体と、担体上に担持され、ニッケル、コバルト及び鉄からなる群より選択される少なくとも1種の遷移金属を主成分とする金属粒子と、を備える。   The ammonia decomposition catalyst for microwave heating according to the first aspect of the present invention is mainly composed of a support and at least one transition metal selected from the group consisting of nickel, cobalt and iron supported on the support. Metal particles.

本発明の第2の態様に係るマイクロ波加熱用アンモニア分解触媒は、第1の態様のマイクロ波加熱用アンモニア分解触媒に関し、担体は、典型金属の多孔質酸化物及び遷移金属の多孔質酸化物の少なくともいずれか一方である。   The ammonia-decomposing catalyst for microwave heating according to the second aspect of the present invention relates to the ammonia-decomposing catalyst for microwave heating according to the first aspect, wherein the carrier is a porous oxide of a typical metal and a porous oxide of a transition metal At least one of them.

本発明の第3の態様に係るマイクロ波加熱用アンモニア分解触媒は、第1又は第2の態様のマイクロ波加熱用アンモニア分解触媒に関し、担体は、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、イットリア安定ジルコニア、NaY型ゼオライト、超安定化Y型ゼオライト、ルチル型酸化チタン、アナターゼ型酸化チタン及びルチル−アナターゼ混晶型酸化チタンからなる群より選択される少なくとも1種の金属酸化物である。   The microwave heating ammonia decomposition catalyst according to the third aspect of the present invention relates to the microwave heating ammonia decomposition catalyst according to the first or second aspect, and the carrier is aluminum oxide, magnesium oxide, zirconium oxide, yttria stable zirconia. , NaY-type zeolite, ultra-stabilized Y-type zeolite, rutile-type titanium oxide, anatase-type titanium oxide, and rutile-anatase mixed crystal-type titanium oxide.

本発明の第4の態様に係るマイクロ波加熱用アンモニア分解触媒は、第1乃至第3のいずれかの態様のマイクロ波加熱用アンモニア分解触媒に関し、担体又は金属粒子上に、アルカリ金属及びアルカリ土類金属の少なくともいずれか一方を含む助触媒がさらに担持される。   The microwave heating ammonia decomposition catalyst according to the fourth aspect of the present invention relates to the microwave heating ammonia decomposition catalyst according to any one of the first to third aspects, and includes alkali metal and alkaline earth on a support or metal particles. A co-catalyst containing at least one of the similar metals is further supported.

本発明の第5の態様に係るマイクロ波加熱用アンモニア分解触媒は、第1乃至第4のいずれかの態様におけるマイクロ波加熱用アンモニア分解触媒に関し、アンモニア前処理される。   The microwave heating ammonia decomposition catalyst according to the fifth aspect of the present invention relates to the microwave heating ammonia decomposition catalyst according to any one of the first to fourth aspects, and is pretreated with ammonia.

本発明の第6の態様に係るマイクロ波加熱用アンモニア分解触媒は、第1乃至第5のいずれかの態様におけるマイクロ波加熱用アンモニア分解触媒に関し、担体は、キレート処理された担体である。   The microwave heating ammonia decomposition catalyst according to the sixth aspect of the present invention relates to the microwave heating ammonia decomposition catalyst according to any one of the first to fifth aspects, wherein the carrier is a chelated carrier.

本発明の第7の態様に係るマイクロ波加熱用アンモニア分解触媒混合物は、第1乃至第6のいずれかの態様におけるマイクロ波加熱用アンモニア分解触媒と、加熱助剤と、を備える。   A microwave heating ammonia decomposition catalyst mixture according to a seventh aspect of the present invention includes the microwave heating ammonia decomposition catalyst according to any one of the first to sixth aspects, and a heating aid.

本発明に係るマイクロ波加熱用アンモニア分解触媒及びこの触媒を含むマイクロ波加熱用アンモニア分解触媒混合物は、貴金属を用いなくてもマイクロ波加熱によるアンモニア分解活性が高い。   The ammonia-decomposing catalyst for microwave heating and the ammonia-decomposing catalyst mixture for microwave heating containing the catalyst according to the present invention have high ammonia-decomposing activity by microwave heating without using noble metals.

マイクロ波照射装置の一例を示す概略図である。It is the schematic which shows an example of a microwave irradiation apparatus. 金属粒子の種類とアンモニア転化率との関係を示すグラフである。It is a graph which shows the relationship between the kind of metal particle, and ammonia conversion rate. 金属粒子の担持量とアンモニア転化率との関係を示すグラフである。It is a graph which shows the relationship between the load of a metal particle, and ammonia conversion rate. 金属粒子の担持量とマイクロ波出力との関係を示すグラフである。It is a graph which shows the relationship between the support amount of a metal particle, and a microwave output. 加熱方法とアンモニア転化率との関係を示すグラフである。It is a graph which shows the relationship between a heating method and ammonia conversion rate. 担体の種類とアンモニア転化率との関係を示すグラフである。It is a graph which shows the relationship between the kind of support | carrier, and ammonia conversion rate. 担体の種類とマイクロ波出力との関係を示すグラフである。It is a graph which shows the relationship between the kind of support | carrier, and a microwave output. 担体の種類とアンモニア転化率との関係を示すグラフである。It is a graph which shows the relationship between the kind of support | carrier, and ammonia conversion rate. 担体の種類とマイクロ波出力との関係を示すグラフである。It is a graph which shows the relationship between the kind of support | carrier, and a microwave output. キレート処理の有無とアンモニア転化率との関係を示すグラフである。It is a graph which shows the relationship between the presence or absence of a chelate process, and ammonia conversion rate. キレート処理の有無とマイクロ波出力との関係を示すグラフである。It is a graph which shows the relationship between the presence or absence of a chelate process, and a microwave output. 助触媒の種類とアンモニア転化率との関係を示すグラフである。It is a graph which shows the relationship between the kind of promoter and ammonia conversion rate. 助触媒の種類とマイクロ波出力との関係を示すグラフである。It is a graph which shows the relationship between the kind of promoter, and a microwave output. 前処理とアンモニア転化率との関係を示すグラフである。It is a graph which shows the relationship between a pretreatment and ammonia conversion rate. 昇温脱離ガス分析のスペクトルを示すグラフである。It is a graph which shows the spectrum of a temperature-programmed desorption gas analysis.

以下、図面を用いて本発明の実施形態に係るマイクロ波加熱用アンモニア分解触媒及びマイクロ波加熱用アンモニア分解触媒混合物について詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。   Hereinafter, an ammonia decomposition catalyst for microwave heating and an ammonia decomposition catalyst mixture for microwave heating according to embodiments of the present invention will be described in detail with reference to the drawings. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.

[マイクロ波加熱用アンモニア分解触媒]
本実施形態のマイクロ波加熱用アンモニア分解触媒は、担体と、担体上に担持され、ニッケル、コバルト及び鉄からなる群より選択される少なくとも1種の遷移金属を主成分とする金属粒子と、を備える。
[Ammonia decomposition catalyst for microwave heating]
The ammonia-decomposing catalyst for microwave heating according to the present embodiment comprises a carrier and metal particles supported on the carrier and mainly composed of at least one transition metal selected from the group consisting of nickel, cobalt, and iron. Prepare.

(担体)
担体は、アンモニア分解反応において触媒作用を示す金属粒子を、安定かつ高分散に担持する物質である。ここで、高分散に担持するとは、担体の表面上における金属粒子の担持密度が担体の全表面にわたって均一又は均一に近い状態であることを意味する。担体に、金属粒子が高分散に担持されると、担体の表面上で隣接する金属粒子同士の間隔が均一又は均一に近い状態になる。
(Carrier)
The carrier is a substance that stably and highly disperses metal particles that exhibit a catalytic action in the ammonia decomposition reaction. Here, “supported highly dispersed” means that the support density of the metal particles on the surface of the support is in a state of being uniform or nearly uniform over the entire surface of the support. When the metal particles are supported on the support in a highly dispersed state, the distance between adjacent metal particles on the surface of the support becomes uniform or nearly uniform.

担体は、典型金属の多孔質酸化物及び遷移金属の多孔質酸化物の少なくともいずれか一方であることが好ましい。例として、担体は、酸化アルミニウム(γ−Al)、酸化マグネシウム(MgO)、酸化ジルコニウム(ZrO)、イットリア安定ジルコニア(YSZ)、NaY型ゼオライト、超安定化Y型ゼオライト(USY型ゼオライト)、ルチル型酸化チタン(ルチル型TiO)、アナターゼ型酸化チタン(アナターゼ型TiO)及びルチル−アナターゼ混晶型酸化チタンからなる群より選択される少なくとも1種の金属酸化物であることが好ましい。担体として、このような金属酸化物を用いた場合、加熱助剤の共存下でマイクロ波の照射で加熱しやすいためである。なお、酸化アルミニウム(γ−Al3)とイットリア安定ジルコニア(YSZ)を担体として用いた場合は加熱助剤の添加が無くともマイクロ波の照射で加熱しやすい。 The support is preferably at least one of a typical metal porous oxide and a transition metal porous oxide. For example, the carrier is aluminum oxide (γ-Al 2 O 3 ), magnesium oxide (MgO), zirconium oxide (ZrO 2 ), yttria stable zirconia (YSZ), NaY type zeolite, ultra-stabilized Y type zeolite (USY type). Zeolite), rutile type titanium oxide (rutile type TiO 2 ), anatase type titanium oxide (anatase type TiO 2 ), and at least one metal oxide selected from the group consisting of rutile-anatase mixed crystal type titanium oxide. Is preferred. This is because when such a metal oxide is used as a carrier, it can be easily heated by microwave irradiation in the presence of a heating aid. When aluminum oxide (γ-Al 2 O 3) and yttria-stable zirconia (YSZ) are used as a carrier, heating is easily performed by irradiation with microwaves without the addition of a heating aid.

また、アンモニア分解活性を向上させるという観点から、担体は、酸化アルミニウム、イットリア安定ジルコニア及び超安定化Y型ゼオライトからなる群より選択される少なくとも1種の金属酸化物であるとより好ましい。一方、加熱助剤の共存下でマイクロ波の照射で加熱しやすくするという観点から、担体は、酸化ジルコニウム、NaY型ゼオライト、超安定化Y型ゼオライト、ルチル型酸化チタン、アナターゼ型酸化チタン及びルチル−アナターゼ混晶型酸化チタンからなる群より選択される少なくとも1種の金属酸化物であるとより好ましい。なお、アンモニア分解活性を向上させ、かつ、マイクロ波の照射で加熱しやすくするという観点から、担体が超安定化Y型ゼオライトであることがさらに好ましい。   From the viewpoint of improving ammonia decomposition activity, the support is more preferably at least one metal oxide selected from the group consisting of aluminum oxide, yttria-stable zirconia, and ultra-stabilized Y-type zeolite. On the other hand, from the viewpoint of facilitating heating by microwave irradiation in the presence of a heating aid, the carrier is zirconium oxide, NaY zeolite, ultra-stabilized Y zeolite, rutile titanium oxide, anatase titanium oxide and rutile. -More preferably, it is at least one metal oxide selected from the group consisting of anatase mixed crystal titanium oxide. In addition, it is more preferable that the support is ultra-stabilized Y-type zeolite from the viewpoint of improving ammonia decomposition activity and facilitating heating by irradiation with microwaves.

また、担体は、多孔質物質であると、担体の単位体積当たりの金属粒子の担持量が多くなりやすい点で好ましい。なお、担体は、イットリア安定ジルコニアの多孔質酸化物であると、マイクロ波の照射でさらに加熱しやすいためより好ましい。   Further, it is preferable that the support is a porous material in that the amount of metal particles supported per unit volume of the support tends to increase. Note that it is more preferable that the carrier is a porous oxide of yttria-stable zirconia because it can be easily heated by microwave irradiation.

担体のメディアン径は、100〜650μmであることが好ましく、250〜500μmであることがより好ましい。担体のメディアン径が上記範囲内にあると、マイクロ波加熱用アンモニア分解触媒がマイクロ波で制御性よく加熱され、かつ、アンモニアガスの流路に配置した場合に、圧力損失が生じにくくなるためである。   The median diameter of the carrier is preferably 100 to 650 μm, and more preferably 250 to 500 μm. If the median diameter of the carrier is in the above range, the ammonia-decomposing catalyst for microwave heating is heated with good controllability by the microwave, and pressure loss is less likely to occur when it is placed in the ammonia gas flow path. is there.

(金属粒子)
金属粒子は、アンモニア分解反応において触媒作用を示す物質を含み、担体上に担持される粒子である。金属粒子は、ニッケル、コバルト及び鉄からなる群より選択される少なくとも1種の遷移金属を主成分とする。ここで、上記遷移金属を主成分とするとは、金属粒子中において、上記遷移金属の合計が50質量%を超える量であることを意味する。ニッケル、コバルト及び鉄は、触媒作用が高くかつ安価であるため好ましい。なお、コスト低減の観点からは、金属粒子は貴金属を含まないことが好ましい。
(Metal particles)
The metal particles include particles that show a catalytic action in the ammonia decomposition reaction and are particles supported on a carrier. The metal particles are mainly composed of at least one transition metal selected from the group consisting of nickel, cobalt and iron. Here, having the transition metal as a main component means that the total amount of the transition metals is more than 50% by mass in the metal particles. Nickel, cobalt and iron are preferable because they have high catalytic action and are inexpensive. From the viewpoint of cost reduction, the metal particles preferably do not contain a noble metal.

金属粒子は、粒径が担体よりも小さく、担体の表面に担持される。本実施形態に係るマイクロ波加熱用アンモニア分解触媒は、通常、担体の表面に、多数の金属粒子が担持されたものになっている。   The metal particles are smaller than the carrier and are supported on the surface of the carrier. The ammonia-decomposing catalyst for microwave heating according to the present embodiment is usually one in which a large number of metal particles are supported on the surface of a carrier.

担体と金属粒子との組合せは、特に限定されず、上述した任意の担体と任意の金属粒子とを組み合わせて使用することができる。担体と金属粒子との好ましい組み合わせは、酸化アルミニウムとコバルトとの組み合わせ、酸化アルミニウムとニッケルとの組み合わせ、酸化アルミニウムと鉄との組み合わせ、イットリア安定ジルコニアとコバルトとの組み合わせ、イットリア安定ジルコニアとニッケルとの組み合わせ、イットリア安定ジルコニアと鉄との組み合わせ、超安定化Y型ゼオライトとコバルトとの組み合わせ、超安定化Y型ゼオライトとニッケルとの組み合わせ及び超安定化Y型ゼオライトと鉄との組み合わせからなる群より選択される少なくとも1種である。これらの組み合わせは、アンモニア分解活性が高いためである。   The combination of a support | carrier and a metal particle is not specifically limited, It can use combining the arbitrary support | carriers and arbitrary metal particles mentioned above. Preferred combinations of the support and the metal particles include a combination of aluminum oxide and cobalt, a combination of aluminum oxide and nickel, a combination of aluminum oxide and iron, a combination of yttria stable zirconia and cobalt, and a combination of yttria stable zirconia and nickel. From the group consisting of a combination, a combination of yttria-stabilized zirconia and iron, a combination of super-stabilized Y-type zeolite and cobalt, a combination of super-stabilized Y-type zeolite and nickel, and a combination of super-stabilized Y-type zeolite and iron At least one selected. This is because these combinations have high ammonia decomposition activity.

また、担体と金属粒子とのより好ましい組み合わせは、超安定化Y型ゼオライトとコバルトとの組み合わせ、超安定化Y型ゼオライトとニッケルとの組み合わせ及び超安定化Y型ゼオライトと鉄との組み合わせである。これらの組み合わせは、アンモニア分解活性が高く、マイクロ波の照射でより加熱しやすいためである。なお、担体と金属粒子とのさらに好ましい組み合わせは、超安定化Y型ゼオライトとコバルトとの組み合わせである。   More preferable combinations of the support and the metal particles are a combination of super-stabilized Y-type zeolite and cobalt, a combination of super-stabilized Y-type zeolite and nickel, and a combination of super-stabilized Y-type zeolite and iron. . This is because these combinations have high ammonia decomposing activity and are more easily heated by microwave irradiation. A more preferable combination of the support and the metal particles is a combination of ultra-stabilized Y-type zeolite and cobalt.

担体への金属粒子の担持量は、担体と金属粒子との合計100質量%に対して、1〜20質量%であることが好ましい。担体への金属粒子の担持量が1質量%以上の場合、アンモニア分解活性が高く、担体への金属粒子の担持量が20質量%以下の場合、マイクロ波の照射で加熱しやすいためである。なお、担体への金属粒子の担持量は、担体と金属粒子と合計100質量%に対して、3〜10質量%であることが好ましく、5〜10質量%であることがさらに好ましい。担体への金属粒子の担持量がこのような範囲であることにより、さらにアンモニア分解活性が高く、マイクロ波の照射で加熱しやすいためである。   The amount of the metal particles supported on the carrier is preferably 1 to 20% by mass with respect to 100% by mass in total of the carrier and the metal particles. This is because when the amount of the metal particles supported on the carrier is 1% by mass or more, the ammonia decomposition activity is high, and when the amount of the metal particles supported on the carrier is 20% by mass or less, it is easy to heat by microwave irradiation. The amount of the metal particles supported on the carrier is preferably 3 to 10% by mass, and more preferably 5 to 10% by mass with respect to 100% by mass in total of the carrier and the metal particles. This is because the amount of metal particles supported on the carrier is in such a range, the ammonia decomposing activity is higher, and it is easy to heat by microwave irradiation.

担体は、キレート処理された担体であると、マイクロ波の照射で加熱しやすく、かつ、アンモニア分解活性が高くなるため好ましい。具体的には、マイクロ波加熱用アンモニア分解触媒は、担体にキレート剤を含浸させ、乾燥させた後、担体に金属粒子を担持して得られたものであると好ましい。その理由は、担体表面での金属粒子の分散性が高くなることに起因すると考えられる。キレート剤としては、例えば、エチレンジアミン四酢酸(EDTA)、ニトリロ三酢酸(NTA)等を用いることができる。   The carrier is preferably a chelate-treated carrier because it can be easily heated by microwave irradiation and has high ammonia decomposing activity. Specifically, the ammonia decomposition catalyst for microwave heating is preferably obtained by impregnating a carrier with a chelating agent and drying it, and then supporting metal particles on the carrier. The reason is considered to be due to the high dispersibility of the metal particles on the surface of the carrier. As the chelating agent, for example, ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), or the like can be used.

キレート剤は、担体95質量部に対して1〜10質量部含浸させることが好ましく、3〜7質量部含浸させることがより好ましい。   The chelating agent is preferably impregnated with 1 to 10 parts by mass, more preferably 3 to 7 parts by mass with respect to 95 parts by mass of the carrier.

(助触媒)
マイクロ波加熱用アンモニア分解触媒は、担体又は金属粒子上に、アルカリ金属及びアルカリ土類金属の少なくともいずれか一方を含む助触媒がさらに担持されることが好ましい。マイクロ波の照射で加熱しやすく、かつ、アンモニア分解活性が高くなるためである。
(Cocatalyst)
It is preferable that the ammonia decomposition catalyst for microwave heating further supports a promoter containing at least one of alkali metal and alkaline earth metal on a support or metal particles. This is because it is easy to heat by microwave irradiation and the ammonia decomposition activity is increased.

助触媒を構成するアルカリ金属としては、例えば、ナトリウム、カリウム、ルビジウム及びセシウムからなる群より選択される少なくとも1種の元素を含む物質が用いられる。また、助触媒を構成するアルカリ土類金属としては、例えば、マグネシウム、カルシウム、ストロンチウム及びバリウムからなる群より選択される少なくとも1種の元素を含む物質が用いられる。このうち、助触媒が、カリウム及びルビジウムの少なくともいずれか一方の元素を含む物質である場合、マイクロ波加熱用アンモニア分解触媒がマイクロ波の照射でより加熱しやすく、かつ、アンモニア分解活性がより高くなるため好ましい。   As the alkali metal constituting the promoter, for example, a substance containing at least one element selected from the group consisting of sodium, potassium, rubidium and cesium is used. Further, as the alkaline earth metal constituting the promoter, for example, a substance containing at least one element selected from the group consisting of magnesium, calcium, strontium and barium is used. Among these, when the promoter is a substance containing at least one element of potassium and rubidium, the ammonia-decomposing catalyst for microwave heating is more easily heated by microwave irradiation and has a higher ammonia-decomposing activity. Therefore, it is preferable.

(アンモニア前処理)
マイクロ波加熱用アンモニア分解触媒は、アンモニア前処理されると、マイクロ波の照射で加熱しやすく、かつ、アンモニア分解活性が高くなるため好ましい。ここで、アンモニア前処理とは、マイクロ波加熱用アンモニア分解触媒を、触媒としての使用前に、高温のアンモニアで熱処理することを意味する。アンモニアでの熱処理温度は、通常、400℃以上、好ましくは500〜800℃である。
(Ammonia pretreatment)
The ammonia-decomposing catalyst for microwave heating is preferably pretreated with ammonia because it is easy to heat by microwave irradiation and the ammonia decomposing activity is high. Here, the ammonia pretreatment means that the ammonia decomposition catalyst for microwave heating is heat-treated with high-temperature ammonia before use as a catalyst. The heat treatment temperature with ammonia is usually 400 ° C. or higher, preferably 500 to 800 ° C.

マイクロ波加熱用アンモニア分解触媒は、アンモニア前処理を行うと、マイクロ波加熱用アンモニア分解触媒における、担体及び金属粒子の少なくとも一方の表面に、窒素含有物質が形成される場合がある。窒素含有物質は一般的に誘電体材料として広く知られており、その窒素含有物質が形成されることで電気特性が変化しマイクロ波の照射で加熱しやすくなる可能性があり、かつ、アンモニアの分解反応が促進される場合があるため好ましい。   When the ammonia decomposition catalyst for microwave heating is subjected to ammonia pretreatment, a nitrogen-containing substance may be formed on the surface of at least one of the carrier and the metal particles in the ammonia decomposition catalyst for microwave heating. Nitrogen-containing substances are generally widely known as dielectric materials, and the formation of the nitrogen-containing substances may change the electrical characteristics and facilitate heating by microwave irradiation. This is preferable because the decomposition reaction may be accelerated.

本実施形態のマイクロ波加熱用アンモニア分解触媒は、アンモニア存在下でマイクロ波を照射すると、担体及び金属粒子がマイクロ波を良好に吸収し、迅速に加熱される。そのため、本実施形態のマイクロ波加熱用アンモニア分解触媒は、貴金属を用いなくてもアンモニア分解活性が高い。   When the microwave decomposition ammonia decomposition catalyst of the present embodiment is irradiated with microwaves in the presence of ammonia, the carrier and the metal particles absorb the microwaves well and are heated quickly. Therefore, the ammonia decomposition catalyst for microwave heating according to the present embodiment has high ammonia decomposition activity without using a noble metal.

[マイクロ波加熱用アンモニア分解触媒混合物]
本実施形態のマイクロ波加熱用アンモニア分解触媒混合物は、上述したマイクロ波加熱用アンモニア分解触媒と、加熱助剤と、を備える。マイクロ波加熱用アンモニア分解触媒は、マイクロ波の加熱に適した加熱助剤を介して加熱される。そのため、本実施形態のマイクロ波加熱用アンモニア分解触媒混合物は、マイクロ波の照射で加熱しやすくなるため好ましい。ここで、加熱助剤とは、マイクロ波の吸収性を向上させる物質を意味する。加熱助剤としては、例えば、炭化ケイ素、カーボン等が用いられる。このうち、炭化ケイ素は、マイクロ波の吸収性を向上させる度合いが大きく、かつ、マイクロ波加熱の制御性が優れているため好ましい。
[Ammonia decomposition catalyst mixture for microwave heating]
The ammonia-decomposing catalyst mixture for microwave heating of the present embodiment includes the above-described ammonia-decomposing catalyst for microwave heating and a heating aid. The ammonia-decomposing catalyst for microwave heating is heated via a heating aid suitable for microwave heating. Therefore, the ammonia-decomposing catalyst mixture for microwave heating according to this embodiment is preferable because it can be easily heated by microwave irradiation. Here, the heating aid means a substance that improves the absorption of microwaves. As the heating aid, for example, silicon carbide, carbon or the like is used. Among these, silicon carbide is preferable because it has a high degree of improvement in microwave absorbability and excellent controllability of microwave heating.

マイクロ波加熱用アンモニア分解触媒混合物は、マイクロ波加熱用アンモニア分解触媒100質量部に対して、加熱助剤の添加量が1〜30質量部であることが好ましく、5〜20質量部であることがより好ましく、8〜15質量部であることがさらに好ましい。マイクロ波加熱用アンモニア分解触媒に対する加熱助剤の配合量がこの範囲内にあると、マイクロ波加熱用アンモニア分解触媒がマイクロ波の照射で加熱しやすく、かつ、制御が容易になるためである。   The amount of the heating aid added to the microwave decomposition ammonia decomposition catalyst mixture is preferably 1 to 30 parts by mass, and 5 to 20 parts by mass with respect to 100 parts by mass of the ammonia decomposition catalyst for microwave heating. Is more preferable, and it is still more preferable that it is 8-15 mass parts. This is because when the blending amount of the heating aid with respect to the ammonia-decomposing catalyst for microwave heating is within this range, the ammonia-decomposing catalyst for microwave heating is easily heated by microwave irradiation, and control becomes easy.

本実施形態のマイクロ波加熱用アンモニア分解触媒混合物は、マイクロ波を照射すると、担体及び金属粒子がマイクロ波を吸収するのに加え、加熱助剤がより迅速に低い消費電力で加熱される。そのため、加熱助剤からの熱伝導により担体及び金属粒子が迅速に加熱される。そして、より迅速な加熱のため速やかに昇温した金属粒子は、アンモニア分解反応の反応速度を向上させてアンモニアから水素を製造することできる。このように、本実施形態のマイクロ波加熱用アンモニア分解触媒混合物によれば、マイクロ波加熱用アンモニア分解触媒の昇温時間が本実施形態のマイクロ波加熱用アンモニア分解触媒に比較してより短くなり、必要なマイクロ波に用いる電力も削減できる。   When the microwave decomposition ammonia decomposition catalyst mixture of this embodiment is irradiated with microwaves, in addition to the carrier and metal particles absorbing the microwaves, the heating aid is heated more quickly and with low power consumption. Therefore, the carrier and the metal particles are rapidly heated by heat conduction from the heating aid. And the metal particle which heated up rapidly for quicker heating can improve the reaction rate of ammonia decomposition reaction, and can manufacture hydrogen from ammonia. Thus, according to the ammonia decomposition catalyst mixture for microwave heating of this embodiment, the temperature rising time of the ammonia decomposition catalyst for microwave heating is shorter than that of the ammonia decomposition catalyst for microwave heating of this embodiment. The power used for the necessary microwaves can also be reduced.

[水素製造装置]
本実施形態に係る水素製造装置1は、例えば図1で示すように、マイクロ波照射装置2と、導波管3と、円筒空胴共振器4と、反応管5と、マイクロ波加熱用アンモニア分解触媒6と、を備えることができる。本実施形態の水素製造装置1は、マイクロ波加熱用アンモニア分解触媒6を、マイクロ波を用いて加熱することができる。そのため、本実施形態の水素製造装置1は、一般的な電気炉などを用いて加熱した場合と比較し、速やかにマイクロ波加熱用アンモニア分解触媒6を加熱することができる。
[Hydrogen production equipment]
For example, as shown in FIG. 1, the hydrogen production apparatus 1 according to this embodiment includes a microwave irradiation device 2, a waveguide 3, a cylindrical cavity resonator 4, a reaction tube 5, and microwave heating ammonia. A cracking catalyst 6. The hydrogen production apparatus 1 of the present embodiment can heat the ammonia-decomposing catalyst 6 for microwave heating using microwaves. Therefore, the hydrogen production apparatus 1 of the present embodiment can quickly heat the ammonia-decomposing catalyst 6 for microwave heating as compared with the case of heating using a general electric furnace or the like.

そして、円筒空胴共振器4は、マイクロ波照射装置2から発振されるマイクロ波をTM0n0モード(nは1以上の整数)で共振させることができる。この場合、円筒空胴共振器4内の電界強度は、円筒空胴共振器4内の円周方向に対して所定の位置に、軸方向に対する電界強度の極大値が一定となるように分布する。 The cylindrical cavity resonator 4 can resonate the microwave oscillated from the microwave irradiation device 2 in the TM 0n0 mode (n is an integer of 1 or more). In this case, the electric field strength in the cylindrical cavity resonator 4 is distributed at a predetermined position with respect to the circumferential direction in the cylindrical cavity resonator 4 so that the maximum value of the electric field strength in the axial direction is constant. .

さらに、反応管5が、円筒空胴共振器4内の電界強度が極大となる位置に、円筒空胴共振器4の軸方向と平行に貫通して配置され、アンモニアガスを通過させることができる。そして、マイクロ波加熱用アンモニア分解触媒6は、反応管5内に充填することができる。このようにすると、マイクロ波が均一に効率よくマイクロ波加熱用アンモニア分解触媒6を加熱して、水素ガスを製造することができる。そのため、本実施形態の水素製造装置1は、機械的な調整が必要なく、簡易な操作で水素ガスを製造することができる。なお、本実施形態の水素製造装置1は、一例として円筒空胴共振器4を用いたが、これに限らず、矩形空胴共振器などを用いることもできる。   Further, the reaction tube 5 is disposed at a position where the electric field strength in the cylindrical cavity resonator 4 is maximized, and penetrates in parallel with the axial direction of the cylindrical cavity resonator 4 so that ammonia gas can pass therethrough. . Then, the microwave heating ammonia decomposition catalyst 6 can be filled in the reaction tube 5. If it does in this way, the microwave can heat the ammonia decomposition catalyst 6 for microwave heating uniformly and efficiently, and hydrogen gas can be manufactured. Therefore, the hydrogen production apparatus 1 of the present embodiment does not require mechanical adjustment and can produce hydrogen gas with a simple operation. In addition, although the cylindrical cavity resonator 4 was used as an example in the hydrogen production apparatus 1 of this embodiment, not only this but a rectangular cavity resonator etc. can also be used.

本実施形態に係る水素製造装置1は、例えば、自動車用の水素製造装置として使用することもできる。   The hydrogen production apparatus 1 according to the present embodiment can be used as, for example, an automobile hydrogen production apparatus.

以下、本実施形態を実施例によりさらに詳細に説明するが、本実施形態はこれら実施例に限定されるものではない。   Hereinafter, the present embodiment will be described in more detail by way of examples, but the present embodiment is not limited to these examples.

金属粒子及び加熱助剤の影響を調べるため、表1に示すように、マイクロ波加熱用アンモニア分解触媒及びマイクロ波加熱用アンモニア分解触媒混合物を調製し、アンモニア転化率を測定した。   In order to investigate the influence of the metal particles and the heating aid, as shown in Table 1, an ammonia decomposition catalyst for microwave heating and an ammonia decomposition catalyst mixture for microwave heating were prepared, and the ammonia conversion rate was measured.

Figure 2018023938
Figure 2018023938

[実施例1]
含浸法(incipient−wetness法)にて、γ−アルミナにコバルトを担持させ、γ−アルミナを95質量%、コバルトを5質量%含むコバルト担持γ−アルミナを調製した。具体的には、硝酸コバルト水溶液に、γ−アルミナを含浸させ、110℃で12時間乾燥後、500℃で3時間焼成した。焼成物は室温まで冷却させてペレット状に加圧成形した後粉砕し、250〜500μmになるようにふるい分けた。なお、γ−アルミナに担持させる金属粒子として、硝酸コバルト(和光純薬工業株式会社製 硝酸コバルト(II)六水和物特級)を用いた。また、担体として、γ−アルミナ(住友化学株式会社製AKS−GT00)を用いた。
[Example 1]
Cobalt was supported on γ-alumina by an impregnation method (incipient-wetness method) to prepare cobalt-supported γ-alumina containing 95% by mass of γ-alumina and 5% by mass of cobalt. Specifically, an aqueous cobalt nitrate solution was impregnated with γ-alumina, dried at 110 ° C. for 12 hours, and then fired at 500 ° C. for 3 hours. The fired product was cooled to room temperature, pressed into pellets, pulverized, and sieved to 250 to 500 μm. Cobalt nitrate (cobalt nitrate (II) hexahydrate special grade manufactured by Wako Pure Chemical Industries, Ltd.) was used as the metal particles supported on γ-alumina. Moreover, (gamma) -alumina (Sumitomo Chemical Co., Ltd. AKS-GT00) was used as a support | carrier.

このようにして得られたコバルト担持γ−アルミナを、600℃、1気圧のH雰囲気中で2時間放置する水素前処理を行い、マイクロ波加熱用アンモニア分解触媒を調製した。 The cobalt-supported γ-alumina thus obtained was subjected to hydrogen pretreatment that was allowed to stand in an H 2 atmosphere at 600 ° C. and 1 atm for 2 hours to prepare an ammonia decomposition catalyst for microwave heating.

[実施例2]
硝酸コバルトに代え、硝酸ニッケル(和光純薬工業株式会社製 硝酸ニッケル(II)六水和物 特級)を用いた以外は、実施例1と同様の方法にてマイクロ波加熱用アンモニア分解触媒を調製した。
[Example 2]
An ammonia decomposition catalyst for microwave heating was prepared in the same manner as in Example 1 except that nickel nitrate (nickel (II) hexahydrate special grade manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of cobalt nitrate. did.

[実施例3]
硝酸コバルトに代え、硝酸鉄(和光純薬工業株式会社製 硝酸鉄(III)九水和物99.9%)を用いた以外は、実施例1と同様の方法にてマイクロ波加熱用アンモニア分解触媒を調製した。
[Example 3]
Ammonia decomposition for microwave heating in the same manner as in Example 1 except that iron nitrate (iron (III) nitrate nonahydrate 99.9% manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of cobalt nitrate. A catalyst was prepared.

[実施例4]
実施例1と同様の方法により得られた100質量部のコバルト担持γ−アルミナと、10質量部のSiC加熱助剤 (和光純薬工業株式会社製 粒径50nm) とを混合した。このようにして得られた混合物を、600℃、1気圧のH雰囲気中で2時間放置する水素前処理を行い、マイクロ波加熱用アンモニア分解触媒混合物を調製した。
[Example 4]
100 parts by mass of cobalt-supported γ-alumina obtained by the same method as in Example 1 and 10 parts by mass of SiC heating auxiliary (particle size 50 nm, manufactured by Wako Pure Chemical Industries, Ltd.) were mixed. The mixture thus obtained was subjected to hydrogen pretreatment that was allowed to stand in an atmosphere of H 2 at 600 ° C. and 1 atm for 2 hours to prepare an ammonia decomposition catalyst mixture for microwave heating.

[実施例5]
硝酸コバルトに代え、硝酸ニッケル(和光純薬工業株式会社製 硝酸ニッケル(II)六水和物 特級)を用いた以外は、実施例4と同様の方法にてマイクロ波加熱用アンモニア分解触媒混合物を調製した。
[Example 5]
The ammonia decomposition catalyst mixture for microwave heating was prepared in the same manner as in Example 4 except that nickel nitrate (nickel (II) hexahydrate special grade manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of cobalt nitrate. Prepared.

[実施例6]
硝酸コバルトに代え、硝酸鉄(和光純薬工業株式会社製 硝酸鉄(III)九水和物99.9%)を用いた以外は、実施例4と同様の方法にてマイクロ波加熱用アンモニア分解触媒混合物を調製した。
[Example 6]
Ammonia decomposition for microwave heating in the same manner as in Example 4 except that iron nitrate (iron (III) nitrate nonahydrate 99.9% manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of cobalt nitrate. A catalyst mixture was prepared.

<アンモニア転化率>
各実施例のマイクロ波加熱用アンモニア分解触媒0.1gが充填された石英製反応管を、図1に示すような水素製造装置内に設置した。その後、石英製反応管に40mL/分の流量でアンモニアを供給しながら、マイクロ波加熱用アンモニア分解触媒にマイクロ波を照射した。この時、温度を250℃から600℃まで50℃ごとに昇温して、所望の温度に達してから10分後以降の生成ガスをサンプリングし、ガスクロマトグラフで定量した。この時のマイクロ波加熱用アンモニア分解触媒の温度(℃)とアンモニア転化率(%)との関係を図2に示す。なお、アンモニア転化率は、アンモニアが分解して生成した水素の割合を示し、アンモニアが完全に水素に分解した場合のアンモニア転化率を100%とした。
<Ammonia conversion>
A quartz reaction tube filled with 0.1 g of an ammonia decomposition catalyst for microwave heating of each example was installed in a hydrogen production apparatus as shown in FIG. Thereafter, microwaves were irradiated to the ammonia decomposition catalyst for microwave heating while supplying ammonia to the quartz reaction tube at a flow rate of 40 mL / min. At this time, the temperature was raised from 250 ° C. to 600 ° C. every 50 ° C., and the product gas after 10 minutes after reaching the desired temperature was sampled and quantified with a gas chromatograph. The relationship between the temperature (° C.) of the ammonia decomposition catalyst for microwave heating and the ammonia conversion rate (%) at this time is shown in FIG. The ammonia conversion rate indicates the ratio of hydrogen produced by decomposition of ammonia, and the ammonia conversion rate when ammonia was completely decomposed into hydrogen was set to 100%.

図2の結果より、加熱助剤を混合した実施例4〜6のマイクロ波加熱用アンモニア分解触媒混合物は、実施例1〜3の加熱助剤を用いていないマイクロ波加熱用アンモニア分解触媒と比較して、アンモニア転化率が高いことが分かった。   From the result of FIG. 2, the ammonia decomposition catalyst mixture for microwave heating of Examples 4 to 6 in which the heating aid is mixed is compared with the ammonia decomposition catalyst for microwave heating not using the heating aid of Examples 1 to 3. It was found that the ammonia conversion rate was high.

次に、金属粒子の担持量の影響を調べるため、表2に示すように、マイクロ波加熱用アンモニア分解触媒を調製し、アンモニア転化率を測定した。   Next, in order to investigate the influence of the loading amount of the metal particles, as shown in Table 2, an ammonia decomposition catalyst for microwave heating was prepared, and the ammonia conversion rate was measured.

Figure 2018023938
Figure 2018023938

[実施例7]
γ−アルミナの含有量を99質量%、コバルトの含有量を1質量%とした以外は、実施例1と同様の方法にてマイクロ波加熱用アンモニア分解触媒を調製した。
[Example 7]
An ammonia decomposition catalyst for microwave heating was prepared in the same manner as in Example 1 except that the content of γ-alumina was 99% by mass and the content of cobalt was 1% by mass.

[実施例8]
実施例1と同様の方法により、γ−アルミナの含有量が95質量%、コバルトの含有量が5質量%のマイクロ波加熱用アンモニア分解触媒を調製した。
[Example 8]
In the same manner as in Example 1, an ammonia decomposition catalyst for microwave heating having a γ-alumina content of 95% by mass and a cobalt content of 5% by mass was prepared.

[実施例9]
γ−アルミナの含有量を90質量%、コバルトの含有量を10質量%とした以外は、実施例1と同様の方法にてマイクロ波加熱用アンモニア分解触媒を調製した。
[Example 9]
An ammonia decomposition catalyst for microwave heating was prepared in the same manner as in Example 1 except that the content of γ-alumina was 90% by mass and the content of cobalt was 10% by mass.

[実施例10]
γ−アルミナの含有量を80質量%、コバルトの含有量を20質量%とした以外は、実施例1と同様の方法にてマイクロ波加熱用アンモニア分解触媒を調製した。
[Example 10]
An ammonia decomposition catalyst for microwave heating was prepared in the same manner as in Example 1 except that the content of γ-alumina was 80% by mass and the content of cobalt was 20% by mass.

実施例1と同様に、実施例7〜10で得られたマイクロ波加熱用アンモニア分解触媒のアンモニア転化率(%)を測定した。結果を図3に示す。また、この時のマイクロ波出力(W)と、マイクロ波加熱用アンモニア分解触媒の温度(℃)との関係を図4に示す。   Similarly to Example 1, the ammonia conversion rate (%) of the ammonia-decomposing catalyst for microwave heating obtained in Examples 7 to 10 was measured. The results are shown in FIG. Moreover, the relationship between the microwave output (W) at this time and the temperature (° C.) of the ammonia decomposition catalyst for microwave heating is shown in FIG.

図3の結果より、金属粒子の担持量が増加するほど、アンモニア転化率が高くなることが分かった。また、図4の結果より、マイクロ波出力が100W未満であっても、金属粒子の担持量が1〜5質量%の場合は550℃まで、10質量%の場合は600℃まで加熱できることが分かった。一方、マイクロ波出力が100W未満においては、金属粒子の担持量が20質量%の場合、450℃までしか加熱できなかった。おそらく、金属粒子の担持量が増えて金属粒子が凝集することで、金属的な性質が増加し、マイクロ波の吸収効率が低下したためと考えられる。   From the results of FIG. 3, it was found that the ammonia conversion rate increases as the loading amount of the metal particles increases. Moreover, even if a microwave output is less than 100W from the result of FIG. 4, when the loading amount of a metal particle is 1-5 mass%, it turns out that it can heat to 550 degreeC, and when it is 10 mass%, it can heat to 600 degreeC. It was. On the other hand, when the microwave output was less than 100 W, heating was possible only up to 450 ° C. when the loading amount of the metal particles was 20% by mass. Probably, this is because the amount of metal particles supported increases and the metal particles agglomerate to increase the metallic properties and lower the microwave absorption efficiency.

次に、加熱方法の影響を調べるため、表3に示すように、マイクロ波加熱用アンモニア分解触媒及びマイクロ波加熱用アンモニア分解触媒混合物を調製し、アンモニア転化率を測定した。   Next, in order to investigate the influence of the heating method, as shown in Table 3, an ammonia decomposition catalyst for microwave heating and an ammonia decomposition catalyst mixture for microwave heating were prepared, and the ammonia conversion rate was measured.

Figure 2018023938
Figure 2018023938

[実施例11]
実施例1と同様の方法により、マイクロ波加熱用アンモニア分解触媒を調製し、アンモニア転化率を測定した。結果を図5に示す。
[Example 11]
In the same manner as in Example 1, an ammonia decomposition catalyst for microwave heating was prepared, and the ammonia conversion rate was measured. The results are shown in FIG.

[実施例12]
実施例4と同様の方法により、マイクロ波加熱用アンモニア分解触媒を調製し、アンモニア転化率を測定した。結果を図5に示す。
[Example 12]
In the same manner as in Example 4, an ammonia decomposition catalyst for microwave heating was prepared, and the ammonia conversion rate was measured. The results are shown in FIG.

[実施例13]
マイクロ波に代え、電気炉を用いて加熱した以外は、実施例1と同様の方法により、マイクロ波加熱用アンモニア分解触媒を調製し、アンモニア転化率を測定した。結果を図5に示す。
[Example 13]
An ammonia decomposition catalyst for microwave heating was prepared in the same manner as in Example 1 except that it was heated using an electric furnace instead of microwave, and the ammonia conversion rate was measured. The results are shown in FIG.

図5の結果より、同じコバルト担持γ−アルミナ触媒を用いた場合でも、一般的な電気炉による加熱より、マイクロ波加熱の方が、触媒の活性が著しく高くなることが分かった。また、SiC加熱助剤を加えると、触媒の活性がより高くなることが分かった。   From the results shown in FIG. 5, it was found that even when the same cobalt-supported γ-alumina catalyst was used, the activity of the catalyst was significantly higher in microwave heating than in a general electric furnace. It has also been found that the activity of the catalyst becomes higher when the SiC heating aid is added.

次に、担体の影響を調べるため、表4に示すように、マイクロ波加熱用アンモニア分解触媒を調製し、アンモニア転化率を測定した。   Next, in order to investigate the influence of the carrier, as shown in Table 4, an ammonia decomposition catalyst for microwave heating was prepared, and the ammonia conversion rate was measured.

Figure 2018023938
Figure 2018023938

[実施例14]
実施例1と同様の方法により、担体としてγ−アルミナを用いたマイクロ波加熱用アンモニア分解触媒を調製した。
[Example 14]
In the same manner as in Example 1, an ammonia decomposition catalyst for microwave heating using γ-alumina as a support was prepared.

[実施例15]
γ−アルミナに代えて、イットリア安定ジルコニア(YSZ)(アルドリッチ社製 nano powder)を用いた以外は、実施例1と同様の方法にてマイクロ波加熱用アンモニア分解触媒を調製した。
[Example 15]
An ammonia decomposition catalyst for microwave heating was prepared in the same manner as in Example 1 except that yttria-stable zirconia (YSZ) (nano powder manufactured by Aldrich) was used instead of γ-alumina.

実施例1と同様に、実施例14及び15で得られたマイクロ波加熱用アンモニア分解触媒のアンモニア転化率(%)を測定した。結果を図6に示す。また、この時のマイクロ波加熱用アンモニア分解触媒の温度(℃)とマイクロ波出力(W)との関係を図7に示す。   In the same manner as in Example 1, the ammonia conversion rate (%) of the ammonia decomposition catalyst for microwave heating obtained in Examples 14 and 15 was measured. The results are shown in FIG. FIG. 7 shows the relationship between the temperature (° C.) of the ammonia-decomposing catalyst for microwave heating and the microwave output (W) at this time.

図6の結果より、γ−アルミナ担体を用いた場合と比較し、YSZ担体を用いた場合はアンモニア転化率が向上することが分かった。また、図7の結果より、γ−アルミナ担体を用いた場合は、マイクロ波出力を増加させるにつれマイクロ波加熱用アンモニア分解触媒の温度が高くなり、100Wのマイクロ波出力で550℃まで達することが分かった。一方、YSZ担体を用いた場合は、温度が高くなるほど、必要なマイクロ波出力が小さくなり、27W程度のマイクロ波出力で600℃に達することが分かった。   From the results of FIG. 6, it was found that the ammonia conversion rate was improved when the YSZ support was used, compared with the case where the γ-alumina support was used. Further, from the results of FIG. 7, when the γ-alumina support is used, the temperature of the ammonia decomposition catalyst for microwave heating increases as the microwave output increases, and it can reach 550 ° C. with a microwave output of 100 W. I understood. On the other hand, it was found that when the YSZ carrier was used, the required microwave output decreased as the temperature increased, reaching 600 ° C. with a microwave output of about 27 W.

次に、加熱助剤を添加した場合の担体の影響を調べるため、表5に示すように、マイクロ波加熱用アンモニア分解触媒混合物を調製し、アンモニア転化率を測定した。   Next, in order to investigate the influence of the carrier when the heating aid was added, as shown in Table 5, an ammonia decomposition catalyst mixture for microwave heating was prepared, and the ammonia conversion rate was measured.

Figure 2018023938
Figure 2018023938

[実施例16]
実施例4と同様の方法により、担体としてγ−アルミナを用いたマイクロ波加熱用アンモニア分解触媒混合物を調製した。
[Example 16]
In the same manner as in Example 4, an ammonia decomposition catalyst mixture for microwave heating using γ-alumina as a support was prepared.

[実施例17]
γ−アルミナ担体に代えて、MgO(宇部興産株式会社製 500A)担体を用いた以外は、実施例4と同様にしてマイクロ波加熱用アンモニア分解触媒混合物を調製した。
[Example 17]
An ammonia decomposition catalyst mixture for microwave heating was prepared in the same manner as in Example 4 except that MgO (Ube Industries, Ltd., 500A) support was used instead of the γ-alumina support.

[実施例18]
γ−アルミナ担体に代えて、ZrO(和光純薬工業株式会社製 酸化ジルコニウム(IV))担体を用いた以外は、実施例4と同様にしてマイクロ波加熱用アンモニア分解触媒混合物を調製した。
[Example 18]
An ammonia decomposition catalyst mixture for microwave heating was prepared in the same manner as in Example 4 except that ZrO 2 (zirconium oxide (IV) manufactured by Wako Pure Chemical Industries, Ltd.) support was used instead of the γ-alumina support.

[実施例19]
γ−アルミナ担体に代えて、イットリア安定ジルコニア(YSZ)(アルドリッチ社製 nano powder)担体を用いた以外は、実施例4と同様にしてマイクロ波加熱用アンモニア分解触媒混合物を調製した。
[Example 19]
An ammonia decomposition catalyst mixture for microwave heating was prepared in the same manner as in Example 4 except that yttria stable zirconia (YSZ) (nano powder manufactured by Aldrich) support was used instead of the γ-alumina support.

[実施例20]
γ−アルミナ担体に代えて、NaY型ゼオライト(東ソー株式会社製 HSZ−320AA)担体を用いた以外は、実施例4と同様にしてマイクロ波加熱用アンモニア分解触媒混合物を調製した。
[Example 20]
An ammonia decomposition catalyst mixture for microwave heating was prepared in the same manner as in Example 4 except that a NaY type zeolite (HSZ-320AA manufactured by Tosoh Corporation) support was used instead of the γ-alumina support.

[実施例21]
γ−アルミナ担体に代えて、超安定化Y(USY)型ゼオライト(東ソー株式会社製 HSZ−330HUA)担体を用いた以外は、実施例4と同様にしてマイクロ波加熱用アンモニア分解触媒混合物を調製した。
[Example 21]
An ammonia decomposition catalyst mixture for microwave heating was prepared in the same manner as in Example 4 except that a super-stabilized Y (USY) type zeolite (HSZ-330HUA manufactured by Tosoh Corporation) support was used instead of the γ-alumina support. did.

[実施例22]
γ−アルミナ担体に代えて、P25TiO(ルチル−アナターゼ混晶型TiO アエロジル社製)担体を用いた以外は、実施例4と同様にしてマイクロ波加熱用アンモニア分解触媒混合物を調製した。
[Example 22]
An ammonia decomposition catalyst mixture for microwave heating was prepared in the same manner as in Example 4 except that a P25TiO 2 (rutile-anatase mixed crystal TiO 2 Aerosil) support was used instead of the γ-alumina support.

[実施例23]
γ−アルミナ担体に代えて、ルチル型TiO(関東化学株式会社製 酸化チタン(IV))担体を用いた以外は、実施例4と同様にしてマイクロ波加熱用アンモニア分解触媒混合物を調製した。
[Example 23]
An ammonia decomposition catalyst mixture for microwave heating was prepared in the same manner as in Example 4 except that a rutile TiO 2 (titanium oxide (IV) manufactured by Kanto Chemical Co., Inc.) support was used instead of the γ-alumina support.

[実施例24]
γ−アルミナ担体に代えて、アナターゼ型TiO(和光純薬工業株式会社製 酸化チタン(IV)) 担体を用いた以外は、実施例4と同様にしてマイクロ波加熱用アンモニア分解触媒混合物を調製した。
[Example 24]
An ammonia decomposition catalyst mixture for microwave heating was prepared in the same manner as in Example 4 except that an anatase TiO 2 (titanium oxide (IV) manufactured by Wako Pure Chemical Industries, Ltd.) support was used instead of the γ-alumina support. did.

実施例11〜13と同様に、実施例16〜24で得られたマイクロ波加熱用アンモニア分解触媒混合物を、マイクロ波で加熱した場合と、電気炉で加熱した場合のアンモニア転化率(%)を測定した。結果を図8に示す。なお、図8のアンモニア転化率は、500℃で加熱した場合の結果を棒グラフで示している。また、この時のマイクロ波加熱用アンモニア分解触媒混合物の温度(℃)とマイクロ波出力(W)との関係を図9に示す。   Similarly to Examples 11 to 13, the ammonia conversion catalyst mixture for microwave heating obtained in Examples 16 to 24 was converted into an ammonia conversion rate (%) when heated by microwave and when heated in an electric furnace. It was measured. The results are shown in FIG. In addition, the ammonia conversion rate of FIG. 8 has shown the result at the time of heating at 500 degreeC with the bar graph. Further, FIG. 9 shows the relationship between the temperature (° C.) of the ammonia decomposition catalyst mixture for microwave heating at this time and the microwave output (W).

図8の結果より、電気炉で加熱するより、マイクロ波で加熱した方が、マイクロ波加熱用アンモニア分解触媒混合物のアンモニア転化率が高いことが分かった。特に、γ−アルミナ担体、YSZ担体、USY担体を用いた場合が、アンモニア転化率が高かった。また、図9の結果より、用いる担体によって、マイクロ波出力が異なることが分かった。この時、特にZrO担体、NaY型ゼオライト担体、USY型ゼオライト担体、TiO担体を用いた場合に特に消費電力が低いことが分かった。 From the result of FIG. 8, it was found that the ammonia conversion rate of the ammonia-decomposing catalyst mixture for microwave heating was higher when heated with microwaves than when heated with an electric furnace. In particular, when the γ-alumina carrier, YSZ carrier, and USY carrier were used, the ammonia conversion rate was high. Moreover, it turned out that a microwave output changes with the support | carrier used from the result of FIG. At this time, it was found that the power consumption was particularly low when a ZrO 2 carrier, NaY-type zeolite carrier, USY-type zeolite carrier, and TiO 2 carrier were used.

次に、キレート剤の影響を調べるため、表6に示すように、マイクロ波加熱用アンモニア分解触媒を調製し、アンモニア転化率を測定した。   Next, in order to investigate the influence of the chelating agent, as shown in Table 6, an ammonia decomposition catalyst for microwave heating was prepared, and the ammonia conversion rate was measured.

Figure 2018023938
Figure 2018023938

[実施例25]
実施例1と同様の方法により、担体としてキレート処理をしていないγ−アルミナを用いてマイクロ波加熱用アンモニア分解触媒を調製した。
[Example 25]
By the same method as in Example 1, an ammonia decomposition catalyst for microwave heating was prepared using γ-alumina not chelated as a carrier.

[実施例26]
キレート処理していないγ−アルミナ担体に代えて、キレート処理したγ−アルミナ担体を用いた以外は、実施例1と同様にしてマイクロ波加熱用アンモニア分解触媒を調製した。キレート処理は、含浸法(incipient−wetness法)にて行った。具体的には、γ−アルミナに、エチレンジアミン四酢酸(EDTA)(株式会社同仁化学研究所製 EDTA・2Na)を含浸させ、60℃で予備乾燥後、さらに110℃で本乾燥を行った。得られたマイクロ波加熱用アンモニア分解触媒は、γ−アルミナを95質量部、コバルトを5質量部、EDTAの乾燥体を5質量部含んでいた。
[Example 26]
An ammonia decomposition catalyst for microwave heating was prepared in the same manner as in Example 1 except that a chelate-treated γ-alumina support was used instead of the chelate-treated γ-alumina support. The chelate treatment was performed by an impregnation method (incipient-wetness method). Specifically, γ-alumina was impregnated with ethylenediaminetetraacetic acid (EDTA) (EDTA · 2Na manufactured by Dojin Chemical Laboratory Co., Ltd.), preliminarily dried at 60 ° C, and further dried at 110 ° C. The obtained ammonia-decomposing catalyst for microwave heating contained 95 parts by mass of γ-alumina, 5 parts by mass of cobalt, and 5 parts by mass of a dried product of EDTA.

実施例1と同様に、実施例25及び26で得られたマイクロ波加熱用アンモニア分解触媒のアンモニア転化率(%)を測定した。結果を図10に示す。また、この時のマイクロ波加熱用アンモニア分解触媒の温度(℃)とマイクロ波出力(W)との関係を図11に示す。   In the same manner as in Example 1, the ammonia conversion rate (%) of the ammonia decomposition catalyst for microwave heating obtained in Examples 25 and 26 was measured. The results are shown in FIG. Further, FIG. 11 shows the relationship between the temperature (° C.) of the ammonia decomposition catalyst for microwave heating and the microwave output (W) at this time.

図10の結果より、キレート処理した実施例26の触媒は、キレート処理していない実施例25の触媒より、アンモニア転化率が向上することが分かった。おそらく、担体表面での金属粒子の分散性が高くなり、金属粒子の粒径が小さくなり、金属粒子の表面積が増えたためと考えられる。また、図11の結果より、キレート処理した実施例26の触媒は、キレート処理していない実施例25の触媒より、必要なマイクロ波出力が大幅に低減することが分かった。   From the results shown in FIG. 10, it was found that the chelate-treated catalyst of Example 26 was improved in ammonia conversion rate than the catalyst of Example 25 not chelated. This is probably because the dispersibility of the metal particles on the surface of the carrier is increased, the particle size of the metal particles is reduced, and the surface area of the metal particles is increased. Further, from the results of FIG. 11, it was found that the required microwave output of the catalyst of Example 26 subjected to chelation treatment was significantly reduced as compared with the catalyst of Example 25 not subjected to chelation treatment.

次に、助触媒の影響を調べるため、表7に示すように、マイクロ波加熱用アンモニア分解触媒混合物を調製し、アンモニア転化率を測定した。   Next, in order to investigate the influence of the promoter, as shown in Table 7, an ammonia decomposition catalyst mixture for microwave heating was prepared, and the ammonia conversion rate was measured.

Figure 2018023938
Figure 2018023938

[実施例27]
実施例4と同様の方法により、助触媒を担持しないマイクロ波加熱用アンモニア分解触媒混合物を調製した。
[Example 27]
In the same manner as in Example 4, an ammonia decomposition catalyst mixture for microwave heating not supporting a promoter was prepared.

[実施例28]
コバルトに加え、γ−アルミナにマグネシウムを助触媒として担持させた以外は、実施例4と同様の方法によりマイクロ波加熱用アンモニア分解触媒混合物を調製した。
[Example 28]
An ammonia decomposition catalyst mixture for microwave heating was prepared in the same manner as in Example 4 except that magnesium was supported on γ-alumina as a promoter in addition to cobalt.

具体的には、実施例4と同様にしてコバルト担持γ−アルミナを準備した。そして、Mg(NO・6HO(和光純薬工業株式会社製 含量99.5%)を用い、含浸法にて、コバルト担持γ−アルミナに担持させ、110℃で12時間乾燥、500℃で3時間焼成した。焼成物は室温まで冷却した後、ペレット状に加圧成形した。その後、ペレット状に加圧成形した焼成物を粉砕し、250〜500μmになるようにふるい分け、コバルト−マグネシウム担持γ−アルミナを得た。この時、コバルト−マグネシウム担持γ−アルミナは、γ−アルミナを90質量%、コバルトを5質量%、マグネシウムを5質量%含んでいた。その後、実施例4と同様の方法にて、コバルト−マグネシウム担持γ−アルミナにSiC加熱助剤を加え、600℃、1気圧のH流通雰囲気中で2時間放置する水素前処理を行い、マイクロ波加熱用アンモニア分解触媒混合物を調製した。 Specifically, cobalt-supported γ-alumina was prepared in the same manner as in Example 4. Then, using Mg (NO 3 ) 2 · 6H 2 O (content 99.5%, manufactured by Wako Pure Chemical Industries, Ltd.), it was supported on cobalt-supported γ-alumina by an impregnation method, and dried at 110 ° C. for 12 hours. Firing was performed at 500 ° C. for 3 hours. The fired product was cooled to room temperature and then pressed into a pellet. Thereafter, the fired product pressure-molded into pellets was pulverized and sieved to 250 to 500 μm to obtain cobalt-magnesium-supported γ-alumina. At this time, the cobalt-magnesium-supported γ-alumina contained 90% by mass of γ-alumina, 5% by mass of cobalt, and 5% by mass of magnesium. Thereafter, in the same manner as in Example 4, a SiC heating aid was added to cobalt-magnesium-supported γ-alumina, followed by hydrogen pretreatment that was allowed to stand for 2 hours in an H 2 flow atmosphere at 600 ° C. and 1 atm. An ammonia cracking catalyst mixture for wave heating was prepared.

[実施例29]
Mg(NO・6HOに代えて、KNO(和光純薬工業株式会社製 特級)を用いた以外は、実施例28と同様にしてマイクロ波加熱用アンモニア分解触媒混合物を調製した。
[Example 29]
An ammonia decomposition catalyst mixture for microwave heating was prepared in the same manner as in Example 28 except that KNO 3 (special grade manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of Mg (NO 3 ) 2 · 6H 2 O. .

[実施例30]
Mg(NO・6HOに代えて、Ca(NO・4HO(和光純薬工業株式会社製 含量99.9%)を用いた以外は、実施例28と同様にしてマイクロ波加熱用アンモニア分解触媒混合物を調製した。
[Example 30]
Mg (NO 3) in place of 2 · 6H 2 O, except for using Ca (NO 3) 2 · 4H 2 O ( Wako Pure Chemical Industries, Ltd. content 99.9%) are in the same manner as in Example 28 Thus, an ammonia decomposition catalyst mixture for microwave heating was prepared.

[実施例31]
Mg(NO・6HOに代えて、RbNO(和光純薬工業株式会社製)を用いた以外は、実施例28と同様にしてマイクロ波加熱用アンモニア分解触媒混合物を調製した。
[Example 31]
An ammonia decomposition catalyst mixture for microwave heating was prepared in the same manner as in Example 28 except that RbNO 3 (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of Mg (NO 3 ) 2 · 6H 2 O.

実施例1と同様に、実施例27〜31で得られたマイクロ波加熱用アンモニア分解触媒混合物のアンモニア転化率(%)を測定した。結果を図12に示す。なお、図12のアンモニア転化率は、350℃及び450℃で加熱した場合の結果を棒グラフで示している。また、この時のマイクロ波加熱用アンモニア分解触媒混合物の温度(℃)とマイクロ波出力(W)との関係を図13に示す。   Similarly to Example 1, the ammonia conversion rate (%) of the ammonia-decomposing catalyst mixture for microwave heating obtained in Examples 27 to 31 was measured. The results are shown in FIG. In addition, the ammonia conversion rate of FIG. 12 has shown the result at the time of heating at 350 degreeC and 450 degreeC with the bar graph. Further, FIG. 13 shows the relationship between the temperature (° C.) of the ammonia decomposition catalyst mixture for microwave heating and the microwave output (W) at this time.

図12の結果より、アルカリ金属を含む助触媒を担持させることにより、アンモニア転化率が向上する場合があることが分かった。特にカリウムを助触媒として担持させた場合に、アンモニア転化率が向上することが分かった。また、図13の結果より、アルカリ金属を含む助触媒を担持させることにより、加熱に必要なマイクロ波出力を低減させることが可能であることが分かった。この場合も、特にカリウムを助触媒として担持させた場合に、マイクロ波出力を低減できることが分かった。   From the results of FIG. 12, it was found that the ammonia conversion rate may be improved by supporting a promoter containing an alkali metal. In particular, it has been found that the conversion of ammonia is improved when potassium is supported as a promoter. From the results shown in FIG. 13, it was found that the microwave output necessary for heating can be reduced by supporting a promoter containing an alkali metal. Also in this case, it was found that the microwave output can be reduced particularly when potassium is supported as a promoter.

前処理の影響を調べるため、表8に示すように、マイクロ波加熱用アンモニア分解触媒混合物を調製した。   In order to investigate the influence of the pretreatment, as shown in Table 8, an ammonia decomposition catalyst mixture for microwave heating was prepared.

Figure 2018023938
Figure 2018023938

[実施例32]
実施例4と同様の方法にて、600℃、1気圧のH流通雰囲気中で2時間放置する水素前処理を行い、マイクロ波加熱用アンモニア分解触媒混合物を調製した。
[Example 32]
In the same manner as in Example 4, hydrogen pretreatment was performed by leaving in a H 2 flowing atmosphere at 600 ° C. and 1 atm for 2 hours to prepare an ammonia decomposition catalyst mixture for microwave heating.

[実施例33]
に代えて、NHを用いて前処理した以外は、実施例4と同様の方法にてマイクロ波加熱用アンモニア分解触媒混合物を調製した。
[Example 33]
An ammonia decomposition catalyst mixture for microwave heating was prepared in the same manner as in Example 4 except that NH 3 was pretreated instead of H 2 .

[実施例34]
実施例1と同様の方法にて、600℃、1気圧のH流通雰囲気中で2時間放置する水素前処理を行い、マイクロ波加熱用アンモニア分解触媒を調製した。
[Example 34]
In the same manner as in Example 1, hydrogen pretreatment was performed for 2 hours in a H 2 flowing atmosphere at 600 ° C. and 1 atm to prepare an ammonia decomposition catalyst for microwave heating.

[実施例35]
に代えて、NHを用いて前処理した以外は、実施例1と同様の方法にてマイクロ波加熱用アンモニア分解触媒を調製した。
[Example 35]
An ammonia decomposition catalyst for microwave heating was prepared in the same manner as in Example 1 except that NH 3 was pretreated instead of H 2 .

実施例11〜13と同様に、実施例32及び33で得られたマイクロ波加熱用アンモニア分解触媒混合物をマイクロ波で加熱した場合のアンモニア転化率(%)を測定した。同様に、実施例34及び35で得られたマイクロ波加熱用アンモニア分解触媒を電気炉で加熱した場合のアンモニア転化率(%)を測定した。結果を図14に示す。   Similarly to Examples 11 to 13, the ammonia conversion rate (%) was measured when the ammonia-decomposing catalyst mixture for microwave heating obtained in Examples 32 and 33 was heated by microwaves. Similarly, the ammonia conversion rate (%) when the microwave decomposition ammonia decomposition catalyst obtained in Examples 34 and 35 was heated in an electric furnace was measured. The results are shown in FIG.

図14の結果より、電気炉で加熱をした場合は、水素前処理に代えてアンモニア前処理をしても、アンモニア転化率に大きな差はなかった。しかし、マイクロ波で加熱した場合は、アンモニア前処理の方が、水素前処理よりもアンモニア転化率が向上することが分かった。   From the results shown in FIG. 14, when heating was performed in an electric furnace, there was no significant difference in ammonia conversion even when ammonia pretreatment was performed instead of hydrogen pretreatment. However, when heated with microwaves, it has been found that ammonia pretreatment improves ammonia conversion over hydrogen pretreatment.

実施例33のアンモニア転化率が向上した原因を調査するため、以下のような分析を行った。   In order to investigate the cause of the improved ammonia conversion rate in Example 33, the following analysis was performed.

<前処理後のマイクロ波加熱用アンモニア分解触媒の表面分析>
実施例32及び33で得られたマイクロ波加熱用アンモニア分解触媒混合物の表面をXPSで分析した。結果を表9に示す。
<Surface analysis of ammonia decomposition catalyst for microwave heating after pretreatment>
The surface of the ammonia-decomposing catalyst mixture for microwave heating obtained in Examples 32 and 33 was analyzed by XPS. The results are shown in Table 9.

Figure 2018023938
Figure 2018023938

<昇温脱離ガス分析>
実施例33で得られたマイクロ波加熱用アンモニア分解触媒混合物について、昇温脱離ガス分析を行った。結果を図15に示す。図15中、質量数2のスペクトルはH、質量数16のスペクトルはNH 、質量数17のスペクトルはNHとOH、質量数18のスペクトルはHO、質量数28のスペクトルはNに対応する。
<Temperature desorption gas analysis>
The microwave desorption catalyst mixture for microwave heating obtained in Example 33 was subjected to temperature programmed desorption gas analysis. The results are shown in FIG. In FIG. 15, the mass number 2 spectrum is H 2 , the mass number 16 spectrum is NH 2 + , the mass number 17 spectrum is NH 3 and OH , the mass number 18 spectrum is H 2 O, and the mass number 28 spectrum. Corresponds to N 2 .

また、図15中、250℃のピークは、マイクロ波加熱用アンモニア分解触媒混合物に、物理的に吸着したアンモニアの離脱によるものである。また、400℃のピークは、窒素を含む表面吸着種の分解によるものである。これはアンモニア処理によって表面の窒素濃度が増加したXPSの結果と一致する。   In FIG. 15, the peak at 250 ° C. is due to the release of ammonia physically adsorbed on the ammonia-decomposing catalyst mixture for microwave heating. The peak at 400 ° C. is due to decomposition of the surface adsorbed species containing nitrogen. This is consistent with the XPS results in which the surface nitrogen concentration was increased by the ammonia treatment.

表9や図15の結果より、マイクロ波加熱用アンモニア分解触媒混合物の表面に窒素を含む吸着種が存在し、これがアンモニア転化率向上に作用することが分かった。   From the results of Table 9 and FIG. 15, it was found that adsorbed species containing nitrogen were present on the surface of the ammonia-decomposing catalyst mixture for microwave heating, which acted to improve the ammonia conversion rate.

以上、本発明を実施形態によって説明したが、本発明はこれらに限定されるものではなく、本発明の要旨の範囲内で種々の変形が可能である。   As mentioned above, although this invention was demonstrated by embodiment, this invention is not limited to these, A various deformation | transformation is possible within the range of the summary of this invention.

Claims (7)

担体と、
前記担体上に担持され、ニッケル、コバルト及び鉄からなる群より選択される少なくとも1種の遷移金属を主成分とする金属粒子と、
を備えることを特徴とするマイクロ波加熱用アンモニア分解触媒。
A carrier;
Metal particles based on at least one transition metal selected from the group consisting of nickel, cobalt and iron supported on the carrier;
An ammonia decomposition catalyst for microwave heating, comprising:
前記担体は、典型金属の多孔質酸化物及び遷移金属の多孔質酸化物の少なくともいずれか一方であることを特徴とする請求項1に記載のマイクロ波加熱用アンモニア分解触媒。   The ammonia decomposition catalyst for microwave heating according to claim 1, wherein the carrier is at least one of a porous oxide of a typical metal and a porous oxide of a transition metal. 前記担体は、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、イットリア安定ジルコニア、NaY型ゼオライト、超安定化Y型ゼオライト、ルチル型酸化チタン、アナターゼ型酸化チタン及びルチル−アナターゼ混晶型酸化チタンからなる群より選択される少なくとも1種の多孔質酸化物であることを特徴とする請求項1又は2に記載のマイクロ波加熱用アンモニア分解触媒。   The carrier is made of aluminum oxide, magnesium oxide, zirconium oxide, yttria stable zirconia, NaY zeolite, ultra-stabilized Y zeolite, rutile titanium oxide, anatase titanium oxide and rutile-anatase mixed crystal titanium oxide. The ammonia decomposition catalyst for microwave heating according to claim 1 or 2, wherein the catalyst is at least one porous oxide selected. 前記担体又は金属粒子上に、アルカリ金属及びアルカリ土類金属の少なくともいずれか一方を含む助触媒がさらに担持されることを特徴とする請求項1〜3のいずれか1項に記載のマイクロ波加熱用アンモニア分解触媒。   The microwave heating according to any one of claims 1 to 3, wherein a promoter containing at least one of an alkali metal and an alkaline earth metal is further supported on the carrier or the metal particles. Ammonia decomposition catalyst. アンモニア前処理されることを特徴とする請求項1〜4のいずれか1項に記載のマイクロ波加熱用アンモニア分解触媒。   The ammonia decomposition catalyst for microwave heating according to any one of claims 1 to 4, which is pretreated with ammonia. 前記担体は、キレート処理された担体であることを特徴とする請求項1〜5のいずれか1項に記載のマイクロ波加熱用アンモニア分解触媒。   The ammonia decomposition catalyst for microwave heating according to any one of claims 1 to 5, wherein the carrier is a chelate-treated carrier. 請求項1〜6のいずれか1項に記載のマイクロ波加熱用アンモニア分解触媒と、加熱助剤と、を備えることを特徴とするマイクロ波加熱用アンモニア分解触媒混合物。   An ammonia decomposition catalyst mixture for microwave heating, comprising the ammonia decomposition catalyst for microwave heating according to any one of claims 1 to 6 and a heating aid.
JP2016157735A 2016-08-10 2016-08-10 Ammonia decomposition catalyst for microwave heating and its mixture Active JP6789550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016157735A JP6789550B2 (en) 2016-08-10 2016-08-10 Ammonia decomposition catalyst for microwave heating and its mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016157735A JP6789550B2 (en) 2016-08-10 2016-08-10 Ammonia decomposition catalyst for microwave heating and its mixture

Publications (2)

Publication Number Publication Date
JP2018023938A true JP2018023938A (en) 2018-02-15
JP6789550B2 JP6789550B2 (en) 2020-11-25

Family

ID=61193418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016157735A Active JP6789550B2 (en) 2016-08-10 2016-08-10 Ammonia decomposition catalyst for microwave heating and its mixture

Country Status (1)

Country Link
JP (1) JP6789550B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019085301A (en) * 2017-11-07 2019-06-06 国立研究開発法人産業技術総合研究所 Hydrogen production apparatus
CN110270340A (en) * 2019-06-19 2019-09-24 福州大学 A kind of ammonia decomposition catalyzer and its preparation method and application
CN110270341A (en) * 2019-06-19 2019-09-24 福州大学 A kind of catalyst and its preparation method and application
JP2020079179A (en) * 2018-11-12 2020-05-28 国立研究開発法人産業技術総合研究所 Hydrogen production apparatus
CN115106117A (en) * 2022-07-29 2022-09-27 无锡威孚环保催化剂有限公司 Preparation method of catalyst for treating NO

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248935A (en) * 1993-02-19 1994-09-06 Matsushita Electric Ind Co Ltd High-frequency heating element having catalytic function
JP2004307326A (en) * 2003-03-25 2004-11-04 Ngk Insulators Ltd Method for recovering energy from organic waste
JP2008194545A (en) * 2006-05-12 2008-08-28 Osada Giken Co Ltd Method for oxidizing or decomposing target substance
JP2009011938A (en) * 2007-07-04 2009-01-22 Muneyoshi Yamada Catalyst for reducing carbon monoxide, its manufacturing method and method for producing hydrocarbon
JP2009274881A (en) * 2008-05-12 2009-11-26 Toyota Central R&D Labs Inc Apparatus and method for fuel reforming
JP2010094668A (en) * 2008-09-17 2010-04-30 Nippon Shokubai Co Ltd Catalyst for ammonia decomposition, process for producing the same, and method for treating ammonia
JP2016064407A (en) * 2014-09-16 2016-04-28 国立大学法人山梨大学 Ammonia decomposition catalyst and method for producing the same, and apparatus using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248935A (en) * 1993-02-19 1994-09-06 Matsushita Electric Ind Co Ltd High-frequency heating element having catalytic function
JP2004307326A (en) * 2003-03-25 2004-11-04 Ngk Insulators Ltd Method for recovering energy from organic waste
JP2008194545A (en) * 2006-05-12 2008-08-28 Osada Giken Co Ltd Method for oxidizing or decomposing target substance
JP2009011938A (en) * 2007-07-04 2009-01-22 Muneyoshi Yamada Catalyst for reducing carbon monoxide, its manufacturing method and method for producing hydrocarbon
JP2009274881A (en) * 2008-05-12 2009-11-26 Toyota Central R&D Labs Inc Apparatus and method for fuel reforming
JP2010094668A (en) * 2008-09-17 2010-04-30 Nippon Shokubai Co Ltd Catalyst for ammonia decomposition, process for producing the same, and method for treating ammonia
JP2016064407A (en) * 2014-09-16 2016-04-28 国立大学法人山梨大学 Ammonia decomposition catalyst and method for producing the same, and apparatus using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019085301A (en) * 2017-11-07 2019-06-06 国立研究開発法人産業技術総合研究所 Hydrogen production apparatus
JP2020079179A (en) * 2018-11-12 2020-05-28 国立研究開発法人産業技術総合研究所 Hydrogen production apparatus
JP7161380B2 (en) 2018-11-12 2022-10-26 国立研究開発法人産業技術総合研究所 Hydrogen production equipment
CN110270340A (en) * 2019-06-19 2019-09-24 福州大学 A kind of ammonia decomposition catalyzer and its preparation method and application
CN110270341A (en) * 2019-06-19 2019-09-24 福州大学 A kind of catalyst and its preparation method and application
CN110270340B (en) * 2019-06-19 2021-01-29 福州大学 Ammonia decomposition catalyst and preparation method and application thereof
CN115106117A (en) * 2022-07-29 2022-09-27 无锡威孚环保催化剂有限公司 Preparation method of catalyst for treating NO
CN115106117B (en) * 2022-07-29 2024-02-09 无锡威孚环保催化剂有限公司 Preparation method of catalyst for treating NO

Also Published As

Publication number Publication date
JP6789550B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
JP6789550B2 (en) Ammonia decomposition catalyst for microwave heating and its mixture
Chen et al. Plasma assisted catalytic decomposition of CO2
US11110434B2 (en) Ruthenium-based catalyst for hydrogen production from ammonia decomposition, preparation method therefor and application thereof
US7566440B2 (en) Metal oxide catalysts
Yin et al. Photocatalytic oxidation of NO x under visible LED light irradiation over nitrogen-doped titania particles with iron or platinum loading
Zhang et al. Surface characterization studies of CuO-CeO2-ZrO2 catalysts for selective catalytic reduction of NO with NH3
Zhu et al. High Performance and Stability of the Pt‐W/ZSM‐5 Catalyst for the Total Oxidation of Propane: The Role of Tungsten
CN104474890B (en) A kind of method of Engineering of Supported Metal Oxide Catalysts catalysis Direct Resolution NO denitration
CN103495427A (en) Method for using low-temperature plasma to prepare supported metal sulfide catalyst
Fan et al. Conversion of dilute nitrous oxide (N 2 O) in N 2 and N 2–O 2 mixtures by plasma and plasma-catalytic processes
CN106669668A (en) Catalyst for ammonia odor gas purification as well as preparation method and application of catalyst
EP1896178A1 (en) Metal oxide catalyst for hydrogen generation and method of producing the same
CN103374430B (en) High-stability oxygen carrier, preparation method and applications
CN113457657A (en) Carbon-based methanol hydrogen production catalyst and preparation method and application thereof
CN105772072A (en) Catalyst suitable for low-temperature plasma treatment of organic waste gas and preparation method and application of catalyst
Zhang et al. Enhanced selective catalytic reduction of NOx with NH3 over homoatomic dinuclear sites in defective α-Fe2O3
Hao et al. Enhanced removal of elemental mercury using MnO2-modified molecular sieve under microwave irradiation
Lan et al. Synthesis of ammonia directly from wet air using Sm 0.6 Ba 0.4 Fe 0.8 Cu 0.2 O 3− δ as the catalyst
CN109772442B (en) Supported composite transition metal oxide, preparation method and application as catalyst
Zhao et al. The effect of oxygen vacancies and fluorine dopant over adsorption behaviours of V 2 O 5/TiO 2 for NO removal
JP2018038990A (en) Catalyst for water splitting, hydrogen production method, and hydrogen production apparatus
van Raak et al. Prevailing surface reactions in the plasma-catalytic ammonia synthesis with Ru/CeO2 and Ru/Ti-CeO2
Wang et al. Design strategies for a denitrification catalyst with improved resistance against alkali poisoning: the significance of nanoconfining spaces and acid–base balance
Meng et al. Plasma‐driven CO2 hydrogenation to CH3OH over Fe2O3/γ‐Al2O3 catalyst
Guo et al. Experimental study of volatile organic compounds catalytic combustion on Cu‐Mn catalysts with different carriers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201026

R150 Certificate of patent or registration of utility model

Ref document number: 6789550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250