JP2002085983A5 - - Google Patents

Download PDF

Info

Publication number
JP2002085983A5
JP2002085983A5 JP2000281936A JP2000281936A JP2002085983A5 JP 2002085983 A5 JP2002085983 A5 JP 2002085983A5 JP 2000281936 A JP2000281936 A JP 2000281936A JP 2000281936 A JP2000281936 A JP 2000281936A JP 2002085983 A5 JP2002085983 A5 JP 2002085983A5
Authority
JP
Japan
Prior art keywords
carbon monoxide
gas
catalyst
fuel
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000281936A
Other languages
Japanese (ja)
Other versions
JP2002085983A (en
JP4240787B2 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from JP2000281936A external-priority patent/JP4240787B2/en
Priority to JP2000281936A priority Critical patent/JP4240787B2/en
Priority to CNB018158293A priority patent/CN1213804C/en
Priority to CNB2005100670697A priority patent/CN100338809C/en
Priority to CA002422795A priority patent/CA2422795C/en
Priority to EP09015103.6A priority patent/EP2174709B1/en
Priority to US10/380,811 priority patent/US7247592B2/en
Priority to CNA2005100670682A priority patent/CN1724152A/en
Priority to EP01965667.7A priority patent/EP1325778B1/en
Priority to KR1020077027987A priority patent/KR20070117007A/en
Priority to KR1020037001932A priority patent/KR100840629B1/en
Priority to PCT/JP2001/008023 priority patent/WO2002022256A1/en
Priority to KR1020077027986A priority patent/KR100942478B1/en
Priority to EP09015102A priority patent/EP2168679B1/en
Publication of JP2002085983A publication Critical patent/JP2002085983A/en
Publication of JP2002085983A5 publication Critical patent/JP2002085983A5/ja
Priority to US11/509,257 priority patent/US7658908B2/en
Priority to US11/509,258 priority patent/US7544634B2/en
Priority to US11/509,259 priority patent/US7544341B2/en
Publication of JP4240787B2 publication Critical patent/JP4240787B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0015】
また、この目的を達成するための本発明の燃料電池システムの運転方法の特徴手段は、請求項8に記載してあるように、燃料電池に供給される水素を主成分とする燃料ガスの供給路に、上流側から、前記燃料ガス中の一酸化炭素を二酸化炭素に変成する一酸化炭素変成触媒を収納した一酸化炭素変成器と、前記燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を収納した一酸化炭素除去器とを、記載順に備えた燃料電池システムの運転方法であって、
前記一酸化炭素変成器及び前記一酸化炭素除去器に、有限値以上10体積%以下の水素を含み残余ガスが不活性ガスである混合ガスを供給して、前記一酸化炭素変成触媒を還元すると共に一酸化炭素除去触媒を活性化させる触媒活性化工程を実行した後、
前記燃料ガスに対する、一酸化炭素変成及び一酸化炭素酸化除去を開始する点にある。
尚、前記一酸化炭素除去触媒を前記混合ガスによって、80〜400℃で活性化させることが好ましい。より好ましくは、80〜250℃で活性化させ、更に好ましくは120〜250℃で活性化させる。
[0015]
In order to achieve this object, the characterizing means of the method of operating a fuel cell system according to the present invention is, as stated in claim 8, the provision of a fuel gas mainly composed of hydrogen supplied to the fuel cell. From the upstream side, a carbon monoxide shifter storing a carbon monoxide shift catalyst for converting carbon monoxide in the fuel gas to carbon dioxide in an upstream path, and monooxidation to oxidize and remove carbon monoxide in the fuel gas What is claimed is: 1. A method of operating a fuel cell system comprising a carbon monoxide remover containing a carbon removal catalyst, in the order listed,
The carbon monoxide shift converter and the carbon monoxide remover are supplied with a mixed gas containing hydrogen of a finite value or more and 10% by volume or less and the remaining gas being an inert gas to reduce the carbon monoxide shift catalyst After the catalyst activation step of activating the carbon monoxide removal catalyst with
The point is to start carbon monoxide conversion and carbon monoxide oxidation removal for the fuel gas.
Preferably, the carbon monoxide removal catalyst is activated at 80 to 400 ° C. by the mixed gas. More preferably, it is activated at 80 to 250 ° C, and more preferably at 120 to 250 ° C.

【0016】
また、この目的を達成するための本発明の燃料電池システムの運転方法の特徴手段は、請求項9に記載してあるように、燃料電池に供給される水素を主成分とする燃料ガスの供給路に、上流側から、メタノールを水素に変成するメタノール改質触媒を収納したメタノール改質器と、前記燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を収納した一酸化炭素除去器とを、記載順に備えた燃料電池システムの運転方法であって、
前記メタノール改質器及び前記一酸化炭素除去器に、有限値以上10体積%以下の水素を含み残余ガスが不活性ガスである混合ガスを供給して、前記メタノール改質触媒を還元すると共に一酸化炭素除去触媒を活性化させる触媒活性化工程を実行した後、
前記燃料ガスに対する、メタノール改質及び一酸化炭素酸化除去を開始する点にある。
尚、前記一酸化炭素除去触媒を前記混合ガスによって、80〜400℃で活性化させることが好ましい。より好ましくは、80〜250℃で活性化させ、更に好ましくは120〜250℃で活性化させる。
そして、これらの作用効果は、以下の通りである。
[0016]
In order to achieve this object, the characterizing means of the method of operating a fuel cell system of the present invention is, as stated in claim 9, the supply of fuel gas mainly composed of hydrogen supplied to the fuel cell. From the upstream side, a methanol reformer containing a methanol reforming catalyst that converts methanol into hydrogen, and a carbon monoxide removal catalyst containing a carbon monoxide removal catalyst that oxidizes and removes carbon monoxide in the fuel gas And an operating method of a fuel cell system including the
The methanol reformer and the carbon monoxide remover are supplied with a mixed gas containing hydrogen of a finite value or more and 10 vol% or less and the remaining gas being an inert gas to reduce the methanol reforming catalyst and After performing a catalyst activation step to activate the carbon monoxide removal catalyst,
The point is to start methanol reforming and carbon monoxide oxidation removal for the fuel gas.
Preferably, the carbon monoxide removal catalyst is activated at 80 to 400 ° C. by the mixed gas. More preferably, it is activated at 80 to 250 ° C, and more preferably at 120 to 250 ° C.
And these effects are as follows.

【0025】
また、請求項8に記載してあるように、燃料電池に供給される水素を主成分とする燃料ガスの供給路に、上流側から、前記燃料ガス中の一酸化炭素を二酸化炭素に変成する一酸化炭素変成触媒を収納した一酸化炭素変成器と、前記燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を収納した一酸化炭素除去器とを、記載順に備えた燃料電池システムを運転するにあたって、前記一酸化炭素変成器及び前記一酸化炭素除去器に、有限値以上10体積%以下の水素を含み残余ガスが不活性ガスである混合ガスを供給して、前記一酸化炭素変成触媒を還元すると共に一酸化炭素除去触媒を活性化させる触媒活性化工程を実行した後、前記燃料ガスに対する、一酸化炭素変成及び一酸化炭素酸化除去を開始すると、前記一酸化炭素除去器は、運転スタート時から、改質ガスの一酸化炭素濃度を所定値以下にまで低減することができるようになり、前記固体高分子型燃料電池にも供給可能な高品質な改質ガスを、副反応による水素の損失を極力抑制した状態で得ることができる。また、実施例から明らかなように、前記一酸化炭素除去触媒の初期活性が充分に得られる活性化温度が、水素を含まない不活性ガスのみを供したときと比べて低下するので、エネルギー消費を抑制可能である。
さらには、かかる組成のガスは、前記一酸化炭素除去器の上流側に設けられる前記一酸化炭素変成器の還元に供するガスと共用することができるという格別な効果を有する。従って、前記一酸化炭素変成触媒の還元と前記一酸化炭素除去触媒の活性化を同時に連続して行なうことができ、燃料改質装置の使用前処理に、活性化のために必要な設備を設けるに際し、例えば、前記一酸化炭素変成触媒の還元設備と、前記一酸化炭素除去触媒の前処理設備及び資材を別々に備える必要がなくなる。
[0025]
According to the eighth aspect of the present invention, carbon monoxide in the fuel gas is transformed into carbon dioxide from the upstream side in the fuel gas supply path mainly composed of hydrogen supplied to the fuel cell. A fuel cell system comprising a carbon monoxide shifter containing a carbon monoxide shift catalyst, and a carbon monoxide remover containing a carbon monoxide removing catalyst for oxidizing and removing carbon monoxide in the fuel gas in the order described To operate the carbon monoxide converter and the carbon monoxide remover by supplying a mixed gas containing hydrogen of a finite value or more and 10 vol% or less and the remaining gas being an inert gas. After performing the catalyst activation step of reducing the shift catalyst and activating the carbon monoxide removal catalyst, when carbon monoxide shift and carbon monoxide oxidation removal for the fuel gas are started, the carbon monoxide remover Since the start of operation, the carbon monoxide concentration of the reformed gas can be reduced to a predetermined value or less, and the high quality reformed gas that can be supplied to the polymer electrolyte fuel cell is also subjected to a side reaction. It can obtain in the state which suppressed the loss of hydrogen by. Further, as apparent from the examples, since the activation temperature at which the initial activity of the carbon monoxide removal catalyst is sufficiently obtained is lowered as compared with the case where only the inert gas containing no hydrogen is provided, energy consumption Can be suppressed.
Furthermore, the gas having such a composition has an exceptional effect that it can be shared with the gas to be provided for the reduction of the carbon monoxide converter provided on the upstream side of the carbon monoxide remover. Therefore, the reduction of the carbon monoxide conversion catalyst and the activation of the carbon monoxide removal catalyst can be performed simultaneously and continuously, and the necessary equipment for activation is provided in the pretreatment of use of the fuel reformer. In this case, for example, it is not necessary to separately provide the carbon monoxide conversion catalyst reduction facility and the carbon monoxide removal catalyst pretreatment facility and materials.

【0027】
また、請求項9に記載してあるように、燃料電池に供給される水素を主成分とする燃料ガスの供給路に、上流側から、メタノールを水素に変成するメタノール改質触媒を収納したメタノール改質器と、前記燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を収納した一酸化炭素除去器とを、記載順に備えた燃料電池システムを運転するにあたって、前記メタノール改質器及び前記一酸化炭素除去器に、有限値以上10体積%以下の水素を含み残余ガスが不活性ガスである混合ガスを供給して、前記メタノール改質触媒を還元すると共に一酸化炭素除去触媒を活性化させる触媒活性化工程を実行した後、前記燃料ガスに対する、一酸化炭素変成及び一酸化炭素酸化除去を開始すると、前記一酸化炭素除去器は、運転スタート時から、改質ガスの一酸化炭素濃度を所定値以下にまで低減することができるようになり、前記固体高分子型燃料電池にも供給可能な高品質な改質ガスを、副反応による水素の損失を極力抑制した状態で得ることができる。また、実施例から明らかなように、前記一酸化炭素除去触媒の初期活性が充分に得られる活性化温度が、水素を含まない不活性ガスのみを供したときと比べて低下するので、エネルギー消費を抑制可能である。
さらには、かかる組成のガスは、前記一酸化炭素除去器の上流側に設けられる前記メタノール改質器の還元に供するガスと共用することができるという格別な効果を有する。従って、前記メタノール改質触媒の還元と前記一酸化炭素除去触媒の活性化を同時に連続して行なうことができ、燃料改質装置の使用前処理に、活性化のために必要な設備を設けるに際し、例えば、前記メタノール改質触媒の還元設備と、前記一酸化炭素除去触媒の前処理設備及び資材を別々に備える必要がなくなる。
[0027]
Further, as recited in claim 9, a methanol reforming catalyst for converting methanol into hydrogen from the upstream side is accommodated in a fuel gas supply path mainly composed of hydrogen supplied to a fuel cell. The methanol reformer for operating a fuel cell system provided with a reformer and a carbon monoxide remover containing a carbon monoxide removal catalyst for oxidizing and removing carbon monoxide in the fuel gas in the order described And supplying a mixed gas containing hydrogen of a finite value or more and 10% by volume or less and the remaining gas being an inert gas to the carbon monoxide remover to reduce the methanol reforming catalyst and a carbon monoxide removing catalyst. After performing the catalyst activation step to be activated, carbon monoxide conversion and carbon monoxide oxidation removal for the fuel gas are started, the carbon monoxide remover is operated from the start of the operation, It becomes possible to reduce the concentration of carbon monoxide in the quality gas to a predetermined value or less, and it is possible to supply high quality reformed gas that can be supplied to the solid polymer fuel cell as well as the loss of hydrogen due to side reactions It can be obtained in a suppressed state. Further, as apparent from the examples, since the activation temperature at which the initial activity of the carbon monoxide removal catalyst is sufficiently obtained is lowered as compared with the case where only the inert gas containing no hydrogen is provided, energy consumption Can be suppressed.
Furthermore, the gas having such a composition has an exceptional effect that it can be shared with the gas to be provided for reduction of the methanol reformer provided on the upstream side of the carbon monoxide remover. Therefore, the reduction of the methanol reforming catalyst and the activation of the carbon monoxide removing catalyst can be performed simultaneously and continuously, and the equipment necessary for activation is provided in the pretreatment for use of the fuel reformer. For example, it is not necessary to separately provide the reduction equipment for the methanol reforming catalyst and the pretreatment equipment and materials for the carbon monoxide removal catalyst.

【0046】
〔別実施形態〕
以下に別実施形態を説明する。
本発明に係る一酸化炭素除去器は、その上流に設けられる器材を、特に選ばない。従って、前記燃料ガス改質装置で用いる脱硫触媒、改質触媒、一酸化炭素変成触媒は、その種類を限定する必要はなく、公知のものを使用することができる。
また、本法は、前述したような、天然ガス(メタン)を改質する場合のみならず、メタノール改質により得られた改質ガスに含まれる一酸化炭素を除去する場合にも使用することができる。ここで、有限値以上10体積%以下の水素を含み残余ガスが不活性ガスである混合ガスを活性化に用いれば、前記一酸化炭素除去器を設置すべき燃料改質装置に備えられる他の触媒、例えば、一酸化炭素変成触媒や、アルコール(例えば、メタノール)を改質する場合に用いるアルコール(メタノール)改質触媒の活性化(還元)に使用する代表的な還元ガスとしても使用することができる。従って、前述した一酸化炭素変成触媒やアルコール改質触媒の還元ガスを、同時に、前記一酸化炭素除去触媒の活性化ガスとして共用することができ、また、前記一酸化炭素除去触媒の活性化温度を低下させることができるので熱発生量が少なくてすむ。
なお、前記不活性ガスとして窒素を用いたが、ヘリウムガス、アルゴンガス、二酸化炭素ガスを使用しても、比較的安価で入手・保管も容易であり、また、前記一酸化炭素除去触媒以外の部材を構成する材質とも反応し難いので、腐食等の弊害を招き難い等の効果が得られる。
[0046]
[Another embodiment]
Another embodiment will be described below.
The carbon monoxide remover according to the present invention does not particularly select the equipment provided upstream thereof. Therefore, the desulfurization catalyst, the reforming catalyst, and the carbon monoxide shift catalyst used in the fuel gas reformer need not be limited in type, and known catalysts can be used.
Moreover, this method is used not only when reforming natural gas (methane) as described above, but also when removing carbon monoxide contained in a reformed gas obtained by methanol reforming. Can. Here, if a mixed gas containing hydrogen of a finite value or more and 10% by volume or less and the remaining gas being an inert gas is used for activation, the other carbon monoxide remover should be installed in the fuel reformer to be installed. Also used as a typical reducing gas for activation (reduction) of catalysts such as carbon monoxide shift catalysts or alcohol (methanol) reforming catalysts used in reforming alcohols (eg methanol) Can. Therefore, the reduction gas of the carbon monoxide conversion catalyst and the alcohol reforming catalyst described above can be simultaneously used as the activation gas of the carbon monoxide removal catalyst, and the activation temperature of the carbon monoxide removal catalyst Since the amount of heat generation can be reduced, the amount of heat generation can be reduced.
Although nitrogen is used as the inert gas, the use of helium gas, argon gas, carbon dioxide gas is relatively inexpensive and easy to obtain and store, and it may be other than the carbon monoxide removing catalyst. Since it does not easily react with the material of which the member is made, it is possible to obtain an effect that it is difficult to cause adverse effects such as corrosion.

Claims (9)

水素を主成分とする燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を、不活性ガス又は有限値以上50体積%未満の水素を含み残余ガスが不活性ガスである混合ガスと接触させて活性化する一酸化炭素除去触媒の活性化方法。A carbon monoxide removing catalyst for oxidizing and removing carbon monoxide in a fuel gas containing hydrogen as a main component is an inert gas or a mixed gas containing hydrogen of a finite value or more but less than 50% by volume and the remaining gas being an inert gas A method for activating a carbon monoxide removal catalyst, which is activated by contacting. 前記不活性ガスが、窒素ガス、ヘリウムガス、アルゴンガス、二酸化炭素ガスから選ばれる少なくとも1種のガスを含んでなる請求項1に記載の一酸化炭素除去触媒の活性化方法。The method for activating a carbon monoxide removing catalyst according to claim 1, wherein the inert gas comprises at least one gas selected from nitrogen gas, helium gas, argon gas and carbon dioxide gas. 前記混合ガスが、10体積%以下の水素ガスを含み残余ガスが不活性ガスである請求項1又は2に記載の一酸化炭素除去触媒の活性化方法。The method for activating a carbon monoxide removal catalyst according to claim 1 or 2, wherein the mixed gas contains 10% by volume or less of hydrogen gas and the remaining gas is an inert gas. 前記一酸化炭素除去触媒の活性化を80〜400℃で行なう請求項1〜3の何れか1項に記載の一酸化炭素除去触媒の活性化方法。The method for activating a carbon monoxide removal catalyst according to any one of claims 1 to 3, wherein the activation of the carbon monoxide removal catalyst is performed at 80 to 400 ° C. 前記水素を主成分とする燃料ガスが、炭化水素類又はアルコール類を改質して得られる改質ガスである請求項1〜4の何れか1項に記載の一酸化炭素除去触媒の活性化方法。The fuel gas containing hydrogen as a main component is a reformed gas obtained by reforming hydrocarbons or alcohols, The activation of the carbon monoxide removal catalyst according to any one of claims 1 to 4. Method. 燃料電池に供給される水素を主成分とする燃料ガスの供給路に備えられ、前記燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を収納した一酸化炭素除去器の運転方法であって、
前記一酸化炭素除去触媒を、不活性ガス又は有限値以上50体積%未満の水素を含み残余ガスが不活性ガスである混合ガスと接触させて、前記一酸化炭素除去触媒を活性化した後、前記燃料ガスに対する一酸化炭素酸化除去を開始する一酸化炭素除去器の運転方法。
A method of operating a carbon monoxide remover containing a carbon monoxide removal catalyst, which is provided in a fuel gas supply path mainly composed of hydrogen supplied to a fuel cell and oxidizes and removes carbon monoxide in the fuel gas. There,
After activating the carbon monoxide removal catalyst by bringing the carbon monoxide removal catalyst into contact with an inert gas or a mixed gas containing hydrogen of not less than a finite value and less than 50% by volume and the remaining gas being an inert gas, The method of operating a carbon monoxide remover to start carbon monoxide oxidation removal for the fuel gas.
前記混合ガスが、10体積%以下の水素ガスを含み残余ガスが不活性ガスである請求項6に記載の一酸化炭素除去器の運転方法。The method of operating a carbon monoxide remover according to claim 6, wherein the mixed gas contains 10% by volume or less of hydrogen gas and the remaining gas is an inert gas. 燃料電池に供給される水素を主成分とする燃料ガスの供給路に、上流側から、前記燃料ガス中の一酸化炭素を二酸化炭素に変成する一酸化炭素変成触媒を収納した一酸化炭素変成器と、前記燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を収納した一酸化炭素除去器とを、記載順に備えた燃料電池システムの運転方法であって、
前記一酸化炭素変成器及び前記一酸化炭素除去器に、有限値以上10体積%以下の水素を含み残余ガスが不活性ガスである混合ガスを供給して、前記一酸化炭素変成触媒を還元すると共に一酸化炭素除去触媒を活性化させる触媒活性化工程を実行した後、
前記燃料ガスに対する、一酸化炭素変成及び一酸化炭素酸化除去を開始する燃料電池システムの運転方法。
A carbon monoxide converter containing a carbon monoxide conversion catalyst for converting carbon monoxide in the fuel gas into carbon dioxide from the upstream side in a fuel gas supply path mainly composed of hydrogen supplied to a fuel cell And a carbon monoxide remover containing a carbon monoxide removing catalyst for oxidizing and removing carbon monoxide in the fuel gas, the method comprising the steps of:
The carbon monoxide shift converter and the carbon monoxide remover are supplied with a mixed gas containing hydrogen of a finite value or more and 10% by volume or less and the remaining gas being an inert gas to reduce the carbon monoxide shift catalyst After the catalyst activation step of activating the carbon monoxide removal catalyst with
A method of operating a fuel cell system, which starts carbon monoxide conversion and carbon monoxide oxidation removal for the fuel gas.
燃料電池に供給される水素を主成分とする燃料ガスの供給路に、上流側から、メタノールを水素に変成するメタノール改質触媒を収納したメタノール改質器と、前記燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を収納した一酸化炭素除去器とを、記載順に備えた燃料電池システムの運転方法であって、
前記メタノール改質器及び前記一酸化炭素除去器に、有限値以上10体積%以下の水素を含み残余ガスが不活性ガスである混合ガスを供給して、前記メタノール改質触媒を還元すると共に一酸化炭素除去触媒を活性化させる触媒活性化工程を実行した後、
前記燃料ガスに対する、メタノール改質及び一酸化炭素酸化除去を開始する燃料電池システムの運転方法。
A methanol reformer storing a methanol reforming catalyst for converting methanol into hydrogen from the upstream side in a fuel gas supply path mainly composed of hydrogen supplied to a fuel cell, and carbon monoxide in the fuel gas And a carbon monoxide remover containing a carbon monoxide removal catalyst for removing by oxidation the fuel cell system in the order listed.
The methanol reformer and the carbon monoxide remover are supplied with a mixed gas containing hydrogen of a finite value or more and 10 vol% or less and the remaining gas being an inert gas to reduce the methanol reforming catalyst and After performing a catalyst activation step to activate the carbon monoxide removal catalyst,
A method of operating a fuel cell system, which starts methanol reforming and carbon monoxide oxidation removal for the fuel gas.
JP2000281936A 2000-09-18 2000-09-18 Method for activating carbon monoxide removal catalyst, method for operating carbon monoxide remover, and method for operating fuel cell system Expired - Lifetime JP4240787B2 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP2000281936A JP4240787B2 (en) 2000-09-18 2000-09-18 Method for activating carbon monoxide removal catalyst, method for operating carbon monoxide remover, and method for operating fuel cell system
PCT/JP2001/008023 WO2002022256A1 (en) 2000-09-18 2001-09-14 Method of activating catalyst for carbon monoxide removal, catalyst for removing carbon monoxide, method of removing carbon monoxide, and method of operating fuel cell system
EP09015102A EP2168679B1 (en) 2000-09-18 2001-09-14 Method of removing carbon monoxide
CA002422795A CA2422795C (en) 2000-09-18 2001-09-14 Carbon monoxide removal
EP09015103.6A EP2174709B1 (en) 2000-09-18 2001-09-14 Method of operating fuel cell system
US10/380,811 US7247592B2 (en) 2000-09-18 2001-09-14 Method of activating catalyst for carbon monoxide removal
CNA2005100670682A CN1724152A (en) 2000-09-18 2001-09-14 Method of activating catalyst for carbon monoxide removal, catalyst for removing carbon monoxide, method of removing carbon monoxide, and method of operating fuel cell system
EP01965667.7A EP1325778B1 (en) 2000-09-18 2001-09-14 Method of activating catalyst for carbon monoxide removal
KR1020077027987A KR20070117007A (en) 2000-09-18 2001-09-14 Method of operating fuel cell system
KR1020037001932A KR100840629B1 (en) 2000-09-18 2001-09-14 Method of activating catalyst for carbon monoxide removal and method of removing carbon monoxide
CNB018158293A CN1213804C (en) 2000-09-18 2001-09-14 Method of activating catalyst for carbon monoxide removal method for removing carbon monoxide, method of operating fuel cell system
KR1020077027986A KR100942478B1 (en) 2000-09-18 2001-09-14 Catalyst for removing carbon monoxide and method of removing carbon monoxide
CNB2005100670697A CN100338809C (en) 2000-09-18 2001-09-14 Method of activating catalyst for carbon monoxide removal, catalyst for removing carbon monoxide, method of removing carbon monoxide, and method of operating fuel cell system
US11/509,257 US7658908B2 (en) 2000-09-18 2006-08-24 Method of removing carbon monoxide and operating a fuel cell system
US11/509,258 US7544634B2 (en) 2000-09-18 2006-08-24 Carbon monoxide removing catalyst
US11/509,259 US7544341B2 (en) 2000-09-18 2006-08-24 Method of removing carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000281936A JP4240787B2 (en) 2000-09-18 2000-09-18 Method for activating carbon monoxide removal catalyst, method for operating carbon monoxide remover, and method for operating fuel cell system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008144686A Division JP4714243B2 (en) 2008-06-02 2008-06-02 Method for activating carbon monoxide removal catalyst

Publications (3)

Publication Number Publication Date
JP2002085983A JP2002085983A (en) 2002-03-26
JP2002085983A5 true JP2002085983A5 (en) 2005-02-17
JP4240787B2 JP4240787B2 (en) 2009-03-18

Family

ID=18766520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000281936A Expired - Lifetime JP4240787B2 (en) 2000-09-18 2000-09-18 Method for activating carbon monoxide removal catalyst, method for operating carbon monoxide remover, and method for operating fuel cell system

Country Status (2)

Country Link
JP (1) JP4240787B2 (en)
CN (2) CN1724152A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050629A (en) * 2003-07-28 2005-02-24 Ebara Ballard Corp Method and device for treating reformed gas and fuel cell power generation system
JP4551745B2 (en) * 2004-11-22 2010-09-29 出光興産株式会社 CO removal catalyst and method for producing the same
JP4506429B2 (en) * 2004-11-22 2010-07-21 富士電機ホールディングス株式会社 Method for recovering activity of carbon monoxide removal catalyst, method for operating fuel cell power generator, and method for operating hydrogen generator
KR101320387B1 (en) * 2005-01-25 2013-10-22 삼성에스디아이 주식회사 Catalytic system for the removal of carbon monoxide and fuel processor using the same
US8197785B2 (en) * 2008-02-27 2012-06-12 Kellogg Brown & Root Llc Split flow contactor
TWI763812B (en) * 2017-03-31 2022-05-11 日商大阪瓦斯股份有限公司 Electrochemical device, energy system and solid oxide fuel cell
CN113324896B (en) * 2021-05-27 2023-05-09 国网陕西省电力公司西安供电公司 Experimental device for be used for high tension cable buffer layer electrochemical corrosion research that blocks water

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256612A (en) * 1990-07-12 1993-10-26 Exxon Research And Engineering Company Method for treating a catalyst
JP3986586B2 (en) * 1996-07-15 2007-10-03 旭化成株式会社 Hydrogen purification method for fuel cells
JPH11102719A (en) * 1997-09-26 1999-04-13 Toyota Motor Corp Carbon monoxide concentration reducing device, carbon monoxide concentration reducing method, and carbon monoxide selectively oxidizing catalyst

Similar Documents

Publication Publication Date Title
JP3432892B2 (en) Method for removing CO from reformed gas
EP1617942B1 (en) Autothermal reforming in a fuel processor utilizing non-pyrophoric shift catalyst
WO2007081016A1 (en) Hydrogen production apparatus, fuel battery system and method of driving the same
JP4284028B2 (en) Carbon monoxide removal method and fuel cell system operating method using the same
JP4330846B2 (en) Process for preparing low sulfur reformate gas for use in fuel cell systems
JP4676934B2 (en) Starting method of fuel cell system
JP4024470B2 (en) Method for stopping reformer for polymer electrolyte fuel cell
JP2002085983A5 (en)
JP3865479B2 (en) Carbon monoxide removal system and carbon monoxide removal method
JP2002334714A (en) Hydrogen manufacturing system incorporating fuel cell
JP3857022B2 (en) Method for starting and stopping a polymer electrolyte fuel cell
WO2004087304A3 (en) High performance fuel processing system for fuel cell power plant
JPH0757756A (en) Fuel cell power generation system
WO2000053696A1 (en) System for removing carbon monoxide and method for removing carbon monoxide
JP4357756B2 (en) High purity hydrogen production system using membrane reformer
JP4240787B2 (en) Method for activating carbon monoxide removal catalyst, method for operating carbon monoxide remover, and method for operating fuel cell system
JPH09266005A (en) Solid high polymer fuel cell system
JP2006076839A (en) Hydrogen purification system and fuel cell system using the same
JP2006202564A (en) Hydrogen manufacturing system for fuel cell
US7029640B2 (en) Process for selective oxidation of carbon monoxide in a hydrogen containing stream
JP4936645B2 (en) Hydrogen production apparatus and fuel cell system
JP2000285948A (en) Solid polymer fuel cell system
JP2003277013A (en) Carbon monoxide removing method and polymer electrolyte fuel cell system
JP4307766B2 (en) Fuel cell power generation system
JP4506429B2 (en) Method for recovering activity of carbon monoxide removal catalyst, method for operating fuel cell power generator, and method for operating hydrogen generator