JP2001180912A - Hydrogen refining equipment - Google Patents

Hydrogen refining equipment

Info

Publication number
JP2001180912A
JP2001180912A JP37385899A JP37385899A JP2001180912A JP 2001180912 A JP2001180912 A JP 2001180912A JP 37385899 A JP37385899 A JP 37385899A JP 37385899 A JP37385899 A JP 37385899A JP 2001180912 A JP2001180912 A JP 2001180912A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
reformed gas
carbon monoxide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP37385899A
Other languages
Japanese (ja)
Other versions
JP3482367B2 (en
Inventor
Kiyoshi Taguchi
清 田口
Takeshi Tomizawa
猛 富澤
Kunihiro Ukai
邦弘 鵜飼
Toshiyuki Shono
敏之 庄野
Koichiro Kitagawa
浩一郎 北河
Tetsuya Ueda
哲也 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP37385899A priority Critical patent/JP3482367B2/en
Priority to PCT/JP2000/009362 priority patent/WO2001047802A1/en
Priority to KR1020027008275A priority patent/KR20020074464A/en
Priority to CNB00817766XA priority patent/CN1274587C/en
Priority to US10/168,854 priority patent/US6972119B2/en
Priority to EP00987775A priority patent/EP1256545A4/en
Publication of JP2001180912A publication Critical patent/JP2001180912A/en
Application granted granted Critical
Publication of JP3482367B2 publication Critical patent/JP3482367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen refining equipment in which the CO concentration in the reforming gas containing hydrogen and water can be reduced by CO transforming reaction with high stability and linger life even if the start-up and shut-down operations are repeated many times, and also the start-up time can be shortened. SOLUTION: A carbon monoxide transforming medium is divided into some parts by using a noble metal catalyst and provided with either a radiation space or a cooling space in the middle between each part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池等の燃料
に用る水素精製装置に関し、特に改質ガス中の一酸化炭
素の除去に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen purifying apparatus for use in fuel such as a fuel cell, and more particularly to a method for removing carbon monoxide from reformed gas.

【0002】[0002]

【従来の技術】通常、燃料電池は水素源として、炭化水
素もしくはアルコール、エーテルなどの改質によって得
られる改質ガスを用いる。しかし、100℃以下の低温
で動作する高分子電解質型燃料電池では、電極に用いる
白金触媒が改質ガスに含まれる一酸化炭素(以下COと
記載)によって被毒される。このような白金触媒の被毒
が起こると水素の反応が阻害され、燃料電池の発電効率
が著しく低下するため、COを100ppm以下、好ま
しくは10ppm以下に除去する必要がある。
2. Description of the Related Art Generally, a fuel cell uses, as a hydrogen source, a reformed gas obtained by reforming a hydrocarbon, alcohol, ether, or the like. However, in a polymer electrolyte fuel cell operating at a low temperature of 100 ° C. or less, the platinum catalyst used for the electrode is poisoned by carbon monoxide (hereinafter referred to as CO) contained in the reformed gas. If the poisoning of the platinum catalyst occurs, the reaction of hydrogen is hindered, and the power generation efficiency of the fuel cell is significantly reduced. Therefore, it is necessary to remove CO to 100 ppm or less, preferably 10 ppm or less.

【0003】一般的には、COを除去するために、CO
変成触媒体を設置したCO変成部でCOと水蒸気を反応
させ、二酸化炭素と水素に転換し、数千ppm〜1%程
度の濃度までCO濃度を低減させる。その後、微量の空
気を加え、CO選択酸化触媒体により、燃料電池に悪影
響をおよぼさない数ppmレベルまでCOを除去する。
[0003] Generally, to remove CO, CO
The CO and steam are reacted in the CO shift section provided with the shift catalyst to convert the CO into hydrogen and reduce the CO concentration to a concentration of several thousand ppm to about 1%. Thereafter, a small amount of air is added, and CO is removed by a CO selective oxidation catalyst to a level of several ppm which does not adversely affect the fuel cell.

【0004】このとき、充分にCOを除去するために
は、CO濃度の1〜3倍程度の酸素を加える必要がある
が、水素も酸素量に対応して消費される。CO濃度が高
い場合、加える酸素量も増加し、消費される水素が増大
するため、装置全体の効率は大きく低下する。したがっ
て、CO変成部でCOを充分に低減させることが必要で
ある。
At this time, in order to sufficiently remove CO, it is necessary to add oxygen having a concentration of about 1 to 3 times the CO concentration. However, hydrogen is consumed in accordance with the amount of oxygen. When the CO concentration is high, the amount of added oxygen also increases, and the consumed hydrogen increases, so that the efficiency of the entire apparatus is greatly reduced. Therefore, it is necessary to sufficiently reduce CO in the CO shift section.

【0005】従来、COの変成には、低温用CO変成触
媒として150℃〜300℃で使用可能な銅−亜鉛系触
媒、銅−クロム系触媒などが用いられ、高温用CO変成
触媒として300℃以上で機能する鉄−クロム系触媒な
どが用いられている。これらのCO変成触媒を化学プラ
ントや燃料電池用水素発生器など用途に応じて、低温用
触媒のみで使用したり、高温用と低温用とを組み合わせ
て用いてきた。
Conventionally, for CO conversion, a copper-zinc catalyst or a copper-chromium catalyst usable at 150 to 300 ° C. as a low-temperature CO conversion catalyst has been used. An iron-chromium catalyst that functions as described above is used. These CO conversion catalysts have been used only as low-temperature catalysts or as a combination of high-temperature and low-temperature catalysts, depending on applications such as chemical plants and hydrogen generators for fuel cells.

【0006】[0006]

【発明が解決しようとする課題】上記のように、銅系の
低温用CO変成触媒を用いた場合、高い触媒活性が得ら
れるが、使用前に還元処理を施して活性化させる必要が
ある。このような活性化処理では、処理中に触媒が発熱
するため、触媒が耐熱温度以上にならないように、還元
ガスの供給量を調節するなど、長時間かけて処理する必
要があった。
As described above, when a copper-based low-temperature CO conversion catalyst is used, high catalytic activity can be obtained, but it is necessary to activate it by performing a reduction treatment before use. In such an activation treatment, since the catalyst generates heat during the treatment, it is necessary to perform the treatment over a long period of time, for example, by adjusting the supply amount of the reducing gas so that the catalyst does not reach the heat-resistant temperature or higher.

【0007】また、一度活性化させたCO変成触媒は、
装置の停止時など、酸素が混入した場合、再酸化されて
劣化するため、酸化を防止する対策が必要であった。さ
らに、低温用CO変成触媒は耐熱性が低く、装置の始動
時に触媒を急激に加熱することができないため、徐々に
温度を上昇させるなどの対策が必要であった。
The once activated CO shift catalyst is
When oxygen is mixed in, for example, when the apparatus is stopped, the oxygen is re-oxidized and deteriorated, so that measures to prevent the oxidation have been required. Furthermore, since the low-temperature CO conversion catalyst has low heat resistance and cannot rapidly heat the catalyst at the time of starting the apparatus, it is necessary to take measures such as gradually increasing the temperature.

【0008】一方、高温用CO変成触媒のみを用いた場
合には、耐熱性が高く、多少の過昇温も可能であるた
め、始動時の加熱などは容易になる。しかしながら、C
O変成反応は温度に依存する平衡反応であるため、高温
でしか機能しない高温用CO変成触媒はCO濃度を1%
以下にすることが困難であった。そのため、後に接続す
るCO浄化部での効率が低下していた。
On the other hand, when only the high-temperature CO shift catalyst is used, the heat resistance is high and the temperature can be slightly increased. However, C
Since the O shift reaction is an equilibrium reaction depending on temperature, the CO shift catalyst for high temperature, which functions only at high temperature, has a CO concentration of 1%.
It was difficult to: For this reason, the efficiency of the CO purification unit connected later has been reduced.

【0009】このように従来の方法では、変成部の起動
に時間を要したり、取り扱いが煩雑なため、頻繁に起動
停止を繰り返すような用途には、多くの課題があった。
As described above, the conventional method requires a long time to start the metamorphic section and is complicated to handle. Therefore, there are many problems in applications in which starting and stopping are frequently repeated.

【0010】[0010]

【課題を解決するための手段】本発明はこのような水素
精製装置の課題を考慮し、CO変成触媒の活性化処理を
容易にし、運転の起動停止を繰り返した場合の酸素混入
による影響を無くして長期間にわたり安定に動作する水
素精製装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above problems of the hydrogen purifying apparatus, and facilitates the activation treatment of the CO conversion catalyst, and eliminates the influence of oxygen contamination when the operation is repeatedly started and stopped. To provide a hydrogen purifier that operates stably for a long period of time.

【0011】この目的を実現するため本発明の水素精製
装置は、水素と水とを含有する改質ガスの供給部と、貴
金属を有する一酸化炭素変成用触媒体を具備した触媒反
応室を前記改質ガス供給部の下流側に配置した水素精製
装置であって、前記触媒反応室を複数段に分割し、前記
触媒反応室の各段の中間部分に放熱手段または冷却手段
の少なくとも一手段を設置したことを特徴とする。
In order to achieve this object, the hydrogen purifying apparatus of the present invention comprises a supply section for a reformed gas containing hydrogen and water and a catalytic reaction chamber provided with a carbon monoxide conversion catalyst having a noble metal. A hydrogen purification device disposed downstream of a reformed gas supply unit, wherein the catalyst reaction chamber is divided into a plurality of stages, and at least one of a heat radiating unit and a cooling unit is provided at an intermediate portion of each stage of the catalyst reaction chamber. It is characterized by being installed.

【0012】このとき、一酸化炭素変成用触媒体は、少
なくとも白金と酸化セリウムとを含有することが有効で
ある。このとき、酸化セリウムの粒径は、0.1μm〜
15μmであることが有効である。
At this time, it is effective that the carbon monoxide conversion catalyst contains at least platinum and cerium oxide. At this time, the particle size of the cerium oxide is 0.1 μm to
It is effective that the thickness is 15 μm.

【0013】また、改質ガスの流れ方向に対して、1段
目に配置した一酸化炭素変成用触媒体の温度を300℃
以上でかつ450℃に保持し、前記一酸化炭素の変性反
応を行うことが有効である。
[0013] The temperature of the carbon monoxide conversion catalyst disposed in the first stage is set to 300 ° C with respect to the flow direction of the reformed gas.
It is effective to carry out the above-mentioned carbon monoxide modification reaction while maintaining the temperature at 450 ° C.

【0014】また、一酸化炭素変成用触媒体の温度は、
改質ガスの流れ方向に対して上段部より下段部を低くし
たことが有効である。
The temperature of the carbon monoxide conversion catalyst is as follows:
It is effective that the lower part is lower than the upper part in the flow direction of the reformed gas.

【0015】また、一酸化炭素変成用触媒体の体積を、
改質ガスの流れ方向に対して上段部より下段部を大きく
したことが有効である。
Further, the volume of the carbon monoxide conversion catalyst is
It is effective to make the lower part larger than the upper part in the flow direction of the reformed gas.

【0016】また、一酸化炭素変成用触媒体の貴金属担
持量を、改質ガスの流れ方向に対して上段部より下段部
を多くしたことが有効である。
It is effective that the amount of the noble metal carried by the catalyst for carbon monoxide conversion is larger in the lower part than in the upper part in the flow direction of the reformed gas.

【0017】また、改質ガスの流れ方向に対して2段目
以降の少なくとも一段の一酸化炭素変成用触媒体に、銅
を成分として有する触媒を設置したことが有効である。
It is effective that a catalyst having copper as a component is provided in at least one stage of the carbon monoxide conversion catalyst in the second and subsequent stages with respect to the flow direction of the reformed gas.

【0018】また、銅を成分として有する触媒の下流側
に、貴金属を成分として有する触媒を設置したことが有
効である。
It is effective that a catalyst having a noble metal as a component is provided downstream of the catalyst having copper as a component.

【0019】また、触媒反応室の各段の間に、改質ガス
の拡散部または混合部を設置したことが有効である。
It is effective that a diffusion section or a mixing section of the reformed gas is provided between each stage of the catalyst reaction chamber.

【0020】また、複数本の管により触媒反応室の各段
の連結を構成したことが有効である。
It is effective that a plurality of tubes are used to connect the respective stages of the catalyst reaction chamber.

【0021】また、冷却部の動作を、一酸化炭素変成用
触媒体の温度により制御することが有効である。このと
き、冷却部は水供給部を設置し、冷却水の流量を制御す
ることで一酸化炭素変成用触媒体の温度を制御すること
が有効である。また、冷却部に空気ファンを設置し、冷
却ファンの動作を、触媒体の温度により制御することが
有効である。
It is also effective to control the operation of the cooling unit by controlling the temperature of the catalyst for carbon monoxide conversion. At this time, it is effective to control the temperature of the catalyst for carbon monoxide conversion by installing a water supply unit in the cooling unit and controlling the flow rate of the cooling water. It is also effective to install an air fan in the cooling unit and control the operation of the cooling fan by controlling the temperature of the catalyst.

【0022】また、冷却部で回収した熱により、水素精
製装置に導入する燃料、水、改質ガスまたは燃焼用空気
の少なくとも一つを加熱することが有効である。
Further, it is effective to heat at least one of fuel, water, reformed gas and combustion air introduced into the hydrogen purifier with the heat recovered in the cooling section.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0024】(実施形態1)図1は、本発明の実施形態
1の水素精製装置の構成を示した断面図である。図1に
おいて、1は第一触媒体、2は第二触媒体であり、それ
ぞれ第一反応室3と第二反応室4の内部に設置した。5
は改質ガス入り口であり、ここから改質ガスを導入す
る。第一触媒体1、第二触媒体2で反応した改質ガス
は、改質ガス出口6より排出される。第一触媒体1と第
二触媒体2の中間で放熱するように、第一反応室3と第
二反応室4とを分離した。また、それぞれの触媒体の上
流側に拡散板7を設置した。また、反応器を一定温度に
保つために、必要箇所は外周をセラミックウールからな
る断熱材8で覆った。ここで、第一触媒体1、第二触媒
体2には、酸化セリウムに白金を担持させた触媒をコー
ジェライトハニカムにコーティングしたものを用いた。
(Embodiment 1) FIG. 1 is a sectional view showing a configuration of a hydrogen purifying apparatus according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 1 denotes a first catalyst body, and 2 denotes a second catalyst body, which are installed in a first reaction chamber 3 and a second reaction chamber 4, respectively. 5
Is a reformed gas inlet from which a reformed gas is introduced. The reformed gas reacted by the first catalyst body 1 and the second catalyst body 2 is discharged from the reformed gas outlet 6. The first reaction chamber 3 and the second reaction chamber 4 were separated so that heat was released between the first catalyst body 1 and the second catalyst body 2. Further, a diffusion plate 7 was provided on the upstream side of each catalyst body. Further, in order to keep the reactor at a constant temperature, the outer periphery of a necessary portion was covered with a heat insulating material 8 made of ceramic wool. Here, as the first catalyst body 1 and the second catalyst body 2, a cordierite honeycomb coated with a catalyst in which cerium oxide supported platinum was used.

【0025】次に本実施形態の水素精製装置の動作と特
性について説明する。水素精製装置に供給する改質ガス
を発生させるための燃料は、天然ガス、メタノール、ガ
ソリンなどがある。改質方法も水蒸気を加える水蒸気改
質や、空気を加えておこなう部分改質などがある。本実
施例では天然ガスを水蒸気改質した改質ガスを用いた場
合について述べる。
Next, the operation and characteristics of the hydrogen purifier of the present embodiment will be described. Fuels for generating the reformed gas to be supplied to the hydrogen purifier include natural gas, methanol, gasoline and the like. The reforming method includes steam reforming by adding steam and partial reforming by adding air. In this embodiment, a case where a reformed gas obtained by steam reforming a natural gas is used will be described.

【0026】天然ガスを水蒸気改質した場合の組成は、
改質触媒体での反応温度によって変化するが、水蒸気を
除いた平均的な値として、水素が約80%、二酸化炭
素、一酸化炭素(以下COと記載)が、それぞれ約10
%含まれる。改質ガス入口5より導入した改質ガスは、
まず第一触媒体1上で反応し、CO濃度は1〜2%まで
低減する。第一触媒体1を通過した改質ガスは、第二触
媒体2でCO濃度が0.1〜0.8%程度になるまで反
応し、改質ガス出口6から排出される。反応後の改質ガ
スは、さらにCOを除去するためのCO浄化部等を経て
燃料電池部に供給される。
The composition of steam reformed natural gas is as follows:
Although it varies depending on the reaction temperature in the reforming catalyst, as an average value excluding water vapor, about 80% of hydrogen, carbon dioxide and carbon monoxide (hereinafter referred to as CO) are about 10%, respectively.
%included. The reformed gas introduced from the reformed gas inlet 5 is
First, it reacts on the first catalyst body 1, and the CO concentration is reduced to 1 to 2%. The reformed gas that has passed through the first catalyst 1 reacts in the second catalyst 2 until the CO concentration becomes about 0.1 to 0.8%, and is discharged from the reformed gas outlet 6. The reformed gas after the reaction is further supplied to the fuel cell unit through a CO purifying unit for removing CO and the like.

【0027】次に、本装置の動作原理について説明す
る。CO変成反応は、温度に依存する平衡反応であり、
平衡論的には低温で反応させるほどCO濃度を低減でき
る。しかし、低温では触媒上での反応速度が低下するた
め、CO変成触媒は、図2に実践で示したように、温度
に対してCO濃度が極小値をとるような特性を示す。し
たがって、触媒の低温活性が高いほどCOをより低濃度
まで低減できる。一般的に、CO変成触媒として用いら
れる銅−亜鉛触媒、銅−クロム触媒など、銅系の触媒は
低温活性が高く、150℃〜300℃程度でCO変成反
応を行うことができるため、CO濃度を数百から数千p
pmまで低減できる。しかし、銅系の触媒は反応器に充
填した後、初期操作として水素や改質ガスなどの還元ガ
スを流通させ、活性化させる必要がある。また、銅系の
触媒の耐熱性は300℃前後と低いため、活性化時の反
応熱で耐熱温度を越えないように、還元ガスを希釈して
供給するか、小流量で徐々に反応させる。触媒中の銅の
含有量も活性化に要する時間に影響するが、重量比で数
10%程度は寿命信頼性を確保するために必要であり、
活性化に長い時間を要することとなる。
Next, the operation principle of the present apparatus will be described. The CO shift reaction is a temperature-dependent equilibrium reaction,
In terms of equilibrium theory, the lower the temperature, the lower the CO concentration. However, since the reaction rate on the catalyst decreases at low temperatures, the CO conversion catalyst exhibits such a characteristic that the CO concentration takes a minimum value with respect to the temperature as shown in practice in FIG. Therefore, the higher the low-temperature activity of the catalyst, the lower the concentration of CO can be reduced. Generally, a copper-based catalyst such as a copper-zinc catalyst or a copper-chromium catalyst used as a CO shift catalyst has a high low-temperature activity and can perform a CO shift reaction at about 150 ° C. to 300 ° C. Several hundred to several thousand p
pm. However, after the copper-based catalyst has been charged into the reactor, it is necessary to activate hydrogen gas and a reducing gas such as a reformed gas as an initial operation. Further, since the heat resistance of the copper-based catalyst is as low as about 300 ° C., the reducing gas is diluted or supplied or the reaction is gradually performed at a small flow rate so that the heat of reaction during activation does not exceed the heat-resistant temperature. The content of copper in the catalyst also affects the time required for activation, but about tens of percent by weight is necessary to ensure life reliability.
The activation takes a long time.

【0028】また、CO変成反応は、通常、触媒体積あ
たりのガス流速(空間速度:SV)が毎時1000以下
の反応条件が必要であり、多量の触媒を必要として熱容
量が大きくなるため、装置始動時には触媒体を昇温する
ために長時間を要する。そのため、電気ヒーターなどで
反応室の外部からの加熱を併用するか、供給する改質ガ
スの温度を高くして昇温速度を早める方法が考えられ
る。しかし、銅系の触媒は耐熱温度が低いため、局所的
に高温となるような急激な加熱は望ましくない。
In addition, the CO shift reaction usually requires reaction conditions in which the gas flow rate (space velocity: SV) per catalyst volume is 1000 or less per hour, and a large amount of catalyst is required to increase the heat capacity. Sometimes it takes a long time to raise the temperature of the catalyst. Therefore, it is conceivable to use heating from the outside of the reaction chamber together with an electric heater or the like, or to increase the temperature of the supplied reformed gas to increase the heating rate. However, since a copper-based catalyst has a low heat-resistant temperature, rapid heating to a locally high temperature is not desirable.

【0029】また、装置を停止させた場合、装置の温度
低下に伴って反応室内部の圧力が低下し、外部の空気が
微量に混入する。そのため、長期間にわたって繰り返し
装置の停止、始動を繰り返した場合、銅系触媒は徐々に
劣化する。したがって、酸素が混入するのを防止する手
段などが必要となり、装置が複雑となる。
When the apparatus is stopped, the pressure inside the reaction chamber decreases as the temperature of the apparatus decreases, and a small amount of external air is mixed. Therefore, when the device is repeatedly stopped and started over a long period of time, the copper-based catalyst gradually deteriorates. Therefore, means for preventing oxygen from being mixed is required, and the apparatus becomes complicated.

【0030】一方、本装置のように、CO変成触媒とし
て貴金属触媒を用いた場合、長時間の活性化もしくは還
元処理は必要でない。また、耐熱性も高く、起動時に局
所的な500℃程度の高温部が生じても問題はないた
め、高温の改質ガスを供給することによって急速に加熱
でき、速やかに装置を起動させることができる。また、
微量の空気が混入しても劣化しにくいため、特に酸化防
止手段などを備える必要はない。
On the other hand, when a noble metal catalyst is used as the CO conversion catalyst as in the present apparatus, long-term activation or reduction treatment is not required. In addition, since heat resistance is high, and there is no problem even when a high-temperature portion of about 500 ° C. is generated locally at the time of startup, heating can be rapidly performed by supplying a high-temperature reformed gas, and the apparatus can be started quickly. it can. Also,
Since even a small amount of air hardly deteriorates, it is not particularly necessary to provide an antioxidant.

【0031】また、CO変成反応は、変成触媒体の上流
部から下流部にかけての温度分布が特性に影響する。C
Oが高濃度である上流側では反応速度が高い高温にする
方が好ましく、COの平衡濃度に影響される下流側は低
温である方が良い。したがって、本装置のようにCO変
成触媒体を複数段に分割し、各段の中間に放熱部または
冷却部を配置して、放熱量または冷却量を調節すると、
より少ない触媒量でCOを低減することができる。
The characteristics of the CO shift reaction are affected by the temperature distribution from the upstream to the downstream of the shift catalyst. C
On the upstream side where the O concentration is high, it is preferable to set the reaction temperature to a high temperature, and the downstream side affected by the equilibrium concentration of CO is preferably a low temperature. Therefore, when the CO conversion catalyst body is divided into a plurality of stages as in the present apparatus, and a heat radiating portion or a cooling portion is arranged in the middle of each stage to adjust the heat radiating amount or the cooling amount,
CO can be reduced with a smaller amount of catalyst.

【0032】また、高い温度ほど空間速度SVを大きく
することができるが、あまり高温になると改質反応の逆
反応の進行が始まり、メタンが発生するため、改質ガス
中の水素量が低下して装置効率に影響する。したがっ
て、第一触媒体1の温度は450℃以下が好ましい。逆
に第一触媒体の温度が低いと空間速度SVを小さくする
必要があるため、第一触媒体の温度は300℃以上とす
ることが好ましい。このとき、第一触媒体の温度を30
0℃より低くしても空間速度SVを小さくすれば機能す
るが、第一触媒体1と第二触媒体2との温度差が小さく
なるため、複数段に分割する効果が薄れ、分割する分だ
け反応器の体積が大きくなることもある。
The space velocity SV can be increased at a higher temperature. However, when the temperature is too high, the reverse reaction of the reforming reaction starts to proceed, and methane is generated, so that the amount of hydrogen in the reformed gas decreases. Affects the efficiency of the device. Therefore, the temperature of the first catalyst 1 is preferably 450 ° C. or less. Conversely, if the temperature of the first catalyst body is low, the space velocity SV needs to be reduced, so the temperature of the first catalyst body is preferably set to 300 ° C. or higher. At this time, the temperature of the first catalyst body is set to 30
Even if it is lower than 0 ° C., it works if the space velocity SV is made small, but since the temperature difference between the first catalyst body 1 and the second catalyst body 2 becomes small, the effect of dividing into plural stages is weakened, and Only the volume of the reactor may increase.

【0033】また、第二触媒体2の温度が第一触媒体1
よりも高い場合には、第一触媒体1で低減されたCOが
逆反応によって再び増加するため、第一触媒体1よりも
低い温度にする方が好ましい。これは触媒体の段数が3
段以上の場合も同様である。
Further, the temperature of the second catalyst 2 is changed to the first catalyst 1
If the temperature is higher than the above, the CO reduced in the first catalyst body 1 increases again by the reverse reaction, so that the temperature is preferably lower than that of the first catalyst body 1. This means that the number of catalyst
The same applies to the case of multiple stages.

【0034】また、触媒温度が低温となるほど空間速度
SVを小さくした方が高い特性が得られ、同時に高温で
のメタン化は空間速度SVが大きいほど進行にくくなる
ため、上段の触媒体が下段の触媒体よりも小さな体積と
することが好ましい。
The lower the catalyst temperature, the lower the space velocity SV, the higher the characteristics obtained. At the same time, the higher the space velocity SV, the more difficult the methanation at high temperatures. Preferably, the volume is smaller than that of the catalyst body.

【0035】また、CO変成触媒の材料としては、酸化
セリウムと白金を含むことが好ましく、高い特性が得ら
れる。また、酸化セリウムの粒径は、0.1μm〜15
μmが好ましく、これよりも粒径が大きい場合には、白
金の分散性が低下し、充分な特性が得られにくくなり、
小さい場合には、ハニカム等の機材から剥離したり、ペ
レットが崩れやすくなる等、寿命特性が低下しやすくな
る。
Further, the material of the CO conversion catalyst preferably contains cerium oxide and platinum, and high characteristics are obtained. The particle size of cerium oxide is 0.1 μm to 15 μm.
μm is preferred, and when the particle size is larger than this, the dispersibility of platinum decreases, and it becomes difficult to obtain sufficient characteristics,
When the size is small, the life characteristics are apt to be deteriorated, such as peeling off from the honeycomb or other equipment, or the pellet being easily broken.

【0036】また、本実施の形態では第一反応室3と第
二反応室4は単に分離しただけの構成とし、中間に放熱
するための管を設置しただけであるが、フィンを設けた
り、ファンで強制的に冷却したり、触媒温度に応じて冷
却量を制御する等の方法によって、さらに高い特性が得
られる。
In the present embodiment, the first reaction chamber 3 and the second reaction chamber 4 are simply separated from each other, and a tube for radiating heat is provided in the middle. Even higher characteristics can be obtained by, for example, forcibly cooling with a fan or controlling the amount of cooling according to the catalyst temperature.

【0037】また、触媒体各段の中間には、拡散部また
は混合部が設置されてあることが好ましい。体積の大き
なCO変成触媒体においては、断面方向に温度分布がつ
きやすいため、触媒体通過後には中心部と外周部でCO
濃度に格差が付きやすい。そのため混合部または拡散部
を設けることによって、下段の触媒が有効に機能し、よ
り高い特性が得られる。
It is preferable that a diffusion section or a mixing section is provided in the middle of each stage of the catalyst body. In a large-volume CO-converting catalyst, a temperature distribution tends to be formed in the cross-sectional direction.
Concentration tends to vary. Therefore, by providing the mixing section or the diffusion section, the lower catalyst effectively functions, and higher characteristics can be obtained.

【0038】また、変成触媒体の貴金属担持量は上段よ
りも下段の方が増量されてあることが好ましい。貴金属
担持量が多い場合、メタン化が進行しやすくなり、この
傾向は触媒温度の高い上段ほど顕著である。一方、貴金
属担持量が多いほど低温活性が向上する。このため、メ
タン化反応が進行しにくい下段の触媒体の貴金属担持量
を増量させることによって、より小さな触媒体積で高い
特性が得られる。
Further, it is preferable that the amount of the noble metal carried by the shift catalyst is increased in the lower stage than in the upper stage. When the amount of the noble metal carried is large, methanation tends to proceed, and this tendency is more remarkable as the catalyst temperature rises. On the other hand, the higher the amount of the noble metal carried, the higher the low-temperature activity. For this reason, by increasing the amount of the noble metal carried in the lower catalyst body in which the methanation reaction does not easily proceed, high characteristics can be obtained with a smaller catalyst volume.

【0039】本実施の形態では、貴金属触媒として、白
金を酸化セリウムに担持したものを用いたが、ロジウ
ム、パラジウム、ルテニウム等の貴金属を、アルミナ、
酸化ジルコニウム、酸化マグネシウム、酸化亜鉛、酸化
チタン、酸化珪素を担体として、これに担持したものを
用いることができる。
In the present embodiment, a catalyst in which platinum is supported on cerium oxide is used as a noble metal catalyst. However, a noble metal such as rhodium, palladium, ruthenium, etc.
As a carrier, zirconium oxide, magnesium oxide, zinc oxide, titanium oxide, or silicon oxide can be used.

【0040】また、本実施の形態では、白金塩を酸化セ
リウムに担持し、コージェライトハニカムにコーティン
グしてCO変成触媒体を作製したが、ペレット形状のア
ルミナに貴金属触媒を担持して、CO変成触媒体を作製
する事もできる。また、ハニカムの基材もステンレス等
の金属や、セラミックウールを用いることができる。
In the present embodiment, a platinum conversion salt is supported on cerium oxide and coated on a cordierite honeycomb to prepare a CO conversion catalyst. However, a noble metal catalyst is supported on pellet-shaped alumina to form a CO conversion catalyst. A catalyst body can also be produced. Further, as the honeycomb base material, a metal such as stainless steel or ceramic wool can be used.

【0041】また、本例では、燃料として天然ガスを用
い、水蒸気改質をした例について述べたが、他の燃料を
用いたときや、空気を加え燃料の一部を酸化させる部分
改質をおこなうときも、本装置を適応することができ
る。
In this embodiment, the example in which natural gas is used as fuel and steam reforming has been described. However, when another fuel is used, partial reforming in which air is added to partially oxidize fuel is performed. The present device can also be adapted when performing.

【0042】(実施形態2)本発明の第2の実施の形態
について説明する。本実施の形態は図3に示したよう
に、第一反応室13と第二反応室14の中間に冷却水供
給管19を設置したものであり、作用効果の大部分は実
施形態1と類似である。従って異なる点を中心に本実施
の形態を説明する。
(Embodiment 2) A second embodiment of the present invention will be described. In this embodiment, as shown in FIG. 3, a cooling water supply pipe 19 is provided between the first reaction chamber 13 and the second reaction chamber 14, and most of the functions and effects are similar to those of the first embodiment. It is. Therefore, the present embodiment will be described focusing on different points.

【0043】図3は本実施の形態の断面構成を示した図
である。CO変成反応は平衡反応であるため、反応物で
ある水蒸気の割合が多い場合には、COをより低減する
ことができる。本例では、冷却部に冷却水供給管19を
設置したあり、水の蒸発潜熱によって冷却できるだけで
なく、CO変成反応における平衡が有利となり、COを
より効率よく低減することができる。
FIG. 3 is a diagram showing a sectional configuration of the present embodiment. Since the CO conversion reaction is an equilibrium reaction, CO can be further reduced when the proportion of the reactant steam is large. In the present example, the cooling water supply pipe 19 is provided in the cooling unit, so that not only cooling by the latent heat of evaporation of water but also equilibrium in the CO shift reaction becomes advantageous, and CO can be reduced more efficiently.

【0044】(実施形態3)本発明の第3の実施の形態
について説明する。本実施の形態は図4に示したよう
に、第一反応室13と第二反応室14の連結部を複数本
の管によって構成し、さらに冷却ファン29を設置した
ものであり、作用効果の大部分は実施の形態1と類似で
ある。従って異なる点を中心に本実施の形態を説明す
る。
(Embodiment 3) A third embodiment of the present invention will be described. In the present embodiment, as shown in FIG. 4, a connecting portion between the first reaction chamber 13 and the second reaction chamber 14 is constituted by a plurality of pipes, and a cooling fan 29 is further provided. For the most part, it is similar to the first embodiment. Therefore, the present embodiment will be described focusing on different points.

【0045】図5は本実施の形態の断面構成を示した図
である。冷却の効率は管の表面積に依存するが、本例で
は連結部を複数本にしているため、効率よく冷却するこ
とができ、連結部の長さも短くできるため、装置の小型
化が可能である。また、冷却ファン29を設置している
ため、より効率よく冷却できる。また、第二触媒体22
の温度によって冷却ファンを作動、停止、または回転数
の制御を行うことによって、触媒温度を常時最適値に維
持することができる。
FIG. 5 is a diagram showing a sectional configuration of the present embodiment. Although the efficiency of cooling depends on the surface area of the tube, in this example, since the number of connecting portions is plural, cooling can be performed efficiently and the length of the connecting portion can be shortened, so that the device can be downsized. . Further, since the cooling fan 29 is provided, cooling can be performed more efficiently. In addition, the second catalyst body 22
By operating, stopping, or controlling the number of revolutions of the cooling fan according to the temperature, the catalyst temperature can always be maintained at the optimum value.

【0046】また、冷却部で熱交換され加熱された空気
は、改質部を加熱する燃焼部の空気や燃料、改質に用い
る原料や水の加熱に用いることによって、装置の効率を
向上させることができる。
The air exchanged and heated in the cooling section is used for heating the air and fuel in the combustion section for heating the reforming section, the raw material used for reforming, and water, thereby improving the efficiency of the apparatus. be able to.

【0047】(実施形態4)本発明の第4の実施の形態
について説明する。本実施の形態は図5に示したよう
に、貴金属触媒体31の下流側に銅系触媒体32を設置
したものであり、作用効果の大部分は実施の形態1と類
似である。従って異なる点を中心に本実施の形態を説明
する。
(Embodiment 4) A fourth embodiment of the present invention will be described. In the present embodiment, as shown in FIG. 5, a copper-based catalyst body 32 is provided downstream of a noble metal catalyst body 31, and most of the functions and effects are similar to those of the first embodiment. Therefore, the present embodiment will be described focusing on different points.

【0048】図5は本実施の形態の断面構成を示した図
である。第二反応室34にはコージェライトハニカムに
銅系触媒をコーティングした銅系触媒体32を設置して
ある。ここで銅系触媒体とは、銅を活性成分として含む
CO変成触媒体を示し、銅−亜鉛触媒、銅−クロム触
媒、もしくはこれらのものを主成分として、アルミナ、
シリカ、ジルコニア等を添加したものも銅系触媒に含ま
れる。低温でのCO変成反応が可能である銅系触媒体3
2を設置することによって、2段目通過後のCO濃度を
より低減することができる。また、一段目に耐熱性の高
い貴金属触媒体31を設置しているため、比較的耐熱性
の低い銅系触媒が起動時でも高温に曝されることがな
く、劣化の影響が少なくなる。
FIG. 5 is a diagram showing a sectional configuration of the present embodiment. In the second reaction chamber 34, a copper-based catalyst body 32 in which a cordierite honeycomb is coated with a copper-based catalyst is installed. Here, the copper-based catalyst refers to a CO conversion catalyst containing copper as an active component, and includes a copper-zinc catalyst, a copper-chromium catalyst, or a material containing these as a main component, alumina,
What added silica, zirconia, etc. is also contained in a copper catalyst. Copper-based catalyst 3 capable of CO conversion at low temperature
By installing 2, the CO concentration after passing through the second stage can be further reduced. Further, since the noble metal catalyst body 31 having high heat resistance is provided at the first stage, the copper-based catalyst having relatively low heat resistance is not exposed to high temperature even at the time of startup, and the influence of deterioration is reduced.

【0049】また、本例では設置していないが、銅系触
媒の下流側に貴金属触媒を設置することが好ましい。装
置の停止時や長期間停止させる場合には外部から微量の
空気が混入する恐れがあり、銅系触媒は空気の混入によ
って徐々に劣化する。貴金属触媒上には停止時にも水素
やCOが吸着しており、銅系触媒を上流側と下流側を挟
み込むように貴金属触媒が設置されていると、微量の酸
素は貴金属触媒上で消費され、銅系触媒の劣化を抑制す
ることができる。
Although not provided in this example, it is preferable to provide a noble metal catalyst downstream of the copper-based catalyst. When the apparatus is stopped or when the apparatus is stopped for a long period of time, a small amount of air may be mixed in from the outside, and the copper-based catalyst gradually deteriorates due to the mixing of air. Hydrogen and CO are adsorbed on the noble metal catalyst even when stopped, and if the noble metal catalyst is installed so as to sandwich the copper-based catalyst between the upstream side and the downstream side, a small amount of oxygen is consumed on the noble metal catalyst, Deterioration of the copper-based catalyst can be suppressed.

【0050】[0050]

【実施例】(実施例1)白金を担持した酸化セリウム粉
末を、直径が同じで長さがそれぞれ20mm、と60m
mのコージェライトハニカムにコーティングして第一触
媒体1、第二触媒体2を作製し、図1に示したように、
それぞれ第一反応室と第二反応室に設置した。改質ガス
入口5より、一酸化炭素8%、二酸化炭素8%、水蒸気
20%、残りが水素である改質ガスを、毎分10リット
ルの流量で導入した。第一触媒体1と第二触媒体2の温
度をそれぞれ400℃、250℃になるようにし、改質
ガス出口6より排出されるガスのCO濃度をガスクロマ
トグラフィで測定したところ、CO濃度は3000pp
mであった。この後、反応室を窒素で置換してから空気
を供給し、再び改質ガスを供給して、反応ガスの組成を
測定したところ、CO濃度は3000ppmであった。
さらに同じ操作を50回繰り返し、同様にCO濃度を測
定したところ3200ppmであった。
(Example 1) Platinum-supported cerium oxide powder was prepared by mixing powders having the same diameter and lengths of 20 mm and 60 m, respectively.
m to form a first catalyst body 1 and a second catalyst body 2 by coating on a cordierite honeycomb, and as shown in FIG.
They were installed in the first reaction chamber and the second reaction chamber, respectively. From the reformed gas inlet 5, a reformed gas containing 8% of carbon monoxide, 8% of carbon dioxide, 20% of steam and the balance of hydrogen was introduced at a flow rate of 10 liters per minute. The temperature of the first catalyst 1 and the temperature of the second catalyst 2 were set to 400 ° C. and 250 ° C., respectively, and the CO concentration of the gas discharged from the reformed gas outlet 6 was measured by gas chromatography.
m. Thereafter, after the atmosphere in the reaction chamber was replaced with nitrogen, air was supplied, reformed gas was supplied again, and the composition of the reaction gas was measured. As a result, the CO concentration was 3000 ppm.
Further, the same operation was repeated 50 times, and the CO concentration was measured in the same manner, and it was 3200 ppm.

【0051】(実施例2)実施例1で第一触媒体の温度
を250℃、275℃、300℃、400℃、450
℃、475℃と変化させ、実施例1と同様に改質ガス出
口6より排出されるCO濃度を測定したところ、それぞ
れ7000ppm、7200ppm、3100ppm、
3000ppm、3100ppm、3500ppmであ
った。また、ガス中のメタン濃度を測定したところ、4
00℃以下ではメタンは検出されず、450℃で0.5
%、475℃で1.1%であった。
(Example 2) In Example 1, the temperature of the first catalyst was increased to 250 ° C, 275 ° C, 300 ° C, 400 ° C, 450 ° C.
° C and 475 ° C, and the CO concentration discharged from the reformed gas outlet 6 was measured in the same manner as in Example 1, and found to be 7000 ppm, 7200 ppm, 3100 ppm,
3000 ppm, 3100 ppm, and 3500 ppm. When the methane concentration in the gas was measured,
No methane is detected below 00 ° C, and 0.5% at 450 ° C.
% At 475 ° C.

【0052】(実施例3)実施例1で酸化セリウム粉末
の粒径が異なる試料で触媒体を作製した。酸化セリウム
の粒径をそれぞれ、0.05μm、0.1μm、5μ
m、15μm、17μmのものを用いた。実施例1と同
様に改質ガス出口6より排出されるCO濃度を測定した
ところ、それぞれ2900ppm、3000ppm、3
400ppm、3500ppm、5000ppmであっ
た。この後、反応室を窒素で置換してから空気を供給
し、再び改質ガスを供給して、反応ガスの組成を測定し
たところ、CO濃度はそれぞれ、3800ppm、30
00ppm、3400ppm、3500ppm、510
0ppmであった。さらに同じ操作を50回繰り返し、
同様にCO濃度を測定したところ9000ppm、31
00ppm、3500ppm、3600ppm、800
0ppmであった。
(Example 3) A catalyst body was prepared from samples in which the particle diameters of the cerium oxide powder in Example 1 were different. The particle size of cerium oxide is 0.05 μm, 0.1 μm, 5 μm, respectively.
m, 15 μm and 17 μm were used. When the CO concentration discharged from the reformed gas outlet 6 was measured in the same manner as in Example 1, they were 2900 ppm, 3000 ppm, 3
It was 400 ppm, 3500 ppm, and 5000 ppm. Thereafter, the reaction chamber was replaced with nitrogen, air was supplied, reformed gas was supplied again, and the composition of the reaction gas was measured.
00 ppm, 3400 ppm, 3500 ppm, 510
It was 0 ppm. Repeat the same operation 50 times,
When the CO concentration was measured in the same manner, 9000 ppm, 31
00 ppm, 3500 ppm, 3600 ppm, 800
It was 0 ppm.

【0053】(比較例1)実施例1の図6で示した様
に、第一反応室と第二反応室の連結部分を取り除き、一
つの反応室にした。長さが80mmのコージェライトハ
ニカムに、実施例1と同じ触媒を担持して貴金属触媒体
41を作製し、反応室42に設置した。改質ガス入口4
3より、一酸化炭素8%、二酸化炭素8%、水蒸気20
%、残りが水素である改質ガスを、毎分10リットルの
流量で導入した。触媒体41の温度を変化させ改質ガス
出口44より排出されるガスの一酸化炭素濃度をガスク
ロマトグラフィで測定したところ、CO濃度の極小値は
7000ppmであった。この後、反応室を窒素で置換
してから空気を供給し、再び改質ガスを供給して、同じ
温度で反応ガスの組成を測定したところ、CO濃度は7
100ppmであった。さらに同じ操作を50回繰り返
し、同様にCO濃度を測定したところ7200ppmで
あった。
Comparative Example 1 As shown in FIG. 6 of Example 1, the connection between the first reaction chamber and the second reaction chamber was removed to form one reaction chamber. A noble metal catalyst 41 was prepared by supporting the same catalyst as in Example 1 on a cordierite honeycomb having a length of 80 mm, and was installed in the reaction chamber 42. Reformed gas inlet 4
From 3, carbon monoxide 8%, carbon dioxide 8%, steam 20
%, The remainder being hydrogen, was introduced at a flow rate of 10 liters per minute. When the temperature of the catalyst 41 was changed and the concentration of carbon monoxide discharged from the reformed gas outlet 44 was measured by gas chromatography, the minimum value of the CO concentration was 7000 ppm. Thereafter, the reaction chamber was replaced with nitrogen, air was supplied, reformed gas was supplied again, and the composition of the reaction gas was measured at the same temperature.
It was 100 ppm. Further, the same operation was repeated 50 times, and the CO concentration was measured in the same manner, and it was 7200 ppm.

【0054】(比較例2)比較例1で用いた貴金属触媒
体41の代わりに、銅−亜鉛触媒を反応室42に設置
し、比較例1と同様の測定をしたところ、改質ガス出口
44より排出されるガスのCO濃度は1000ppmで
あった。この後、反応室を窒素で置換してから空気を供
給し、再び改質ガスを供給して、反応ガスの組成を測定
したところ、CO濃度は200ppmであった。さらに
同じ操作を50回繰り返し、同様にCO濃度を測定した
ところ22000ppmであった。
(Comparative Example 2) A copper-zinc catalyst was installed in the reaction chamber 42 instead of the noble metal catalyst body 41 used in Comparative Example 1, and the same measurement as in Comparative Example 1 was performed. The CO concentration of the discharged gas was 1000 ppm. Thereafter, the reaction chamber was replaced with nitrogen, air was supplied, reformed gas was supplied again, and the composition of the reaction gas was measured. As a result, the CO concentration was 200 ppm. Further, the same operation was repeated 50 times, and the CO concentration was measured in the same manner to be 22000 ppm.

【0055】[0055]

【発明の効果】以上の実施例と比較例の装置の評価結果
を比較すると明らかなように、本発明によると、CO変
成触媒体の耐熱性が改善され、装置の起動停止を繰り返
した場合でも安定に動作する水素精製装置を提供するこ
とができた。
As is clear from the comparison between the evaluation results of the apparatus of the above embodiment and the apparatus of the comparative example, according to the present invention, the heat resistance of the CO conversion catalyst is improved, and even when the apparatus is repeatedly started and stopped. A stable operation of the hydrogen purifier could be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1である水素精製装置の構成
を示した断面図
FIG. 1 is a cross-sectional view illustrating a configuration of a hydrogen purifying apparatus according to a first embodiment of the present invention.

【図2】変成触媒の作動温度と触媒通過後の一酸化炭素
濃度の一般的な関係を示した図
FIG. 2 is a diagram showing a general relationship between the operating temperature of a shift catalyst and the concentration of carbon monoxide after passing through the catalyst.

【図3】実施形態2の水素精製装置の構成を示した断面
FIG. 3 is a cross-sectional view illustrating a configuration of a hydrogen purifying apparatus according to a second embodiment.

【図4】実施形態3の水素精製装置の構成を示した断面
FIG. 4 is a cross-sectional view illustrating a configuration of a hydrogen purifying apparatus according to a third embodiment.

【図5】実施形態4の水素精製装置の構成を示した断面
FIG. 5 is a cross-sectional view illustrating a configuration of a hydrogen purifying apparatus according to a fourth embodiment.

【図6】比較例1の水素精製装置の断面構成を示した図FIG. 6 is a diagram showing a cross-sectional configuration of a hydrogen purification device of Comparative Example 1.

【符号の説明】[Explanation of symbols]

1,11,21 第一触媒体 2,12,22 第二触媒体 3,13,23,33 第一反応室 4,14,24,34 第二反応室 5,15,25,35,43 改質ガス入口 6,16,26,36,44 改質ガス出口 7,17,27,37,45 拡散板 8,18,28,38,46 断熱材 19 冷却水供給管 29 冷却ファン 31,41 貴金属触媒体 32 銅系触媒体 42 反応室 1,11,21 First catalyst 2,2,22 Second catalyst 3,13,23,33 First reaction chamber 4,14,24,34 Second reaction chamber 5,15,25,35,43 Quality gas inlet 6,16,26,36,44 Reformed gas outlet 7,17,27,37,45 Diffusion plate 8,18,28,38,46 Heat insulator 19 Cooling water supply pipe 29 Cooling fan 31,41 Precious metal Catalyst 32 Copper-based catalyst 42 Reaction chamber

フロントページの続き (72)発明者 鵜飼 邦弘 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 庄野 敏之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 北河 浩一郎 大阪府大阪市城東区今福西6丁目2番61号 松下精工株式会社内 (72)発明者 上田 哲也 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4G040 EA02 EA03 EA06 EB12 EB23 EB32 EB43 EC03 EC04 4G069 AA03 AA15 BA01A BA01B BA02A BA02B BA04A BA04B BA05A BA05B BA06A BA06B BB04A BB04B BC31A BC31B BC35A BC35B BC43A BC43B BC70A BC70B BC71A BC71B BC72A BC72B BC75A BC75B CC17 CC32 DA05 EA19 EB18Y EE08 EE09 Continued on the front page (72) Inventor Kunihiro Ukai 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Toshiyuki Shono 1006 Oji Kadoma Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (72) Invention Person Koichiro Kitagawa 6-2-61 Imafukunishi, Joto-ku, Osaka City, Osaka Prefecture Matsushita Seiko Co., Ltd. (72) Inventor Tetsuya Ueda 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. F-term (reference) 4G040 EA02 EA03 EA06 EB12 EB23 EB32.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 水素と水とを含有する改質ガスの供給部
と、貴金属を有する一酸化炭素変成用触媒体を具備した
触媒反応室を前記改質ガス供給部の下流側に配置した水
素精製装置であって、前記触媒反応室を複数段に分割
し、前記触媒反応室の各段の中間部分に放熱手段または
冷却手段の少なくとも一手段を設置したことを特徴とす
る水素精製装置。
1. A hydrogen supply apparatus comprising: a supply section for a reformed gas containing hydrogen and water; and a catalytic reaction chamber provided with a catalyst for converting carbon monoxide having a noble metal disposed downstream of the reformed gas supply section. A hydrogen purifier, wherein the catalytic reaction chamber is divided into a plurality of stages, and at least one of a heat radiating unit and a cooling unit is provided in an intermediate portion of each stage of the catalytic reaction chamber.
【請求項2】 一酸化炭素変成用触媒体は、少なくとも
白金と酸化セリウムとを含有することを特徴とする請求
項1記載の水素精製装置。
2. The hydrogen purification apparatus according to claim 1, wherein the catalyst for carbon monoxide conversion contains at least platinum and cerium oxide.
【請求項3】 改質ガスの流れ方向に対して、1段目に
配置した一酸化炭素変成用触媒体の温度を300℃以上
でかつ450℃に保持し、前記一酸化炭素の変性反応を
行うことを特徴とする請求項1または2記載の水素精製
装置。
3. The temperature of the catalyst for carbon monoxide conversion arranged in the first stage is maintained at 300 ° C. or higher and 450 ° C. with respect to the flow direction of the reformed gas, and the carbon monoxide denaturing reaction is carried out. The hydrogen purification apparatus according to claim 1, wherein the hydrogen purification is performed.
【請求項4】 一酸化炭素変成用触媒体の温度は、改質
ガスの流れ方向に対して上段部より下段部を低くしたこ
とを特徴とする請求項1から請求項3に記載の水素精製
装置。
4. The hydrogen purification according to claim 1, wherein the temperature of the carbon monoxide conversion catalyst is lower in the lower part than in the upper part with respect to the flow direction of the reformed gas. apparatus.
【請求項5】 一酸化炭素変成用触媒体の体積を、改質
ガスの流れ方向に対して上段部より下段部を大きくした
ことを特徴とする請求項1から請求項4に記載の水素精
製装置。
5. The hydrogen purification according to claim 1, wherein the volume of the carbon monoxide conversion catalyst is larger in the lower part than in the upper part with respect to the flow direction of the reformed gas. apparatus.
【請求項6】 一酸化炭素変成用触媒体の貴金属担持量
を、改質ガスの流れ方向に対して上段部より下段部を多
くしたことを特徴とする請求項1から請求項5に記載の
水素精製装置。
6. The method according to claim 1, wherein the amount of the noble metal carried on the catalyst for carbon monoxide conversion is larger in the lower part than in the upper part with respect to the flow direction of the reformed gas. Hydrogen purification equipment.
【請求項7】 改質ガスの流れ方向に対して2段目以降
の少なくとも一段の一酸化炭素変成用触媒体に、銅を成
分として有する触媒を設置したことを特徴とする請求項
1から請求項6に載の水素精製装置。
7. The catalyst according to claim 1, wherein a catalyst having copper as a component is installed in at least one stage of the carbon monoxide conversion catalyst in the second and subsequent stages with respect to the flow direction of the reformed gas. Item 6. A hydrogen purifier according to Item 6.
【請求項8】 銅を成分として有する触媒の下流側に、
貴金属を成分として有する触媒を設置したことを特徴と
する請求項7記載の水素精製装置。
8. A downstream side of a catalyst having copper as a component,
The hydrogen purifier according to claim 7, further comprising a catalyst having a noble metal as a component.
【請求項9】 触媒反応室の各段の間に、改質ガスの拡
散部または混合部を設置したことを特徴とする請求項1
から請求項8に記載の水素精製装置。
9. The apparatus according to claim 1, wherein a diffusion section or a mixing section of the reformed gas is provided between each stage of the catalyst reaction chamber.
The hydrogen purification apparatus according to claim 8.
【請求項10】 複数本の管により触媒反応室の各段の
連結を構成したことを特徴とする請求項1から請求項9
に記載の水素精製装置。
10. The catalyst reaction chamber according to claim 1, wherein a plurality of tubes connect the respective stages of the catalyst reaction chamber.
A hydrogen purifier according to item 1.
【請求項11】 冷却部の動作を、一酸化炭素変成用触
媒体の温度により制御することを特徴とする請求項1か
ら請求項10に記載の水素精製装置。
11. The hydrogen purifier according to claim 1, wherein the operation of the cooling unit is controlled by the temperature of the carbon monoxide conversion catalyst.
【請求項12】 冷却部で回収した熱により、水素精製
装置に導入する燃料、水、改質ガスまたは燃焼用空気の
少なくとも一つを加熱することを特徴とする請求項1か
ら請求項11に記載の水素精製装置。
12. The method according to claim 1, wherein at least one of fuel, water, reformed gas, and combustion air introduced into the hydrogen purifier is heated by the heat recovered in the cooling unit. The hydrogen purifying apparatus according to claim 1.
JP37385899A 1999-12-28 1999-12-28 Hydrogen purification equipment Expired - Fee Related JP3482367B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP37385899A JP3482367B2 (en) 1999-12-28 1999-12-28 Hydrogen purification equipment
PCT/JP2000/009362 WO2001047802A1 (en) 1999-12-28 2000-12-27 Apparatus for forming hydrogen
KR1020027008275A KR20020074464A (en) 1999-12-28 2000-12-27 Apparatus for forming hydrogen
CNB00817766XA CN1274587C (en) 1999-12-28 2000-12-27 Apparatus for forming hydrogen
US10/168,854 US6972119B2 (en) 1999-12-28 2000-12-27 Apparatus for forming hydrogen
EP00987775A EP1256545A4 (en) 1999-12-28 2000-12-27 Apparatus for forming hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37385899A JP3482367B2 (en) 1999-12-28 1999-12-28 Hydrogen purification equipment

Publications (2)

Publication Number Publication Date
JP2001180912A true JP2001180912A (en) 2001-07-03
JP3482367B2 JP3482367B2 (en) 2003-12-22

Family

ID=18502881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37385899A Expired - Fee Related JP3482367B2 (en) 1999-12-28 1999-12-28 Hydrogen purification equipment

Country Status (1)

Country Link
JP (1) JP3482367B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016260A1 (en) * 2000-08-18 2002-02-28 Matsushita Electric Industrial Co., Ltd. Hydrogen purification apparatus
JP2002128507A (en) * 2000-10-23 2002-05-09 Matsushita Electric Ind Co Ltd Hydrogen-purifying unit
WO2003000585A1 (en) * 2001-06-12 2003-01-03 Matsushita Electric Industrial Co., Ltd. Hydrogen formation apparatus, fuel cell system and method for controlling hydrogen formation apparatus
JP2003081606A (en) * 2001-09-10 2003-03-19 Toyota Motor Corp Flow passage changing method of reforming gas or fuel reforming apparatus provided with gas mixing part
JP2004066003A (en) * 2002-08-01 2004-03-04 National Institute Of Advanced Industrial & Technology Catalyst for water gas shift reaction of fuel reformed gas
JP2006248863A (en) * 2005-03-11 2006-09-21 Nippon Oil Corp Hydrogen production apparatus and fuel cell system
JP2006523004A (en) * 2003-03-28 2006-10-05 ユーティーシー フューエル セルズ,エルエルシー High performance fuel processing system for fuel cell power plant
JP2008059872A (en) * 2006-08-30 2008-03-13 Kyocera Corp Reactor device, fuel cell system, and electronic equipment
US8382866B2 (en) 2006-08-30 2013-02-26 Kyocera Corporation Reaction apparatus, fuel cell system and electronic device
US8382865B2 (en) 2006-08-30 2013-02-26 Kyocera Corporation Reaction apparatus, fuel cell system and electronic device
JP5344935B2 (en) * 2007-05-31 2013-11-20 パナソニック株式会社 Hydrogen generator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100564246C (en) 2003-02-14 2009-12-02 松下电器产业株式会社 Hydrogen producing apparatus and fuel cell generation
JP2006168998A (en) * 2004-12-10 2006-06-29 Fuji Electric Holdings Co Ltd Hydrocarbon reforming apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279142B2 (en) 2000-08-18 2007-10-09 Matsushita Electric Industrial Co., Ltd. Hydrogen refining apparatus
WO2002016260A1 (en) * 2000-08-18 2002-02-28 Matsushita Electric Industrial Co., Ltd. Hydrogen purification apparatus
JP2002128507A (en) * 2000-10-23 2002-05-09 Matsushita Electric Ind Co Ltd Hydrogen-purifying unit
US7132178B2 (en) 2001-06-12 2006-11-07 Matsushita Electric Industrial Co., Ltd. Hydrogen generator, fuel cell system and control method of hydrogen generator
WO2003000585A1 (en) * 2001-06-12 2003-01-03 Matsushita Electric Industrial Co., Ltd. Hydrogen formation apparatus, fuel cell system and method for controlling hydrogen formation apparatus
JP2003081606A (en) * 2001-09-10 2003-03-19 Toyota Motor Corp Flow passage changing method of reforming gas or fuel reforming apparatus provided with gas mixing part
JP2004066003A (en) * 2002-08-01 2004-03-04 National Institute Of Advanced Industrial & Technology Catalyst for water gas shift reaction of fuel reformed gas
JP2006523004A (en) * 2003-03-28 2006-10-05 ユーティーシー フューエル セルズ,エルエルシー High performance fuel processing system for fuel cell power plant
JP4829779B2 (en) * 2003-03-28 2011-12-07 ユーティーシー パワー コーポレイション High performance fuel processing system for fuel cell power plant
JP2006248863A (en) * 2005-03-11 2006-09-21 Nippon Oil Corp Hydrogen production apparatus and fuel cell system
JP2008059872A (en) * 2006-08-30 2008-03-13 Kyocera Corp Reactor device, fuel cell system, and electronic equipment
US8382866B2 (en) 2006-08-30 2013-02-26 Kyocera Corporation Reaction apparatus, fuel cell system and electronic device
US8382865B2 (en) 2006-08-30 2013-02-26 Kyocera Corporation Reaction apparatus, fuel cell system and electronic device
JP5344935B2 (en) * 2007-05-31 2013-11-20 パナソニック株式会社 Hydrogen generator

Also Published As

Publication number Publication date
JP3482367B2 (en) 2003-12-22

Similar Documents

Publication Publication Date Title
EP1256545A1 (en) Apparatus for forming hydrogen
JP3473898B2 (en) Hydrogen purification equipment
WO2000048261A1 (en) Carbon monoxide converting apparatus for fuel cell and generating system of fuel cell
JP3482367B2 (en) Hydrogen purification equipment
WO2002022256A1 (en) Method of activating catalyst for carbon monoxide removal, catalyst for removing carbon monoxide, method of removing carbon monoxide, and method of operating fuel cell system
JP3473896B2 (en) Hydrogen purification equipment
US20040241509A1 (en) Hydrogen generator and fuel cell system
WO2001096846A1 (en) Gas concentration sensor, hydrogen purification unit using this and fuel cell system
JP3733753B2 (en) Hydrogen purification equipment
JP4240787B2 (en) Method for activating carbon monoxide removal catalyst, method for operating carbon monoxide remover, and method for operating fuel cell system
JP2003277013A (en) Carbon monoxide removing method and polymer electrolyte fuel cell system
JP4663095B2 (en) Hydrogen purification equipment
JP2003275587A (en) Carbon monoxide selective oxidation catalyst and hydrogen purification apparatus using the same
JP2004002162A (en) Elimination method of carbon monoxide, carbon monoxide elimination system using the same, and fuel cell system
JP4190782B2 (en) Hydrogen purification apparatus and method for producing CO shift catalyst
JP3473757B2 (en) Gas concentration detector, hydrogen purification device, and fuel cell system including the same
JP4867084B2 (en) Hydrogen purification equipment
JP2002226204A (en) Hydrogen purification unit
JP2002348103A (en) Hydrogen purification equipment
WO2005061108A1 (en) A water gas shift catalyst on a lanthanum-doped anatase titanium dioxide support for fuel cells application
JP2006008434A (en) Hydrogen generating unit, fuel cell electricity generating system, and hydrogen generating method
JP4521970B2 (en) Carbon monoxide removal catalyst and carbon monoxide removal method using the same
JP2004006405A (en) Hydrogen purification apparatus
JP2002348102A (en) Hydrogen purification equipment
JP4714243B2 (en) Method for activating carbon monoxide removal catalyst

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees