JP4867084B2 - Hydrogen purification equipment - Google Patents

Hydrogen purification equipment Download PDF

Info

Publication number
JP4867084B2
JP4867084B2 JP2001176571A JP2001176571A JP4867084B2 JP 4867084 B2 JP4867084 B2 JP 4867084B2 JP 2001176571 A JP2001176571 A JP 2001176571A JP 2001176571 A JP2001176571 A JP 2001176571A JP 4867084 B2 JP4867084 B2 JP 4867084B2
Authority
JP
Japan
Prior art keywords
hydrogen
catalyst
zeolite
catalyst body
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001176571A
Other languages
Japanese (ja)
Other versions
JP2002362904A (en
Inventor
清 田口
邦弘 鵜飼
英延 脇田
誠二 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001176571A priority Critical patent/JP4867084B2/en
Priority to US10/239,965 priority patent/US7147680B2/en
Priority to CN200910160449A priority patent/CN101712461A/en
Priority to EP02710339A priority patent/EP1354853A4/en
Priority to CN02800372A priority patent/CN1457320A/en
Priority to PCT/JP2002/000487 priority patent/WO2002059038A1/en
Publication of JP2002362904A publication Critical patent/JP2002362904A/en
Application granted granted Critical
Publication of JP4867084B2 publication Critical patent/JP4867084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、水素を主成分とし一酸化炭素(以下COと記す)を含有する改質ガスを精製し、高純度の水素ガスを提供する水素精製装置に関する。
【0002】
【従来の技術】
燃料電池などの水素源として、炭化水素もしくはアルコール、エーテルなどの改質によって得られる改質ガスを用いるが、100℃以下の低温で動作する固体高分子型燃料電池の場合には、燃料電池の電極に用いるPt触媒が改質ガスに含まれるCOによって被毒される恐れがある。Pt触媒の被毒が起こると、水素の反応が阻害され、燃料電池の発電効率が著しく低下する。そのため、水素精製装置を利用して、COを100ppm以下、好ましくは10ppm以下に除去する必要がある。
【0003】
通常、COを除去するためには、水素精製装置における、CO変成触媒体を設置したCO変成部でCOと水蒸気とをシフト反応させ、二酸化炭素と水素とに転換し、数千ppm〜1%程度の濃度までCO濃度を低減させる。
【0004】
その後、微量の空気を利用して酸素を加え、CO選択酸化触媒体によって、燃料電池に悪影響をおよぼさない数ppmレベルまでCOを除去する。ここで、充分にCOを除去するためには、CO濃度の1〜3倍程度の酸素を加える必要があるが、このとき、水素も酸素量に対応して消費される。そして、CO濃度が高い場合には、加えるべき酸素量も増加し、消費される水素が増大するため、装置全体の効率が大きく低下する。
【0005】
したがって、CO変成触媒体を設置したCO変成部において、COを充分に低減させておくことが必要となる。
【0006】
従来から、CO変成触媒には、低温用CO変成触媒として、150〜300℃で使用可能な銅−亜鉛系触媒、銅−クロム系触媒などが用いられ、高温用CO変成触媒として、300℃以上で機能する鉄−クロム系触媒などが用いられている。これらのCO変成触媒は、化学プラントや燃料電池用水素発生器などの用途に応じて、低温用CO変成触媒のみで使用したり、高温用CO変成触媒と低温用CO変成触媒とを組み合わせて使用されていた。
【0007】
【発明が解決しようとする課題】
しかしながら、上記の銅系の低温用CO変成触媒を中心に用いた場合、非常に高い触媒活性が得られるが、使用前に還元処理を施して活性化させる必要がある。そして、活性化処理中に発熱するため、触媒が耐熱温度以上にならないように、例えば還元ガスの供給量を調節しながら、長時間かけて処理する必要があった。また、一度活性化させたCO変成触媒は、装置の停止時などに酸素が混入した場合には再酸化されて劣化する可能性があるため、酸化を防止するなどの対策が必要であった。さらに、低温用CO変成触媒は、耐熱性が低く、装置の始動時に触媒を急激に加熱することができないため、徐々に温度を上昇させるなどの対策が必要であった。
【0008】
一方、高温用CO変成触媒のみを用いた場合には、耐熱性が高く温度が多少上昇しすぎても問題はないため、始動時の加熱などが容易になる。
【0009】
しかしながら、CO変成反応は、高温領域においてCO濃度を低減させる方向には進行しにくい平衡反応であり、高温でしか機能しない高温用CO変成触媒を用いた場合には、CO濃度を1%以下にすることが困難であった。そのため、後に接続するCO浄化部での浄化効率が低下してしまうことがあった。
【0010】
このように、従来の技術においては、たとえば、水素精製装置の起動に時間を要したり、取り扱いが煩雑なため、頻繁に起動停止を繰り返す用途には、充分には適用できないという課題があった。
【0011】
本発明は、上記従来のこのような課題を考慮し、たとえば、始動時の加熱などが容易であり、高いCO浄化効率を有する水素精製装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
第一の本発明(請求項1に対応)は、水素、一酸化炭素および水蒸気を含む改質ガスから一酸化炭素を除去する一酸化炭素変成触媒体を備えた水素精製装置であって、前記一酸化炭素変成触媒体は、ゼオライトにCu、Fe、Cr、Ce、Re、Mo、Wから選択される希土類元素または遷移金属元素のうちの少なくとも一種と、Pt、Pd、Rh、Ruのうちの少なくとも1つの貴金属がイオン交換または担持されており、前記ゼオライトはシリカおよびアルミナを主成分とし、SiO 2 /Al 2 3 比が4以上であることを特徴とする水素精製装置である。
【0013】
第二の本発明(請求項2に対応)は、前記一酸化炭素変成触媒体は、前記ゼオライトに少なくともCeとPtがイオン交換または担持されていることを特徴とする水素精製装置である。
【0016】
の本発明(請求項に対応)は、前記ゼオライトは、Y型、L型、モルデナイト型、ZSM−5型、ベータ型構造より選択される一種であることを特徴とする水素精製装置である。
【0017】
の本発明(請求項に対応)は、前記一酸化炭素変成触媒体の上流側には酸化ガス供給部が設けられていることを特徴とする水素精製装置である。
【0018】
の本発明(請求項に対応)は、前記ゼオライトには少なくともCuが含有していることを特徴とする水素精製装置である。
【0019】
【発明の実施の形態】
以下では、本発明にかかる実施の形態について、図面を参照しつつ説明を行う。
【0020】
(実施の形態1)
はじめに、図1を参照しながら、本実施の形態における水素精製装置の構成について説明する。なお、図1は、本実施の形態における水素精製装置の構成を示す概略縦断面図である。
【0021】
図1において、1はCO変成触媒体(以下では、単に触媒体ともいう)であり、反応室2の内部に設置した。3は改質ガス入口であり、ここから改質ガスを導入する。触媒体1で反応した改質ガスは、改質ガス出口より排出される。
【0022】
なお、触媒体1の上流側には、改質ガスが均一に流れるように拡散板5を設置してある。また、反応器を一定温度に保つために、必要箇所は、外周をセラミックウールからなる断熱材6で覆ってある。
【0023】
ここで、触媒体1は、SiO2/Al2O3=5(モル比)のY型ゼオライト(フォージャサイト型でシリカ−アルミナ比が4以上のもの)にCeとPtを担持したものをコージェライトハニカムにコーティングすることによって作成した。
【0024】
つぎに、本実施の形態における水素精製装置の動作について説明する。水素精製装置に供給する改質ガスを発生させるために用いる燃料としては、天然ガス、メタノール、ガソリンなどがあり、改質方法も、水蒸気を加える水蒸気改質、空気を加えておこなう部分改質などがあるが、ここでは、天然ガスを水蒸気改質して改質ガスを得る場合について述べる。
【0025】
天然ガスを水蒸気改質した場合の改質ガスの組成は、改質触媒体の温度によって多少変化するが、水蒸気を除いた平均的な値として、水素が約80%、二酸化炭素、一酸化炭素がそれぞれ約10%含まれる。
【0026】
天然ガスの改質反応は、500〜800℃程度でおこなうのに対し、COと水蒸気が反応する変成反応は、150〜350℃程度で進行するため、改質ガスは、改質ガス入口3の手前で冷却してから供給する。触媒体1通過後のCO濃度は、約1%まで低減され、改質ガス出口4より排出される。
【0027】
次に、本実施の形態の水素精製装置の動作原理について説明する。CO変成反応は、温度に依存する平衡反応であり、低温で反応させるほど、CO濃度を低減させることができる。一方、低温になると触媒上での反応速度が低下する。したがって、CO濃度が極小値をとる温度が存在する。
【0028】
従来の水素精製装置においてCO変成触媒として用いられる銅−亜鉛触媒、銅−クロム触媒などの銅系の変成触媒は、150〜250℃の低温でCO変成反応を行うことができ、条件によっては、CO濃度を数百〜千ppm前後にまで低減させることができる。
【0029】
しかし、銅系の触媒は、反応器に充填した後、水素や改質ガスなどの還元ガスを流通させて活性化させる必要があるとともに、耐熱性は300℃前後と低い。したがって、活性化時の反応熱で耐熱温度を超えないように、還元ガスを不活性ガスなどで希釈して供給するか、または少流量で徐々に反応させる必要があり、活性化に長時間を要する。また、装置の起動時にも、過昇温によって耐熱温度を超えないように、ゆっくりと長時間かけて加熱する必要があり、頻繁に起動停止を繰り返すような用途には、問題点が多い。
【0030】
一方、本発明の水素精製装置では、触媒体1として貴金属を活性成分とする触媒体を用いており、装置の起動時に500℃程度の高温になった場合でも、触媒が大きく劣化することは無い。また、触媒体1の耐熱性が高いため、銅系触媒のように、還元反応の反応熱による発熱を抑制するために、長時間かけて還元処理を行う必要もない。また、装置を停止させた場合に空気が混入しても銅系触媒よりも触媒劣化は少ない。
【0031】
また、ゼオライトを担体として用いることによって、活性成分が高分散に担持されるとともに、担体であるゼオライトと貴金属との相互作用が大きいため劣化も抑制される。
【0032】
ゼオライトはシリカとアルミナを主成分とするものが一般的であるが、3価の電子状態をとるAl原子と4価の電子状態をとるSi原子の比率によって、固体酸性や疎水性など様々な特性が発現する。本実施の形態で用いているゼオライトは、SiO2/Al2O3比=5であり、水に対して親和性の低い疎水性ゼオライトである。水素精製装置の起動時には、装置が充分な温度に昇温される前に水蒸気を多く含むガスが供給される可能性がある。このため、従来は触媒体に凝縮した水が触媒の活性点を覆い尽くし、反応が開始するまでに長い時間を要していたり、触媒をヒーターで加熱したりしていた。一方、本発明では疎水性ゼオライトを用いているため、水が触媒活性を低下させることなく、比較的低温から、速やかに反応がを開始させることができる。
【0033】
なお、Pt、Pd、Rh、およびRuなどを活性成分とする貴金属触媒は、活性が高いために、反応の選択性が比較的低い。そのため、条件によっては、CO変成反応の副反応として、COまたは二酸化炭素のメタン化反応も進行することがあり、メタン化反応の進行による水素の消費が、装置全体の効率を低下させることが懸念される。
【0034】
通常、CO変成反応を行う150〜450℃の温度領域では、高温になるほどメタン化反応が顕著となるが、貴金属の種類によっても、メタン生成率は異なる。これは、貴金属の種類によってCOの吸着機構が異なるためであり、メタン化反応が進行しやすいCOの吸着機構をもつPd、RhおよびRuは、比較的低温でもメタンを発生させ、CO変成反応を行うことができる温度領域が狭くなる。これに対して、本実施の形態で用いるPt触媒は、メタン化反応を起こしにくく、広い温度範囲でCO変成反応を行うことができる。したがって、メタン化反応の進行によって大量の水素が消費されることはなく、本実施の形態の水素精製装置は、効率よく稼働することができる。
【0035】
また、貴金属の担持量としては、貴金属が高い分散度となり、必要な活性が発揮できる量であれば良い。貴金属の含有量が高いほど貴金属の粒子は大きくなって反応に寄与しない貴金属量が増加し、逆に貴金属の含有量が少ない場合には充分な活性が得られない。このため、通常の燃焼用や排ガス浄化用の貴金属触媒と同じく、触媒担体に対して0.1重量%〜5重量%の間が好ましい。
【0036】
また、Ceは貴金属触媒上でのメタン化反応を抑制する効果がある。通常貴金属触媒にはアルミナやシリカ、酸化チタン等が触媒担体として用いられるが、変成反応に用いると300℃以上の温度領域で、メタン化反応が進行しやすい。Ceを貴金属と共存させた場合には、450℃程度の高温であっても、メタン化反応はほとんど進行しない。Ce以外にもCu、Fe、Cr、Re、Mo、Wから選択される遷移金属を添加することによって、同様の効果が得られる。
【0037】
Cu、Fe、Cr、Ce、Re、Mo、Wの添加量としては、ゼオライトの細孔内に
効率よく担持できる量が好ましく、0.5〜10wt%がもっとも効果的である。
【0038】
また、本実施例ではY型構造のゼオライトを用いたが、反応ガス(COと水分子)に対して充分に大きな細孔を有していれば、特に構造に限定はなく、L型、モルデナイト型、ZSM−5型、ベータ型構造でもよい。これらのものは0.5〜1nmの細孔を有しており、細孔内の活性点が有効に機能できるため、高い活性が得られる。
【0039】
また本実施の形態では、ゼオライトのシリカ−アルミナ比がSiO2/Al23=5のものを用いたが、4以上であれば、高い性能が得られる。また、シリカ比率が多いほど疎水性が高くなって好ましいが、SiO2/Al23=200を越えると、シリカの比率が多くなっても特性は変わらない。
【0040】
また、本実施の形態では、触媒体の形状は、触媒をコージェライトハニカムにコーティングしたものを用いたが、ゼオライトの形状をペレット形状とし、貴金属塩等を含浸させてCO変成触媒体を作製しても、同様の性能を有するCO変成触媒体が得られる。
【0041】
また、本実施の形態では、ゼオライトにCeとPtを担持したが、酸化セリウム等の金属酸化物に貴金属を担持したものとゼオライトを混合しても同様の効果が得られる。
【0042】
(実施の形態2)
次に発明の第2の実施の形態について述べる。本実施の形態は、図2に示すように触媒体11の上流側に空気供給部14が設けている以外は実施の形態1と類似である。したがって、異なる点を中心に本実施の形態を説明する。
【0043】
図2は本実施の形態に係る水素精製装置の構成を示す概略断面図である。空気供給部14から空気を供給することによって、触媒体11で改質ガス中の水素または一酸化炭素が酸化される。通常、起動時には触媒体11の温度が充分に上昇するまで触媒上に水が凝縮し、酸化反応は充分に進行しない。このため、空気を加えても発熱しないため、起動に時間を要する。ここで本実施の形態では触媒体11には疎水性ゼオライトが含有しており、装置の起動時のように、多量の水蒸気が含まれている条件でも触媒体11上で酸化反応が進行し、触媒体11の温度は速やかに上昇する。なお、加える空気量は装置構成等によって異なり、特に限定しないが、触媒温度が速やかに昇温するとともに、極端に触媒体の温度が過昇温しない空気量を選択する必要がある。
【0044】
また、触媒体11に用いているゼオライトにCuを担持させておくと、触媒の酸化反応が開始する温度より低温で、供給した空気がCuを酸化し発熱するため、触媒体11の温度はより早く上昇する。一度酸化された銅は空気の供給を停止すると再び改質ガスによって還元されるため、元の金属状態にもどり、次の起動時には再び発熱させることができる。
【0045】
【実施例】
(実施例1)
表1に示すように、シリカ−アルミナ比がSiO2/Al23=5のY型ゼオライト(表中ではYと記す)に対して、Cu、Fe、Cr、Ce、Re、Mo、Wを1重量%担持し、さらに貴金属(貴金属種は表中に記載)を1重量%担持した。同じくシリカ−アルミナ比がSiO2/Al23=5のL型、モルデナイト型、ZSM5型、ベータ型ゼオライト(表中では、それぞれL、M、ZSM5、βと記す)に対して、Ceを1重量%担持し、同様にPtを1重量%担持した。これらをコージェライトハニカムにコーティングして、図1に示す反応室2に設置した。
【0046】
改質ガス入口3より、一酸化炭素8%、二酸化炭素8%、水蒸気20%、残りが水素である改質ガスを、毎分10リットルの流量で導入した。改質ガス温度を制御し、触媒体1で反応させた後に、改質ガス出口4より排出されるガスの組成をガスクロマトグラフィで測定した。
【0047】
温度を変化させた場合のCO濃度の最低値、触媒温度が400℃における反応後のガス中のメタン濃度を測定し、さらに、装置を停止させた後、再び起動させる動作を10回繰り返し、CO濃度の最低値を測定して触媒の活性変化を確認した。これらの結果を、表1にまとめて示す。
【0048】
【表1】

Figure 0004867084
【0049】
表1に示された実験結果より、前述したつぎのような事実が裏付けられる。Cu、Fe、Cr、Ce、Re、Mo、WとPtを担持したY型ゼオライトは活性が高く、メタン化反応も抑制できる。特にCeがもっとも効果的である。また、Ptの代わりにRu、Pd、およびRhを用いた場合には、メタン化反応が起こりやすくなり、メタン濃度が高くなる。
【0050】
また、L型、モルデナイト型、ZSM5型、β型のゼオライトを用いてもY型ゼオライトと同様の効果が得られる。
【0051】
(実施例2)
実施例1で用いた表1中の試料4に示したPt/Ce/Y型(フォージャサイト型)ゼオライトにおいて、表2に示すように、ゼオライトのシリカ−アルミナ比が、1から1000までのものについて、実施例1と同様にコージェライトハニカムにコーティングして、図1に示す反応室2に設置した。
【0052】
改質ガス入口3より、一酸化炭素8%、二酸化炭素8%、水蒸気20%、残りが水素である改質ガスを、毎分10リットルの流量で導入を開始し、触媒体1の温度が上昇してCO濃度が1%を下回るまでの時間(起動時間)を測定した。これらの結果を表2にまとめて示す。
【0053】
【表2】
Figure 0004867084
【0054】
(実施例3)
実施例2で、図2に示すように触媒体11の上流側に空気供給部14を設け、毎分0.2リットルの流量で空気を供給しながら、実施例2と同様に起動時間を測定した。これらの結果を表3にまとめて示す。
【0055】
【表3】
Figure 0004867084
【0056】
(実施例4)
実施例1で用いた表1中の試料1で示したPt/Cu/Y型ゼオライトにおいて、表4に示すように、ゼオライトのシリカ−アルミナ比が、1から1000までのものについて、実施例3と同様に起動時間を測定した。これらの結果を表4にまとめて示す。
【0057】
【表4】
Figure 0004867084
【0058】
(比較例1)
本発明のゼオライトに希土類または遷移金属を担持させたものの代わりに、表5に示す組成の酸化物、または貴金属1重量%をアルミナに担持したもの、42〜47を触媒体1として用い、実施例1と同様に、図1に示す反応室2に設置した。改質ガス入口3より、一酸化炭素8%、二酸化炭素8%、水蒸気20%、残りが水素である改質ガスを、毎分10リットルの流量で導入した。改質ガス温度を制御し、触媒体1で反応させた後に、改質ガス出口4より排出されるガスの組成をガスクロマトグラフィで測定した。温度を変化させた場合のCO濃度の最低値、触媒温度が400℃における反応後のガス中のメタン濃度を測定し、さらに、装置を停止させた後、再び起動させる動作を10回繰り返し、CO濃度の最低値を測定して触媒の活性変化を確認した。これらの結果を、表5にまとめて示す。
【0059】
【表5】
Figure 0004867084
【0060】
(比較例2)
実施例1で用いた表1中の試料4に示したPt/Ce/Y型ゼオライト代わりに、酸化セリウムにPtを1重量%担持し、実施例1と同様にコージェライトハニカムにコーティングして、図1に示す反応室2に設置した。
【0061】
改質ガス入口3より、一酸化炭素8%、二酸化炭素8%、水蒸気20%、残りが水素である改質ガスを、毎分10リットルの流量で導入を開始し、触媒体1の温度が上昇してCO濃度が1%を下回るまでの時間(起動時間)を測定したところ、55分であった。
【0062】
(比較例3)
比較例2で、図2に示すように触媒体11の上流側に空気供給部14を設け、毎分0.2リットルの流量で空気を供給しながら、比較例2と同様に起動時間を測定したところ、40分であった。
【0063】
このように、本比較例における触媒体を用いた場合、次のような事実が裏付けられる。貴金属を含まない鉄とクロムの複合酸化物は充分にCOが低減できず、銅−亜鉛触媒は初期活性は高いが、起動停止を繰り返すと著しく活性低下する。また、アルミナに貴金属を担持させたものは、活性の低下はみられないが、400℃におけるメタン濃度は高い。また、起動時間もゼオライトを用いることによって短くなった。
【0064】
以上述べたところから明らかなように、このように、本発明の水素精製装置は、CO変成触媒体の耐久性が改善されており、装置の起動停止を繰り返した場合でも安定に動作し、起動時間も短縮することができる。
【0065】
【発明の効果】
以上の説明から明らかなように、本発明は、たとえば、始動時の加熱などが容易であり、高いCO除去効率を有する水素精製装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る水素精製装置を含む水素発生装置の構成を示す概略縦断面図
【図2】本発明の実施の形態2に係る水素精製装置を含む水素発生装置の構成を示す概略縦断面図
【符号の説明】
1,11 触媒体
2,12 反応室
3,13 改質ガス入口
4,14 改質ガス出口
5,16 拡散板
6,17 断熱材
15 空気供給部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen purifier that purifies a reformed gas containing hydrogen as a main component and containing carbon monoxide (hereinafter referred to as CO) to provide high-purity hydrogen gas.
[0002]
[Prior art]
As a hydrogen source for a fuel cell or the like, a reformed gas obtained by reforming hydrocarbon, alcohol, ether or the like is used. In the case of a polymer electrolyte fuel cell operating at a low temperature of 100 ° C. or lower, the fuel cell The Pt catalyst used for the electrode may be poisoned by CO contained in the reformed gas. When poisoning of the Pt catalyst occurs, the reaction of hydrogen is inhibited, and the power generation efficiency of the fuel cell is significantly reduced. Therefore, it is necessary to remove CO to 100 ppm or less, preferably 10 ppm or less using a hydrogen purifier.
[0003]
Usually, in order to remove CO, CO and water vapor are shift-reacted in a CO conversion section where a CO conversion catalyst body is installed in a hydrogen purifier to convert it into carbon dioxide and hydrogen, and several thousand ppm to 1%. Reduce the CO concentration to a moderate concentration.
[0004]
Thereafter, oxygen is added using a small amount of air, and CO is removed to a few ppm level by the CO selective oxidation catalyst body that does not adversely affect the fuel cell. Here, in order to sufficiently remove CO, it is necessary to add oxygen of about 1 to 3 times the CO concentration. At this time, hydrogen is also consumed corresponding to the amount of oxygen. When the CO concentration is high, the amount of oxygen to be added also increases and the amount of hydrogen consumed increases, greatly reducing the efficiency of the entire apparatus.
[0005]
Therefore, it is necessary to sufficiently reduce CO in the CO shift section where the CO shift catalyst body is installed.
[0006]
Conventionally, as a CO conversion catalyst, a copper-zinc based catalyst, a copper-chromium based catalyst, etc. usable at 150 to 300 ° C. are used as a low temperature CO conversion catalyst, and as a high temperature CO conversion catalyst, 300 ° C. or more. An iron-chromium-based catalyst that functions in the above is used. These CO conversion catalysts can be used only for low temperature CO conversion catalysts or in combination with high temperature CO conversion catalysts and low temperature CO conversion catalysts, depending on the application such as chemical plant and fuel cell hydrogen generator. It had been.
[0007]
[Problems to be solved by the invention]
However, when the above-described copper-based low-temperature CO conversion catalyst is mainly used, a very high catalytic activity can be obtained, but it is necessary to activate it by performing a reduction treatment before use. Then, since heat is generated during the activation process, it is necessary to perform the treatment over a long time while adjusting the supply amount of the reducing gas, for example, so that the catalyst does not exceed the heat-resistant temperature. In addition, since the CO conversion catalyst once activated may be reoxidized and deteriorated when oxygen is mixed when the apparatus is stopped, it is necessary to take measures such as preventing oxidation. Furthermore, since the low temperature CO conversion catalyst has low heat resistance and cannot heat the catalyst rapidly at the start of the apparatus, it is necessary to take measures such as gradually increasing the temperature.
[0008]
On the other hand, when only the high-temperature CO conversion catalyst is used, there is no problem even if the temperature rises slightly because of high heat resistance, and heating at the time of start-up becomes easy.
[0009]
However, the CO shift reaction is an equilibrium reaction that does not easily proceed in the direction of reducing the CO concentration in the high temperature region. When a high temperature CO shift catalyst that functions only at high temperatures is used, the CO concentration is reduced to 1% or less. It was difficult to do. Therefore, the purification efficiency in the CO purification part connected later may fall.
[0010]
As described above, in the conventional technology, for example, it takes time to start up the hydrogen purifier or the handling is complicated, and thus there is a problem that it cannot be sufficiently applied to a use that repeatedly starts and stops. .
[0011]
An object of the present invention is to provide a hydrogen purifier having high CO purification efficiency that can be easily heated at the start, for example, in consideration of the above-described conventional problems.
[0012]
[Means for Solving the Problems]
A first aspect of the present invention (corresponding to claim 1) is a hydrogen purification apparatus comprising a carbon monoxide shift catalyst body for removing carbon monoxide from a reformed gas containing hydrogen, carbon monoxide and steam, The carbon monoxide shift catalyst body is made of at least one of rare earth elements or transition metal elements selected from Cu, Fe, Cr, Ce, Re, Mo, and W, and Pt, Pd, Rh, and Ru. The hydrogen purifier is characterized in that at least one noble metal is ion-exchanged or supported , the zeolite is mainly composed of silica and alumina, and the SiO 2 / Al 2 O 3 ratio is 4 or more .
[0013]
A second aspect of the present invention (corresponding to claim 2) is the hydrogen purifier characterized in that the carbon monoxide shift catalyst body has at least Ce and Pt ion-exchanged or supported on the zeolite.
[0016]
According to a third aspect of the present invention (corresponding to claim 3 ), the zeolite is a kind selected from a Y type, an L type, a mordenite type, a ZSM-5 type, and a beta type structure. It is.
[0017]
A fourth aspect of the present invention (corresponding to claim 4 ) is a hydrogen purification apparatus characterized in that an oxidizing gas supply unit is provided upstream of the carbon monoxide shift catalyst body.
[0018]
A fifth aspect of the present invention (corresponding to claim 5 ) is a hydrogen purifier characterized in that the zeolite contains at least Cu.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
[0020]
(Embodiment 1)
First, the configuration of the hydrogen purification apparatus in the present embodiment will be described with reference to FIG. In addition, FIG. 1 is a schematic longitudinal cross-sectional view which shows the structure of the hydrogen purification apparatus in this Embodiment.
[0021]
In FIG. 1, reference numeral 1 denotes a CO conversion catalyst body (hereinafter also simply referred to as a catalyst body), which is installed inside the reaction chamber 2. Reference numeral 3 denotes a reformed gas inlet from which the reformed gas is introduced. The reformed gas reacted at the catalyst body 1 is discharged from the reformed gas outlet.
[0022]
A diffusion plate 5 is installed on the upstream side of the catalyst body 1 so that the reformed gas flows uniformly. Further, in order to keep the reactor at a constant temperature, the necessary portion is covered with a heat insulating material 6 made of ceramic wool at the outer periphery.
[0023]
Here, the catalyst body 1 is a cordierite honeycomb in which Ce and Pt are supported on a Y-type zeolite (a faujasite type having a silica-alumina ratio of 4 or more) of SiO2 / Al2O3 = 5 (molar ratio). Created by coating.
[0024]
Next, the operation of the hydrogen purifier in the present embodiment will be described. Fuels used to generate reformed gas to be supplied to the hydrogen purifier include natural gas, methanol, gasoline, etc., and reforming methods include steam reforming with steam, partial reforming with air, etc. Here, a case where natural gas is steam reformed to obtain a reformed gas will be described.
[0025]
The composition of the reformed gas when the natural gas is steam reformed varies slightly depending on the temperature of the reforming catalyst body, but as an average value excluding steam, hydrogen is about 80%, carbon dioxide, carbon monoxide. About 10% of each.
[0026]
The reforming reaction of natural gas is performed at about 500 to 800 ° C., whereas the modification reaction in which CO and water vapor are reacted proceeds at about 150 to 350 ° C. Supply after cooling in front. The CO concentration after passing through the catalyst body 1 is reduced to about 1% and discharged from the reformed gas outlet 4.
[0027]
Next, the principle of operation of the hydrogen purification apparatus of this embodiment will be described. The CO shift reaction is an equilibrium reaction depending on temperature, and the CO concentration can be reduced as the reaction is performed at a lower temperature. On the other hand, when the temperature is low, the reaction rate on the catalyst decreases. Therefore, there is a temperature at which the CO concentration takes a minimum value.
[0028]
Copper-based shift catalysts such as copper-zinc catalyst and copper-chromium catalyst used as CO shift catalysts in conventional hydrogen purifiers can perform CO shift reaction at a low temperature of 150 to 250 ° C., depending on conditions, The CO concentration can be reduced to around several hundred to 1,000 ppm.
[0029]
However, the copper-based catalyst needs to be activated by flowing a reducing gas such as hydrogen or reformed gas after filling the reactor, and the heat resistance is low at around 300 ° C. Therefore, it is necessary to dilute and supply the reducing gas with an inert gas or the like so as not to exceed the heat resistance temperature due to the reaction heat at the time of activation. Cost. Also, at the time of starting the apparatus, it is necessary to heat slowly over a long time so as not to exceed the heat-resistant temperature due to excessive temperature rise, and there are many problems in applications where frequent start and stop are repeated.
[0030]
On the other hand, in the hydrogen purification apparatus of the present invention, a catalyst body having a noble metal as an active component is used as the catalyst body 1, and the catalyst is not greatly deteriorated even when the temperature becomes about 500 ° C. when the apparatus is started. . Moreover, since the heat resistance of the catalyst body 1 is high, it is not necessary to perform the reduction treatment over a long time in order to suppress the heat generation due to the reaction heat of the reduction reaction unlike the copper catalyst. Further, even when air is mixed when the apparatus is stopped, the catalyst is less deteriorated than the copper catalyst.
[0031]
Further, by using zeolite as a support, the active ingredient is supported in a highly dispersed manner, and deterioration is also suppressed because of the large interaction between the support zeolite and the noble metal.
[0032]
Zeolite is generally composed mainly of silica and alumina, but various properties such as solid acidity and hydrophobicity depend on the ratio of Al atoms that take a trivalent electronic state and Si atoms that take a tetravalent electronic state. Is expressed. The zeolite used in the present embodiment is a hydrophobic zeolite having a SiO2 / Al2O3 ratio = 5 and low affinity for water. When the hydrogen purification apparatus is started, there is a possibility that a gas containing a large amount of water vapor is supplied before the apparatus is heated to a sufficient temperature. For this reason, conventionally, water condensed in the catalyst body covers the active point of the catalyst, and it takes a long time to start the reaction or the catalyst is heated with a heater. On the other hand, since hydrophobic zeolite is used in the present invention, the reaction can be started promptly from a relatively low temperature without reducing the catalytic activity of water.
[0033]
Note that a noble metal catalyst containing Pt, Pd, Rh, Ru, or the like as an active component has a high activity and therefore has a relatively low reaction selectivity. Therefore, depending on conditions, the methanation reaction of CO or carbon dioxide may also proceed as a side reaction of the CO shift reaction, and there is a concern that the consumption of hydrogen due to the progress of the methanation reaction may reduce the efficiency of the entire apparatus. Is done.
[0034]
Usually, in the temperature range of 150 to 450 ° C. in which the CO shift reaction is performed, the methanation reaction becomes more prominent as the temperature increases, but the methane production rate varies depending on the type of noble metal. This is because the CO adsorption mechanism varies depending on the type of precious metal. Pd, Rh and Ru, which have a CO adsorption mechanism that facilitates the methanation reaction, generate methane even at relatively low temperatures, and perform the CO conversion reaction. The temperature range that can be performed is narrowed. On the other hand, the Pt catalyst used in the present embodiment hardly causes methanation reaction and can perform CO shift reaction in a wide temperature range. Therefore, a large amount of hydrogen is not consumed by the progress of the methanation reaction, and the hydrogen purification apparatus of this embodiment can be operated efficiently.
[0035]
In addition, the amount of the noble metal supported may be an amount that allows the noble metal to have a high degree of dispersion and exhibit the necessary activity. As the noble metal content increases, the noble metal particles become larger and the amount of noble metal that does not contribute to the reaction increases. Conversely, when the noble metal content is low, sufficient activity cannot be obtained. For this reason, it is preferably between 0.1% by weight and 5% by weight with respect to the catalyst carrier as in the case of a normal noble metal catalyst for combustion or exhaust gas purification.
[0036]
Ce has an effect of suppressing the methanation reaction on the noble metal catalyst. Usually, alumina, silica, titanium oxide or the like is used as a catalyst carrier for the noble metal catalyst. However, when used for the shift reaction, the methanation reaction is likely to proceed in a temperature range of 300 ° C. or higher. When Ce coexists with a noble metal, the methanation reaction hardly proceeds even at a high temperature of about 450 ° C. The same effect can be obtained by adding a transition metal selected from Cu, Fe, Cr, Re, Mo, and W in addition to Ce.
[0037]
The addition amount of Cu, Fe, Cr, Ce, Re, Mo, and W is preferably an amount that can be efficiently supported in the pores of the zeolite, and 0.5 to 10 wt% is most effective.
[0038]
In this example, zeolite with a Y-type structure was used. However, the structure is not particularly limited as long as it has sufficiently large pores for the reaction gas (CO and water molecules), and L-type, mordenite. A type, ZSM-5 type, or beta type structure may be used. Since these have pores of 0.5 to 1 nm and active points in the pores can function effectively, high activity can be obtained.
[0039]
Further, in this embodiment, the zeolite having a silica-alumina ratio of SiO 2 / Al 2 O 3 = 5 is used, but if it is 4 or more, high performance can be obtained. Further, the higher the silica ratio, the higher the hydrophobicity and the better. However, when SiO 2 / Al 2 O 3 = 200 is exceeded, the characteristics do not change even if the silica ratio increases.
[0040]
In the present embodiment, the catalyst body used is a cordierite honeycomb coated with a catalyst. However, the zeolite is formed into a pellet shape and impregnated with a noble metal salt or the like to produce a CO conversion catalyst body. However, a CO conversion catalyst body having similar performance can be obtained.
[0041]
In the present embodiment, Ce and Pt are supported on zeolite. However, the same effect can be obtained by mixing zeolite and a metal oxide such as cerium oxide supported with noble metal.
[0042]
(Embodiment 2)
Next, a second embodiment of the invention will be described. This embodiment is similar to the first embodiment except that an air supply unit 14 is provided on the upstream side of the catalyst body 11 as shown in FIG. Therefore, this embodiment will be described focusing on the different points.
[0043]
FIG. 2 is a schematic cross-sectional view showing the configuration of the hydrogen purifier according to the present embodiment. By supplying air from the air supply unit 14, hydrogen or carbon monoxide in the reformed gas is oxidized by the catalyst body 11. Usually, at the time of start-up, water is condensed on the catalyst until the temperature of the catalyst body 11 is sufficiently increased, and the oxidation reaction does not proceed sufficiently. For this reason, since it does not generate heat even if air is added, it takes time to start. Here, in the present embodiment, the catalyst body 11 contains hydrophobic zeolite, and the oxidation reaction proceeds on the catalyst body 11 even under a condition in which a large amount of water vapor is contained as in the start-up of the apparatus. The temperature of the catalyst body 11 rises quickly. The amount of air to be added varies depending on the apparatus configuration and the like, and is not particularly limited. However, it is necessary to select an amount of air in which the catalyst temperature is rapidly raised and the temperature of the catalyst body is not excessively raised.
[0044]
In addition, if Cu is supported on the zeolite used for the catalyst body 11, the supplied air oxidizes Cu and generates heat at a temperature lower than the temperature at which the oxidation reaction of the catalyst starts. Ascend quickly. The copper once oxidized is reduced again by the reformed gas when the supply of air is stopped, so that it returns to the original metal state and can be reheated at the next start-up.
[0045]
【Example】
Example 1
As shown in Table 1, Cu, Fe, Cr, Ce, Re, Mo, W, and Y type zeolite (indicated in the table as Y) having a silica-alumina ratio of SiO 2 / Al 2 O 3 = 5 And 1% by weight of noble metal (noble metal species are listed in the table). Similarly, for L-type, mordenite-type, ZSM5-type, and beta-type zeolite (in the table, L, M, ZSM5, and β, respectively) having a silica-alumina ratio of SiO 2 / Al 2 O 3 = 5, Ce is used. 1% by weight was supported, and similarly 1% by weight of Pt was supported. These were coated on a cordierite honeycomb and installed in the reaction chamber 2 shown in FIG.
[0046]
From the reformed gas inlet 3, reformed gas having 8% carbon monoxide, 8% carbon dioxide, 20% water vapor and the remaining hydrogen was introduced at a flow rate of 10 liters per minute. After controlling the reformed gas temperature and reacting with the catalyst body 1, the composition of the gas discharged from the reformed gas outlet 4 was measured by gas chromatography.
[0047]
The minimum value of CO concentration when the temperature is changed and the methane concentration in the gas after the reaction at a catalyst temperature of 400 ° C. are measured, and the operation of starting the apparatus again after stopping the apparatus is repeated 10 times. The minimum value of the concentration was measured to confirm the change in the activity of the catalyst. These results are summarized in Table 1.
[0048]
[Table 1]
Figure 0004867084
[0049]
The following facts described above are supported by the experimental results shown in Table 1. Y-type zeolite supporting Cu, Fe, Cr, Ce, Re, Mo, W and Pt has high activity and can suppress the methanation reaction. In particular, Ce is the most effective. Further, when Ru, Pd, and Rh are used instead of Pt, the methanation reaction is likely to occur and the methane concentration is increased.
[0050]
Moreover, the same effect as that of Y-type zeolite can be obtained by using L-type, mordenite-type, ZSM5-type, and β-type zeolite.
[0051]
(Example 2)
In the Pt / Ce / Y type (faujasite type) zeolite shown in Sample 4 in Table 1 used in Example 1, as shown in Table 2, the silica-alumina ratio of the zeolite was from 1 to 1000. In the same manner as in Example 1, the cordierite honeycomb was coated and placed in the reaction chamber 2 shown in FIG.
[0052]
From the reformed gas inlet 3, introduction of reformed gas with 8% carbon monoxide, 8% carbon dioxide, 20% water vapor, and the remainder hydrogen is started at a flow rate of 10 liters per minute. The time (start-up time) until the CO concentration increased below 1% was measured. These results are summarized in Table 2.
[0053]
[Table 2]
Figure 0004867084
[0054]
(Example 3)
In Example 2, as shown in FIG. 2, an air supply unit 14 is provided on the upstream side of the catalyst body 11, and the startup time is measured in the same manner as in Example 2 while supplying air at a flow rate of 0.2 liters per minute. did. These results are summarized in Table 3.
[0055]
[Table 3]
Figure 0004867084
[0056]
Example 4
In the Pt / Cu / Y type zeolite shown in Sample 1 in Table 1 used in Example 1, as shown in Table 4, when the zeolite has a silica-alumina ratio of 1 to 1000, Example 3 The start-up time was measured in the same manner. These results are summarized in Table 4.
[0057]
[Table 4]
Figure 0004867084
[0058]
(Comparative Example 1)
An example in which an oxide having a composition shown in Table 5 or 1% by weight of a noble metal supported on alumina, and 42 to 47 are used as the catalyst body 1 in place of the rare earth or transition metal supported on the zeolite of the present invention. 1 was installed in the reaction chamber 2 shown in FIG. From the reformed gas inlet 3, reformed gas having 8% carbon monoxide, 8% carbon dioxide, 20% water vapor and the remaining hydrogen was introduced at a flow rate of 10 liters per minute. After controlling the reformed gas temperature and reacting with the catalyst body 1, the composition of the gas discharged from the reformed gas outlet 4 was measured by gas chromatography. The minimum value of CO concentration when the temperature is changed and the methane concentration in the gas after the reaction at a catalyst temperature of 400 ° C. are measured, and the operation of starting the apparatus again after stopping the apparatus is repeated 10 times. The minimum value of the concentration was measured to confirm the change in the activity of the catalyst. These results are summarized in Table 5.
[0059]
[Table 5]
Figure 0004867084
[0060]
(Comparative Example 2)
Instead of the Pt / Ce / Y type zeolite shown in Sample 4 in Table 1 used in Example 1, 1% by weight of Pt was supported on cerium oxide, and the cordierite honeycomb was coated in the same manner as in Example 1, It installed in the reaction chamber 2 shown in FIG.
[0061]
From the reformed gas inlet 3, introduction of reformed gas with 8% carbon monoxide, 8% carbon dioxide, 20% water vapor, and the remainder hydrogen is started at a flow rate of 10 liters per minute. It was 55 minutes when the time (start-up time) until the CO concentration rose below 1% was measured.
[0062]
(Comparative Example 3)
In Comparative Example 2, as shown in FIG. 2, an air supply unit 14 is provided on the upstream side of the catalyst body 11, and the start-up time is measured in the same manner as in Comparative Example 2 while supplying air at a flow rate of 0.2 liters per minute. It was 40 minutes.
[0063]
Thus, the following fact is supported when the catalyst body in this comparative example is used. A complex oxide of iron and chromium containing no precious metal cannot sufficiently reduce CO, and the copper-zinc catalyst has a high initial activity, but the activity decreases remarkably when repeated starting and stopping. Moreover, the activity of noble metal supported on alumina is not reduced, but the methane concentration at 400 ° C. is high. Also, the start-up time was shortened by using zeolite.
[0064]
As is apparent from the above description, the hydrogen purifier of the present invention has improved the durability of the CO shift catalyst body, and operates stably even when the apparatus is repeatedly started and stopped. Time can be shortened.
[0065]
【Effect of the invention】
As is clear from the above description, the present invention can provide a hydrogen purifier having high CO removal efficiency that can be easily heated at the start, for example.
[Brief description of the drawings]
1 is a schematic longitudinal sectional view showing a configuration of a hydrogen generator including a hydrogen purifier according to Embodiment 1 of the present invention. FIG. 2 is a hydrogen generator including a hydrogen purifier according to Embodiment 2 of the present invention. Schematic longitudinal cross-sectional view showing the structure
DESCRIPTION OF SYMBOLS 1,11 Catalyst body 2,12 Reaction chamber 3,13 Reformed gas inlet 4,14 Reformed gas outlet 5,16 Diffusion plate 6,17 Heat insulating material 15 Air supply part

Claims (5)

水素、一酸化炭素および水蒸気を含む改質ガスから一酸化炭素を除去する一酸化炭素変成触媒体を備えた水素精製装置であって、前記一酸化炭素変成触媒体は、ゼオライトにCu、Fe、Cr、Ce、Re、Mo、Wから選択される希土類元素または遷移金属元素のうちの少なくとも一種と、Pt、Pd、Rh、Ruのうちの少なくとも1つの貴金属がイオン交換または担持されており、前記ゼオライトはシリカおよびアルミナを主成分とし、SiO 2 /Al 2 3 比が4以上であることを特徴とする水素精製装置。A hydrogen purification apparatus comprising a carbon monoxide conversion catalyst body that removes carbon monoxide from a reformed gas containing hydrogen, carbon monoxide, and steam, wherein the carbon monoxide conversion catalyst body contains Cu, Fe, At least one of rare earth elements or transition metal elements selected from Cr, Ce, Re, Mo, W and at least one noble metal of Pt, Pd, Rh, Ru are ion-exchanged or supported , A hydrogen refining apparatus characterized in that zeolite contains silica and alumina as main components and has a SiO 2 / Al 2 O 3 ratio of 4 or more . 前記一酸化炭素変成触媒体において、前記ゼオライトに少なくともCeとPtがイオン交換または担持されていることを特徴とする請求項1記載の水素精製装置。  2. The hydrogen purifier according to claim 1, wherein in the carbon monoxide shift catalyst body, at least Ce and Pt are ion exchanged or supported on the zeolite. 前記ゼオライトは、Y型、L型、モルデナイト型、ZSM−5型、ベータ型構造より選択される一種であることを特徴とする請求項1または2に記載の水素精製装置。 3. The hydrogen purifier according to claim 1, wherein the zeolite is a kind selected from a Y-type, L-type, mordenite-type, ZSM-5-type, and beta-type structure. 前記一酸化炭素変成触媒体の上流側には酸化ガス供給部が設けられていることを特徴とする請求項1〜3のいずれかに記載の水素精製装置。The hydrogen purifier according to any one of claims 1 to 3 , wherein an oxidizing gas supply unit is provided upstream of the carbon monoxide shift catalyst body. 前記ゼオライトには少なくともCuが含有していることを特徴とする請求項記載の水素精製装置。The hydrogen purifier according to claim 4, wherein the zeolite contains at least Cu.
JP2001176571A 2001-01-26 2001-06-12 Hydrogen purification equipment Expired - Fee Related JP4867084B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001176571A JP4867084B2 (en) 2001-06-12 2001-06-12 Hydrogen purification equipment
US10/239,965 US7147680B2 (en) 2001-01-26 2002-01-24 Hydrogen purification apparatus and method and fuel cell power generation system and method
CN200910160449A CN101712461A (en) 2001-01-26 2002-01-24 Hydrogen purification device and fuel cell power generation system
EP02710339A EP1354853A4 (en) 2001-01-26 2002-01-24 Hydrogen purification device and fuel cell power generation system
CN02800372A CN1457320A (en) 2001-01-26 2002-01-24 Hydrogen purification device and fuel cell power generation system
PCT/JP2002/000487 WO2002059038A1 (en) 2001-01-26 2002-01-24 Hydrogen purification device and fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001176571A JP4867084B2 (en) 2001-06-12 2001-06-12 Hydrogen purification equipment

Publications (2)

Publication Number Publication Date
JP2002362904A JP2002362904A (en) 2002-12-18
JP4867084B2 true JP4867084B2 (en) 2012-02-01

Family

ID=19017540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001176571A Expired - Fee Related JP4867084B2 (en) 2001-01-26 2001-06-12 Hydrogen purification equipment

Country Status (1)

Country Link
JP (1) JP4867084B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6932848B2 (en) * 2003-03-28 2005-08-23 Utc Fuel Cells, Llc High performance fuel processing system for fuel cell power plant
JP5389314B2 (en) * 2005-10-05 2014-01-15 株式会社日立製作所 Shift catalyst and preparation method thereof
CN110681411B (en) * 2018-07-05 2023-07-25 中国石油天然气股份有限公司 Bimetallic catalytic reforming catalyst containing FAU type molecular sieve

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082902A (en) * 1994-06-15 1996-01-09 Idemitsu Kosan Co Ltd Production of hydrogen-containing gas for fuel cell
JP2000302409A (en) * 1999-04-20 2000-10-31 Matsushita Electric Ind Co Ltd Apparatus for generating hydrogen
WO2000054879A1 (en) * 1999-03-18 2000-09-21 Matsushita Electric Works, Ltd. Catalyst for water gas shift reaction, method for removing carbon monoxide in hydrogen gas and electric power-generating system of fuel cell
JP3473898B2 (en) * 1999-04-22 2003-12-08 松下電器産業株式会社 Hydrogen purification equipment
DE10013895A1 (en) * 2000-03-21 2001-10-04 Dmc2 Degussa Metals Catalysts Cerdec Ag Water gas shift reaction, useful in mobile unit in vehicle for removing carbon monoxide from gas mixture containing hydrogen for fuel cell, uses catalyst based on noble metal coating on inert carrier
JP2002079102A (en) * 2000-09-07 2002-03-19 Mitsui Chemicals Inc Catalyst for shift reaction and reaction method

Also Published As

Publication number Publication date
JP2002362904A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
JP3473898B2 (en) Hydrogen purification equipment
US6972119B2 (en) Apparatus for forming hydrogen
KR100981517B1 (en) Article for carbon monoxide removal
JP3743995B2 (en) Methanol reforming catalyst
US20030175562A1 (en) Hydrogen purification device and fuel cell power generation system
JP2004530618A (en) Shift shifter with improved catalyst composition
JP3482367B2 (en) Hydrogen purification equipment
JP2000178007A (en) Hydrogen purifier
JP4089039B2 (en) Hydrogen purification equipment
EP1479650A2 (en) Hydrogen generator and fuel cell system
JP4867084B2 (en) Hydrogen purification equipment
JP2003275587A (en) Carbon monoxide selective oxidation catalyst and hydrogen purification apparatus using the same
JP2002263501A (en) Carbon monoxide selective oxidizing catalyst and method for manufacturing the same
JP3606494B2 (en) Carbon monoxide removing catalyst body, fuel cell device equipped with the catalyst body, and method for removing carbon monoxide in reformed gas supplied to the fuel cell
JP4663095B2 (en) Hydrogen purification equipment
JP5231825B2 (en) Fuel reformer
JP2005034682A (en) Co modification catalyst and its production method
JP4056773B2 (en) Hydrogen generator and fuel cell power generation system
JP2002348103A (en) Hydrogen purification equipment
WO2002090248A1 (en) Hydrogen purification apparatus
JP2006008434A (en) Hydrogen generating unit, fuel cell electricity generating system, and hydrogen generating method
JP2002326803A (en) Hydrogen refining apparatus
JP3703001B2 (en) CO selective oxidation catalyst and method for reducing CO concentration in methanol reformed gas
JP2004195365A (en) Catalyst for purifying carbon monoxide, and hydrogen purification apparatus and method for purifying hydrogen using the same
JP2005001979A (en) Apparatus for generating hydrogen and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080404

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080513

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees