JP2002079102A - Catalyst for shift reaction and reaction method - Google Patents

Catalyst for shift reaction and reaction method

Info

Publication number
JP2002079102A
JP2002079102A JP2000271427A JP2000271427A JP2002079102A JP 2002079102 A JP2002079102 A JP 2002079102A JP 2000271427 A JP2000271427 A JP 2000271427A JP 2000271427 A JP2000271427 A JP 2000271427A JP 2002079102 A JP2002079102 A JP 2002079102A
Authority
JP
Japan
Prior art keywords
catalyst
copper
reaction
carbon monoxide
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000271427A
Other languages
Japanese (ja)
Inventor
Yasunosuke Hagiwara
康之輔 萩原
Michiaki Umeno
道明 梅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2000271427A priority Critical patent/JP2002079102A/en
Publication of JP2002079102A publication Critical patent/JP2002079102A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Industrial Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a novel catalyst for shift reaction, which is capable of satisfying both of the catalytic activity and durability, and an efficient method for transforming carbon monoxide using the catalyst. SOLUTION: The shift reaction catalyst contains copper, palladium and/or platinum and has an atomic ratio, copper to palladium and/or platinum, of 0.2-20 and in the method for transforming carbon monoxide, carbon monoxide is transformed in the presence of the catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一酸化炭素と水を
反応させて、水素と二酸化炭素とに変換させる際に有用
なシフト反応用触媒、及び該触媒を用いる一酸化炭素の
変成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for a shift reaction which is useful in converting carbon monoxide and water into hydrogen and carbon dioxide, and a method for converting carbon monoxide using the catalyst. .

【0002】[0002]

【従来の技術】従来より、合成ガスはメタノールやアル
デヒド類のような化合物合成の他、アンモニアや純水素
の製造等にも使用されている。しかして、メタノールや
炭化水素の水蒸気改質により製造した合成ガスは、一般
に一酸化炭素の含有率が比較的高いため、通常はこれを
水蒸気と反応させるシフト反応により水素を生成させ、
一酸化炭素含有率を低減することが必要とされる。
2. Description of the Related Art Conventionally, synthesis gas has been used not only for synthesizing compounds such as methanol and aldehydes but also for producing ammonia and pure hydrogen. However, synthesis gas produced by steam reforming of methanol or hydrocarbons generally has a relatively high content of carbon monoxide, so that hydrogen is usually generated by a shift reaction in which this is reacted with steam,
There is a need to reduce the carbon monoxide content.

【0003】上記反応は下記式(1)〔式1〕に示すよ
うに発熱反応であり、平衡に大きな制約を受けるため、
低温での活性の高い触媒が有利である。
The above reaction is an exothermic reaction as shown in the following formula (1) [formula 1] and is greatly restricted in equilibrium.
Catalysts with high activity at low temperatures are advantageous.

【0004】[0004]

【式1】 (Equation 1)

【0005】通常、上記シフト反応は転化効率をより大
きくするために、一般に350〜400℃程度の高温反
応と、180〜240℃程度の低温反応での2段階で行
われる。
[0005] Usually, the above-mentioned shift reaction is generally performed in two stages of a high-temperature reaction of about 350 to 400 ° C and a low-temperature reaction of about 180 to 240 ° C in order to further increase the conversion efficiency.

【0006】そして、工業的な比較的低温下での水性ガ
スシフト反応(いわゆる低温シフト反応)に通常用いら
れている触媒は、酸化銅や酸化亜鉛、あるいは酸化アル
ミニウムを基本組成とするものであり、更にこれらの触
媒活性及び安定性に関する改良がなされている。例え
ば、特開平8−229399号公報記載においては、
銅、亜鉛、及びアルミニウムから構成される触媒に対し
てチタン族元素を添加させ、これにより活性成分である
銅を安定化させる試みがなされている。
[0006] A catalyst usually used for an industrial water gas shift reaction at a relatively low temperature (so-called low-temperature shift reaction) has a basic composition of copper oxide, zinc oxide, or aluminum oxide. Further improvements have been made regarding their catalytic activity and stability. For example, in the description of JP-A-8-229399,
Attempts have been made to add a titanium group element to a catalyst composed of copper, zinc, and aluminum, thereby stabilizing copper as an active ingredient.

【0007】また、触媒学会編「触媒・VOL42,No.2」(2
000年3月10日発行)P96〜98においては、公知の銅系触媒
と貴金属系触媒が開示されており、さらに、酸化銅、酸
化亜鉛、酸化アルミニウムを含有する公知のシフト反応
触媒は、広範囲な一酸化炭素濃度に対して転化活性を示
すことが開示されている。一方で貴金属担持触媒(白
金、ルテニウム)は低濃度の一酸化炭素に対して高活性
であることが開示されている。
[0007] Also, "Catalyst VOL42, No. 2" (2
(Issued on March 10, 000) P96-98 discloses known copper-based catalysts and noble metal-based catalysts, and furthermore, known shift reaction catalysts containing copper oxide, zinc oxide, and aluminum oxide are widely used. It is disclosed that it shows conversion activity for various carbon monoxide concentrations. On the other hand, it is disclosed that noble metal-supported catalysts (platinum, ruthenium) are highly active against low concentrations of carbon monoxide.

【0008】また、Appl.Catal.A General.,194-195 (2
000) 21-26には、酸素を含有する原料ガスの系におい
て、銅系触媒を用い、更に貴金属として金、パラジウ
ム、白金、ロジウム、あるいはルテニウムの含まれる触
媒につき記載がある。しかしながら、これらはいずれも
シフト反応の際における触媒活性及び耐久性の両方を満
足させるものではなく、更なる実用的なものが求められ
る。
Further, Appl. Catal. A General., 194-195 (2
000) 21-26 describes a catalyst using a copper-based catalyst in a source gas system containing oxygen and further containing gold, palladium, platinum, rhodium, or ruthenium as a noble metal. However, none of these satisfies both the catalytic activity and durability during the shift reaction, and further practical ones are required.

【0009】以上のように、銅系元素を含む触媒は一般
的に耐熱性に問題があるとされ、これは供給原料中に含
まれる水蒸気により触媒が失活してしまうからと考えら
れている。これらの観点から、触媒の活性のみならず、
耐久性にも十分に優れる、より実用的なシフト反応用触
媒の開発が強く望まれている。
As described above, a catalyst containing a copper-based element is generally considered to have a problem in heat resistance, which is considered to be because the catalyst is deactivated by water vapor contained in a feedstock. . From these viewpoints, not only the activity of the catalyst,
There is a strong demand for the development of more practical shift reaction catalysts that are sufficiently excellent in durability.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記従来に
知られている触媒の欠点を解消して、触媒活性及び耐久
性の両方を十分に満足し得る新規なシフト反応用触媒を
提供するものであり、更には該触媒を用いた、効率的な
一酸化炭素の変成方法を提供するものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks of the conventionally known catalysts and provides a novel catalyst for shift reaction which can sufficiently satisfy both the catalytic activity and the durability. And an efficient method for converting carbon monoxide using the catalyst.

【0011】[0011]

【課題を解決するための手段】本発明者らは前述の課題
を解決すべく鋭意検討した結果、銅元素とともにパラジ
ウム及び/又は白金元素を含むものが有効であること、
特にパラジウム及び/又は白金元素を特定な範囲で含ま
せたものは、触媒活性はもとより、その耐久性が著しく
向上すること、特に水蒸気の存在するシフト反応おいて
は触媒の耐久性が飛躍的に向上することを見いだし、本
発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, it has been found that those containing palladium and / or platinum elements together with copper elements are effective.
In particular, those containing elemental palladium and / or platinum in a specific range have markedly improved not only catalytic activity but also their durability. Particularly, in a shift reaction in the presence of water vapor, the durability of the catalyst is dramatically increased. The inventors have found that the present invention is improved, and have completed the present invention.

【0012】すなわち、本発明は、(1) 銅ならびにパ
ラジウム及び/又は白金を含んでなり、かつパラジウム
及び/又は白金に対する銅の原子比が0.5〜20であ
ることを特徴とするシフト反応用触媒であり、また、
(2) 上記(1)に記載の触媒に更に亜鉛が含まれてなる、
シフト反応用触媒であり、また、(3) 上記(2)に記載の
触媒において、銅に対する亜鉛の原子比が0.1〜10
であるシフト反応用触媒であり、また、(4) 上記(1)〜
(3)のいずれかに記載の触媒の存在下に一酸化炭素を変
成することを特徴とする一酸化炭素の変成方法である。
That is, the present invention provides (1) a shift reaction comprising copper and palladium and / or platinum, and having an atomic ratio of copper to palladium and / or platinum of 0.5 to 20. Catalyst for
(2) The catalyst according to (1) further comprises zinc,
(3) The catalyst according to (2), wherein the atomic ratio of zinc to copper is 0.1 to 10.
(4) above (1) ~
A method for converting carbon monoxide, which comprises converting carbon monoxide in the presence of the catalyst according to any one of (3).

【0013】[0013]

【発明の実施の形態】本発明におけるシフト反応用触媒
は、銅の他にパラジウム及び/又は白金を必須成分とし
てなるものである。この触媒においては、パラジウム又
は白金に対する銅の原子比が0.5〜20となる範囲で
あることが好ましく、更には1〜10となる範囲である
ことが、より好ましい。また、触媒をパラジウム及び白
金の両方が含まれる構成とする場合には、これらの総和
に対する銅の原子比が0.5〜20となる範囲であるこ
とが好ましく、更には1〜10となる範囲であること
が、より好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The catalyst for shift reaction in the present invention comprises palladium and / or platinum as essential components in addition to copper. In this catalyst, the atomic ratio of copper to palladium or platinum is preferably in the range of 0.5 to 20, more preferably 1 to 10. When the catalyst is configured to contain both palladium and platinum, the atomic ratio of copper to the total of these is preferably in the range of 0.5 to 20, and more preferably in the range of 1 to 10. Is more preferable.

【0014】すなわち、パラジウム及び/又は白金に対
する銅の原子比が0.5未満では触媒の耐久性はよいも
のの、その活性の点で劣るようになるからであり、また
上記原子比が20を越えては触媒の初期活性は高まるも
のの、その耐久性において十分な成績が得られなくなる
ことから、特に活性と耐久性との双方を十分に満足させ
る上では、前記した含有比範囲の触媒とすることが好ま
しい。
That is, when the atomic ratio of copper to palladium and / or platinum is less than 0.5, the durability of the catalyst is good, but the activity becomes inferior, and the above atomic ratio exceeds 20. Although the initial activity of the catalyst is increased, sufficient results are not obtained in the durability thereof.In particular, in order to sufficiently satisfy both the activity and the durability, the catalyst should have the content ratio range described above. Is preferred.

【0015】また、本発明におけるシフト反応用触媒で
は、上記成分の他に更に亜鉛をも含む構成とすること
が、その触媒活性がより高まることから、更に好ましい
ものとなる。亜鉛の含有比率は、銅/亜鉛の原子比が
0.1〜10となる範囲が好ましく、より好ましくは
0.2〜4となる範囲である。また、本発明の目的を損
なわない範囲であれば、他の金属元素を含む構成であっ
ても構わない。
[0015] In the shift reaction catalyst of the present invention, it is more preferable that the catalyst further contains zinc in addition to the above components, since the catalytic activity is further enhanced. The content ratio of zinc is preferably such that the atomic ratio of copper / zinc is 0.1 to 10, more preferably 0.2 to 4. Further, a configuration containing another metal element may be used as long as the object of the present invention is not impaired.

【0016】本発明のシフト反応用触媒を得るにあた
り、特段の処方は特に必要でなく、通常の方法により製
造することが可能である。例えば触媒学会編「触媒講座
・第5巻」(1986年11月1日発行・ 講談社)に記載が
あるような、一般的な方法により調製することができ、
具体的には共沈法や沈着法、更には含浸法等といった方
法により得ることができる。これらの方法により得られ
る触媒の前駆体は、液相中にて水素もしくは還元剤を用
いて還元処理を行うか、気相下焼成等の処理を行った後
に、水素処理することにより合金触媒として調製するこ
ともできる。
For obtaining the catalyst for the shift reaction of the present invention, no particular formulation is required, and the catalyst can be produced by a usual method. For example, it can be prepared by a general method, as described in "Catalyst Course, Vol. 5" (published November 1, 1986, Kodansha) edited by the Catalysis Society of Japan.
Specifically, it can be obtained by a method such as a coprecipitation method, a deposition method, or an impregnation method. The catalyst precursor obtained by these methods is subjected to a reduction treatment using hydrogen or a reducing agent in a liquid phase, or after a treatment such as baking under a gas phase, and then subjected to a hydrogen treatment to form an alloy catalyst. It can also be prepared.

【0017】また、本発明における触媒は、シリカ、シ
リカアルミナ、チタニア、アルミナ、炭化珪素、ゼオラ
イト、燐酸アルミニウム、モンモリロナイトや雲母等の
無機担体に担持、あるいは混合して使用することが可能
である。
The catalyst of the present invention can be used by being supported on or mixed with an inorganic carrier such as silica, silica alumina, titania, alumina, silicon carbide, zeolite, aluminum phosphate, montmorillonite and mica.

【0018】更にまた、本発明の触媒は前記した方法に
より製造した後、次いで打錠成型するか、あるいは押し
出し成型による成型触媒として用いることができる他、
ムライト、コージェライトなどのセラミック担体や、シ
リカクロス、スポンジ状金属焼結多孔板等の上に担持せ
しめたハニカム状とすることも可能である。
Furthermore, after the catalyst of the present invention is produced by the above-mentioned method, it can be used as a molded catalyst by tableting or extrusion molding.
It is also possible to use a honeycomb support supported on a ceramic carrier such as mullite or cordierite, a silica cloth, a sponge-shaped sintered metal porous plate, or the like.

【0019】次に、本発明におけるシフト反応は、通
常、上記した触媒の存在下に、これに一酸化炭素及び水
(水蒸気)を接触させる形態により行われる。この際の
反応の条件は通常、反応温度150〜350℃、反応圧
力は70kg/cm2G以下、好ましくは30kg/cm2G〜常圧で
ある。
Next, the shift reaction in the present invention is usually carried out in the presence of the above-mentioned catalyst by contacting carbon monoxide and water (steam). The reaction conditions at this time are usually a reaction temperature of 150 to 350 ° C. and a reaction pressure of 70 kg / cm 2 G or less, preferably 30 kg / cm 2 G to normal pressure.

【0020】また、一酸化炭素に対する水の比率は、一
酸化炭素1モルに対して水0.5〜30モルの範囲、こ
れら混合蒸気の空間速度は50〜50,000hr-1、よ
り好ましくは3000〜30,000hr-1の範囲であ
る。また、必要に応じて水素ガス、炭酸ガス、窒素、及
び空気等を加えて反応を行わせることもできるため、炭
化水素あるいはメタノールを水蒸気改質させた後に、本
発明方法を用いることも可能である。
The ratio of water to carbon monoxide is in the range of 0.5 to 30 mol of water per mol of carbon monoxide, and the space velocity of these mixed vapors is 50 to 50,000 hr -1 , more preferably. The range is from 3000 to 30,000 hr -1 . In addition, if necessary, hydrogen gas, carbon dioxide gas, nitrogen, and the reaction can be performed by adding air and the like, so that the method of the present invention can be used after steam reforming hydrocarbons or methanol. is there.

【0021】また、本発明におけるシフト反応は、一酸
化炭素及び水を触媒に接触させることにより可能であ
り、特に装置スケール等に制約を受けるようなものでも
なく、またその触媒との接触方式は、固定床方式や流動
床方式等といった、従来公知の任意の反応様式で実施す
ることができる。
The shift reaction in the present invention is possible by bringing carbon monoxide and water into contact with a catalyst, and is not particularly limited by the scale of the apparatus. The reaction can be carried out by any conventionally known reaction mode such as a fixed bed system and a fluidized bed system.

【0022】[0022]

【実施例】以下に、実施例及び比較例ならびに触媒の活
性試験例を挙げ、更に説明するが、本発明の範囲はこれ
ら記載により何らの制限を受けるものではない。以下に
おいて、%は特記している以外は質量基準である。
The present invention will be further described below with reference to examples, comparative examples and catalyst activity test examples, but the scope of the present invention is not limited by these descriptions. In the following,% is based on mass, unless otherwise specified.

【0023】1)触媒の調製 実施例1 10%硝酸パラジウム[Pd(NO3)2]水溶液 14.3g、硝酸銅・
三水和物[Cu(NO3)2・3H2O]3.76g、硝酸亜鉛・六水和物[Z
n(NO3)2・6H2O]10.06gを純水200mlに溶解し水溶液とし
た。次に、この水溶液に1Nの炭酸ナトリウム[Na2CO3
を、室温下にて攪拌混合しながら溶液のpHを6.6〜6.8に
なるまで添加した。生成したスラリーを50℃で150分間
攪拌した後、生成した沈殿を減圧濾過し、蒸留水にて十
分に洗浄した。その後、濾別した沈殿を乾燥器中で80℃
下12時間乾燥させた後、空気中、電気炉で350℃で3時間
焼成した。得られた酸化物を打錠成型、粉砕した後に、
その1mlを採取した。これを小型反応管に充填し、H2/N
2=1/9の混合ガスGHSV=6000 [hr-1 ]にて還元処理を行
い、触媒を得た。
1) Preparation of catalyst Example 1 14.3 g of 10% aqueous solution of palladium nitrate [Pd (NO 3 ) 2 ], copper nitrate
Trihydrate [Cu (NO 3) 2 · 3H 2 O] 3.76g, zinc nitrate hexahydrate [Z
10.06 g of [n (NO 3 ) 2 .6H 2 O] was dissolved in 200 ml of pure water to obtain an aqueous solution. Next, 1N sodium carbonate [Na 2 CO 3 ] was added to this aqueous solution.
Was added under stirring at room temperature until the pH of the solution reached 6.6 to 6.8. After the produced slurry was stirred at 50 ° C. for 150 minutes, the produced precipitate was filtered under reduced pressure and washed sufficiently with distilled water. Thereafter, the precipitate separated by filtration is dried at 80 ° C.
After drying for 12 hours, it was baked in an electric furnace at 350 ° C. for 3 hours in the air. After tableting and pulverizing the obtained oxide,
1 ml thereof was collected. This was filled in a small reaction tube, H 2 / N
A reduction treatment was performed with a mixed gas of 2 = 1/9 GHSV = 6000 [hr -1 ] to obtain a catalyst.

【0024】実施例2 実施例1において、10%硝酸パラジウム水溶液の代わり
に塩化白金酸・六水和物2.53g、硝酸銅・三水和物2.95
gを用い、銅/白金原子比=2.5とした。これら試薬を純
水200mlに溶解し水溶液とし、アンモニア水溶液を室温
下にて攪拌混合し、溶液のPHを6.6〜6.8になるまで添加
した。その他の操作は実施例1と同様な方法で調製し
た。
Example 2 In Example 1, 2.53 g of chloroplatinic acid hexahydrate, 2.95 g of copper nitrate trihydrate was used instead of the 10% aqueous palladium nitrate solution.
g and the copper / platinum atomic ratio = 2.5. These reagents were dissolved in 200 ml of pure water to form an aqueous solution, and an aqueous ammonia solution was stirred and mixed at room temperature, and added until the pH of the solution became 6.6 to 6.8. Other procedures were prepared in the same manner as in Example 1.

【0025】実施例3 実施例1において、10%硝酸パラジウム[Pd(NO3)2]水溶
液 10.06g、硝酸銅・三水和物[Cu(NO3)2・3H2O] 4.39gを
純水200mlに溶解し水溶液とした。次に1NのNa2CO3を室
温下にて攪拌混合し、溶液のpHを6.6〜6.8になるまで添
加した。以後の操作は実施例1と同様な方法で調製し
た。
[0025] In Example 3 Example 1, 10% palladium nitrate [Pd (NO 3) 2] aqueous solution 10.06 g, copper nitrate trihydrate [Cu (NO 3) 2 · 3H 2 O] 4.39g of pure It was dissolved in 200 ml of water to make an aqueous solution. Next, 1N Na 2 CO 3 was stirred and mixed at room temperature, and added until the pH of the solution reached 6.6 to 6.8. Subsequent operations were prepared in the same manner as in Example 1.

【0026】比較例1 実施例1において、10%硝酸パラジウム水溶液を用い
ず、硝酸銅・三水和物6.07gを添加した以外は実施例1
と同様な方法で調製した。
Comparative Example 1 The procedure of Example 1 was repeated, except that 6.07 g of copper nitrate trihydrate was added without using a 10% aqueous solution of palladium nitrate.
It was prepared in the same manner as described above.

【0027】比較例2 実施例1において、10%硝酸パラジウム水溶液1.1g、硝
酸銅・三水和物5.89gを添加し、銅/パラジウム比=50
となるようにした他は実施例1と同様な方法で調製し
た。
Comparative Example 2 In Example 1, 1.1 g of a 10% aqueous palladium nitrate solution and 5.89 g of copper nitrate trihydrate were added, and a copper / palladium ratio = 50.
Was prepared in the same manner as in Example 1, except that

【0028】比較例3 実施例1において、10%硝酸パラジウム水溶液33.3g、硝
酸銅・三水和物0.70gを添加し、銅/パラジウム比=0.
2となるようにした他は実施例1と同様な方法で調製し
た。
Comparative Example 3 In Example 1, 33.3 g of a 10% aqueous solution of palladium nitrate and 0.70 g of copper nitrate trihydrate were added, and the copper / palladium ratio was 0.3.
Except for changing it to 2, it was prepared in the same manner as in Example 1.

【0029】2)活性試験 上記の方法で調製した銅・パラジウム触媒、及び銅・白
金触媒について、シフト反応の活性を測定した。反応ガ
ス組成としてはH2,42.86vol%; CO,8vol%;CO2,6.29 vol
% ;N2,14.29vol% ;H2O,28.57%のものを用い、反応条件
として反応温度230℃、常圧下にて、前記原料ガスを単
位触媒量あたり30,000(L-solv./L-cat・h)にて供給し
た。反応ガスはガスクロマトグラフにて分析を行い、生
成ガス中のCO濃度を測定し、次式に示すCO転化率よ
り生成したガス中の一酸化炭素含有率を測定した。
2) Activity test The activity of the shift reaction was measured for the copper / palladium catalyst and the copper / platinum catalyst prepared by the above method. The reaction gas composition is H 2 , 42.86 vol%; CO, 8 vol%; CO 2 , 6.29 vol
%; N 2 , 14.29 vol%; H 2 O, 28.57%, at a reaction temperature of 230 ° C. under normal pressure, the raw material gas was converted to 30,000 (L-solv./L- cat · h). The reaction gas was analyzed by gas chromatography, the CO concentration in the produced gas was measured, and the carbon monoxide content in the produced gas was measured from the CO conversion shown by the following equation.

【0030】[0030]

【式2】 (Equation 2)

【0031】また、反応開始時から100時間後の転化
率の減少率から活性低下率を算出した。活性試験結果を
表1に示す。
The activity reduction rate was calculated from the conversion rate reduction rate 100 hours after the start of the reaction. Table 1 shows the results of the activity test.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【発明の効果】以上の実施例及び比較例に示す触媒、な
らびに該触媒の活性試験結果から明らかなように、本発
明の触媒はその活性のみならず、耐久性に十分に優れる
ものであることがわかる。
As is clear from the catalysts shown in the above Examples and Comparative Examples, and the results of the activity tests of the catalysts, the catalysts of the present invention are sufficiently excellent not only in activity but also in durability. I understand.

【0034】更には本発明による一酸化炭素の変成方法
によれば、上記本発明の触媒を用いることにより、長期
にわたり効率のよい水素の製造が可能である。
Further, according to the method for converting carbon monoxide of the present invention, the use of the catalyst of the present invention enables efficient production of hydrogen over a long period of time.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G040 EA02 EA03 EA06 EB32 4G069 AA02 BB02A BB02B BC31A BC31B BC35A BC35B BC72A BC72B BC75A BC75B CC26 EA02Y FC08 4G140 EA02 EA03 EA06 EB32 EB34 4H060 AA01 AA04 BB12 FF02 GG08 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G040 EA02 EA03 EA06 EB32 4G069 AA02 BB02A BB02B BC31A BC31B BC35A BC35B BC72A BC72B BC75A BC75B CC26 EA02Y FC08 4G140 EA02 EA03 EA06 EB32 AE34 A04 BB04A08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 銅ならびにパラジウム及び/又は白金を
含んでなり、かつパラジウム及び/又は白金に対する銅
の原子比が0.5〜20であることを特徴とするシフト
反応用触媒。
1. A catalyst for shift reaction, comprising copper and palladium and / or platinum, and having an atomic ratio of copper to palladium and / or platinum of 0.5 to 20.
【請求項2】 更に亜鉛が含まれてなる請求項1に記載
のシフト反応用触媒。
2. The catalyst for a shift reaction according to claim 1, further comprising zinc.
【請求項3】 銅に対する亜鉛の原子比が0.1〜10
である請求項2に記載のシフト反応用触媒。
3. An atomic ratio of zinc to copper of 0.1-10.
The catalyst for a shift reaction according to claim 2, wherein
【請求項4】 請求項1〜3のいずれかに記載の触媒の
存在下に一酸化炭素を変成することを特徴とする一酸化
炭素の変成方法。
4. A method for converting carbon monoxide, which comprises converting carbon monoxide in the presence of the catalyst according to claim 1. Description:
JP2000271427A 2000-09-07 2000-09-07 Catalyst for shift reaction and reaction method Withdrawn JP2002079102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000271427A JP2002079102A (en) 2000-09-07 2000-09-07 Catalyst for shift reaction and reaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000271427A JP2002079102A (en) 2000-09-07 2000-09-07 Catalyst for shift reaction and reaction method

Publications (1)

Publication Number Publication Date
JP2002079102A true JP2002079102A (en) 2002-03-19

Family

ID=18757712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000271427A Withdrawn JP2002079102A (en) 2000-09-07 2000-09-07 Catalyst for shift reaction and reaction method

Country Status (1)

Country Link
JP (1) JP2002079102A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059038A1 (en) * 2001-01-26 2002-08-01 Matsushita Electric Industrial Co., Ltd. Hydrogen purification device and fuel cell power generation system
JP2002362904A (en) * 2001-06-12 2002-12-18 Matsushita Electric Ind Co Ltd Hydrogen refining apparatus
JP2003305364A (en) * 2002-04-17 2003-10-28 National Institute Of Advanced Industrial & Technology Aqueous gas shift reaction catalyst
JP2007209976A (en) * 2006-02-10 2007-08-23 Samsung Sdi Co Ltd Water gas conversion oxidation catalyst for reforming unit in fuel cell system, method for manufacturing the catalyst, and fuel cell system
JP2009028694A (en) * 2007-07-30 2009-02-12 Mitsubishi Heavy Ind Ltd Co shift catalyst, its manufacturing method, fuel reforming apparatus and fuel cell system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059038A1 (en) * 2001-01-26 2002-08-01 Matsushita Electric Industrial Co., Ltd. Hydrogen purification device and fuel cell power generation system
US7147680B2 (en) 2001-01-26 2006-12-12 Matsushita Electric Industrial Co., Ltd. Hydrogen purification apparatus and method and fuel cell power generation system and method
JP2002362904A (en) * 2001-06-12 2002-12-18 Matsushita Electric Ind Co Ltd Hydrogen refining apparatus
JP2003305364A (en) * 2002-04-17 2003-10-28 National Institute Of Advanced Industrial & Technology Aqueous gas shift reaction catalyst
JP2007209976A (en) * 2006-02-10 2007-08-23 Samsung Sdi Co Ltd Water gas conversion oxidation catalyst for reforming unit in fuel cell system, method for manufacturing the catalyst, and fuel cell system
JP4686486B2 (en) * 2006-02-10 2011-05-25 三星エスディアイ株式会社 WATER GAS CONVERSION OXIDATION CATALYST FOR REFORMER OF FUEL CELL SYSTEM, MANUFACTURING METHOD THEREOF, AND FUEL CELL SYSTEM
JP2009028694A (en) * 2007-07-30 2009-02-12 Mitsubishi Heavy Ind Ltd Co shift catalyst, its manufacturing method, fuel reforming apparatus and fuel cell system

Similar Documents

Publication Publication Date Title
JP4851655B2 (en) Process for the conversion of carbon monoxide in gaseous mixtures containing hydrogen and catalysts therefor
KR100818900B1 (en) A method for catalytic conversion of carbon monoxide in a hydrogen-containing gas mixture
US4743576A (en) Catalyst for the production of synthesis gas or hydrogen and process for the production of the catalyst
KR100400591B1 (en) Catalyst for steam reforming of methanol and method for producing hydrogen therewith
JP4713895B2 (en) Method for producing iodide
JPH11276893A (en) Metal fine particle-supported hydrocarbon modifying catalyst and its production
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JP2002079102A (en) Catalyst for shift reaction and reaction method
EP1298089B1 (en) Method for obtaining hydrogen by partial methanol oxidation
JPH09168740A (en) Carbon dioxide modifying catalyst and modifying method using the same
KR102408100B1 (en) Synthesis method of 2-dimensional Nickel silicate molecular sieve catalyst for dry reforming of methane and 2-dimensional Nickel silicate molecular sieve catalyst for dry reforming of methane made thereby
JP3837520B2 (en) Catalyst for CO shift reaction
JP7418849B2 (en) Oxynitrogen hydride, metal support containing oxynitrogen hydride, and catalyst for ammonia synthesis
JP4012965B2 (en) Catalyst for high temperature CO shift reaction
JP3727257B2 (en) Methanol steam reforming catalyst and hydrogen production method using the same
JP7029346B2 (en) Indene manufacturing method
JPH08176034A (en) Synthesis of methanol
JP2001224965A (en) Carbon monoxide selective oxidation catalyst and selective removal method for carbon monoxide
JP4133432B2 (en) Methanol steam reforming catalyst and method for producing hydrogen by steam reforming of methanol using the catalyst
JP4831800B2 (en) Dimethyl ether reforming catalyst and dimethyl ether reforming method
JP4488321B2 (en) Synthesis gas production catalyst and synthesis gas production method
JP4226685B2 (en) Method for producing hydrogen
JPH0456015B2 (en)
JP3291538B2 (en) Methanol decomposition catalyst and method for producing the same
JP2002059005A (en) Methanol modifying catalyst, method for manufacturing the same and methanol modifying method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071023

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080403