JPH09168740A - Carbon dioxide modifying catalyst and modifying method using the same - Google Patents

Carbon dioxide modifying catalyst and modifying method using the same

Info

Publication number
JPH09168740A
JPH09168740A JP7331576A JP33157695A JPH09168740A JP H09168740 A JPH09168740 A JP H09168740A JP 7331576 A JP7331576 A JP 7331576A JP 33157695 A JP33157695 A JP 33157695A JP H09168740 A JPH09168740 A JP H09168740A
Authority
JP
Japan
Prior art keywords
carbon dioxide
catalyst
rhodium
carrier
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7331576A
Other languages
Japanese (ja)
Other versions
JP3638358B2 (en
Inventor
Hiroshi Mizuguchi
博史 水口
Shigenori Nakashizu
茂徳 中静
Hisao Takaoka
尚生 高岡
Takashi Yoshizawa
隆 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Cosmo Oil Co Ltd, Petroleum Energy Center PEC filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP33157695A priority Critical patent/JP3638358B2/en
Publication of JPH09168740A publication Critical patent/JPH09168740A/en
Application granted granted Critical
Publication of JP3638358B2 publication Critical patent/JP3638358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To obtain a new catalyst capable of efficiently modifying carbon dioxide by supporting rhodium on one or more kind of a carrier selected from among oxide of group II, III, IV metal and a lanthanide metal oxide compd. or a composite carrier of alumina containing those metal oxides. SOLUTION: One or more kind of a carrier selected from among oxide of group II, III, IV metal and a lanthanide metal oxide or a composite carrier of those oxides and alumina is used and rhodium is supported on this carrier. As a rhodium supporting method, a known method such as an impregnation method or the like can be used. The supporting amt. of rhodium is set to 0.5-5wt.%, especially pref. 0.5-3wt.%. The carrier on which rhodium is immobilized is dried pref. at below 200 deg.C, more pref. at 150 deg.C or lower, especially pref. at 100 deg.C or less. It is necessary to reduce the supported rhodium catalyst before modifying reaction. As a reducing gas, it is pref. to use hydrogen gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は炭化水素の二酸化炭
素改質化触媒及びこれを用いた二酸化炭素の改質化法に
関する。
TECHNICAL FIELD The present invention relates to a carbon dioxide reforming catalyst for hydrocarbons and a carbon dioxide reforming method using the same.

【0002】[0002]

【従来の技術】近年、炭酸ガスは地球温暖化の主要原因
物質であることから排出の削減、有効利用が課題とされ
ている。このため炭酸ガスの電気的還元法、光合成法、
接触水素還元法等の化学的変換方法が検討されており、
一例としてメタン等の飽和炭化水素を還元剤として、炭
酸ガスを工業的に有用な合成ガスである水素と一酸化炭
素に変換する方法(炭化水素の二酸化炭素改質)があ
る。
2. Description of the Related Art In recent years, carbon dioxide is a major causative agent of global warming, and therefore reduction of emission and effective use thereof have been a subject. Therefore, carbon dioxide electrical reduction method, photosynthesis method,
Chemical conversion methods such as catalytic hydrogen reduction are being studied,
As an example, there is a method of converting carbon dioxide into hydrogen and carbon monoxide, which are industrially useful synthesis gases, by using saturated hydrocarbon such as methane as a reducing agent (carbon dioxide reforming of hydrocarbon).

【0003】炭化水素の二酸化炭素改質化触媒としては
アルミナ等にニッケルを担持したニッケル系触媒、アル
ミナ等にルテニウム、ロジウム、白金等の貴金属を担持
した貴金属系触媒が知られている。ニッケル系触媒を用
いた場合には、触媒上に炭素析出を起こし易く、これに
より活性低下を起こすという欠点を有している。貴金属
系触媒は、炭素析出を抑制する作用を持つため、従来の
ニッケル系触媒と比較して、炭素の析出が少なく活性の
維持も容易ではあるが、硫化水素等の硫黄分により被毒
されやすい(触媒、35巻、224頁(1993))と
いう欠点を有する。また、エチレンなどの不飽和炭化水
素を用いて二酸化炭素改質する場合、触媒被毒以外の原
因での熱的炭素析出が起こりやすく、たとえ、貴金属系
触媒が炭素析出抑制効果を持っていても、安定かつ効率
的に反応を行うことは難しい。
Known as carbon dioxide reforming catalysts for hydrocarbons are nickel catalysts in which nickel is supported on alumina or the like, and noble metal catalysts in which precious metals such as ruthenium, rhodium, or platinum are supported on alumina or the like. When a nickel-based catalyst is used, carbon tends to be deposited on the catalyst, resulting in a decrease in activity. Since noble metal catalysts have the effect of suppressing carbon deposition, they are less likely to deposit carbon and maintain their activity more easily than conventional nickel catalysts, but they are easily poisoned by sulfur components such as hydrogen sulfide. (Catalyst, Vol. 35, p. 224 (1993)). Further, when carbon dioxide is reformed using an unsaturated hydrocarbon such as ethylene, thermal carbon deposition is likely to occur due to causes other than catalyst poisoning, and even if the noble metal-based catalyst has a carbon deposition suppressing effect. , It is difficult to carry out the reaction stably and efficiently.

【0004】このように、二酸化炭素改質の原料は、主
に、メタンもしくは天然ガスのようなメタンを主成分と
する飽和炭化水素が一般的である。一方、天然ガスは資
源として貴重であり、これを用いることなく代替ガスを
石油系炭化水素から水蒸気改質反応により製造する研究
もなされている。しかしながら、特に、重質油の水蒸気
改質の生成物には、メタンの他、不飽和炭化水素や硫化
水素が含まれ、これらは、二酸化炭素改質反応の原料に
は不適であるという問題がある。これらを解決するもの
としては、不飽和炭化水素又は硫化水素を含む原料と二
酸化炭素を特定金属酸化物にルテニウムを担持した触媒
の存在下で反応させる方法(特願平7−294383号
公報)があるが、それ以外はほとんどみあたらない。
As described above, the raw material for carbon dioxide reforming is generally a saturated hydrocarbon mainly containing methane such as methane or natural gas. On the other hand, natural gas is valuable as a resource, and research has been conducted to produce an alternative gas from a petroleum hydrocarbon by a steam reforming reaction without using it. However, in particular, the products of steam reforming of heavy oil include unsaturated hydrocarbons and hydrogen sulfide in addition to methane, and these are not suitable as raw materials for carbon dioxide reforming reaction. is there. As a solution to these problems, there is a method of reacting a raw material containing unsaturated hydrocarbon or hydrogen sulfide and carbon dioxide in the presence of a catalyst having ruthenium supported on a specific metal oxide (Japanese Patent Application No. 7-294383). Yes, but almost nothing else.

【0005】[0005]

【発明が解決しようとする課題】従って、本発明は、不
飽和炭化水素や硫化水素を含む原料であっても、炭素析
出や、硫黄被毒による触媒活性の低下を抑制しながら、
より効率的に二酸化炭素の改質化を行う新規触媒及びこ
れを用いた二酸化炭素の改質化法を提供することを目的
とする。
Therefore, according to the present invention, even with a raw material containing an unsaturated hydrocarbon or hydrogen sulfide, it is possible to suppress carbon deposition or decrease in catalytic activity due to sulfur poisoning.
It is an object of the present invention to provide a new catalyst for more efficiently reforming carbon dioxide and a carbon dioxide reforming method using the same.

【0006】[0006]

【課題を解決するための手段】かかる実情において、本
発明者らは鋭意検討した結果、不飽和炭化水素又は硫化
水素を含む原料を用いた二酸化炭素の改質化法におい
て、特定金属酸化物担体にロジウムを担持させた触媒が
改質活性に優れ、炭素の析出や硫化水素の被毒による活
性の低下が少ないことを見いだし、本発明を完成するに
至った。
Under the circumstances, as a result of intensive investigations by the present inventors, in a carbon dioxide reforming method using a raw material containing unsaturated hydrocarbon or hydrogen sulfide, a specific metal oxide support It was found that the catalyst in which rhodium is supported is excellent in reforming activity, and there is little decrease in activity due to precipitation of carbon and poisoning of hydrogen sulfide, and the present invention has been completed.

【0007】すなわち、本発明は、周期律表第2族、第
3族、第4族金属酸化物及びランタノイド金属酸化物か
ら選ばれた1種以上の担体又はこれら金属酸化物を含有
するアルミナの複合担体にロジウムを担持した二酸化炭
素改質化触媒を提供するものである。また、本願発明
は、上記触媒の存在下、不飽和炭化水素又は硫化水素を
含む原料を用いた二酸化炭素の改質化法を提供するもの
である。
That is, the present invention relates to at least one carrier selected from Group 2, Group 3 and Group 4 metal oxides and lanthanoid metal oxides of the Periodic Table or alumina containing these metal oxides. The present invention provides a carbon dioxide reforming catalyst in which rhodium is supported on a composite carrier. The present invention also provides a carbon dioxide reforming method using a raw material containing unsaturated hydrocarbon or hydrogen sulfide in the presence of the above catalyst.

【0008】[0008]

【発明の実施の形態】本発明の二酸化炭素改質化触媒
は、第2族、第3族、第4族金属酸化物及びランタノイ
ド金属酸化物から選ばれた1種以上の担体又はこれら酸
化物とアルミナの複合体を担体とし、これにロジウムを
担持させたものである。
BEST MODE FOR CARRYING OUT THE INVENTION The carbon dioxide reforming catalyst of the present invention comprises at least one carrier selected from Group 2, Group 3, and Group 4 metal oxides and lanthanoid metal oxides, or these oxides. A composite of alumina and alumina is used as a carrier, and rhodium is supported on the carrier.

【0009】第2族金属酸化物としては、ベリリウム、
マグネシウム、カルシウム、ストロンチウム、バリウム
等の酸化物が使用できるが、特にマグネシウム、カルシ
ウム又はバリウムの酸化物を用いるのがよい。
As the Group 2 metal oxide, beryllium,
Oxides of magnesium, calcium, strontium, barium and the like can be used, but it is particularly preferable to use oxides of magnesium, calcium or barium.

【0010】第3族金属酸化物としては、スカンジウ
ム、イットリウム等の酸化物が使用できるが、特にイッ
トリウムの酸化物を用いるのがよい。
As the Group 3 metal oxide, oxides of scandium, yttrium and the like can be used, but yttrium oxide is particularly preferable.

【0011】第4族金属酸化物としては、チタン、ジル
コニウムの酸化物が使用できる。
Oxides of titanium and zirconium can be used as the Group 4 metal oxide.

【0012】ランタノイド金属酸化物としては、ランタ
ン、セリウム等の酸化物が使用できる。なお、本明細書
において用いた元素の周期律表の族は、化学45巻5号
(1990)314頁に記載の新IUPAC方式のもの
によった。
As the lanthanoid metal oxide, oxides such as lanthanum and cerium can be used. The group of the periodic table of elements used in the present specification was based on the new IUPAC method described in Kagaku No. 45, No. 5, (1990), p. 314.

【0013】第2族、第3族、第4族金属酸化物及びラ
ンタノイド金属酸化物は、これを直接担体に担持させる
こともできるが、前駆体としての塩化物、硝酸塩等を担
持させた後担体上で酸化させて酸化物に変換することも
できる。
The Group 2, Group 3, and Group 4 metal oxides and the lanthanoid metal oxides can be directly supported on a carrier, but after supporting chlorides, nitrates, etc. as precursors. It is also possible to oxidize it on a support and convert it to an oxide.

【0014】また、アルミナは、これを直接使用するこ
ともできるが、アルミニウムイソプロポキシド等のアル
コキシドを前駆体として用い、第2族、第3族、第4族
金属酸化物及びランタノイド金属酸化物から選ばれた1
種以上又はその前駆体との混合物を酸化することにより
担持反応系内でアルミナを生成させることもできる。
Alumina can be used directly, but by using an alkoxide such as aluminum isopropoxide as a precursor, a group 2, group 3, group 4 metal oxide or lanthanoid metal oxide can be used. 1 selected from
Alumina can also be produced in a supported reaction system by oxidizing a mixture of one or more or its precursors.

【0015】アルミナを含有しない担体における第2
族、第3族、第4族金属酸化物及びランタノイド金属化
合物の各割合は、特に制限されないが、アルミナとの複
合担体における第2族、第3族、第4族金属酸化物及び
ランタノイド金属酸化物の量は、担体基準で、好ましく
は5〜50重量%、より好ましくは10〜40重量%、
特に好ましくは15〜30重量%である。かかる範囲と
することにより耐硫黄性及び触媒活性が特に優れる。
Second in alumina free carrier
The respective proportions of the Group 3, Group 3, and Group 4 metal oxides and the lanthanoid metal compound are not particularly limited, but are the Group 2, Group 3, and Group 4 metal oxides and the lanthanoid metal oxides in the composite carrier with alumina. The amount of the substance is preferably 5 to 50% by weight, more preferably 10 to 40% by weight, based on the carrier.
It is particularly preferably 15 to 30% by weight. Within such a range, sulfur resistance and catalytic activity are particularly excellent.

【0016】担体の比表面積、細孔容積は、特に制限さ
れないが、担体の比表面積は50m 2/g以上、特に6
0m2/g以上、細孔容積は0.1〜0.8ml/g、特
に0.2〜0.6ml/gが好ましい。
The specific surface area and pore volume of the carrier are not particularly limited.
However, the specific surface area of the carrier is 50m Two/ G or more, especially 6
0mTwo/ G or more, the pore volume is 0.1-0.8 ml / g,
It is preferably 0.2 to 0.6 ml / g.

【0017】担体の調製方法は、特に制限されないが、
前記金属酸化物を水、メタノール、エタノール、アセト
ン等の溶媒に分散させ混練し、これを焼成するか;前記
金属の塩化物、硝酸塩の混合液をpH調整し共沈物を焼成
する方法が挙げられる。また前記金属酸化物を単に機械
的に混合して焼成してもよい。
The method for preparing the carrier is not particularly limited,
The metal oxide is dispersed in a solvent such as water, methanol, ethanol, or acetone and kneaded, and then this is baked; or a method of adjusting the pH of a mixed solution of the metal chloride and nitrate and baking the coprecipitate is mentioned. To be Alternatively, the metal oxides may be simply mechanically mixed and fired.

【0018】これらの担体にロジウムを担持する方法と
しては、含浸等の公知の方法を用いることができる。
As a method for supporting rhodium on these carriers, known methods such as impregnation can be used.

【0019】ロジウムの担持量は0.5〜5重量%、特
に0.5〜3重量%とするのが好ましい。これは担持量
があまり少ないと活性点量が少なくなり、余り多すぎて
も活性点量の飽和やさらには分散性の低下も招き、技術
的意味が無くなるだけでなく不経済となるからである。
The amount of rhodium supported is preferably 0.5 to 5% by weight, more preferably 0.5 to 3% by weight. This is because if the supported amount is too small, the amount of active sites will be small, and if it is too large, the active site amount will be saturated and the dispersibility will be reduced, which not only has no technical meaning but is uneconomical. .

【0020】ロジウムを固定化した担体は、好ましくは
200℃未満、より好ましくは150℃以下、特に好ま
しくは100℃以下で減圧又は常圧乾燥する。
The carrier on which rhodium is immobilized is dried under reduced pressure or atmospheric pressure at preferably less than 200 ° C., more preferably 150 ° C. or less, particularly preferably 100 ° C. or less.

【0021】担持ロジウム触媒は、改質反応前に還元す
ることが必要であり、かかる還元方法としては、触媒を
固定化、乾燥後還元ガスを用いて反応器内で行うのが好
ましい。
The supported rhodium catalyst needs to be reduced before the reforming reaction. As such a reducing method, it is preferable that the catalyst is immobilized and dried and then the reducing gas is used in the reactor.

【0022】還元ガスとしては、純水素、水素・水蒸気
及び一酸化炭素を用いることができ、水素ガスを用いる
のが好ましい。
As the reducing gas, pure hydrogen, hydrogen / steam and carbon monoxide can be used, and hydrogen gas is preferably used.

【0023】還元温度は、改質反応の反応温度でよい
が、該金属が凝集しないようより低温で行うことができ
る。本発明の二酸化炭素改質化法は、触媒を還元後直ち
に原料ガスと接触させる方法が好ましい。
The reduction temperature may be the reaction temperature of the reforming reaction, but it can be carried out at a lower temperature so that the metal does not aggregate. The carbon dioxide reforming method of the present invention is preferably a method of bringing the catalyst into contact with the raw material gas immediately after the reduction.

【0024】本発明の二酸化炭素の改質化法としては、
上記触媒の存在下、不飽和炭化水素又は硫化水素を含む
原料を用いて行うことができる。
The carbon dioxide reforming method of the present invention includes:
It can be carried out using a raw material containing unsaturated hydrocarbon or hydrogen sulfide in the presence of the above catalyst.

【0025】斯かる原料としては、不飽和炭化水素又は
飽和炭化水素と不飽和炭化水素の混合物、又はこれらに
硫化水素が含まれているものである。ここで、使用する
原料の飽和炭化水素としては、特に限定されないが炭素
数1〜6の直鎖、分岐鎖又は環状の飽和炭化水素が好ま
しく、特にメタン、エタン、プロパン又はこれらの混合
物が好ましい。また、不飽和炭化水素としては、特に限
定されないが、炭素数2〜6の直鎖、分岐鎖又は環状の
不飽和炭化水素が好ましく、具体的にはエチレン、プロ
ペン、ブテン、又はこれらの混合物等が好ましい。
Such raw materials are unsaturated hydrocarbons, a mixture of saturated hydrocarbons and unsaturated hydrocarbons, or those containing hydrogen sulfide. Here, the raw material saturated hydrocarbon used is not particularly limited, but a linear, branched or cyclic saturated hydrocarbon having 1 to 6 carbon atoms is preferable, and methane, ethane, propane or a mixture thereof is particularly preferable. Further, the unsaturated hydrocarbon is not particularly limited, but a linear, branched or cyclic unsaturated hydrocarbon having 2 to 6 carbon atoms is preferable, and specifically, ethylene, propene, butene, or a mixture thereof or the like. Is preferred.

【0026】原料に含まれる硫化水素の量は、特に制限
されないが、原料ガス中の100ppm 以下、特に10pp
m 以下が触媒被毒の観点から好ましい。
The amount of hydrogen sulfide contained in the raw material is not particularly limited, but is not more than 100 ppm in the raw material gas, especially 10 pp.
m or less is preferable from the viewpoint of catalyst poisoning.

【0027】本発明で用いる原料として特に好ましいの
は、減圧残渣等の重質油を水蒸気改質して得られる生成
ガス(代替天然ガス)である。当該代替天然ガスの組成
は、通常、飽和炭化水素10〜30モル%、不飽和炭化
水素1〜50モル%、硫化水素0〜100ppm 、水素1
0〜60モル%、一酸化炭素1〜20モル%であるの
で、本発明の原料には、飽和炭化水素、不飽和炭化水
素、硫化水素の他、水素、一酸化炭素が含まれていても
よい。
Particularly preferred as a raw material used in the present invention is a product gas (alternative natural gas) obtained by steam reforming heavy oil such as vacuum residue. The composition of the substitute natural gas is usually 10 to 30 mol% of saturated hydrocarbons, 1 to 50 mol% of unsaturated hydrocarbons, 0 to 100 ppm of hydrogen sulfide, and 1 hydrogen.
Since it is 0 to 60 mol% and 1 to 20 mol% of carbon monoxide, the raw material of the present invention may contain hydrogen and carbon monoxide in addition to saturated hydrocarbon, unsaturated hydrocarbon and hydrogen sulfide. Good.

【0028】二酸化炭素の供給量は、特に制限されない
が、二酸化炭素のモル数/原料中の全炭化水素の炭素の
モル数(CO2/C)が0.5〜5程度とすることが好
ましく、特に、1.2〜2.8、さらに1.5〜2.5
とするのが炭素の析出が少なく、転化率が高くなり好ま
しい。
The supply amount of carbon dioxide is not particularly limited, but it is preferable that the number of moles of carbon dioxide / the number of moles of carbon of all hydrocarbons in the raw material (CO 2 / C) is about 0.5 to 5. , Especially 1.2-2.8, and even 1.5-2.5
It is preferred that the amount of carbon is less and the conversion rate is higher.

【0029】本発明の二酸化炭素改質化法における反応
温度は、好ましくは500〜1200℃、より好ましく
は800〜1000℃で行うことができる。圧力は、炭
素析出抑制の点から10気圧以下、特に常圧程度が好ま
しい。また、原料ガスは、GHSV500〜20000
-1で供給するのが好ましい。
The reaction temperature in the carbon dioxide reforming method of the present invention is preferably 500 to 1200 ° C, more preferably 800 to 1000 ° C. From the viewpoint of suppressing carbon precipitation, the pressure is preferably 10 atm or less, particularly about normal pressure. The source gas is GHSV500 to 20000.
It is preferably supplied at h -1 .

【0030】本発明の二酸化炭素改質化法により水素及
び一酸化炭素が生成するが、これらは、合成ガスや燃料
ガス等に利用できる他、圧力スウィング吸着の手段によ
り両者をそれぞれ分離して回収することができる。
Hydrogen and carbon monoxide are produced by the carbon dioxide reforming method of the present invention. These can be used as a synthesis gas, a fuel gas, etc., and can also be separated and recovered by means of pressure swing adsorption. can do.

【0031】[0031]

【発明の効果】本発明によれば、不飽和炭化水素や硫化
水素を含む原料の二酸化炭素改質を炭化析出や硫黄被毒
による触媒活性の低下を抑制しながら、高収率で行うこ
とができる。これは、第2族、第3族、第4族及びラン
タノイド金属酸化物成分によって原料ガス中の硫化水素
等の硫黄化合物が吸着・吸収され、活性成分のロジウム
が被毒されにくくなり、寿命が延長するものと思われ
る。また、本発明により、資源として貴重な天然ガスか
らだけではなく、重質油の水蒸気改質から得られるガス
等、広い範囲の原料を用いて、水素及び一酸化炭素を合
成することが可能となる。
INDUSTRIAL APPLICABILITY According to the present invention, carbon dioxide reforming of a raw material containing unsaturated hydrocarbon or hydrogen sulfide can be carried out in a high yield while suppressing a decrease in catalytic activity due to carbonization precipitation or sulfur poisoning. it can. This is because the sulfur compounds such as hydrogen sulfide in the raw material gas are adsorbed and absorbed by the group 2, group 3, group 4 and lanthanoid metal oxide components, so that the active component rhodium is less likely to be poisoned and the life is shortened. It seems to be extended. Further, according to the present invention, it is possible to synthesize hydrogen and carbon monoxide not only from natural gas, which is a valuable resource, but also from a wide range of raw materials such as gas obtained by steam reforming of heavy oil. Become.

【0032】[0032]

【実施例】以下、本発明を実施例によりさらに具体的に
説明するが、これは単に例示であって本発明を制限する
ものではない。
EXAMPLES The present invention will now be described in more detail by way of examples, which are merely examples and do not limit the present invention.

【0033】実施例及び比較例において、生成ガスはガ
スクロマトグラフィーにより分析した。表中、炭化水素
の転化率、炭素析出量は、次式によって求めた。
In the examples and comparative examples, the produced gas was analyzed by gas chromatography. In the table, the conversion rate of hydrocarbons and the amount of deposited carbon were determined by the following equations.

【0034】炭化水素転化率=(原料中の炭化水素のモ
ル数−生成ガス中の炭化水素のモル数)/(原料中の炭
化水素のモル数)×100
Hydrocarbon conversion rate = (mol number of hydrocarbon in raw material−mol number of hydrocarbon in produced gas) / (mol number of hydrocarbon in raw material) × 100

【0035】炭素析出量=(析出した炭素のモル数)/
(原料中の炭素原子のモル数)×100
Amount of deposited carbon = (number of moles of deposited carbon) /
(Mole number of carbon atoms in the raw material) x 100

【0036】実施例1 酸化セリウム粉末100gを乳鉢で充分混合した後、約
40mlの水を加えてさらに混練した。このペースト状の
混合物を約2.7KPaの減圧下60〜70℃に加温し
て水分を除去した。これを105℃に保った乾燥器で予
備乾燥した後、電気炉を用いて500℃で3時間焼成し
担体(A)を得た。該担体20gを塩化ロジウム三水和
物1gを37mlの水に溶解した水溶液に1時間浸漬し、
残液を除去後、約2.7KPaの減圧下で40〜50℃
に加温して水分を除去した。これを10〜15容量%の
アンモニア水中に加えて40℃に保ち、2時間攪拌し、
ロジウムを不溶・固定化した後、触媒を濾別し、純水に
より充分洗浄した。さらに、これを真空乾燥器中40〜
45℃で8時間乾燥し、触媒(A−1)を調製した。こ
の触媒4mlをステンレス製反応管に充填し、温度900
℃に昇温する過程で水素を常圧にて約4時間供給し還元
処理を行った。その後、メタン及びエチレンをそれぞれ
14モル%、水素を22モル%、一酸化炭素を7モル
%、二酸化炭素43モル%含むガスを900℃、常圧に
てGHSV約4000h-1で供給し、4時間反応させ
た。この時の転化率及び炭素析出量を表1に示す。
Example 1 100 g of cerium oxide powder was thoroughly mixed in a mortar, and then about 40 ml of water was added and further kneaded. The paste-like mixture was heated to 60 to 70 ° C. under reduced pressure of about 2.7 KPa to remove water. This was pre-dried in a dryer kept at 105 ° C., and then calcined at 500 ° C. for 3 hours in an electric furnace to obtain a carrier (A). 20 g of the carrier was immersed in an aqueous solution of 1 g of rhodium chloride trihydrate dissolved in 37 ml of water for 1 hour,
After removing the residual liquid, 40 to 50 ° C. under reduced pressure of about 2.7 KPa.
Water was removed by heating. This was added to 10 to 15% by volume of ammonia water, kept at 40 ° C., stirred for 2 hours,
After the rhodium was insoluble and fixed, the catalyst was filtered off and thoroughly washed with pure water. Furthermore, in a vacuum dryer
The catalyst (A-1) was prepared by drying at 45 ° C for 8 hours. 4 ml of this catalyst was filled in a stainless steel reaction tube, and the temperature was set to 900.
Hydrogen was supplied at atmospheric pressure for about 4 hours in the process of heating to 0 ° C. for reduction treatment. Thereafter, a gas containing 14 mol% of methane and 14 mol% of hydrogen, 22 mol% of hydrogen, 7 mol% of carbon monoxide, and 43 mol% of carbon dioxide was supplied at 900 ° C. and atmospheric pressure at a GHSV of about 4000 h −1 , and 4 Reacted for hours. Table 1 shows the conversion rate and the carbon deposition amount at this time.

【0037】実施例2 酸化セリウム粉末100gに代えて酸化マグネシウム粉
末20gとアルミナ粉末80gを用いた以外は実施例1
と同様の方法で担体(B)を調製し、該担体に実施例1
と同様の方法でロジウムを担持して触媒(B−1)を調
製した。この触媒4mlをステンレス製反応管に充填し、
実施例1と同様に還元処理及び二酸化炭素改質反応を行
った。結果を表1に示す。
Example 2 Example 1 except that 20 g of magnesium oxide powder and 80 g of alumina powder were used instead of 100 g of cerium oxide powder.
A carrier (B) was prepared in the same manner as in Example 1 and the carrier was used in Example 1.
A catalyst (B-1) was prepared by supporting rhodium in the same manner as in. Fill 4 ml of this catalyst into a stainless steel reaction tube,
The reduction treatment and the carbon dioxide reforming reaction were performed in the same manner as in Example 1. Table 1 shows the results.

【0038】実施例3 酸化セリウム粉末100gに代えて酸化イットリウム粉
末20gとアルミナ粉末80gを用いた以外は実施例1
と同様の方法で担体(C)を調製し、該担体に実施例1
と同様の方法でロジウムを担持して触媒(C−1)を調
製した。この触媒4mlをステンレス製反応管に充填し、
実施例1と同様に還元処理及び二酸化炭素改質反応を行
った。結果を表1に示す。
Example 3 Example 1 was repeated except that 20 g of yttrium oxide powder and 80 g of alumina powder were used instead of 100 g of cerium oxide powder.
A carrier (C) was prepared in the same manner as in Example 1 and the carrier was used in Example 1.
A catalyst (C-1) was prepared by supporting rhodium in the same manner as in. Fill 4 ml of this catalyst into a stainless steel reaction tube,
The reduction treatment and the carbon dioxide reforming reaction were performed in the same manner as in Example 1. Table 1 shows the results.

【0039】実施例4 酸化セリウム粉末100gに代えて酸化ジルコニウム1
00gを用いた以外は実施例1と同様の方法で担体
(D)を調製し、この担体に実施例1と同様の方法でロ
ジウムを担持して触媒(D−1)を調製した。この触媒
4mlをステンレス製反応管に充填し、実施例1と同様に
還元処理及び二酸化炭素改質反応を行った。結果を表1
に示す。
Example 4 Zirconium oxide 1 instead of 100 g of cerium oxide powder
A carrier (D) was prepared in the same manner as in Example 1 except that 00 g was used, and rhodium was loaded on this carrier in the same manner as in Example 1 to prepare a catalyst (D-1). 4 ml of this catalyst was filled in a stainless steel reaction tube, and reduction treatment and carbon dioxide reforming reaction were performed in the same manner as in Example 1. Table 1 shows the results
Shown in

【0040】比較例1 実施例1の担体(A)25g、塩化ルテニウム−水和物
1gを37mlの水に溶解した水溶液に1時間浸漬し、残
液を除去後、約2.7KPaの減圧下で40〜50℃に
加温して水分を除去した。これを10〜15容量%のア
ンモニア水中に加えて40℃に保ち、2時間攪拌し、ル
テニウムを不溶・固定化した後、触媒を濾別し、純水に
より充分洗浄した。さらに、これを真空乾燥器中40〜
45℃で8時間乾燥し、触媒(A−2)を得た。この触
媒4mlをステンレス製反応管に充填し、実施例1と同様
に還元処理及び二酸化炭素改質反応を行った。結果を表
1に示す。
Comparative Example 1 25 g of the carrier (A) of Example 1 and 1 g of ruthenium chloride monohydrate were immersed in an aqueous solution of 37 ml of water for 1 hour to remove the residual liquid, and then under reduced pressure of about 2.7 KPa. And heated to 40-50 ° C to remove water. This was added to 10 to 15% by volume of ammonia water, kept at 40 ° C. and stirred for 2 hours to insolubilize and immobilize ruthenium, and then the catalyst was filtered off and thoroughly washed with pure water. Furthermore, in a vacuum dryer
It dried at 45 degreeC for 8 hours, and obtained the catalyst (A-2). 4 ml of this catalyst was filled in a stainless steel reaction tube, and reduction treatment and carbon dioxide reforming reaction were performed in the same manner as in Example 1. Table 1 shows the results.

【0041】比較例2 実施例2で得た担体(B)20gに比較例1と同様の方
法でルテニウムを担持して触媒(B−2)を得た。この
触媒4mlをステンレス製反応器に充填し、実施例1と同
様に還元処理及び二酸化炭素改質反応を行った。結果を
表1に示す。
Comparative Example 2 A catalyst (B-2) was obtained by loading 20 g of the carrier (B) obtained in Example 2 with ruthenium in the same manner as in Comparative Example 1. 4 ml of this catalyst was filled in a stainless steel reactor, and reduction treatment and carbon dioxide reforming reaction were performed in the same manner as in Example 1. Table 1 shows the results.

【0042】比較例3 実施例2の担体(B)20gを塩化白金酸六水和物1g
を37mlの水に溶解した水溶液に1時間浸漬し、残液を
除去後、純水で洗浄し、約2.7KPaの減圧下で40
〜50℃に加温して水分を除去した。これを真空乾燥器
中40〜45℃で8時間乾燥し、触媒(B−3)を得
た。この触媒4mlをステンレス製反応管に充填し、実施
例1と同様に還元処理及び二酸化炭素改質反応を行っ
た。結果を表1に示す。
Comparative Example 3 20 g of the carrier (B) of Example 2 was added to 1 g of chloroplatinic acid hexahydrate.
Is immersed in an aqueous solution of 37 ml of water for 1 hour, the residual liquid is removed, and the product is washed with pure water.
Water was removed by heating to ~ 50 ° C. This was dried in a vacuum dryer at 40 to 45 ° C. for 8 hours to obtain a catalyst (B-3). 4 ml of this catalyst was filled in a stainless steel reaction tube, and reduction treatment and carbon dioxide reforming reaction were performed in the same manner as in Example 1. Table 1 shows the results.

【0043】比較例4 実施例2で得た担体(B)20gに含浸法でニッケルを
10重量%担持して触媒(B−4)を得た。この触媒4
mlをステンレス製反応管に充填し、実施例1と同様に還
元処理及び二酸化炭素改質反応を行った。結果を表1に
示す。
Comparative Example 4 20 g of the carrier (B) obtained in Example 2 was loaded with 10% by weight of nickel by an impregnation method to obtain a catalyst (B-4). This catalyst 4
ml was filled in a stainless steel reaction tube, and reduction treatment and carbon dioxide reforming reaction were performed in the same manner as in Example 1. Table 1 shows the results.

【0044】[0044]

【表1】 [Table 1]

【0045】表1から、ロジウムを担持した触媒は、ル
テニウム、白金及びニッケル触媒に比べ、転化率が高
く、炭素析出も少ない。
From Table 1, the catalyst supporting rhodium has a higher conversion rate and less carbon deposition than the ruthenium, platinum and nickel catalysts.

【0046】実施例5 実施例1で調製した触媒(A−1)4mlをステンレス製
反応管に充填し、温度900℃に昇温する過程において
水素を常圧にて約4時間供給し、還元処理を行った。そ
の後、メタン及びエチレンをそれぞれ13モル%、水素
を27モル%、一酸化炭素を6モル%、二酸化炭素を4
1モル%、硫化水素を5ppm 含むガスを900℃、常圧
にてGHSV約4000h-1で供給し、二酸化炭素改質
反応を行った。反応開始20時間後の転化率を表2に示
す。
Example 5 4 ml of the catalyst (A-1) prepared in Example 1 was filled in a stainless steel reaction tube, and hydrogen was supplied at atmospheric pressure for about 4 hours in the process of heating to 900 ° C. for reduction. Processed. Then, 13 mol% each of methane and ethylene, 27 mol% of hydrogen, 6 mol% of carbon monoxide, and 4 mol of carbon dioxide.
A gas containing 1 mol% and 5 ppm of hydrogen sulfide was supplied at 900 ° C. and normal pressure at a GHSV of about 4000 h −1 to perform a carbon dioxide reforming reaction. Table 2 shows the conversion rates 20 hours after the start of the reaction.

【0047】実施例6 実施例2で調製した触媒(B−1)4mlを実施例5と同
様に還元処理及び二酸化炭素改質反応を行った。反応開
始20時間後の転化率を表2に示す。
Example 6 4 ml of the catalyst (B-1) prepared in Example 2 was subjected to reduction treatment and carbon dioxide reforming reaction in the same manner as in Example 5. Table 2 shows the conversion rates 20 hours after the start of the reaction.

【0048】実施例7 実施例3で調製した触媒(C−1)4mlを実施例5と同
様に還元処理及び二酸化炭素改質反応を行った。反応開
始20時間後の転化率を表2に示す。
Example 7 4 ml of the catalyst (C-1) prepared in Example 3 was subjected to reduction treatment and carbon dioxide reforming reaction in the same manner as in Example 5. Table 2 shows the conversion rates 20 hours after the start of the reaction.

【0049】実施例8 実施例4で調製した触媒(D−1)4mlを実施例5と同
様に還元処理及び二酸化炭素改質反応を行った。反応開
始20時間後の転化率を表2に示す。
Example 8 4 ml of the catalyst (D-1) prepared in Example 4 was subjected to reduction treatment and carbon dioxide reforming reaction in the same manner as in Example 5. Table 2 shows the conversion rates 20 hours after the start of the reaction.

【0050】比較例5 比較例2で調製した触媒(B−2)4mlを実施例5と同
様に還元処理及び二酸化炭素改質反応を行った。反応開
始20時間後の転化率を表2に示す。
Comparative Example 5 4 ml of the catalyst (B-2) prepared in Comparative Example 2 was subjected to reduction treatment and carbon dioxide reforming reaction in the same manner as in Example 5. Table 2 shows the conversion rates 20 hours after the start of the reaction.

【0051】比較例6 比較例3で調製した触媒(B−3)4mlを実施例5と同
様に還元処理及び二酸化炭素改質反応を行った。反応開
始20時間後の転化率を表2に示す。
Comparative Example 6 4 ml of the catalyst (B-3) prepared in Comparative Example 3 was subjected to reduction treatment and carbon dioxide reforming reaction in the same manner as in Example 5. Table 2 shows the conversion rates 20 hours after the start of the reaction.

【0052】比較例7 比較例4で調製した触媒(B−4)4mlを実施例5と同
様に還元処理及び二酸化炭素改質反応を行った。反応開
始20時間後の転化率を表2に示す。
Comparative Example 7 4 ml of the catalyst (B-4) prepared in Comparative Example 4 was subjected to reduction treatment and carbon dioxide reforming reaction in the same manner as in Example 5. Table 2 shows the conversion rates 20 hours after the start of the reaction.

【0053】[0053]

【表2】 [Table 2]

【0054】表2より、ルテニウム、白金及びニッケル
触媒と比較するとロジウム触媒の方が転化率が高く、硫
化水素存在下でも高活性を維持していることが判る。
It can be seen from Table 2 that the rhodium catalyst has a higher conversion rate than the ruthenium, platinum and nickel catalysts, and maintains a high activity even in the presence of hydrogen sulfide.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高岡 尚生 埼玉県越谷市大沢2856−1 センチュリー マンション嵯峨206号 (72)発明者 吉澤 隆 千葉県野田市岩名1−69−25 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naoki Takaoka 2856-1 Osawa, Koshigaya City, Saitama Century Condominium Saga 206 (72) Inventor Takashi Yoshizawa 1-69-25 Iwana, Noda City, Chiba Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 周期律表第2族、第3族、第4族金属酸
化物及びランタノイド金属酸化物から選ばれた1種以上
の担体又はこれら金属酸化物を含有するアルミナの複合
担体にロジウムを担持したことを特徴とする二酸化炭素
改質化触媒。
1. Rhodium on one or more carriers selected from Group 2, Group 3, and Group 4 metal oxides and lanthanoid metal oxides of the Periodic Table or on a composite carrier of alumina containing these metal oxides. A carbon dioxide reforming catalyst, characterized in that it carries.
【請求項2】 請求項1記載の触媒存在下、不飽和炭化
水素又は硫化水素を含む原料を用いた二酸化炭素の改質
化法。
2. A method for reforming carbon dioxide using a raw material containing unsaturated hydrocarbon or hydrogen sulfide in the presence of the catalyst according to claim 1.
【請求項3】 二酸化炭素と原料中の全炭化水素のモル
比が0.5〜5である請求項2記載の改質化法。
3. The reforming method according to claim 2, wherein the molar ratio of carbon dioxide to the total hydrocarbons in the raw material is 0.5 to 5.
JP33157695A 1995-12-20 1995-12-20 Carbon dioxide reforming catalyst and reforming method using the same Expired - Fee Related JP3638358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33157695A JP3638358B2 (en) 1995-12-20 1995-12-20 Carbon dioxide reforming catalyst and reforming method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33157695A JP3638358B2 (en) 1995-12-20 1995-12-20 Carbon dioxide reforming catalyst and reforming method using the same

Publications (2)

Publication Number Publication Date
JPH09168740A true JPH09168740A (en) 1997-06-30
JP3638358B2 JP3638358B2 (en) 2005-04-13

Family

ID=18245206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33157695A Expired - Fee Related JP3638358B2 (en) 1995-12-20 1995-12-20 Carbon dioxide reforming catalyst and reforming method using the same

Country Status (1)

Country Link
JP (1) JP3638358B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084785A1 (en) 2007-01-09 2008-07-17 Murata Manufacturing Co., Ltd. Carbon dioxide reforming catalyst and method for production thereof
WO2010001690A1 (en) 2008-07-04 2010-01-07 株式会社村田製作所 Carbon dioxide reforming process
WO2010143676A1 (en) 2009-06-12 2010-12-16 株式会社村田製作所 Hydrocarbon gas reforming catalyst, method for producing same, and method for producing synthetic gas
WO2011027727A1 (en) 2009-09-02 2011-03-10 株式会社村田製作所 Hydrocarbon gas reforming catalyst, method for producing same, and method for producing synthetic gas
WO2017213090A1 (en) 2016-06-10 2017-12-14 千代田化工建設株式会社 Carrier for synthesis gas production catalyst and production method therefor, synthesis gas production catalyst and production method therefor, and synthesis gas production method
WO2020012687A1 (en) 2018-07-09 2020-01-16 株式会社村田製作所 Hydrocarbon reforming catalyst and hydrocarbon reforming apparatus
WO2021019869A1 (en) 2019-08-01 2021-02-04 株式会社村田製作所 Hydrocarbon reforming catalyst and hydrocarbon reforming device
WO2021111784A1 (en) 2019-12-06 2021-06-10 株式会社村田製作所 Hydrocarbon reforming catalyst and hydrocarbon reforming device
WO2021140732A1 (en) 2020-01-07 2021-07-15 株式会社村田製作所 Hydrocarbon reforming catalyst, hydrocarbon reforming device, and method for regenerating hydrocarbon reforming catalyst poisoned by sulfur
WO2021140733A1 (en) 2020-01-07 2021-07-15 株式会社村田製作所 Hydrocarbon reforming catalyst and hydrocarbon reforming device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084785A1 (en) 2007-01-09 2008-07-17 Murata Manufacturing Co., Ltd. Carbon dioxide reforming catalyst and method for production thereof
WO2010001690A1 (en) 2008-07-04 2010-01-07 株式会社村田製作所 Carbon dioxide reforming process
CN102076604A (en) * 2008-07-04 2011-05-25 株式会社村田制作所 Carbon dioxide reforming process
US8518301B2 (en) 2008-07-04 2013-08-27 Murata Manufacturing Co., Ltd. Carbon dioxide reforming process
WO2010143676A1 (en) 2009-06-12 2010-12-16 株式会社村田製作所 Hydrocarbon gas reforming catalyst, method for producing same, and method for producing synthetic gas
US8329612B2 (en) 2009-06-12 2012-12-11 Murata Manufacturing Co., Ltd. Catalyst for reforming hydrocarbon gas, method of manufacturing the same, and method of manufacturing synthesized gas
WO2011027727A1 (en) 2009-09-02 2011-03-10 株式会社村田製作所 Hydrocarbon gas reforming catalyst, method for producing same, and method for producing synthetic gas
KR20190017887A (en) 2016-06-10 2019-02-20 치요다가코겐세츠가부시키가이샤 Carrier for synthesis gas production catalyst and production method thereof, synthesis gas production catalyst and production method thereof, and production method of synthesis gas
WO2017213090A1 (en) 2016-06-10 2017-12-14 千代田化工建設株式会社 Carrier for synthesis gas production catalyst and production method therefor, synthesis gas production catalyst and production method therefor, and synthesis gas production method
US10376864B2 (en) 2016-06-10 2019-08-13 Chiyoda Corporation Carrier for synthesis gas production catalyst, method of manufacturing the same, synthesis gas production catalyst, method of manufacturing the same and method of producing synthesis gas
WO2020012687A1 (en) 2018-07-09 2020-01-16 株式会社村田製作所 Hydrocarbon reforming catalyst and hydrocarbon reforming apparatus
US11958746B2 (en) 2018-07-09 2024-04-16 Murata Manufacturing Co., Ltd. Hydrocarbon reforming catalyst and hydrocarbon reforming apparatus
WO2021019869A1 (en) 2019-08-01 2021-02-04 株式会社村田製作所 Hydrocarbon reforming catalyst and hydrocarbon reforming device
WO2021111784A1 (en) 2019-12-06 2021-06-10 株式会社村田製作所 Hydrocarbon reforming catalyst and hydrocarbon reforming device
WO2021140732A1 (en) 2020-01-07 2021-07-15 株式会社村田製作所 Hydrocarbon reforming catalyst, hydrocarbon reforming device, and method for regenerating hydrocarbon reforming catalyst poisoned by sulfur
WO2021140733A1 (en) 2020-01-07 2021-07-15 株式会社村田製作所 Hydrocarbon reforming catalyst and hydrocarbon reforming device

Also Published As

Publication number Publication date
JP3638358B2 (en) 2005-04-13

Similar Documents

Publication Publication Date Title
JP5827343B2 (en) Useful catalysts for Fischer-Tropsch synthesis
JP4409833B2 (en) Hydrocarbon reforming catalyst and method for producing the same, and hydrocarbon reforming method using the catalyst
WO2002038268A1 (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
WO1998046523A1 (en) Catalyst for preparation of synthesis gas and process for preparing carbon monoxide
JPH09168740A (en) Carbon dioxide modifying catalyst and modifying method using the same
JPH08231204A (en) Production of hydrogen and carbon monoxide by carbon dioxide performing reaction
JP5531462B2 (en) Carbon dioxide reforming catalyst, method for producing the same, carrier for carbon dioxide reforming catalyst, reformer, and method for producing synthesis gas
JPS5929633B2 (en) Low-temperature steam reforming method for hydrocarbons
JPH10192708A (en) Catalyst for reforming of carbon dioxide and reforming method
JPH11130404A (en) Production of synthetic gas by partial oxidation method
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JP3813646B2 (en) Method for producing steam reforming catalyst and method for producing hydrogen
WO2021172107A1 (en) Metal-loaded article containing typical element oxide, catalyst for ammonia synthesis and method for synthesizing ammonia
KR100336968B1 (en) Modified Zirconia-supported nickel reforming catalysts and its use for producing synthesis gas from natural gas
JP4316181B2 (en) Hydrocarbon reforming catalyst and method for producing the same, and hydrocarbon reforming method using the catalyst
JP4163292B2 (en) Hydrocarbon reforming catalyst and reforming method
JP6089894B2 (en) Catalyst for producing synthesis gas and method for producing synthesis gas
JP4488321B2 (en) Synthesis gas production catalyst and synthesis gas production method
JP4175452B2 (en) Dimethyl ether reforming catalyst and dimethyl ether reforming method
JP3837482B2 (en) Catalyst for producing hydrogen and method for producing hydrogen using the same
JP2000178005A (en) Convertion of carbon dioxide with methane
JPH10216521A (en) Catalyst for reforming hydrocarbon with steam
JP4226685B2 (en) Method for producing hydrogen
JP3226556B2 (en) Catalyst for steam reforming of hydrocarbons
JPS6039652B2 (en) Method for producing lower oxygen-containing organic compounds

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees