JP3813646B2 - Method for producing steam reforming catalyst and method for producing hydrogen - Google Patents

Method for producing steam reforming catalyst and method for producing hydrogen Download PDF

Info

Publication number
JP3813646B2
JP3813646B2 JP18642095A JP18642095A JP3813646B2 JP 3813646 B2 JP3813646 B2 JP 3813646B2 JP 18642095 A JP18642095 A JP 18642095A JP 18642095 A JP18642095 A JP 18642095A JP 3813646 B2 JP3813646 B2 JP 3813646B2
Authority
JP
Japan
Prior art keywords
catalyst
ruthenium
steam reforming
group
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18642095A
Other languages
Japanese (ja)
Other versions
JPH0910586A (en
Inventor
崇 鈴木
彦一 岩波
隆 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP18642095A priority Critical patent/JP3813646B2/en
Publication of JPH0910586A publication Critical patent/JPH0910586A/en
Application granted granted Critical
Publication of JP3813646B2 publication Critical patent/JP3813646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、水蒸気改質触媒の製造方法と、該製造方法で得られる触媒を使用する水素製造方法に関し、さらに詳細には、市場価格の低廉な液状炭化水素を水蒸気改質して水素を製造する際に使用する触媒の製造方法、および該製造方法で得られる触媒を使用する水素の製造方法に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
炭化水素を原料に水素を製造する方法としては、▲1▼ガス化剤として酸素若しくは空気を用いる無触媒部分酸化法、および▲2▼水蒸気を用いる水蒸気改質法が知られている。
【0003】
前者は、原料面での制約はないが、酸素を使用する必要があること、電力原単位(製品単位量当たりの電力使用量)が大きいこと、設備費が嵩むこと等の理由から製造コストが高いという欠点を有している。これに対して後者は、酸素を使用しないこと、電力原単位および設備費が比較的低いため、現時点で最も経済的に水素を製造する方法とされている。
【0004】
従来の水蒸気改質法では、使用される触媒はニッケル系触媒であり、原料炭化水素は天然ガスからナフサ程度に限られているのが普通であった。
【0005】
ところで、水素の用途は、石油精製や石油化学の分野だけでも、水添脱硫、間接脱硫、直接脱硫、芳香族溶媒抽出、ナフサ分解分離、ベンゼンプラント等多岐に亘る。この他にも、CO製造、各種還元などの用途がある。
また、近年、地球環境保全および資源の再利用の観点から、二酸化炭素の固定化や資源化の研究開発も活発に行われており、この研究開発の鍵が、水素の廉価な製造にあると言われている。
【0006】
従って、水素製造コストを引き下げることは、化学工業に対し経済的な効果を与えることは勿論であるが、この他に環境保全応用技術の進展に対する効果も少なくない。
【0007】
水素を経済的に製造するためには、炭化水素源に灯油等市場価格の低廉な液状炭化水素を用いれば良いことになるが、原料炭化水素の分子量の増加とともに触媒上への炭素析出が顕著となる。
【0008】
従来のアルミナを担体としたニッケル系触媒でも、炭素析出抑制の検討が行われている。
例えば、特開昭50−18378号公報によると、活性助成分として希土類を少量添加する方法が提案されているが、使用できる炭化水素は、メタンからブタンまでの軽質留分であり、ナフサ、灯油等の液状炭化水素を原料とすることは難しい。
仮に、用いるとしても、炭素析出を抑制するために、次式で表される水蒸気/炭素比(以下、S/C比と略記する)を相当高く設定しなければならず、運転操作が煩雑になる他、水蒸気原単位が増加するため、灯油等の経済性に優れた液状炭化水素を利用する折角の利点が相殺されてしまう。
【0009】
【数2】
S/C比=(反応器に供給される水蒸気のモル数)/{反応器に供給される炭化水素(CnHm)のモル数×n}
【0010】
このように、従来広く用いられてきたニッケル系触媒では、使用できる原料炭化水素の炭素数に限界がある。
このような理由から、灯油等の液状炭化水素を原料とした水蒸気改質法による水素製造法の実用化は極めて難しいと云われている。
【0011】
一方、ルテニウム系触媒は、炭素析出抑制効果を持つため、ニッケル系触媒より少ないS/C比条件で水蒸気改質反応を行うことができる点で注目されている。
かかるルテニウム系触媒の例としては、アルミナにルテニウムを担持させたもの(例えば、笠岡ら「燃料協会誌」59巻,25頁(1980)、岡田ら「触媒」35巻,224頁(1993))、アルカリ金属酸化物またはアルカリ土類金属酸化物に酸化セリウムを添加した担体を用いたもの(特開平4−265156号公報)、ジルコニアを担体に使用したもの(特開平2−302304号公報、特開平2−286787号公報)、ルテニウム前駆体にルテニウム酸ナトリウム等のアルカリ塩を使用したもの(特開昭60−227834号公報)等が挙げられる。
【0012】
しかし、ルテニウム系触媒は、原料中に含まれる硫黄分によって、容易に被毒されるだけでなく、硫黄被毒が炭素析出の引き金になるという欠点を有している(例えば、岡田ら「燃料協会誌」68巻,39頁(1989))。
このように、ルテニウム触媒は、炭素析出抑制性を持っていても、原料中の硫黄分による被毒が起これば、ルテニウム触媒の最大の長所が損なわれ、実用上極めて問題となる。
【0013】
軽質留分中の硫黄分は脱硫過程で殆ど除去できることから余り問題にならないが、灯油等の液状炭化水素中には難脱硫性の硫黄化合物が含まれるため、硫黄分を無くすことは難しい。
従って、これらを原料とする水蒸気改質触媒には、耐硫黄被毒性、炭素析出抑制性を兼ね備えることが強く求められる。
【0014】
上述のように、従来の水素製造技術には、液状炭化水素を原料とする以上、炭素析出を如何に抑制するかという大きな問題点が残されている。
また、原料炭化水素以外に、水素製造のコスト上昇に影響するのは、S/C比である。
従って、水蒸気原単位の上昇を抑えるためには、現行のS/C比の条件下で、炭素析出の強い抑制が要求されるとともに、触媒の優れた耐硫黄被毒性も要求される。
【0015】
これらを満足させるには、上述のニッケル触媒系等公知の触媒では不可能であるし、またこれらの触媒の多少の改良で対応することも困難である。
上記の要件を全て満たすには、優れた炭素析出抑制性と耐硫黄被毒性を兼ね備えた触媒、具体的には、充分な強度を持った担体に、活性金属を高分散担持し、かつ高温での反応中のシンタリングを抑制できる触媒が待たれているが、今までのところ、そのような触媒は殆ど見当たらない。
【0016】
そこで、本発明は、炭素が析出し難く、析出しても触媒性能の劣化が少なく、原料中に硫黄分がある程度残存していても活性低下を起こさない触媒、つまり炭素析出抑制性、耐炭素析出性および耐硫黄被毒性を有し、長期間連続した反応を可能にする水蒸気改質触媒の製造方法および、この製造方法で得られる触媒を使用した灯油等の市場価格の低廉な液状炭化水素からの水素製造法を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明者らは、上述の目的を達成するために検討を行った結果、(1)周期表のII族金属(以下、「2族金属」と記す)、III族金属(以下、「3族金属」と記す)およびランタノイド金属の酸化物よりなる群から選ばれる少なくとも1種を特定量で含むアルミナを特定の高温度下で焼成して得られる担体に、所定量のルテニウムを高分散担持させた触媒、あるいは(2)上記の2族、3族金属およびランタノイド金属の酸化物よりなる群から選ばれる少なくとも1種がセリウムであり、このセリウムとの関係において特定量となるように所定量のルテニウムを高分散担持させた触媒、を用いれば、灯油等の液状炭化水素を原料とし、S/C比を従来と同等レベルの3〜10として水蒸気改質反応を行う場合に、原料炭化水素中に硫黄化合物がある程度残存していても触媒が被毒され難く、触媒上への炭素析出も抑制されることを見出し、このような水蒸気改質触媒を製造する方法および該製造方法で得られる触媒を用いた水素製造方法を完成するに至った。
【0018】
すなわち、本発明の水蒸気改質触媒の製造方法は、2族金属、3族金属およびランタノイド金属の酸化物よりなる群から選ばれる少なくとも1種(以下、「第三成分」と記すこともある)を触媒基準で3〜30重量%含有するアルミナを800〜900℃で焼成して得られる担体を得、該担体に、ルテニウム塩化物の水溶液ルテニウムが0.5〜5重量%となるように担持させた後、該ルテニウム塩化物を水酸化物に変換させてルテニウムを不溶・固定化し、次いで600〜950℃で還元処理し、一酸化炭素吸着量が1.5ml/g(標準状態換算、以下「STP」と記す)以上の水蒸気改質触媒得ることを特徴とする。
なお、第三成分がセリウムの場合、ルテニウム、セリウムとルテニウムとの原子比が10未満となるように、0.5〜5重量%担持させることが好ましい。
【0019】
また、本発明の水素製造方法は、硫黄含有量が0.2ppm以下、芳香族化合物含有量が30容量%以下、炭素数6以上の液状炭化水素からなる原料と水蒸気とを上記の製造方法で得られる水蒸気改質触媒に接触させ、S/C比を3〜10、LHSVを5h-1以下、反応圧力を2気圧以上に保つことを特徴とする。
【0020】
本発明の触媒の担体(複合体担体)を構成する第三成分のうち、2族金属酸化物としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウムの酸化物を単独でまたは2種以上混合して使用することができるが、特にマグネシウム、バリウムの酸化物を単独でまたは混合して用いるのがよい。
3族金属酸化物としては、スカンジウム、イットリウム等の酸化物を単独でまたは2種以上混合して使用することができるが、特にイットリウムの酸化物を用いるのが良い。
ランタノイド金属酸化物としては、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム等の酸化物を単独でまたは2種以上を混合して使用できるが、特にランタン、セリウムの酸化物を単独でまたは混合して用いるのが良い。
【0021】
2族金属酸化物、3族金属酸化物およびランタノイド金属酸化物は、上記の酸化物をそのまま使用できるほか、前駆体として塩化物、硝酸塩等の金属塩を使用することもできる。
【0022】
上記の第三成分とともに本発明の触媒の担体を構成するアルミナとしては、酸化アルミニウムをそのまま使用することができる。
この他に、硝酸アルミニウムに約pH8〜10のアルカリ緩衝液を加えて水酸化物の沈澱を生成させ、これを焼成したものを使用しても良いし、塩化アルミニウムを焼成したものを使用しても良い。
また、アルミニウムイソプロポキシド等のアルコキシドを2−プロパノール等のアルコールに溶解させ、加水分解用の触媒として塩酸等の無機酸を添加してアルミナゲルを調製し、これを乾燥、焼成するゾル・ゲル法によって調製したものを使用することもできる。
このように、アルミナ前駆体には、金属塩、有機金属化合物等も好ましく用いることができる。
【0023】
担体における第三成分の含有量は、触媒基準で、3〜30重量%である。
第三成分の含有量が3重量%未満であると、耐硫黄被毒性に関して充分な改善効果が得られず、従って触媒の充分な寿命延長は望めない。
すなわち、耐硫黄被毒性の発現機構は、原料中の硫黄化合物が第三成分に吸着・吸収される過程にあると推測され、これにより活性成分のルテニウムが硫黄分による被毒を受け難くなり、寿命が延長されるものと考えられる。
逆に含有量が30重量%より多いと、原料コストが高騰するのみならず、相対的にアルミナの量が低下するため、機械的強度が劣る上、アルミナと第三成分との複合体(おそらく複合酸化物)の生成が著しくなり、これにより比表面積の減少が起こる。
また、機械的強度の観点からは5〜25重量%が好ましく、耐硫黄被毒性を損なわずに、機械的強度が最大となる5〜20重量%が特に好ましい。
【0024】
担体は、前述の金属酸化物を水、メタノール、エタノール、アセトン等の溶媒に分散させ混練した後、これを乾燥・焼成するか、前駆体としての塩化物、硝酸塩等の金属塩を適当な溶媒に溶解させた混合液のpH調整を行って共沈物を生成させ、これを乾燥・焼成する等の方法で調製することができる。
【0025】
なお、2族金属、3族金属、ランタノイド金属よりなる群から選ばれる2種以上の金属酸化物を使用する場合には、これらの金属酸化物あるいは前駆体の混合順序は、特に限定されない。
例えば、アルミニウム化合物と2族金属酸化物とを混合し、これに3族金属酸化物および/またはランタノイド金属酸化物を混合したり、アルミニウム化合物とランタノイド金属酸化物を混合し、これに2族金属酸化物および/または3族金属酸化物を混合しても良い。
【0026】
担体の成型方法は、打錠成型法等公知の方法を用いることができ、形状としては、ラシヒリング状、円柱状、球状等が採用できる。
【0027】
担体は、800〜900℃で焼成することが望ましい。
焼成温度を800℃より低くすると、水蒸気改質反応(以下、単に「反応」と記すこともある)の温度が焼成温度を上回るため、反応時間の経過とともに担体が熱履歴を受け、触媒強度が低下したり、活性金属(ルテニウム)の分散性が悪化する等の影響が現れる。
逆に、焼成温度が900℃を超えると、担体成分同士で複合酸化物を生成したり、酸化アルミニウム結晶のα相(三方晶系綱玉型)への転移が起こり、機械的強度の向上は達成できるものの、比表面積が著しく減少するため所定量の活性金属の担持ができなくなる。
すなわち、800〜900℃で焼成すれば、所望の強度が得られる。
また、改質反応中の熱履歴をなるべく抑制する意味と強度を向上させる意味から850〜900℃が好ましく、アルミナのα相への転移が起こらない範囲で最も高い強度を有し熱履歴を受け難い900℃付近で焼成するのが特に好ましい。
【0028】
上記の担体にルテニウムを担持する方法としては、後述の方法を用いる
【0029】
ルテニウムとしては、三塩化ルテニウム無水物、三塩化ルテニウム水和物、硝酸ルテニウム等の前駆体を使用できるが、溶解性、取扱いの容易さの点から三塩化ルテニウム一水和物を使用するのが特に好ましい。
【0030】
ルテニウムの担持量は0.5〜5重量%である。
担持量が0.5重量%未満であると、活性点の数が少なくなり過ぎ、5重量%より多いと、その増加分に見合う活性の向上は余り見られず、また、ルテニウムの分散性の低下を招く。
分散性と活性点数が最も高くなる範囲として、0.5〜3重量%が最も好ましい。
【0031】
ところで、第三成分としてセリウムを使用する場合、セリウムとルテニウムとの原子比(以下、「Ce/Ru比」と記すこともある)は、10未満、好ましくは2〜9.9 とすることが重要である。
Ce/Ru比が極端に小さいと、言い換えればルテニウムに対するセリウムの量が極端に少ないと、これらによる原料中の硫黄分の吸着・吸収が不充分となり、残った硫黄分によりルテニウムが被毒されたり、あるいは触媒上に炭素が析出したりする。
逆に、Ce/Ru比が10以上であると、セリウムに対してルテニウムが少なくなりすぎ、充分な反応活性を長時間維持することが難しくなる。
【0032】
担体にルテニウムを担持させる方法を一例を挙げて説明する。
先ず、前準備として、担体を秤量し、ビュレットから純水を滴下し、担体内部まで充分含水させ、飽和含水量を計測する。この操作においては、担体内部まで充分含水させることが重要である。
次いで、計測した飽和含水量と同量の純水に所定量のルテニウムが含有するように、塩化ルテニウム一水和物の水溶液を調製し、該水溶液を担体にその飽和含水量分だけ吸収させる。
その後、担体に5〜10Nアンモニア水を担持ルテニウム濃度に対して大過剰量となるように滴下し、下式の如く、ルテニウム塩化物を水酸化物に変換させて、ルテニウムを不溶・固定化させる。
【0033】
【化1】
RuCl+3NHOH→Ru(OH)+3NHCl
【0034】
この際、化1に示したように、塩素アニオンは水溶性の塩化アンモニウムの形になるため、洗浄の過程で脱塩素を効果的に行うことができる。
【0035】
ルテニウムを固定化した担体は、なるべく低温で乾燥するのが良く、好ましくは200℃未満、より好ましくは150℃未満、特に好ましくは100℃以下で、減圧若しくは常圧乾燥する。
この温度が高すぎると、水酸化物の一部が酸化物になるため、還元処理の際に酸化状態が均一とならない虞があり、またルテニウムの分散性が低下することも起こり得る。この点から、乾燥時の酸化物の生成はなるべく避けることが望ましい。
ただし、乾燥温度が著しく低すぎると、乾燥時間が非常に長くなるため、通常は、室温程度が限度である。
【0036】
ルテニウムの不溶・固定化には、上述のようにアンモニア水を用いることができるが、この他にも炭酸水素ナトリウム、炭酸ナトリウム、水酸化ナトリウム、水酸化カリウム等の塩基の水溶液を使用することができる。
ただし、これらのアルカリ塩では、アルカリ金属カチオンが残存する虞があるので、アンモニア水が最も取扱い易い。
【0037】
担持ルテニウムの還元は、600℃以下でも生じるが、水蒸気改質反応中にルテニウムのシンタリングを極力抑制し、安定した触媒活性を保持するためには、600〜950℃で行うことが好ましい。
また、なるべく反応温度に近い領域で、かつ担体の焼成温度以下で還元を行う場合に安定した触媒活性を保持し易いことから、700〜900℃で還元を行うことが、より好ましい。
さらに、触媒調製後、何らかの理由で担持ルテニウムが酸化されるような場合には、酸化ルテニウムは還元し難いことから、800〜900℃で還元を行うことが特に好ましい。
【0038】
担持ルテニウムは600℃以下でも還元されるが、水蒸気改質温度はこの還元温度より高いため、この触媒は、反応条件下で熱履歴を受けることとなり、主としてシンタリングを起こし、安定した活性が得られなくなる。
一方、950℃を超える温度で還元すると、ルテニウムの金属表面積が著しく減少するだけでなく、担体の細孔の閉塞、あるいはアルミナ結晶のα相(三方晶系綱玉型)への転移などが起こり、反応活性は著しく低下する。
【0039】
還元ガスとしては、純水素、水素・水蒸気混合ガス、一酸化炭素などを用いることができる。中でも、純水素ガス、水素・水蒸気混合ガスを用いるのが良く、特に純水素ガスを用いるのが良い。
【0040】
還元処理後の触媒のCO吸着量は1.5ml/g(STP)以上である。
1.5ml/g(STP)未満の触媒では、触媒上のルテニウム分散性が低すぎ、充分な活性が得られない。
【0041】
このよう本発明の製造方法により得られる触媒を用いて、液状炭化水素を水蒸気改質させ、水素含有ガスを製造するには、硫黄含有量が0.2ppm以下、かつ芳香族化合物分が30容量%以下であり、炭素数6以上の液状炭化水素を原料として用いる。
【0042】
硫黄含有量が0.2ppmを超える場合には、硫黄分による触媒被毒が起こり易くなる。本発明のルテニウム系触媒では、硫黄被毒が起こると、炭素析出が著しくなるため、差圧の上昇や触媒の閉塞による運転上の問題も生じるようになる。
【0043】
芳香族化合物含有量が30容量%を超えると、触媒性能が損なわれることはないものの、反応器出口の水素含有量が原料中の芳香族化合物含有量の増加とともに減少する。これは、原料炭化水素のH/C原子比が小さくなり、生成水素として取り出される水素源が相対的に少なくなるためである。
【0044】
炭素数が6未満であると、原料コストが高くなる。
このことは、本発明の方法では、原料として経済的に安価な6以上の液状炭化水素、具体的には、灯油や灯油相当の鉱油を用いることができ、水蒸気改質プロセス全体の経済性を有利にすることができることを意味している。
【0045】
また、反応条件は、S/C比3〜10、LHSV5h−1以下、反応圧力2気圧以上とする。
【0046】
S/C比が3未満では炭素析出が著しくなり、差圧が上昇したり、さらには触媒層の閉塞が生じ、長時間の運転ができなくなる虞がある。
また、S/C比を高くする場合には特に問題は無いが、10を超えると、水蒸気原単位が上昇し、運転コストが高騰する。
【0047】
LHSVが5h−1を超えると、触媒の失活等は起こらないものの、触媒と原料が充分接触しない虞がある。これは、触媒上の活性点で反応頻度を上回る量の原料が供給されたために発生するものと考えられる。
【0048】
反応圧力は2気圧以上であれば特に問題は無い。一定量の触媒層に単位時間当たり供給できる原料の量は圧力に依存するため、圧力が2気圧未満では、原料供給量が制約を受ける。反対に、圧力が極端に高い場合には、高価な耐高圧性材料を用いた設備が必要になるため、通常は50気圧程度を上限とすることが好ましい。
【0049】
以上の反応条件において、反応温度は800〜900℃とすることが好ましい。
反応温度が下がるほど、化学平衡上水素分が減少するため、800℃未満では水素収率が小さくなる。一方、900℃を超えると、触媒の熱劣化が懸念され、また高価な耐高温性材料を用いた反応器が必要になる。
【0050】
なお、本発明の方法は、通常の水蒸気改質反応器を用いて実施することができ、必要に応じて反応器の数を増やしても差し支えない。
【0051】
【実施例】
図1は、以下に挙げる実施例、比較例に使用した水蒸気改質装置の概略構成を示すフロー図である。
本装置は、本発明を実証するための実験室規模のマイクロ装置であって、商業的規模の装置は必ずしも同じ構成にする必要はない。また、必要最低限の機器等が示されており、その他の機器等は省略されている。
【0052】
なお、以下の実施例において、生成物の分析は、ステンレス(SUS)製カラム(内径3mmφ×2m)に60〜80メッシュのUnibeads−C(GLサイエンス社製)を充填した分離カラムを取付けた熱伝導度型検出器(TCD)付きのガスクロマトグラフ(GC)を使用して行った。
一酸化炭素(CO)吸着量は、TCD−GCを内蔵した自動ガス吸着装置(R6015高温仕様、大倉理研製)により測定した。
担持ルテニウム量は、誘導結合プラズマ発光分析法(ICP)で測定した。
液状炭化水素中の硫黄分の定量は、電気伝導法によった。
触媒上への析出炭素量の分析は、炭素分析装置(Carbon Analyzer,Model EMIA−110,堀場製作所製)を用いて行い、標準炭素鋼((社)日本鉄鋼協会、標準炭素鋼、C:0.38wt%)で校正した。
原料灯油の平均分子式は、CHN分析法で得られた炭素、水素含量を基にC14とした。
【0053】
実施例1
酸化セリウム(和光純薬工業製)粉末5.8gと活性アルミナ粉末(メルク社製)94.1gをメノウ乳鉢で充分混合した後、約50mlの純水を加えてさらに混練した。
得られたペースト状混合物を、赤外線式ホットプレートにて水分除去した後、105℃に保った定温乾燥器でさらに乾燥した。
これを、再びメノウ乳鉢で粉化した後、打錠成型器にて円柱状(ペレット)に成型し、マッフル炉にて900℃で3時間焼成し、担体を調製した。
【0054】
三塩化ルテニウム一水和物(三津和化学製、純度44〜45%)1gを約30mlの純水に溶解させた水溶液に、上記の担体ペレット25gを1時間浸漬し、残液を除去後、ロータリーエバポレーターを用いて約2.7kPa(20torr)程度の真空下で赤外線式ホットプレートにより40〜45℃に加温しながら水分を除いた。
これを、7〜10Nアンモニア水中に移して30〜40℃に保ちつつ、2時間スターラーにてゆっくり撹拌し、化1で示したように、ルテニウムを不溶・固定化した。
【0055】
触媒の分離にはブフナー漏斗を用いた。
また、濾液中に希硝酸銀水溶液を加えても塩化銀の白濁が起こらなくなるまで純水で充分洗浄した。
これを、真空乾燥器中40〜45℃で8〜10時間乾燥し、ルテニウム1.4重量%、酸化セリウム5.5重量%、残りアルミナからなる、Ce/Ru原子比:2.24の触媒Aを調製した。
【0056】
上記で得た触媒10mlを、図1に示す水蒸気改質装置の内径16mmφのSUS製円筒反応管1に充填し、反応を行った。
【0057】
反応に先立ち、反応管1に充填した触媒を、圧力:8kg/cmG、還元温度:800℃、GHSV:3000h−1で、8時間、マスフローコントローラにて流量調整されつつ供給される水素により、還元した。
還元処理後の触媒上へのCO吸着量は、1.8ml/g(STP)であった。
【0058】
上記の水素還元の後、反応管1内の触媒に、JIS1号灯油を深度脱硫した脱硫白灯油(硫黄分約0.2ppm、芳香族化合物分20容量%)を、灯油ポンプにより、LHSV:2、S/C比:3で通油し、純水を水ポンプにより給水した。
なお、反応管1入口の硫化水素濃度が8ppmとなるように、硫化水素ガスを原料系(上記の脱硫白灯油と純水との混合系)に供給した。
この時の反応圧力は8kg/cmG、反応温度は800℃とした。
結果を図2および表1に示す。
【0059】
実施例2
酸化イットリウム(Y、添川化学製)粉末5.7gと実施例1と同じ活性アルミナ粉末94.5gを用い、実施例1と同様の方法で、ルテニウム1.4重量%、酸化イットリウム5.6重量%、残りアルミナからなる、Y/Ru原子比:3.67、CO吸着量:1.8ml/g(STP)の触媒Bを調製した。
この触媒Bを用い、実施例1と同様にして、水蒸気改質反応を行った結果を図2および表1に示す。
【0060】
実施例3
酸化マグネシウム(MgO、和光純薬工業製)粉末5.4gと実施例1と同じ活性アルミナ粉末94.7gを用い、実施例1と同様の方法で、ルテニウム1.4重量%、酸化マグネシウム5.3重量%、残りアルミナからなる、Mg/Ru原子比:9.21、CO吸着量:1.7ml/g(STP)の触媒Cを調製した。
この触媒Cを用い、実施例1と同様にして、水蒸気改質反応を行った結果を図2および表2に示す。
【0061】
実施例4
酸化バリウム(BaO、和光純薬工業製)粉末5.5gと実施例1と同じ活性アルミナ粉末94.6gを用い、実施例1と同様の方法で、ルテニウム1.4重量%、酸化バリウム5.4重量%、残りアルミナからなる、Ba/Ru原子比:2.60、CO吸着量:1.6ml/g(STP)の触媒Dを調製した。
この触媒Dを用い、実施例1と同様にして、水蒸気改質反応を行った結果を図2および表2に示す。
【0062】
実施例5
実施例1と同じ酸化セリウム粉末と活性アルミナ粉末をそれぞれ40.8g、90.4g用い、実施例1と同様の方法で担体ペレットを調製した。この担体ペレット100gと実施例1と同じ三塩化ルテニウム一水和物1gを約120mlの純水に溶解させた水溶液を用い、実施例1と同様の方法でルテニウム0.5重量%、酸化セリウム29.8重量%、残りアルミナからなるCe/Ru原子比:2.85、CO吸着量1.7ml/g(STP)の触媒Eを得た。
この触媒Eを用い、実施例1と同様にして、水蒸気改質反応を行った結果を表3に示す。
【0063】
実施例6
実施例1と同じ酸化セリウム粉末と活性アルミナ粉末をそれぞれ3.1g、97.2g用い、焼成温度を800℃とする以外は実施例1と同様の方法で担体ペレットを調製した。この担体ペレット12.7gと実施例1で調製した三塩化ルテニウム一水和物水溶液30mlを用い、実施例1と同様の方法でルテニウム5重量%、酸化セリウム3.1重量%、残りアルミナからなるCe/Ru原子比:0.36、CO吸着量2.0ml/g(STP)の触媒Fを得た。
この触媒Fを用い、実施例1と同様にして、水蒸気改質反応を行った結果を表3に示す。
【0064】
実施例7
実施例1と同じ酸化セリウム粉末と活性アルミナ粉末、実施例2と同じ酸化イットリウムをそれぞれ10.2g、79.6g、10.1g用い、実施例1と同様の方法でルテニウム1.8重量%、酸化イットリウム10.3重量%、酸化セリウム9.5重量%、残りアルミナからなる(Ce+Y)/Ru原子比:8.22、CO吸着量1.8ml/g(STP)の触媒Gを得た。
この触媒Gを用い、実施例1と同様にして、水蒸気改質反応を行った結果を表4に示す。
【0065】
比較例1
市販の水蒸気改質触媒H(G−56H−1、ガードラー社製、カタログ記載の組成で、ニッケル:17〜19重量%、KO:0.4重量%、残りアルミナ)を用い、実施例1と同様にして、水蒸気改質反応を行った結果を図2および表5に示す。
【0066】
比較例2
充分脱水したアルミナ粉末を打錠成型し、マッフル炉にて900℃で3時間焼成して、担体を調製した。
次いで、実施例1と同様の方法で触媒を調製し、ルテニウム1.4重量%、残りアルミナからなる、CO吸着量:1.6ml/g(STP)の触媒Iを得た。
この触媒Iを用い、実施例1と同様にして、水蒸気改質反応を行った結果を図2および表5に示す。
【0067】
なお、図2は、実施例1〜4で調製した触媒A,B,C,Dおよび比較例1,2の触媒H,Iを用いたときの、反応時間に対する灯油転化率(次式から算出した)の変化を示したもので、表1〜表5は実施例1〜7で調製した触媒A〜Gおよび比較例1,2の触媒H,Iを用いたときの、改質ガス組成と、反応後触媒上に析出した炭素量とを示したものである。
【0068】
【数3】
灯油転化率(%)
=(生成ガス中の炭素原子数)/(灯油中の炭素原子数)×100
なお、原料灯油の平均分子式はC14とした。
【0069】
【表1】

Figure 0003813646
【0070】
【表2】
Figure 0003813646
【0071】
【表3】
Figure 0003813646
【0072】
【表4】
Figure 0003813646
【0073】
【表5】
Figure 0003813646
【0074】
図2および表1〜表5から明らかなように、灯油等の液状炭化水素を原料とする水蒸気改質による水素製造において、従来から一般に用いられている担持ニッケル系触媒H(比較例1)では、従来の一般的な反応条件と比べて、原料炭化水素の炭素数が高く、またS/C比が低い本実施例の反応条件は、触媒にとって過酷であるため、炭素析出等による触媒性能の著しい劣化が起こることが分かる。
【0075】
また、耐炭素析出性に優れる担持ルテニウム系触媒であっても、第三成分を含まない触媒I(比較例2)を用いた場合では、原料液状炭化水素中に含まれる硫黄化合物によって触媒が被毒され、徐々に転化率の低下が起こるほか、被毒による二次的阻害として触媒上での炭素析出が生じ、反応中期からの活性劣化が著しくなることが分かる。
【0076】
これらに対し、本発明の製造方法により得られる触媒A〜G(実施例1〜7)を用いると、灯油等の液状炭化水素を原料とした場合でも、平衡転化率に近い充分な触媒活性が得られるばかりでなく、原料中の硫黄化合物による触媒被毒や触媒上の炭素析出という問題が起こり難いので、長期間安定した触媒性能を保つことができることが分かる。
【0077】
【発明の効果】
本発明の水蒸気改質触媒の製造方法および水素製造方法を採用すれば、灯油等を原料として低S/C比の条件で長期間に亘り安定した水蒸気改質反応を行わせることができるため、CO,CO2等を一部含有する水素ガスを収率良く、安価に製造することが可能である。
【図面の簡単な説明】
【図1】本発明の実施例および比較例で使用した水蒸気改質装置の概略を示すフロー図である。
【図2】本発明の実施例および比較例で得られた結果を示すグラフである。[0001]
[Industrial application fields]
  The present invention relates to a steam reforming catalyst.Manufacturing methodAnd theObtained by manufacturing methodThe present invention relates to a hydrogen production method using a catalyst, and more particularly, a catalyst used for producing hydrogen by steam reforming a low-cost liquid hydrocarbon.Manufacturing method,And theObtained by manufacturing methodThe present invention relates to a method for producing hydrogen using a catalyst.
[0002]
[Background Art and Problems to be Solved by the Invention]
As a method for producing hydrogen from a hydrocarbon as a raw material, (1) a non-catalytic partial oxidation method using oxygen or air as a gasifying agent and (2) a steam reforming method using steam are known.
[0003]
The former is not limited in terms of raw materials, but the production cost is low because of the need to use oxygen, the large power consumption (power consumption per unit of product), and the increased equipment costs. It has the disadvantage of being expensive. On the other hand, the latter is the most economical method for producing hydrogen at the present time because it does not use oxygen, and its power consumption and equipment costs are relatively low.
[0004]
In the conventional steam reforming method, the catalyst used is a nickel-based catalyst, and the raw material hydrocarbon is usually limited from natural gas to naphtha.
[0005]
By the way, hydrogen can be used for various purposes such as hydrodesulfurization, indirect desulfurization, direct desulfurization, aromatic solvent extraction, naphtha cracking separation, and benzene plant only in the fields of petroleum refining and petrochemistry. There are other uses such as CO production and various reductions.
In recent years, research and development of carbon dioxide fixation and resource recycling has been actively conducted from the viewpoint of global environmental conservation and resource reuse, and the key to this research and development is low-cost production of hydrogen. It is said.
[0006]
Therefore, lowering the hydrogen production cost not only has an economic effect on the chemical industry, but also has other effects on the development of environmental protection applied technology.
[0007]
In order to produce hydrogen economically, it is sufficient to use low-cost liquid hydrocarbons such as kerosene as the hydrocarbon source, but carbon deposition on the catalyst is conspicuous as the molecular weight of the raw material hydrocarbons increases. It becomes.
[0008]
Even with conventional nickel-based catalysts using alumina as a carrier, studies on the suppression of carbon deposition have been conducted.
For example, according to Japanese Patent Laid-Open No. 50-18378, a method of adding a small amount of rare earth as an active auxiliary component is proposed, but usable hydrocarbons are light fractions from methane to butane, such as naphtha, kerosene. It is difficult to use liquid hydrocarbons such as
Even if it is used, in order to suppress carbon deposition, the water vapor / carbon ratio (hereinafter abbreviated as S / C ratio) represented by the following formula must be set to be considerably high, and the operation is complicated. In addition, since the water vapor intensity increases, the advantage of the use of liquid hydrocarbons, such as kerosene, which is economical, is offset.
[0009]
[Expression 2]
S / C ratio = (number of moles of steam supplied to the reactor) / {number of moles of hydrocarbon (CnHm) supplied to the reactor × n}
[0010]
As described above, the nickel-based catalyst that has been widely used has a limit in the number of carbons of the raw material hydrocarbon that can be used.
For these reasons, it is said that it is extremely difficult to put into practical use a hydrogen production method by a steam reforming method using a liquid hydrocarbon such as kerosene as a raw material.
[0011]
On the other hand, a ruthenium-based catalyst has attracted attention because it has a carbon deposition suppressing effect and can perform a steam reforming reaction under a condition of an S / C ratio smaller than that of a nickel-based catalyst.
Examples of such ruthenium-based catalysts include those in which ruthenium is supported on alumina (for example, Kasaoka et al. “Fuel Association”, Vol. 59, page 25 (1980), Okada et al., “Catalyst” vol. 35, page 224 (1993)). Using a carrier obtained by adding cerium oxide to an alkali metal oxide or alkaline earth metal oxide (JP-A-4-265156), using zirconia as a carrier (JP-A-2-302304, No. 2-286787), and a ruthenium precursor using an alkali salt such as sodium ruthenate (Japanese Patent Laid-Open No. 60-227834).
[0012]
However, ruthenium-based catalysts are not only easily poisoned by sulfur contained in the raw material, but also have the disadvantage that sulfur poisoning triggers carbon deposition (for example, Okada et al. “Fuel Association Journal, Vol. 68, 39 (1989)).
As described above, even if the ruthenium catalyst has a carbon deposition inhibitory property, if poisoning due to the sulfur content in the raw material occurs, the maximum advantage of the ruthenium catalyst is impaired, which is extremely problematic in practical use.
[0013]
Sulfur content in the light fraction can be almost removed in the desulfurization process, so it is not a problem. However, liquid hydrocarbons such as kerosene contain difficult-to-desulfurize sulfur compounds, so it is difficult to eliminate the sulfur content.
Therefore, a steam reforming catalyst using these as a raw material is strongly required to have both sulfur poisoning resistance and carbon deposition inhibiting properties.
[0014]
As described above, in the conventional hydrogen production technology, as long as liquid hydrocarbon is used as a raw material, there remains a big problem of how to suppress carbon deposition.
In addition to the raw material hydrocarbon, it is the S / C ratio that affects the cost increase in hydrogen production.
Therefore, in order to suppress the increase in water vapor intensity, it is required to strongly suppress carbon deposition under the current S / C ratio condition, and also to have excellent sulfur poisoning resistance of the catalyst.
[0015]
In order to satisfy these requirements, it is impossible with known catalysts such as the above-described nickel catalyst system, and it is difficult to cope with these problems with some improvements.
In order to satisfy all of the above requirements, a catalyst having excellent carbon deposition inhibitory properties and sulfur poisoning resistance, specifically, a carrier having sufficient strength, a highly dispersed support of active metal, and high temperatures. There is a need for a catalyst that can suppress sintering during this reaction, but so far, such a catalyst is hardly found.
[0016]
  Therefore, the present invention is a catalyst in which carbon is difficult to deposit, catalyst performance is hardly deteriorated even when deposited, and a catalyst that does not cause a decrease in activity even if a sulfur content remains to some extent in the raw material, that is, carbon deposition inhibiting property, carbon resistance Steam reforming catalyst that has precipitation and sulfur poisoning resistance and enables long-term continuous reactionManufacturing methodAnd thisObtained by the production method ofAn object of the present invention is to provide a method for producing hydrogen from liquid hydrocarbons at low market prices such as kerosene using benzene.
[0017]
[Means for Solving the Problems]
  As a result of investigations to achieve the above-mentioned object, the present inventors have found that (1) Group II metal (hereinafter referred to as “Group 2 metal”) and Group III metal (hereinafter referred to as “Group 3”) of the periodic table. And a carrier obtained by calcining alumina containing a specific amount of at least one selected from the group consisting of oxides of lanthanoid metal and a lanthanoid metal oxide at a specific high temperature to carry a predetermined amount of ruthenium in a highly dispersed manner. Or (2) at least one selected from the group consisting of the oxides of Group 2, Group 3, and Lanthanoid metals is cerium, and a predetermined amount so as to be a specific amount in relation to cerium. When using a catalyst in which ruthenium is highly dispersed and supported, when a steam reforming reaction is performed using a liquid hydrocarbon such as kerosene as a raw material and an S / C ratio of 3 to 10 which is equivalent to the conventional level, Sulfurized Found that things catalyst be left somewhat difficult to be poisoned, carbon deposition on the catalyst is suppressed,like thisSteam reforming catalystHow to manufactureAnd theObtained by manufacturing methodA hydrogen production method using a catalyst has been completed.
[0018]
  That is, the steam reforming catalyst of the present inventionManufacturing methodIs an alumina containing 3 to 30 wt% of at least one selected from the group consisting of Group 2 metal, Group 3 metal and lanthanoid metal oxides (hereinafter sometimes referred to as “third component”) based on the catalyst. Obtained by baking at 800-900 ° CObtaining a carrier,Ruthenium on the carrierChloride aqueous solutionTheRuthenium0.5-5% by weightTo beCarryingThe ruthenium chloride is converted into a hydroxide to insolubilize and fix the ruthenium,Reduction treatment at 600 to 950 ° C. and carbon monoxide adsorption amount of 1.5 ml / g (standard state conversion, hereinafter referred to as “STP”) or moreSteam reforming catalystTheTo getFeatures.
  When the third component is cerium, rutheniumThe, 0.5-5% by weight supported so that the atomic ratio of cerium and ruthenium is less than 10LettingIs preferred.
[0019]
  Further, the hydrogen production method of the present invention comprises the above-mentioned raw material consisting of a liquid hydrocarbon having a sulfur content of 0.2 ppm or less, an aromatic compound content of 30% by volume or less, and a carbon number of 6 or more, and steam.Obtained by manufacturing methodContact with steam reforming catalyst, S / C ratio 3-10, LHSV 5h-1Hereinafter, the reaction pressure is maintained at 2 atm or more.
[0020]
Among the third components constituting the catalyst carrier (composite carrier) of the present invention, as the Group 2 metal oxide, beryllium, magnesium, calcium, strontium, barium, radium oxides may be used alone or in combination of two or more. However, it is particularly preferable to use magnesium or barium oxide alone or in combination.
As group 3 metal oxides, oxides such as scandium and yttrium can be used alone or in admixture of two or more, and it is particularly preferable to use yttrium oxide.
As lanthanoid metal oxides, oxides such as lanthanum, cerium, praseodymium, neodymium, promethium, samarium can be used alone or in combination of two or more, and in particular, lanthanum and cerium oxides can be used alone or in combination. It is good to use.
[0021]
As the Group 2 metal oxide, Group 3 metal oxide, and lanthanoid metal oxide, the above oxides can be used as they are, and metal salts such as chlorides and nitrates can also be used as precursors.
[0022]
As alumina constituting the carrier of the catalyst of the present invention together with the third component, aluminum oxide can be used as it is.
In addition to this, an alkaline buffer solution having a pH of about 8 to 10 may be added to aluminum nitrate to form a hydroxide precipitate, which may be baked, or may be baked aluminum chloride. Also good.
In addition, sol-gel is prepared by dissolving an alkoxide such as aluminum isopropoxide in an alcohol such as 2-propanol, adding an inorganic acid such as hydrochloric acid as a catalyst for hydrolysis to prepare an alumina gel, and drying and firing the gel. What was prepared by the method can also be used.
Thus, metal salts, organometallic compounds, and the like can be preferably used for the alumina precursor.
[0023]
The content of the third component in the carrier is 3 to 30% by weight based on the catalyst.
When the content of the third component is less than 3% by weight, a sufficient improvement effect with respect to the sulfur poisoning resistance cannot be obtained, and therefore a sufficient life extension of the catalyst cannot be expected.
In other words, the mechanism of the development of sulfur poisoning resistance is presumed to be in the process of sulfur compounds in the raw material being adsorbed and absorbed by the third component, which makes the active ingredient ruthenium less susceptible to sulfur poisoning, Life expectancy will be extended.
On the other hand, if the content is more than 30% by weight, not only the raw material cost increases, but the amount of alumina relatively decreases, so that the mechanical strength is inferior and a composite of alumina and a third component (probably (Complex oxide) is remarkably generated, and the specific surface area is reduced.
Moreover, 5 to 25 weight% is preferable from a viewpoint of mechanical strength, and 5 to 20 weight% which maximizes mechanical strength without impairing sulfur poisoning resistance is particularly preferable.
[0024]
The support is prepared by dispersing and kneading the above-mentioned metal oxide in a solvent such as water, methanol, ethanol, acetone, etc., and then drying or firing it, or using a metal salt such as chloride or nitrate as a precursor in an appropriate solvent. The co-precipitate is produced by adjusting the pH of the mixed solution dissolved in the solution, and can be prepared by a method such as drying and baking.
[0025]
In addition, when using 2 or more types of metal oxides chosen from the group which consists of a group 2 metal, a group 3 metal, and a lanthanoid metal, the mixing order of these metal oxides or a precursor is not specifically limited.
For example, an aluminum compound and a Group 2 metal oxide are mixed and mixed with a Group 3 metal oxide and / or a lanthanoid metal oxide, or an aluminum compound and a lanthanoid metal oxide are mixed with the Group 2 metal oxide. An oxide and / or a Group 3 metal oxide may be mixed.
[0026]
As a method for molding the carrier, a known method such as a tableting molding method can be used, and a Raschig ring shape, a columnar shape, a spherical shape, or the like can be adopted as the shape.
[0027]
The carrier is desirably baked at 800 to 900 ° C.
When the calcination temperature is lower than 800 ° C., the temperature of the steam reforming reaction (hereinafter sometimes simply referred to as “reaction”) exceeds the calcination temperature. Effects such as lowering and deterioration of the dispersibility of the active metal (ruthenium) appear.
Conversely, when the firing temperature exceeds 900 ° C., composite oxides are formed between the carrier components, or the transition of the aluminum oxide crystals to the α phase (trigonal lees) takes place, improving the mechanical strength. Although it can be achieved, the specific surface area is significantly reduced, so that a predetermined amount of active metal cannot be supported.
That is, if it bakes at 800-900 degreeC, desired intensity | strength will be obtained.
Moreover, 850-900 degreeC is preferable from the meaning which suppresses the thermal history in a reforming reaction as much as possible, and the meaning which improves intensity | strength, and has the highest intensity | strength in the range which does not change to the alpha phase of an alumina, and receives thermal history. It is particularly preferable to fire at around 900 ° C., which is difficult.
[0028]
  As a method of loading ruthenium on the carrier,LaterUse the method.
[0029]
As ruthenium, precursors such as ruthenium trichloride anhydride, ruthenium trichloride hydrate, ruthenium nitrate can be used, but ruthenium trichloride monohydrate is used from the viewpoint of solubility and ease of handling. Particularly preferred.
[0030]
The supported amount of ruthenium is 0.5 to 5% by weight.
When the supported amount is less than 0.5% by weight, the number of active sites becomes too small, and when it is more than 5% by weight, there is not much improvement in activity commensurate with the increase, and the dispersibility of ruthenium Incurs a decline.
The range in which the dispersibility and the number of active sites are the highest is most preferably 0.5 to 3% by weight.
[0031]
By the way, when cerium is used as the third component, the atomic ratio of cerium to ruthenium (hereinafter sometimes referred to as “Ce / Ru ratio”) is less than 10, preferably 2 to 9.9. is important.
When the Ce / Ru ratio is extremely small, in other words, when the amount of cerium with respect to ruthenium is extremely small, the adsorption and absorption of sulfur in the raw material by these becomes insufficient, and ruthenium is poisoned by the remaining sulfur. Alternatively, carbon is deposited on the catalyst.
On the other hand, when the Ce / Ru ratio is 10 or more, ruthenium becomes too small relative to cerium, and it becomes difficult to maintain sufficient reaction activity for a long time.
[0032]
A method for supporting ruthenium on a carrier will be described with an example.
First, as a preparatory step, the carrier is weighed, pure water is dropped from the burette, the inside of the carrier is sufficiently hydrated, and the saturated moisture content is measured. In this operation, it is important that the carrier is sufficiently hydrated.
Next, an aqueous solution of ruthenium chloride monohydrate is prepared so that a predetermined amount of ruthenium is contained in the same amount of pure water as the measured saturated water content, and the aqueous solution is absorbed by the carrier by the saturated water content.
Thereafter, 5-10N ammonia water is dropped on the carrier so as to be in a large excess amount with respect to the supported ruthenium concentration, and ruthenium chloride is converted into a hydroxide as shown in the following formula, so that ruthenium is insoluble and immobilized. .
[0033]
[Chemical 1]
RuCl3+ 3NH4OH → Ru (OH)3+ 3NH4Cl
[0034]
At this time, as shown in Chemical formula 1, since the chlorine anion is in the form of water-soluble ammonium chloride, dechlorination can be effectively performed during the washing process.
[0035]
The carrier on which ruthenium is immobilized is preferably dried at as low a temperature as possible, and is preferably dried at a temperature of less than 200 ° C., more preferably less than 150 ° C., particularly preferably 100 ° C. or less, and reduced pressure or atmospheric pressure.
If the temperature is too high, a part of the hydroxide becomes an oxide, so that the oxidation state may not be uniform during the reduction treatment, and the dispersibility of ruthenium may be lowered. From this point, it is desirable to avoid the formation of oxides during drying as much as possible.
However, if the drying temperature is extremely low, the drying time becomes very long.
[0036]
For ruthenium insolubilization / immobilization, ammonia water can be used as described above, but in addition, an aqueous solution of a base such as sodium hydrogen carbonate, sodium carbonate, sodium hydroxide, potassium hydroxide or the like can be used. it can.
However, in these alkali salts, there is a possibility that alkali metal cations may remain, and therefore ammonia water is the easiest to handle.
[0037]
Although the reduction of the supported ruthenium occurs even at 600 ° C. or lower, it is preferably performed at 600 to 950 ° C. in order to suppress ruthenium sintering as much as possible during the steam reforming reaction and maintain stable catalytic activity.
In addition, it is more preferable to perform the reduction at 700 to 900 ° C. because stable catalytic activity is easily maintained when the reduction is performed in a region as close to the reaction temperature as possible and below the calcination temperature of the support.
Furthermore, when the supported ruthenium is oxidized for some reason after catalyst preparation, it is particularly preferable to perform the reduction at 800 to 900 ° C. because ruthenium oxide is difficult to reduce.
[0038]
Although the supported ruthenium is reduced even at 600 ° C. or lower, since the steam reforming temperature is higher than the reduction temperature, the catalyst is subjected to a thermal history under the reaction conditions, mainly causing sintering and stable activity. It becomes impossible.
On the other hand, reduction at a temperature exceeding 950 ° C. not only significantly reduces the metal surface area of ruthenium but also causes clogging of the pores of the support or transition to the α phase of the alumina crystal (trigonal lees). The reaction activity is significantly reduced.
[0039]
As the reducing gas, pure hydrogen, hydrogen / water vapor mixed gas, carbon monoxide, or the like can be used. Among these, pure hydrogen gas and hydrogen / water vapor mixed gas are preferably used, and particularly pure hydrogen gas is preferably used.
[0040]
The CO adsorption amount of the catalyst after the reduction treatment is 1.5 ml / g (STP) or more.
When the catalyst is less than 1.5 ml / g (STP), the ruthenium dispersibility on the catalyst is too low, and sufficient activity cannot be obtained.
[0041]
  like thisNaOf the present inventionObtained by manufacturing methodIn order to produce a hydrogen-containing gas by steam reforming a liquid hydrocarbon using a catalyst, the sulfur content is 0.2 ppm or less, the aromatic compound content is 30% by volume or less, and the carbon number is 6 or more. Liquid hydrocarbon is used as a raw material.
[0042]
When the sulfur content exceeds 0.2 ppm, catalyst poisoning due to sulfur tends to occur. In the ruthenium-based catalyst of the present invention, when sulfur poisoning occurs, carbon deposition becomes remarkable, and thus problems in operation due to an increase in differential pressure and clogging of the catalyst also occur.
[0043]
When the aromatic compound content exceeds 30% by volume, the catalyst performance is not impaired, but the hydrogen content at the outlet of the reactor decreases as the aromatic compound content in the raw material increases. This is because the H / C atomic ratio of the raw material hydrocarbon becomes small, and the hydrogen source taken out as generated hydrogen becomes relatively small.
[0044]
When the carbon number is less than 6, the raw material cost is increased.
This means that in the method of the present invention, it is possible to use 6 or more liquid hydrocarbons that are economically inexpensive as raw materials, specifically kerosene or mineral oil equivalent to kerosene. It means that it can be advantageous.
[0045]
Moreover, reaction conditions are S / C ratio 3-10, LHSV5h-1Hereinafter, the reaction pressure is 2 atm or more.
[0046]
When the S / C ratio is less than 3, carbon deposition becomes remarkable, the differential pressure increases, and further, the catalyst layer is clogged, and there is a possibility that long-time operation cannot be performed.
In addition, there is no particular problem when the S / C ratio is increased, but when it exceeds 10, the water vapor consumption rate increases and the operating cost increases.
[0047]
LHSV is 5h-1Exceeding the above does not cause deactivation of the catalyst, but there is a possibility that the catalyst and the raw material are not sufficiently in contact. This is considered to occur because an amount of raw material exceeding the reaction frequency is supplied at the active point on the catalyst.
[0048]
There is no particular problem if the reaction pressure is 2 atm or more. Since the amount of raw material that can be supplied to a certain amount of catalyst layer per unit time depends on the pressure, if the pressure is less than 2 atmospheres, the raw material supply amount is restricted. On the other hand, when the pressure is extremely high, equipment using an expensive high-pressure resistant material is required, and therefore, it is usually preferable to set the upper limit to about 50 atm.
[0049]
Under the above reaction conditions, the reaction temperature is preferably 800 to 900 ° C.
As the reaction temperature is lowered, the hydrogen content is reduced due to chemical equilibrium. Therefore, the hydrogen yield is reduced below 800 ° C. On the other hand, when it exceeds 900 ° C., there is a concern about thermal deterioration of the catalyst, and a reactor using an expensive high temperature resistant material is required.
[0050]
The method of the present invention can be carried out using a normal steam reforming reactor, and the number of reactors may be increased as necessary.
[0051]
【Example】
FIG. 1 is a flowchart showing a schematic configuration of a steam reformer used in the following examples and comparative examples.
This apparatus is a laboratory scale micro apparatus for demonstrating the present invention, and a commercial scale apparatus does not necessarily have the same configuration. Further, the minimum necessary devices are shown, and other devices are omitted.
[0052]
In the following examples, the analysis of the product was performed by using a stainless steel (SUS) column (inner diameter: 3 mmφ × 2 m) and a heat fitted with a separation column packed with 60 to 80 mesh Unibeads-C (manufactured by GL Science). A gas chromatograph (GC) with a conductivity type detector (TCD) was used.
The carbon monoxide (CO) adsorption amount was measured by an automatic gas adsorption device (R6015 high temperature specification, manufactured by Okura Riken Co., Ltd.) incorporating TCD-GC.
The amount of supported ruthenium was measured by inductively coupled plasma optical emission spectrometry (ICP).
The amount of sulfur in the liquid hydrocarbon was determined by the electric conduction method.
The amount of carbon deposited on the catalyst is analyzed using a carbon analyzer (Carbon Analyzer, Model EMIA-110, manufactured by HORIBA, Ltd.). Standard carbon steel (Japan Steel Association, Standard Carbon Steel, C: 0) .38 wt%).
The average molecular formula of the raw kerosene is C based on the carbon and hydrogen contents obtained by the CHN analysis method.6H14It was.
[0053]
Example 1
After 5.8 g of cerium oxide (manufactured by Wako Pure Chemical Industries) powder and 94.1 g of activated alumina powder (manufactured by Merck) were sufficiently mixed in an agate mortar, about 50 ml of pure water was added and further kneaded.
The obtained paste-like mixture was moisture-removed with an infrared hot plate, and then further dried with a constant temperature drier kept at 105 ° C.
This was again pulverized with an agate mortar, then formed into a cylindrical shape (pellet) with a tableting molder, and fired at 900 ° C. for 3 hours in a muffle furnace to prepare a carrier.
[0054]
After immersing 25 g of the above carrier pellets in an aqueous solution in which 1 g of ruthenium trichloride monohydrate (manufactured by Mitsuwa Chemical Co., Ltd., purity 44 to 45%) is dissolved in about 30 ml of pure water, the residual liquid is removed, Using a rotary evaporator, moisture was removed while heating to 40 to 45 ° C. with an infrared hot plate under a vacuum of about 2.7 kPa (20 torr).
This was transferred into 7 to 10 N ammonia water and kept at 30 to 40 ° C., and then slowly stirred with a stirrer for 2 hours. As shown in Chemical Formula 1, ruthenium was insoluble and immobilized.
[0055]
A Buchner funnel was used to separate the catalyst.
Further, even if a dilute aqueous silver nitrate solution was added to the filtrate, it was sufficiently washed with pure water until silver chloride did not become cloudy.
The catalyst was dried in a vacuum dryer at 40 to 45 ° C. for 8 to 10 hours, and composed of 1.4% by weight of ruthenium, 5.5% by weight of cerium oxide, and the remaining alumina, and had a Ce / Ru atomic ratio of 2.24. A was prepared.
[0056]
10 ml of the catalyst obtained above was charged into a SUS cylindrical reaction tube 1 having an inner diameter of 16 mmφ of the steam reformer shown in FIG. 1 to carry out the reaction.
[0057]
Prior to the reaction, the catalyst packed in the reaction tube 1 is subjected to pressure: 8 kg / cm.2G, reduction temperature: 800 ° C., GHSV: 3000 h-1Thus, the hydrogen was supplied for 8 hours while the flow rate was adjusted by the mass flow controller.
The amount of CO adsorbed on the catalyst after the reduction treatment was 1.8 ml / g (STP).
[0058]
After the hydrogen reduction described above, desulfurized white kerosene obtained by deep desulfurization of JIS No. 1 kerosene (sulfur content: about 0.2 ppm, aromatic compound content: 20% by volume) was added to the catalyst in the reaction tube 1 by a kerosene pump with LHSV: 2 , S / C ratio: 3 was passed, and pure water was supplied by a water pump.
In addition, hydrogen sulfide gas was supplied to the raw material system (mixed system of the above desulfurized white kerosene and pure water) so that the hydrogen sulfide concentration at the inlet of the reaction tube 1 was 8 ppm.
The reaction pressure at this time is 8 kg / cm.2G, the reaction temperature was 800 ° C.
The results are shown in FIG.
[0059]
Example 2
Yttrium oxide (Y2O3(Manufactured by Soegawa Chemical) 5.7 g of powder and 94.5 g of the same activated alumina powder as in Example 1, and in the same manner as in Example 1, 1.4 wt% ruthenium, 5.6 wt% yttrium oxide, and the remaining alumina A catalyst B having a Y / Ru atomic ratio of 3.67 and a CO adsorption amount of 1.8 ml / g (STP) was prepared.
The results of the steam reforming reaction using this catalyst B in the same manner as in Example 1 are shown in FIG.
[0060]
Example 3
Using 5.4 g of magnesium oxide (MgO, manufactured by Wako Pure Chemical Industries) powder and 94.7 g of the same activated alumina powder as in Example 1, 1.4 wt% ruthenium and 5. 5 mg of magnesium oxide in the same manner as in Example 1. A catalyst C having an Mg / Ru atomic ratio of 9.21 and a CO adsorption amount of 1.7 ml / g (STP) composed of 3% by weight of the remaining alumina was prepared.
The results of the steam reforming reaction using this catalyst C in the same manner as in Example 1 are shown in FIG.
[0061]
Example 4
Using 5.5 g of barium oxide (BaO, manufactured by Wako Pure Chemical Industries) powder and 94.6 g of the same active alumina powder as in Example 1, 1.4 wt% ruthenium and barium oxide in the same manner as in Example 1. A catalyst D having a Ba / Ru atomic ratio of 2.60 and a CO adsorption amount of 1.6 ml / g (STP) consisting of 4% by weight of the remaining alumina was prepared.
The results of the steam reforming reaction using this catalyst D in the same manner as in Example 1 are shown in FIG.
[0062]
Example 5
Carrier pellets were prepared in the same manner as in Example 1 using 40.8 g and 90.4 g of the same cerium oxide powder and activated alumina powder as in Example 1. Using an aqueous solution obtained by dissolving 100 g of the carrier pellets and 1 g of the same ruthenium trichloride monohydrate as in Example 1 in about 120 ml of pure water, 0.5 wt% ruthenium, cerium oxide 29 in the same manner as in Example 1 A catalyst E having a Ce / Ru atomic ratio of 2.85 wt%, the remaining alumina: 2.85, and a CO adsorption amount of 1.7 ml / g (STP) was obtained.
Table 3 shows the results of the steam reforming reaction performed in the same manner as in Example 1 using this catalyst E.
[0063]
Example 6
Carrier pellets were prepared in the same manner as in Example 1 except that 3.1 g and 97.2 g of the same cerium oxide powder and activated alumina powder as in Example 1 were used, respectively, and the firing temperature was 800 ° C. Using 12.7 g of the carrier pellets and 30 ml of the aqueous ruthenium trichloride monohydrate solution prepared in Example 1, 5% by weight of ruthenium, 3.1% by weight of cerium oxide, and the remaining alumina were formed in the same manner as in Example 1. A catalyst F having a Ce / Ru atomic ratio of 0.36 and a CO adsorption amount of 2.0 ml / g (STP) was obtained.
Table 3 shows the results of the steam reforming reaction performed in the same manner as in Example 1 using this catalyst F.
[0064]
Example 7
The same cerium oxide powder and activated alumina powder as in Example 1 and 10.2 g, 79.6 g, and 10.1 g of yttrium oxide as in Example 2 were used, respectively. A catalyst G having 10.3% by weight of yttrium oxide, 9.5% by weight of cerium oxide, the remaining alumina (Ce + Y) / Ru atomic ratio: 8.22, and a CO adsorption amount of 1.8 ml / g (STP) was obtained.
Table 4 shows the results of the steam reforming reaction performed in the same manner as in Example 1 using this catalyst G.
[0065]
Comparative Example 1
Commercially available steam reforming catalyst H (G-56H-1, manufactured by Gardler, catalog composition, nickel: 17 to 19% by weight, K2FIG. 2 and Table 5 show the results of the steam reforming reaction performed in the same manner as in Example 1 using O: 0.4 wt%, remaining alumina).
[0066]
Comparative Example 2
The fully dehydrated alumina powder was tableted and molded in a muffle furnace at 900 ° C. for 3 hours to prepare a carrier.
Next, a catalyst was prepared in the same manner as in Example 1 to obtain catalyst I consisting of ruthenium 1.4% by weight and the remaining alumina and having a CO adsorption amount of 1.6 ml / g (STP).
The results of the steam reforming reaction using this catalyst I in the same manner as in Example 1 are shown in FIG.
[0067]
2 shows the kerosene conversion rate (calculated from the following equation) with respect to the reaction time when the catalysts A, B, C, D prepared in Examples 1 to 4 and the catalysts H, I of Comparative Examples 1 and 2 were used. Tables 1 to 5 show the reformed gas composition when the catalysts A to G prepared in Examples 1 to 7 and the catalysts H and I of Comparative Examples 1 and 2 were used. The amount of carbon deposited on the catalyst after the reaction is shown.
[0068]
[Equation 3]
Kerosene conversion rate (%)
= (Number of carbon atoms in product gas) / (number of carbon atoms in kerosene) x 100
The average molecular formula of raw kerosene is C6H14It was.
[0069]
[Table 1]
Figure 0003813646
[0070]
[Table 2]
Figure 0003813646
[0071]
[Table 3]
Figure 0003813646
[0072]
[Table 4]
Figure 0003813646
[0073]
[Table 5]
Figure 0003813646
[0074]
As is clear from FIG. 2 and Tables 1 to 5, in the hydrogen production by steam reforming using liquid hydrocarbons such as kerosene as raw materials, the supported nickel-based catalyst H (Comparative Example 1) that has been generally used in the past is used. The reaction conditions of the present example, in which the number of carbons of the raw material hydrocarbon is high and the S / C ratio is low compared to the conventional general reaction conditions, are severe for the catalyst. It can be seen that significant degradation occurs.
[0075]
Further, even if the supported ruthenium-based catalyst having excellent carbon precipitation resistance is used, when the catalyst I (Comparative Example 2) not containing the third component is used, the catalyst is covered by the sulfur compound contained in the raw material liquid hydrocarbon. In addition to being gradually poisoned, the conversion rate gradually decreases, and as a secondary inhibition by poisoning, carbon deposition occurs on the catalyst, and the activity deterioration from the middle of the reaction becomes remarkable.
[0076]
  In contrast, the present inventionObtained by manufacturing methodWhen catalysts A to G (Examples 1 to 7) are used, even when liquid hydrocarbons such as kerosene are used as raw materials, not only sufficient catalytic activity close to the equilibrium conversion rate can be obtained, but also due to sulfur compounds in the raw materials. It can be understood that stable catalyst performance can be maintained for a long period of time because problems such as catalyst poisoning and carbon deposition on the catalyst are unlikely to occur.
[0077]
【The invention's effect】
  Steam reforming catalyst of the present inventionManufacturing methodIf a hydrogen production method is employed, a stable steam reforming reaction can be performed over a long period of time under conditions of a low S / C ratio using kerosene or the like as a raw material.2It is possible to produce hydrogen gas partially containing etc. with good yield and at low cost.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an outline of a steam reformer used in Examples and Comparative Examples of the present invention.
FIG. 2 is a graph showing the results obtained in Examples and Comparative Examples of the present invention.

Claims (3)

周期表II族金属、III族金属およびランタノイド金属の酸化物よりなる群から選ばれる少なくとも1種を触媒基準で3〜30重量%含有するアルミナを800〜900℃で焼成して担体を得、該担体に、ルテニウム塩化物の水溶液ルテニウムが0.5〜5重量%となるように担持させた後、該ルテニウム塩化物を水酸化物に変換させてルテニウムを不溶・固定化し、次いで600〜950℃で還元処理し一酸化炭素吸着量が1.5ml/g以上の水蒸気改質触媒を得ることを特徴とする水蒸気改質触媒の製造方法Alumina containing 3 to 30% by weight of at least one selected from the group consisting of Group II metal, Group III metal and lanthanoid metal oxides on a catalyst basis is calcined at 800 to 900 ° C. to obtain a carrier, the carrier, after which the aqueous solution of ruthenium chloride ruthenium was supported so that 0.5 to 5% by weight, the ruthenium chloride was insoluble, immobilized ruthenium by converting the hydroxides, followed by 600 to 950 A method for producing a steam reforming catalyst, characterized in that a steam reforming catalyst having a carbon monoxide adsorption amount of 1.5 ml / g or more is obtained by reduction treatment at ° C. 周期表II族金属、III族金属およびランタノイド金属の酸化物よりなる群から選ばれる少なくとも1種がセリウムであり、ルテニウムを、セリウムとルテニウムとの原子比が10未満となるように、0.5〜5重量%担持することを特徴とする請求項1記載の水蒸気改質触媒の製造方法At least one selected from the group consisting of Group II metal, Group III metal, and lanthanoid metal oxides is cerium, and ruthenium is reduced to 0.5 so that the atomic ratio of cerium to ruthenium is less than 10. The method for producing a steam reforming catalyst according to claim 1, which is supported by ˜5 wt%. 硫黄含有量が0.2ppm以下、芳香族化合物含有量が30容量%以下、炭素数6以上の液状炭化水素からなる原料と水蒸気とを請求項1または請求項2に記載の製造方法で得られる水蒸気改質触媒に接触させ、次式で表される水蒸気/炭素比を3〜10、LHSVを5h-1以下、反応圧力を2気圧以上に保つことを特徴とする水素製造方法。
Figure 0003813646
The raw material and water vapor | steam which consist of liquid hydrocarbons with sulfur content of 0.2 ppm or less, aromatic compound content of 30 volume% or less, and 6 or more carbon atoms are obtained by the manufacturing method of Claim 1 or Claim 2. A method for producing hydrogen, wherein the method is brought into contact with a steam reforming catalyst, the steam / carbon ratio represented by the following formula is maintained at 3 to 10, LHSV is kept at 5 h -1 or less, and the reaction pressure is kept at 2 atm or more.
Figure 0003813646
JP18642095A 1995-06-29 1995-06-29 Method for producing steam reforming catalyst and method for producing hydrogen Expired - Fee Related JP3813646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18642095A JP3813646B2 (en) 1995-06-29 1995-06-29 Method for producing steam reforming catalyst and method for producing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18642095A JP3813646B2 (en) 1995-06-29 1995-06-29 Method for producing steam reforming catalyst and method for producing hydrogen

Publications (2)

Publication Number Publication Date
JPH0910586A JPH0910586A (en) 1997-01-14
JP3813646B2 true JP3813646B2 (en) 2006-08-23

Family

ID=16188121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18642095A Expired - Fee Related JP3813646B2 (en) 1995-06-29 1995-06-29 Method for producing steam reforming catalyst and method for producing hydrogen

Country Status (1)

Country Link
JP (1) JP3813646B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120926A (en) * 1998-11-10 2000-09-19 International Fuel Cells, Llc Inhibition of carbon deposition on fuel gas steam reformer walls
JP2001340762A (en) * 2000-03-29 2001-12-11 Idemitsu Kosan Co Ltd Method of producing reforming catalyst and steam reforming method
JP2001279269A (en) * 2000-03-31 2001-10-10 Idemitsu Kosan Co Ltd Method for producing fuel oil for fuel cell and hydrogen for fuel cell
CN100496717C (en) 2001-03-29 2009-06-10 出光兴产株式会社 Hydrocarbon reforming catalyst, preparation method thereof and hydrocarbon reforming method using same
JP4465478B2 (en) * 2005-03-11 2010-05-19 国立大学法人 大分大学 Catalyst for hydrogen production
DE102005036890A1 (en) * 2005-08-05 2007-02-08 Südzucker AG Mannheim/Ochsenfurt Supported gold catalyst

Also Published As

Publication number Publication date
JPH0910586A (en) 1997-01-14

Similar Documents

Publication Publication Date Title
EP1802394B1 (en) Promoted calcium-aluminate supported catalysts for synthesis gas generation
US7375051B2 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
JP4648567B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JP2008207186A (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JP3667801B2 (en) Method for producing ruthenium catalyst and method for steam reforming hydrocarbon using the catalyst
JP4648566B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
WO2011030800A1 (en) Porous catalytic object for decomposing hydrocarbon and process for producing same, process for producing hydrogen-containing mixed reformed gas from hydrocarbon, and fuel cell system
JPWO2003086627A1 (en) Reforming catalyst composition
JP2008155147A (en) Catalyst for methanating carbon monoxide and method for methanating carbon monoxide by using the same
JP3813646B2 (en) Method for producing steam reforming catalyst and method for producing hydrogen
JP4772659B2 (en) Catalyst for removing carbon monoxide and method for producing the same
CA2359940A1 (en) Catalyst carrier carrying nickel ruthenium and lanthanum
JP3717219B2 (en) Method for producing highly dispersed steam reforming catalyst and method for producing hydrogen
JPH09168740A (en) Carbon dioxide modifying catalyst and modifying method using the same
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JPH09262468A (en) Catalyst for producing high calorie gas and its production
JP4514419B2 (en) Hydrocarbon partial oxidation catalyst, method for producing the same, and method for producing hydrogen-containing gas
JPH1024235A (en) Catalyst for producing high calorie gas and its production
WO1999028027A1 (en) Alumina-supported ruthenium catalyst
JP3226556B2 (en) Catalyst for steam reforming of hydrocarbons
JP4358405B2 (en) Hydrocarbon reforming catalyst and steam reforming method
KR101440193B1 (en) Catalyst for the mixed reforming of natural gas, preparation method thereof and method for mixed reforming of natural gas using the catalyst
JP2006286552A (en) Manufacturing method of fuel gas for solid oxide fuel cell operated in middle and low temperature ranges
JP2001342004A (en) Hydrocarbon steam reformimg process
EP2452915B1 (en) Catalyst composition comprising gold on a sulfated zirconia and a method of making the catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060217

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees