JP2003275587A - Carbon monoxide selective oxidation catalyst and hydrogen purification apparatus using the same - Google Patents
Carbon monoxide selective oxidation catalyst and hydrogen purification apparatus using the sameInfo
- Publication number
- JP2003275587A JP2003275587A JP2002085105A JP2002085105A JP2003275587A JP 2003275587 A JP2003275587 A JP 2003275587A JP 2002085105 A JP2002085105 A JP 2002085105A JP 2002085105 A JP2002085105 A JP 2002085105A JP 2003275587 A JP2003275587 A JP 2003275587A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- ruthenium
- platinum
- hydrogen
- carbon monoxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水素精製装置に関
する。さらに詳しくは、燃料電池等の燃料に用いられる
水素を主成分とし、一酸化炭素(以下CO)を含有する
改質ガス中のCOを除去する装置に関する。TECHNICAL FIELD The present invention relates to a hydrogen purifier. More specifically, the present invention relates to an apparatus for removing CO in a reformed gas containing hydrogen monoxide (hereinafter, referred to as CO) as a main component, which is used as fuel for fuel cells and the like.
【0002】[0002]
【従来の技術】従来から、燃料電池等に用いられる水素
は、メタン、プロパン、ガソリン、灯油等の炭化水素系
燃料、メタノール等のアルコール系燃料またはジメチル
エーテル等のエーテル系燃料に水蒸気を混合し、加熱し
た改質触媒に接触させて発生させている。通常、炭化水
素系燃料は500〜800℃程度、アルコール系やエー
テル系燃料は200〜400℃程度の温度で改質され
る。2. Description of the Related Art Conventionally, hydrogen used in a fuel cell or the like is produced by mixing water vapor with a hydrocarbon fuel such as methane, propane, gasoline, kerosene, an alcohol fuel such as methanol or an ether fuel such as dimethyl ether, It is generated by bringing it into contact with a heated reforming catalyst. Usually, hydrocarbon fuel is reformed at a temperature of about 500 to 800 ° C, and alcohol or ether fuel is reformed at a temperature of about 200 to 400 ° C.
【0003】改質の際にはCOが発生するが、高温で改
質を行うほど、発生するCOの濃度は上昇する。特に炭
化水素系燃料を用いる場合には、CO濃度が10体積%
前後となる。そこでCO変成触媒を用いてCOと水素と
を反応させ、数千ppm〜数体積%程度にCO濃度を低
減させている。CO is generated during the reforming, but the concentration of the generated CO increases as the reforming is performed at a higher temperature. Especially when a hydrocarbon fuel is used, the CO concentration is 10% by volume.
Before and after. Therefore, a CO conversion catalyst is used to react CO with hydrogen to reduce the CO concentration to several thousands ppm to several volume%.
【0004】さらに、車載用や家庭用として用いられる
固体高分子型燃料電池のように、100℃以下の低温で
作動する燃料電池の場合には、電極に用いられているP
t触媒が改質ガスに含まれているCOによって被毒され
るため、改質ガスを燃料電池に供給する前にCO濃度を
100ppm以下、好ましくは10ppm以下に除去し
ておく必要がある。そのため触媒を充填したCO浄化部
を水素精製装置に設け、COをメタン化または微量の空
気を加えて選択的に酸化することによって、COを除去
している。Further, in the case of a fuel cell that operates at a low temperature of 100 ° C. or lower, such as a polymer electrolyte fuel cell used for vehicles or for household use, P used as an electrode.
Since the t catalyst is poisoned by CO contained in the reformed gas, it is necessary to remove the CO concentration to 100 ppm or less, preferably 10 ppm or less before supplying the reformed gas to the fuel cell. Therefore, a CO purifying unit filled with a catalyst is provided in the hydrogen purifying apparatus, and CO is removed by methanating CO or selectively oxidizing a small amount of air to oxidize CO.
【0005】[0005]
【発明が解決しようとする課題】COを選択的に酸化し
て除去する場合には、Pt触媒が有効であるが、COを
効果的に除去できる温度範囲は30℃程度に限られてお
り、精密な温度コントロールが必要である。しかし、反
応熱が大きいことから、温度コントロールは困難であ
る。The Pt catalyst is effective in selectively removing CO by oxidizing it, but the temperature range in which CO can be effectively removed is limited to about 30 ° C. Precise temperature control is required. However, it is difficult to control the temperature because the heat of reaction is large.
【0006】また、COをメタン化して除去する場合に
は、Pd、Ru、NiもしくはRh等の触媒が有効であ
るが、これらの触媒はCOだけでなく、二酸化炭素のメ
タン化も促進するため、COを効果的に除去できる最適
な温度範囲は30℃程度と限られている。When CO is methanated and removed, catalysts such as Pd, Ru, Ni or Rh are effective, but these catalysts promote not only CO but also methanation of carbon dioxide. , The optimum temperature range for effectively removing CO is limited to about 30 ° C.
【0007】このように、従来の装置ではCOを効果的
に除去できる触媒の最適温度範囲が狭く、精密な温度コ
ントロールが必要であるうえに、そのコントロールが困
難であるという問題があった。特に車載用や家庭用等の
ように、起動・停止を繰り返す負荷変動の大きな用途に
対しては多くの課題が残っている。このような背景のも
と、アルミナやゼオライトを担体としてPt−Ruを合
金化した触媒を用いることが試みられている。このよう
な合金化した触媒は、Pt触媒やPd触媒、Ru触媒に
比して広い温度範囲で優れた特性を示している。しか
し、CO選択酸化反応は発熱反応であるため、CO処理
量が変化すると、活性温度領域内に触媒温度を常に保つ
ことは困難である。本発明は、水素精製装置が有する前
記課題に鑑みてなされたものであり、COを広い温度範
囲で低濃度まで安定して除去できる水素精製装置を提供
することを目的とする。As described above, the conventional apparatus has a problem that the optimum temperature range of the catalyst capable of effectively removing CO is narrow and precise temperature control is required, and that the control is difficult. In particular, many problems remain for applications such as in-vehicle use and home use where the load fluctuations that repeat start and stop are large. Against this background, it has been attempted to use a catalyst obtained by alloying Pt-Ru with alumina or zeolite as a carrier. Such an alloyed catalyst exhibits excellent properties over a wider temperature range than Pt catalysts, Pd catalysts, and Ru catalysts. However, since the CO selective oxidation reaction is an exothermic reaction, it is difficult to always maintain the catalyst temperature in the active temperature region when the CO treatment amount changes. The present invention has been made in view of the above problems of the hydrogen purification apparatus, and an object of the present invention is to provide a hydrogen purification apparatus that can stably remove CO to a low concentration in a wide temperature range.
【0008】[0008]
【課題を解決するための手段】上記課題を解決するた
め、第1の本発明の一酸化炭素選択酸化用触媒は、白金
とルテニウムとの合金粒子および白金粒子を含むことを
特徴とする。In order to solve the above problems, the catalyst for selective oxidation of carbon monoxide according to the first aspect of the present invention is characterized by containing alloy particles of platinum and ruthenium and platinum particles.
【0009】また、第2の本発明の一酸化炭素選択酸化
用触媒は、白金とルテニウムとの合金粒子およびルテニ
ウム粒子を含むことを特徴とする。The catalyst for selective oxidation of carbon monoxide according to the second aspect of the present invention is characterized by containing alloy particles of platinum and ruthenium and ruthenium particles.
【0010】また、第3の本発明の一酸化炭素選択酸化
用触媒は、白金塩水溶液を用いて含浸法により担体に白
金を担持し、水素還元を行い、ルテニウム塩水溶液を用
いて含浸法により前記担体にさらにルテニウムを担持
し、水素還元を行うことを特徴とする。The catalyst for selective oxidation of carbon monoxide according to the third aspect of the present invention is such that platinum is supported on a carrier by an impregnation method using a platinum salt aqueous solution, hydrogen reduction is performed, and the catalyst is impregnated using a ruthenium salt aqueous solution. It is characterized in that ruthenium is further supported on the carrier to carry out hydrogen reduction.
【0011】また、第4の本発明の一酸化炭素選択酸化
用触媒は、ルテニウム塩水溶液を用いて含浸法により担
体にルテニウムを担持し、水素還元を行い、白金塩水溶
液を用いて含浸法により前記担体にさらに白金を担持
し、水素還元を行うことを特徴とする。Further, the catalyst for selective oxidation of carbon monoxide according to the fourth aspect of the present invention is such that ruthenium is supported on a carrier by an impregnation method using an aqueous solution of ruthenium salt, hydrogen reduction is performed, and the catalyst is impregnated using an aqueous solution of platinum salt. It is characterized in that platinum is further supported on the carrier to carry out hydrogen reduction.
【0012】また、本発明の水素精製装置は、第1〜第
4の本発明の一酸化炭素選択酸化用触媒の少なくともい
ずれか一方を含有する触媒層を有する浄化部と、前記浄
化部に水素を含有する改質ガスを供給する改質ガス供給
部と、前記一酸化炭素除去装置に酸素を含有する酸化ガ
スを供給する酸化ガス供給部とを備えることを特徴とす
る。The hydrogen purifying apparatus of the present invention comprises a purifying section having a catalyst layer containing at least one of the carbon monoxide selective oxidation catalysts of the first to fourth aspects of the present invention, and a hydrogen purifying section. And a reforming gas supply unit for supplying a reforming gas containing oxygen and an oxidizing gas supply unit for supplying an oxidizing gas containing oxygen to the carbon monoxide removing device.
【0013】また、本発明の水素精製装置は、前記水素
生成装置において、前記触媒層が、改質ガスの流れ方向
に並設された複数層の触媒層を備え、前記複数層の内高
温のガスが流入する少なくとも1層が、第1または第3
の本発明の一酸化炭素選択酸化用触媒を含み、前記複数
層の内低温のガスが流入する少なくとも1層が第2また
は第4の本発明の一酸化炭素選択酸化用触媒を含むと有
効である。Further, in the hydrogen purifier of the present invention, in the hydrogen generator, the catalyst layer includes a plurality of catalyst layers arranged in parallel in the flow direction of the reformed gas, and the temperature of the plurality of layers is high. At least one layer into which the gas flows is the first or the third
It is effective that at least one layer of the plurality of layers into which the low temperature gas flows contains the second or fourth carbon monoxide selective oxidation catalyst of the present invention. is there.
【0014】また、本発明の水素精製装置は、前記水素
生成装置において、さらに、上流側に配置された触媒層
と下流側に配置された触媒層との間に酸素を含有する酸
化ガスを供給するための酸化ガス供給部を設けると有効
である。Further, in the hydrogen purifier of the present invention, in the hydrogen generator, an oxidizing gas containing oxygen is further supplied between the catalyst layer arranged on the upstream side and the catalyst layer arranged on the downstream side. It is effective to provide an oxidizing gas supply unit for this purpose.
【0015】また、本発明の水素精製装置の運転方法
は、水素精製装置起動時に、前記浄化部に凝縮により水
分を低減させた改質ガスを供給することを特徴とする。Further, the method for operating the hydrogen purifying apparatus of the present invention is characterized in that when the hydrogen purifying apparatus is started, a reformed gas whose water content is reduced by condensation is supplied to the purifying section.
【0016】[0016]
【発明の実施の形態】本発明の水素精製装置では、水素
およびCOを含有する改質ガスが、改質ガス供給部から
供給され、酸化ガス供給部から供給された酸素を含有す
る酸化ガスと混合された後、浄化部に設けられたCO浄
化触媒層を通過する。BEST MODE FOR CARRYING OUT THE INVENTION In the hydrogen purifying apparatus of the present invention, the reformed gas containing hydrogen and CO is supplied from the reformed gas supply unit and the oxygen-containing oxidizing gas supplied from the oxidizing gas supply unit. After being mixed, it passes through the CO purification catalyst layer provided in the purification unit.
【0017】本発明に用いられる水素およびCOを含有
する改質ガスは、炭化水素系、アルコール系またはエー
テル系の燃料に水蒸気や空気を混合し、加熱した改質触
媒層を通過させて改質した後、さらにCO変成触媒層を
通過させてCOと水素とを反応させ、CO濃度を数千p
pm〜数体積%程度に低減されたものである。CO変成
触媒層通過後の改質ガスの組成は、改質方法、燃料種に
よって異なり、一概にはいえないが、水蒸気を除くと水
素が40〜80体積%、二酸化炭素が8〜25体積%、
COが0.1〜2体積%となるのが一般的である。例え
ばメタンを水蒸気改質した場合、水素が約80体積%、
二酸化炭素が18〜20体積%およびCOが数千ppm
〜1体積%である。また、低温で改質反応が可能なアル
コール系やエーテル系の燃料の場合、改質後のCO濃度
が1体積%前後となる場合もあり、CO変成触媒層によ
る変成を必要としない場合もある。なお、このような組
成の違いにより、本発明の水素精製装置を用いることに
よる効果に本質的な違いが生じることはない。The reformed gas containing hydrogen and CO used in the present invention is obtained by mixing hydrocarbon-based, alcohol-based or ether-based fuel with water vapor or air and passing it through a heated reforming catalyst layer for reforming. After that, CO is passed through the CO conversion catalyst layer to react CO with hydrogen, and the CO concentration is increased to several thousand p
It is reduced to about pm to several volume%. The composition of the reformed gas after passing through the CO shift catalyst layer varies depending on the reforming method and the fuel type, and cannot be said to be unconditional, but if steam is excluded, hydrogen is 40 to 80% by volume and carbon dioxide is 8 to 25% by volume. ,
CO is generally 0.1 to 2% by volume. For example, when methane is steam reformed, hydrogen is about 80% by volume,
18-20% by volume of carbon dioxide and thousands of ppm of CO
~ 1% by volume. Further, in the case of alcohol-based or ether-based fuels that can undergo a reforming reaction at low temperatures, the CO concentration after reforming may be around 1% by volume, and in some cases conversion by the CO shift catalyst layer may not be necessary. . It should be noted that such a difference in composition does not cause a substantial difference in the effect obtained by using the hydrogen purifier of the present invention.
【0018】改質ガス入口から供給された改質ガスは、
空気ポンプによって供給された空気とともにCO浄化触
媒を設置した反応室へ送られる。空気ポンプからは酸素
濃度がCO濃度に対して1〜3倍程度、例えばCO濃度
が1体積%の場合には酸素濃度が1〜3体積%となるよ
うに空気が供給される。酸素と混合された改質ガスは、
CO浄化触媒でCOが除去された後、改質ガス出口へ送
られる。また、反応器を一定温度に保つために、必要箇
所には外周をセラミックウールからなる断熱材で覆う。The reformed gas supplied from the reformed gas inlet is
It is sent to the reaction chamber in which the CO purification catalyst is installed together with the air supplied by the air pump. Air is supplied from the air pump so that the oxygen concentration is about 1 to 3 times the CO concentration, for example, when the CO concentration is 1% by volume, the oxygen concentration is 1 to 3% by volume. The reformed gas mixed with oxygen is
After the CO is removed by the CO purification catalyst, it is sent to the reformed gas outlet. Further, in order to keep the reactor at a constant temperature, the outer periphery is covered with a heat insulating material made of ceramic wool in a necessary portion.
【0019】本発明の水素精製装置は、水素および一酸
化炭素を含有する改質ガスを供給する改質ガス供給部
と、前記改質ガス供給部より供給された改質ガスに酸素
を含有する酸化ガスを混入するための酸化ガス供給部
と、前記酸素が混入された改質ガスが通過する触媒層を
有する浄化部からなる。この触媒層が、白金とルテニウ
ムとが合金化された金属粒子と白金粒子を主成分として
含有する場合には、合金化された金属粒子だけを含む場
合に比べて、高い温度領域での逆シフト反応が抑制さ
れ、高温流域を含む100℃〜160℃というより広い
範囲でのCO選択酸化反応によるCO除去特性が維持さ
れるという点で有効である。また、触媒層が、白金とル
テニウムとが合金化された金属粒子とルテニウム粒子を
主成分として含有する場合には、合金化された金属粒子
だけを含む場合に比べて、低温領域を含む80℃〜14
0℃というより広い温度領域で、CO選択酸化反応に対
する触媒活性が得られるという点で有効である。The hydrogen purification apparatus of the present invention contains a reformed gas supply section for supplying a reformed gas containing hydrogen and carbon monoxide, and oxygen contained in the reformed gas supplied from the reformed gas supply section. It comprises an oxidizing gas supply unit for mixing the oxidizing gas and a purifying unit having a catalyst layer through which the reformed gas mixed with oxygen passes. When the catalyst layer contains, as a main component, metal particles obtained by alloying platinum and ruthenium and platinum particles, a reverse shift in a high temperature range is obtained as compared with the case where only alloyed metal particles are contained. This is effective in that the reaction is suppressed and the CO removal characteristics by the CO selective oxidation reaction in a wider range of 100 ° C. to 160 ° C. including the high temperature flow region are maintained. In addition, when the catalyst layer contains, as main components, metal particles in which platinum and ruthenium are alloyed and ruthenium particles, a temperature of 80 ° C. including a low temperature region is included as compared with the case where only the alloyed metal particles are included. ~ 14
It is effective in that the catalytic activity for the CO selective oxidation reaction can be obtained in a wider temperature range of 0 ° C.
【0020】また、この触媒層が、浄化部中を通流する
改質ガスの上流側に位置する上流触媒層と、下流側に位
置する下流触媒層の少なくとも2層を有し、上流触媒層
は、白金とルテニウムとが合金化された金属粒子および
ルテニウム粒子を含有し、下流触媒層は、白金とルテニ
ウムとの合金粒子および白金粒子を含有する。この場
合、80℃〜100℃前後の低温の改質ガスを浄化部に
供給されれば、上流側の選択酸化反応による発熱で改質
ガスが高温になっても、160℃以下であれば下流側の
触媒が十分に活性を発揮することが可能になる。つま
り、上述の2層の触媒を用いることで、80℃〜160
℃の温度範囲で触媒活性を有し、効果的にCOを除去す
ることが可能となる。このように、比較的高温の改質ガ
スが通流する下流側では、白金とルテニウムとが合金化
された金属粒子および白金粒子を含有する触媒を用い、
比較的低温の改質ガスが通流する上流側では、白金とル
テニウムとが合金化された金属粒子およびルテニウム粒
子を含む触媒を用いることが望ましい。なお、このよう
な金属粒子内の構成金属の分布は、TEMを用い、XM
A分析を行うことにより確認できる。The catalyst layer has at least two layers, an upstream catalyst layer located upstream of the reformed gas flowing through the purification section and a downstream catalyst layer located downstream of the reformed gas. Contains metal particles and ruthenium particles alloyed with platinum and ruthenium, and the downstream catalyst layer contains platinum-ruthenium alloy particles and platinum particles. In this case, if a low-temperature reformed gas of around 80 ° C. to 100 ° C. is supplied to the purifying unit, even if the reformed gas becomes high temperature due to heat generation due to the selective oxidation reaction on the upstream side, if the reformed gas is 160 ° C. or lower, It becomes possible for the catalyst on the side to exhibit sufficient activity. That is, by using the above two-layer catalyst,
It has a catalytic activity in the temperature range of ° C and can effectively remove CO. Thus, on the downstream side where the relatively high temperature reformed gas flows, a catalyst containing metal particles and platinum particles alloyed with platinum and ruthenium is used,
On the upstream side through which the reformed gas at a relatively low temperature flows, it is desirable to use a catalyst containing metal particles in which platinum and ruthenium are alloyed and ruthenium particles. The distribution of the constituent metals in such metal particles can be measured by TEM using XM.
It can be confirmed by performing A analysis.
【0021】なお、ここで述べた白金−ルテニウム合金
は、白金とルテニウムがそれぞれ40〜60atom%
の割合であることが望ましい。また、本発明において合
金と共存する白金粒子、ルテニウム粒子は、XMAなど
の分析機器において、粒子内の他の金属が痕跡量以下の
ものを指し、具体的には90atm%以上が白金、ルテニ
ウムで構成されたものをそれぞれ指す。In the platinum-ruthenium alloy described here, platinum and ruthenium are 40 to 60 atom% each.
Is desirable. In the present invention, the platinum particles and ruthenium particles that coexist with the alloy refer to those in which trace amounts of other metals in the particles are not more than 90 atm% of platinum and ruthenium in an analyzer such as XMA. Refers to each configured.
【0022】なお、上流触媒層、下流触媒層の間に酸素
を含有する酸化ガスを混入するための酸化ガス供給部を
設けることが望ましい。これにより、より低濃度まで、
COを低減することができる。It is desirable to provide an oxidizing gas supply section for mixing the oxidizing gas containing oxygen between the upstream catalyst layer and the downstream catalyst layer. This allows for lower concentrations,
CO can be reduced.
【0023】また、白金、ルテニウムが合金化された金
属粒子と白金粒子を含んだ触媒は、担体と白金塩水溶液
とから含浸法により白金を担持した後、水素還元を行
い、続いてルテニウム塩水溶液により含浸法によりルテ
ニウムを担持した後、水素還元を行うことにより調製す
ることができる。The catalyst containing platinum and ruthenium-alloyed metal particles and platinum particles supports platinum by an impregnation method from a carrier and a platinum salt aqueous solution, and then hydrogen reduction is carried out, followed by a ruthenium salt aqueous solution. Can be prepared by supporting ruthenium by the impregnation method and then performing hydrogen reduction.
【0024】白金、ルテニウムが合金化された金属粒子
とルテニウム粒子を含む触媒は、担体とルテニウム塩水
溶液とから含浸法によりルテニウムを担持した後、水素
還元を行い、続いて白金塩水溶液により含浸法により白
金を担持した後、水素還元を行うことにより調製するこ
とができる。A catalyst containing metal particles ruthenium alloyed with platinum and ruthenium and ruthenium particles are loaded with ruthenium from a carrier and an aqueous solution of ruthenium salt by an impregnation method, and then hydrogen reduction is performed, followed by an impregnation method with an aqueous solution of platinum salt. It is possible to prepare by carrying out platinum reduction after carrying platinum by.
【0025】なお、本発明の水素精製装置において水素
精製装置起動時に、触媒層より上流において、改質ガス
中の水を凝縮させたのち、触媒層に改質ガスを導入させ
ることとにより、触媒が水浸しになることなく、かつ触
媒の低温活性を十分に発揮することができるため、速や
かに起動することができる。In the hydrogen purifying apparatus of the present invention, when the hydrogen purifying apparatus is started, water in the reformed gas is condensed upstream of the catalyst layer, and then the reformed gas is introduced into the catalyst layer, whereby the catalyst is Since the catalyst does not become submerged in water and the low-temperature activity of the catalyst can be sufficiently exerted, the catalyst can be quickly started.
【0026】Pt−Ru合金触媒がよく用いられるアノ
ード電極触媒などの反応では、白金に吸着したCOとRu
に吸着し分解した水との反応が起きていると考えられて
いる。白金とルテニウムが合金化されていることによっ
て、白金の隣にルテニウムが存在する確率が高くなり、
反応が進行しやすくなっているといわれている。In a reaction such as an anode electrode catalyst in which a Pt-Ru alloy catalyst is often used, CO adsorbed on platinum and Ru
It is believed that a reaction with water that has been adsorbed and decomposed on water occurs. The alloying of platinum and ruthenium increases the probability that ruthenium will be next to platinum,
It is said that the reaction is easy to proceed.
【0027】白金は面心立方構造をとるが、異種の金属
と合金化することにより、格子定数が変化する。その変
化はXRDを測定することにより、容易に測定可能であ
る。Platinum has a face-centered cubic structure, but when it is alloyed with a different kind of metal, the lattice constant changes. The change can be easily measured by measuring XRD.
【0028】触媒は、高分散に担持できるよう担体に担
持することが望ましい。触媒の担体としては、特に限定
はなく、触媒活性成分を高分散状態で担持できるもので
あればよい。このようなものとしては、アルミナ、シリ
カ、シリカアルミナ、マグネシア、チタニア、ゼオライ
トなどが例示できる。触媒活性成分を高分散状態で担持
できるゼオライトの種類としては、A型ゼオライト、X
型ゼオライト、Y型ゼオライト、ベータ型ゼオライト、
モルデナイト、ZSM−5等が例示できる。これらの担
体は単独で用いてもよく、2種以上を組み合わせて用い
てもよい。The catalyst is preferably supported on a carrier so that it can be supported in high dispersion. The catalyst carrier is not particularly limited as long as it can support the catalytically active component in a highly dispersed state. Examples of such materials include alumina, silica, silica-alumina, magnesia, titania, zeolite and the like. As the type of zeolite capable of supporting the catalytically active component in a highly dispersed state, A-type zeolite, X
Type zeolite, Y type zeolite, beta type zeolite,
Examples include mordenite and ZSM-5. These carriers may be used alone or in combination of two or more.
【0029】また、実施の形態としては、コージェライ
トハニカムなどの担体基材に被覆させても、ペレット形
状にしてもかまわない。Further, as an embodiment, a carrier substrate such as a cordierite honeycomb may be coated or formed into a pellet shape.
【0030】[0030]
【実施例】以下、本発明の水素精製装置を実施例に基づ
いてより具体的に説明する。EXAMPLES The hydrogen purifying apparatus of the present invention will be described below in more detail with reference to Examples.
【0031】(実施例1)塩化白金酸水溶液を用いて、
含浸法によりγ−アルミナに白金を担持し、350℃で
水素還元を行った。このPt/アルミナに、塩化ルテニ
ウム水溶液によりルテニウムを担持し、900℃で水素
還元処理を行い、Pt−Ru/アルミナ(触媒A:Pt-R
u-900H2)を調製した。なお、白金は50atm%、ルテニウ
ムは50atm%とした。XRDで格子定数を測定したとこ
ろ、3.859Åであり、Ptの格子定数3.923Å
より小さくなっており合金化しているのが確認された。
この触媒Aは、XMA解析より、PtとRuを約1:1.2
の原子比で含む粒子と、その9割以上がPtである粒子が
観測された。この触媒Aを、固形分として5wt%にな
るようにアルミナゾルと水を加えて、ボールミルし、触
媒スラリーを調製した。この触媒スラリーを、直径20
mm、長さ10mmのコージェライトハニカムに被覆し
た。担持量はPt3g/リットルとなるように、ハニカム
に担持した。得られた触媒を、水素精製装置のモデル試
験装置の浄化部に設置し、COが0.5体積%、二酸化
炭素が15体積%、水蒸気が15体積%、残りが水素で
ある露点75℃の改質模擬ガスを、SV14000h-1
で導入した。また、触媒の上流に空気供給部を設け、そ
こからは酸素濃度が全体の1体積%となるように空気を
供給した。触媒を電気炉で加熱し、反応ガス温度を変化
させ、試験装置出口から排出されるガスの組成を、水蒸
気を除去した後、ガスクロマトグラフィで測定した。触
媒上流で触媒に接した熱電対を設け、触媒温度を測定
し、電気炉の温度を変化させることにより、触媒温度を
変化させ、CO濃度を測定した。触媒上流温度と出口C
O濃度の関係を(表1)に示した。Example 1 Using a chloroplatinic acid aqueous solution,
Platinum was supported on γ-alumina by the impregnation method, and hydrogen reduction was performed at 350 ° C. Ruthenium is supported on this Pt / alumina by an aqueous solution of ruthenium chloride, and hydrogen reduction treatment is performed at 900 ° C. to obtain Pt-Ru / alumina (catalyst A: Pt-R
u-900H2) was prepared. Note that platinum was 50 atm% and ruthenium was 50 atm%. When the lattice constant was measured by XRD, it was 3.859Å, and the lattice constant of Pt was 3.923Å
It was confirmed to be smaller and alloyed.
This catalyst A had Pt and Ru of about 1: 1.2 by XMA analysis.
Particles with an atomic ratio of, and particles with 90% or more of Pt were observed. This catalyst A was ball-milled by adding alumina sol and water to a solid content of 5 wt% to prepare a catalyst slurry. This catalyst slurry is
A cordierite honeycomb having a length of 10 mm and a length of 10 mm was coated. The honeycomb was loaded so that the loaded amount was Pt 3 g / liter. The obtained catalyst was installed in the purifying section of the model test device of the hydrogen purification device, and CO was 0.5% by volume, carbon dioxide was 15% by volume, water vapor was 15% by volume, and the balance was hydrogen at a dew point of 75 ° C. Reform simulation gas, SV14000h-1
Introduced in. An air supply unit was provided upstream of the catalyst, and air was supplied from there so that the oxygen concentration was 1% by volume of the whole. The catalyst was heated in an electric furnace, the reaction gas temperature was changed, and the composition of the gas discharged from the outlet of the test apparatus was measured by gas chromatography after removing water vapor. A thermocouple in contact with the catalyst was provided upstream of the catalyst, the catalyst temperature was measured, and the catalyst temperature was changed by changing the temperature of the electric furnace to measure the CO concentration. Catalyst upstream temperature and outlet C
The relationship of O concentration is shown in (Table 1).
【0032】また、塩化ルテニウム水溶液を用いて、含
浸法によりγ−アルミナにルテニウムを担持し、350
℃で水素還元を行った。このRu/アルミナに、塩化白
金酸水溶液により白金を担持し、900℃で水素還元処
理を行い、Ru−Pt/アルミナ(触媒B:Ru-Pt-900H
2)を調製した。なお、白金は50atm%、ルテニウムは50
atm%とした。XRDで格子定数を測定したところ、
3.852Åであり、合金化しているのが確認された。
この触媒BのXMA解析を行ったところ、PtとRuを約
1.2:1の原子比で含む粒子と、その9割以上がRuで
ある粒子が観測された。Further, ruthenium was supported on γ-alumina by an impregnation method using a ruthenium chloride aqueous solution, and 350
Hydrogen reduction was performed at ° C. Platinum was supported on this Ru / alumina by an aqueous solution of chloroplatinic acid, and hydrogen reduction treatment was performed at 900 ° C., and Ru-Pt / alumina (catalyst B: Ru-Pt-900H
2) was prepared. 50 atm% for platinum and 50 for ruthenium
Atm% was set. When the lattice constant was measured by XRD,
It was 3.852Å, and it was confirmed to be alloyed.
When XMA analysis of this catalyst B was performed, particles containing Pt and Ru in an atomic ratio of about 1.2: 1 and particles having 90% or more of Ru were observed.
【0033】さらに、塩化ルテニウムと塩化白金酸を含
む水溶液を用いて、含浸法によりγ−アルミナに白金と
ルテニウムを担持し、900℃で水素還元処理を行い、
Pt-Ru/アルミナ(触媒C:Pt-Ru-同時900H2)を調製
した。なお、白金は50atm%、ルテニウムは50atm%とし
た。XRDで格子定数を測定したところ、3.850Å
であり、合金化しているのが確認された。この触媒Cの
XMA解析を行ったところ、PtとRuはほぼ約1:1の原
子比で含んでおり、とくにある金属が局在化している粒
子は認められなかった。Further, using an aqueous solution containing ruthenium chloride and chloroplatinic acid, γ-alumina was loaded with platinum and ruthenium by an impregnation method and subjected to hydrogen reduction treatment at 900 ° C.
Pt-Ru / alumina (catalyst C: Pt-Ru-simultaneous 900H2) was prepared. Note that platinum was 50 atm% and ruthenium was 50 atm%. When the lattice constant was measured by XRD, it was 3.850Å
It was confirmed that they were alloyed. When an XMA analysis of this catalyst C was performed, Pt and Ru were contained in an atomic ratio of about 1: 1, and no particles in which a certain metal was localized were found.
【0034】また、塩化ルテニウムと塩化白金酸を含む
水溶液を用いて、含浸法によりγ−アルミナに白金とル
テニウムを担持し、500℃で空中焼成を行い、Pt-R
u/アルミナ(触媒D:Pt-Ru-同時500Air)を調製し
た。なお、白金は50atm%、ルテニウムは50atm%とし
た。XRDを測定したところ、白金は酸化物として存在
しており、合金化は認められなかった。Further, using an aqueous solution containing ruthenium chloride and chloroplatinic acid, γ-alumina was loaded with platinum and ruthenium by an impregnation method and baked in air at 500 ° C. to obtain Pt-R.
u / alumina (catalyst D: Pt-Ru-simultaneous 500 Air) was prepared. Note that platinum was 50 atm% and ruthenium was 50 atm%. When XRD was measured, platinum was present as an oxide and no alloying was observed.
【0035】さらに、塩化白金酸水溶液を用いて、含浸
法によりγ−アルミナに白金を担持し、900℃で水素
還元処理を行い、Pt/アルミナ(触媒E:Pt-900H2)
を調製した。一方、塩化ルテニウム水溶液を用いて、含
浸法によりγ−アルミナにルテニウムを担持し、900
℃で水素還元処理を行い、ルテニウム/アルミナ(触媒
F:Ru-900H2)を調製した。Further, platinum was supported on γ-alumina by an impregnation method using a chloroplatinic acid aqueous solution, and hydrogen reduction treatment was performed at 900 ° C. to obtain Pt / alumina (catalyst E: Pt-900H2).
Was prepared. On the other hand, using ruthenium chloride aqueous solution, ruthenium was supported on γ-alumina by an impregnation method, and 900
Hydrogen reduction treatment was carried out at 0 ° C. to prepare ruthenium / alumina (catalyst F: Ru-900H2).
【0036】触媒B〜Fについて、触媒Aと同様に、ハ
ニカムに担持し、CO選択酸化特性を調べた。なお、担
持量はPt3g/リットルとし、触媒Fは、Ru3g/リット
ルとした。結果を(表1)に示す。(表1)に示すよう
に、白金、ルテニウムが合金化された金属粒子と白金粒
子を含む触媒Aは、白金、ルテニウム合金のみからなる
触媒Cに比べて高温での特性に優れ、白金、ルテニウム
が合金化された金属粒子とルテニウム粒子を含む触媒B
は、白金、ルテニウム合金のみからなる触媒Cに比べ
て、低温での特性に優れている。また、合金化していな
い触媒Dは、CO浄化特性もやや低く、その活性温度領
域も広くない。また、白金触媒Eやルテニウム触媒Fも
その活性温度領域は触媒AやBに比べて狭い。As with catalyst A, catalysts B to F were loaded on a honeycomb, and CO selective oxidation characteristics were examined. The loading amount was Pt 3 g / liter, and the catalyst F was Ru 3 g / liter. The results are shown in (Table 1). As shown in (Table 1), the catalyst A containing platinum / ruthenium alloyed metal particles and platinum particles has excellent characteristics at high temperature as compared with the catalyst C composed of only platinum / ruthenium alloy. Catalyst B containing alloyed metal particles and ruthenium particles
Is superior to the catalyst C consisting of platinum and ruthenium alloy only at low temperature. Further, the non-alloyed catalyst D has a slightly low CO purification characteristic and its active temperature range is not wide. Also, the platinum catalyst E and the ruthenium catalyst F have narrower active temperature regions than the catalysts A and B.
【0037】[0037]
【表1】 [Table 1]
【0038】(実施例2)触媒Bに、固形分として5w
t%になるようにアルミナゾルと水を加えて、ボールミ
ルし、触媒スラリーを調製した。この触媒スラリーを、
直径50mm、長さ10mmのコージェライトハニカム
に被覆した。担持量はPt3g/リットルとなるように、
ハニカムに担持した。得られた触媒を、水素精製装置の
外周をセラミック断熱材で覆った反応室中に設置し、C
Oが1体積%、二酸化炭素が15体積%、水蒸気が15
体積%、残りが水素である露点75℃の改質ガスを、改
質ガス入口より毎分10リットルの流量で導入した。空
気供給部からは酸素濃度が全体の2体積%となるように
空気を供給した。改質ガス入口の手前で改質ガスを冷却
し、改質ガス温度を110℃に維持した。触媒Bを担持
した触媒を出たガスはCOを0.2体積%含んでいた。
触媒Bを通過した150℃〜170℃のガス酸素濃度が
全体の0.4体積%となるように空気を下流触媒に導入
した。下流触媒は触媒Aを用いて同様に調製した触媒で
ある。結果をB→Aとして(表2)に示した。(Example 2) The catalyst B was added with 5 w as a solid content.
Alumina sol and water were added so as to be t%, and the mixture was ball-milled to prepare a catalyst slurry. This catalyst slurry is
A cordierite honeycomb having a diameter of 50 mm and a length of 10 mm was coated. The supported amount should be Pt 3g / liter,
Supported on a honeycomb. The obtained catalyst was placed in a reaction chamber in which the outer periphery of a hydrogen purifier was covered with a ceramic heat insulating material, and C
O 1 volume%, carbon dioxide 15 volume%, steam 15
A reformed gas having a dew point of 75 ° C. and containing hydrogen by the volume% was introduced from the reformed gas inlet at a flow rate of 10 liters per minute. Air was supplied from the air supply unit so that the oxygen concentration was 2% by volume of the whole. The reformed gas was cooled in front of the reformed gas inlet, and the reformed gas temperature was maintained at 110 ° C. The gas leaving the catalyst supporting catalyst B contained 0.2% by volume of CO.
Air was introduced into the downstream catalyst so that the gas oxygen concentration of 150 ° C. to 170 ° C. passing through the catalyst B was 0.4% by volume of the whole. The downstream catalyst is a catalyst similarly prepared using catalyst A. The results are shown in Table 2 as B → A.
【0039】同様にして、上流側、下流側とも、触媒A
を使用したもの(A→A)、上流側、下流側とも触媒B
を使用したもの(B→B)、上流側に触媒A、下流側に
触媒Bを使用したもの(A→B)について特性を測定し
た。なお、空気は上流触媒と下流触媒の間に酸素濃度が
CO濃度の2倍になるように供給した。結果を(表2)
に示した。Similarly, the catalyst A is used on both the upstream side and the downstream side.
(A → A), catalyst B on both the upstream and downstream sides
Was measured (B → B), the catalyst A was used on the upstream side, and the catalyst B was used on the downstream side (A → B). The air was supplied between the upstream catalyst and the downstream catalyst so that the oxygen concentration was twice the CO concentration. The results (Table 2)
It was shown to.
【0040】(表2)に示すように、触媒B→触媒Aで
最も優れた特性が得られた。これは、比較的低温で効果
を有する触媒B(白金、ルテニウムが合金化された金属
粒子とルテニウム粒子を含む触媒)に110℃でガスを
導入し、反応熱で高温になったガスに対しては、高温で
活性を有する触媒A(白金、ルテニウムが合金化された
金属粒子と白金粒子を含む触媒)を用いたためである。As shown in (Table 2), the most excellent characteristics were obtained from catalyst B → catalyst A. This is because the gas is introduced at 110 ° C. into the catalyst B (catalyst containing platinum and ruthenium alloyed metal particles and ruthenium particles), which has an effect at a relatively low temperature, and the gas becomes hot due to reaction heat. The reason is that the catalyst A (catalyst containing platinum and metal particles alloyed with ruthenium and platinum particles) having activity at high temperature was used.
【0041】なお、触媒B→Aの構成において、触媒B
と触媒Aの間に空気を供給せずに実験を行ったところ、
出口ガスCO濃度は、542ppmであった。以上よ
り、本発明において、上流触媒層、下流触媒層の間に酸
素を含有する酸化ガスを混入するための酸化ガス供給部
を設けることにより、より効果的にCO濃度を下げるこ
とができた。In the constitution of catalyst B → A, catalyst B
When the experiment was conducted without supplying air between the catalyst A and
The outlet gas CO concentration was 542 ppm. As described above, in the present invention, the CO concentration could be reduced more effectively by providing the oxidizing gas supply unit for mixing the oxidizing gas containing oxygen between the upstream catalyst layer and the downstream catalyst layer.
【0042】[0042]
【表2】 [Table 2]
【0043】(実施例3)起動時の運転を想定し、以下
の実験を行った。実施例2で触媒B→触媒Aとした構成
において、まず、COが1体積%、二酸化炭素が15体
積%、水蒸気が15体積%、残りが水素である改質ガス
をバイパスを通じて排気し、続いて室温にしておいた触
媒(触媒B→触媒Aの構成)に切り替え、110℃に保
った改質ガスを供給した。触媒Bおよび触媒Aに供給し
た空気量は、実施例2と同じ量供給した。ガス切り替え
後、5分後、10分後の出口CO濃度を測定したとこ
ろ、それぞれ0.32体積%、0.24体積%であっ
た。これは、高温の改質ガスが室温の触媒に導入され、
水の凝縮が起こり十分な触媒特性が得られなかったため
である。(Embodiment 3) The following experiment was conducted assuming the operation at the time of startup. In the configuration of catalyst B → catalyst A in Example 2, first, the reformed gas containing 1% by volume of CO, 15% by volume of carbon dioxide, 15% by volume of steam, and the balance of hydrogen is exhausted through a bypass, and then, Then, the catalyst was switched to room temperature (catalyst B → catalyst A configuration) and the reformed gas maintained at 110 ° C. was supplied. The amount of air supplied to the catalysts B and A was the same as in Example 2. When the outlet CO concentrations were measured 5 minutes and 10 minutes after switching the gas, they were 0.32% by volume and 0.24% by volume, respectively. This is because hot reformed gas is introduced into the catalyst at room temperature,
This is because water was condensed and sufficient catalyst characteristics could not be obtained.
【0044】次に、同じ構成で、バイパスを通じて排気
しておいた改質ガスを50℃まで冷却し、触媒(触媒B
→触媒Aの構成)に切り替えた。空気の供給は、上記と
同じとした。その結果、5分後、10分後の出口CO濃
度は、52ppm、47ppmであった。これは、50
℃まで冷却した際に、改質ガス中の水分が凝縮され、そ
の後室温の触媒に導入されても、水の凝縮はほとんど起
こらず、十分な触媒活性を発揮できたためである。Next, with the same structure, the reformed gas exhausted through the bypass is cooled to 50 ° C., and the catalyst (catalyst B
→ Switched to the configuration of catalyst A). The air supply was the same as above. As a result, the outlet CO concentrations after 5 minutes and 10 minutes were 52 ppm and 47 ppm. This is 50
This is because the water in the reformed gas was condensed when cooled to 0 ° C., and even when it was introduced into the catalyst at room temperature, water was hardly condensed, and sufficient catalytic activity was exhibited.
【0045】以上より水素精製装置起動時に、触媒層よ
り上流において、改質ガス中の水を凝縮させたのち、触
媒層に改質ガスを導入させることとにより、触媒が水浸
しになることなく、かつ触媒の低温活性を十分に発揮す
ることができるため、速やかに起動することができた。As described above, at the time of starting the hydrogen purifier, water in the reformed gas is condensed upstream of the catalyst layer, and then the reformed gas is introduced into the catalyst layer to prevent the catalyst from being immersed in water. In addition, since the low temperature activity of the catalyst can be sufficiently exerted, the catalyst could be started promptly.
【0046】[0046]
【発明の効果】以上のように、本発明は、白金とルテニ
ウムとが合金化された金属粒子および白金粒子を含む一
酸化炭素選択酸化用触媒を用いることで、合金粒子のみ
を用いた場合よりも、より低温の改質ガスについても、
安定して一酸化炭素を除去できる。As described above, according to the present invention, by using the metal particles in which platinum and ruthenium are alloyed and the catalyst for selective oxidation of carbon monoxide containing platinum particles, the present invention is more effective than the case where only the alloy particles are used. Also for lower temperature reformed gas,
Stable removal of carbon monoxide.
【0047】また、本発明は、白金とルテニウムとの合
金粒子および白金粒子を含む一酸化炭素選択酸化用触媒
を用いることで、合金粒子のみを用いた場合よりも、よ
り高温の改質ガスについても、安定して一酸化炭素を除
去できる。Further, according to the present invention, by using the alloy particles of platinum and ruthenium and the carbon monoxide selective oxidation catalyst containing the platinum particles, the reformed gas having a higher temperature than that using only the alloy particles can be obtained. Also, carbon monoxide can be stably removed.
【0048】また、本発明は、前記一酸化炭素選択酸化
用触媒を上流側と下流側の2層に分けて、それぞれ用い
ることでより幅広い温度範囲でのCO除去が可能にな
る。Further, according to the present invention, the carbon monoxide selective oxidation catalyst is divided into two layers, that is, an upstream side and a downstream side, and they are used respectively, so that CO can be removed in a wider temperature range.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 田口 清 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 鵜飼 邦弘 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4G069 AA03 AA08 BA01A BA01B BA13A BA13B BB02A BB02B BC70A BC70B BC75A BC75B CB81 CC32 EA19 EB14Y EE07 FA02 FB14 FB19 FB43 FB44 4G140 EA01 EA02 EA03 EA06 EB35 EB36 5H027 AA06 BA01 BA16 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Kiyoshi Taguchi 1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric Sangyo Co., Ltd. (72) Inventor Kunihiro Ukai 1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric Sangyo Co., Ltd. F-term (reference) 4G069 AA03 AA08 BA01A BA01B BA13A BA13B BB02A BB02B BC70A BC70B BC75A BC75B CB81 CC32 EA19 EB14Y EE07 FA02 FB14 FB19 FB43 FB44 4G140 EA01 EA02 EA03 EA06 EB35 EB36 5H027 AA06 BA01 BA16
Claims (8)
ムとの合金粒子および白金粒子を含む一酸化炭素選択酸
化用触媒。1. A catalyst for selective oxidation of carbon monoxide containing alloy particles of platinum and ruthenium, which are oxygen-containing oxidizing gases, and platinum particles.
テニウム粒子を含む一酸化炭素選択酸化用触媒。2. A catalyst for selective oxidation of carbon monoxide, which comprises alloy particles of platinum and ruthenium and ruthenium particles.
に白金を担持し、水素還元を行い、ルテニウム塩水溶液
を用いて含浸法により前記担体にさらにルテニウムを担
持し、水素還元を行うことにより得られる一酸化炭素選
択酸化用触媒。3. By carrying out platinum reduction on a carrier by an impregnation method using an aqueous platinum salt solution and hydrogen reduction, and further carrying ruthenium on the carrier by an impregnation method using an aqueous ruthenium salt solution and performing hydrogen reduction. The resulting carbon monoxide selective oxidation catalyst.
り担体にルテニウムを担持し、水素還元を行い、白金塩
水溶液を用いて含浸法により前記担体にさらに白金を担
持し、水素還元を行うことにより得られる一酸化炭素選
択酸化用触媒。4. A ruthenium is loaded on a carrier by an impregnation method using an aqueous solution of ruthenium salt to carry out hydrogen reduction, and platinum is further loaded on the carrier by an impregnation method using an aqueous solution of platinum salt to carry out hydrogen reduction. The resulting carbon monoxide selective oxidation catalyst.
炭素選択酸化用触媒の少なくともいずれか一方を含有す
る触媒層を有する浄化部と、前記浄化部に水素を含有す
る改質ガスを供給する改質ガス供給部と、前記一酸化炭
素除去装置に酸素を含有する酸化ガスを供給する酸化ガ
ス供給部とを備える水素精製装置。5. A purifying section having a catalyst layer containing at least one of the carbon monoxide selective oxidation catalysts according to claim 1, and a reformed gas containing hydrogen in the purifying section. A hydrogen purifying apparatus comprising: a reformed gas supply section for supplying oxygen and an oxidizing gas supply section for supplying an oxidizing gas containing oxygen to the carbon monoxide removing apparatus.
設された複数層の触媒層を備え、前記複数層の内高温の
ガスが流入する少なくとも1層が、請求項1または3に
記載の一酸化炭素選択酸化用触媒を含み、前記複数層の
内低温のガスが流入する少なくとも1層が請求項2また
は4に記載の一酸化炭素選択酸化用触媒を含むことを特
徴とする請求項5に記載の水素精製装置。6. The catalyst layer comprises a plurality of catalyst layers arranged side by side in the flow direction of the reformed gas, and at least one of the plurality of layers into which a high-temperature gas flows is characterized in that: 5. The carbon monoxide selective oxidation catalyst according to claim 2, wherein at least one of the plurality of layers into which a low temperature gas flows contains the carbon monoxide selective oxidation catalyst according to claim 2. The hydrogen purifier according to claim 5.
流側に配置された触媒層との間に酸素を含有する酸化ガ
スを供給するための酸化ガス供給部を設けることを特徴
とする請求項6に記載の水素精製装置。7. An oxidizing gas supply unit for supplying an oxidizing gas containing oxygen is provided between the catalyst layer arranged on the upstream side and the catalyst layer arranged on the downstream side. The hydrogen purifier according to claim 6.
縮により水分を低減させた改質ガスを供給することを特
徴とする請求項6または7に記載の水素精製装置の運転
方法。8. The method for operating a hydrogen purifier according to claim 6, wherein a reformed gas whose water content is reduced by condensation is supplied to the purification unit when the hydrogen purifier is started.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002085105A JP2003275587A (en) | 2002-03-26 | 2002-03-26 | Carbon monoxide selective oxidation catalyst and hydrogen purification apparatus using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002085105A JP2003275587A (en) | 2002-03-26 | 2002-03-26 | Carbon monoxide selective oxidation catalyst and hydrogen purification apparatus using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003275587A true JP2003275587A (en) | 2003-09-30 |
Family
ID=29207105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002085105A Pending JP2003275587A (en) | 2002-03-26 | 2002-03-26 | Carbon monoxide selective oxidation catalyst and hydrogen purification apparatus using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003275587A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006120626A (en) * | 2004-09-24 | 2006-05-11 | Toshiba Corp | Hydrogen manufacturing device and fuel cell system |
JP2006190686A (en) * | 2005-01-06 | 2006-07-20 | Samsung Sdi Co Ltd | Pt/ru alloy catalyst, its manufacturing method, electrode for fuel cell, and fuel cell |
JP2007111695A (en) * | 2005-10-21 | 2007-05-10 | Samsung Sdi Co Ltd | Oxidation catalyst for carbon monoxide and its production method, fuel processor and fuel cell system |
JP2007302533A (en) * | 2006-05-12 | 2007-11-22 | Mitsubishi Heavy Ind Ltd | Fuel reforming apparatus, fuel cell system, and method for removing co |
JP2009298605A (en) * | 2008-06-10 | 2009-12-24 | T Rad Co Ltd | Co selective oxidizing apparatus |
EP2415521A1 (en) * | 2009-03-31 | 2012-02-08 | JX Nippon Oil & Energy Corporation | Method for producing catalyst for use in selective oxidation reaction of carbon monoxide |
KR101147234B1 (en) | 2004-10-19 | 2012-05-18 | 삼성에스디아이 주식회사 | Fuel cell system |
-
2002
- 2002-03-26 JP JP2002085105A patent/JP2003275587A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006120626A (en) * | 2004-09-24 | 2006-05-11 | Toshiba Corp | Hydrogen manufacturing device and fuel cell system |
KR101147234B1 (en) | 2004-10-19 | 2012-05-18 | 삼성에스디아이 주식회사 | Fuel cell system |
JP2006190686A (en) * | 2005-01-06 | 2006-07-20 | Samsung Sdi Co Ltd | Pt/ru alloy catalyst, its manufacturing method, electrode for fuel cell, and fuel cell |
JP4656576B2 (en) * | 2005-01-06 | 2011-03-23 | 三星エスディアイ株式会社 | Method for producing Pt / Ru alloy catalyst for fuel cell anode |
JP2007111695A (en) * | 2005-10-21 | 2007-05-10 | Samsung Sdi Co Ltd | Oxidation catalyst for carbon monoxide and its production method, fuel processor and fuel cell system |
US8101542B2 (en) | 2005-10-21 | 2012-01-24 | Samsung Sdi Co., Ltd. | Catalyst for oxidizing monoxide and method of preparing the same |
JP2007302533A (en) * | 2006-05-12 | 2007-11-22 | Mitsubishi Heavy Ind Ltd | Fuel reforming apparatus, fuel cell system, and method for removing co |
JP2009298605A (en) * | 2008-06-10 | 2009-12-24 | T Rad Co Ltd | Co selective oxidizing apparatus |
EP2415521A1 (en) * | 2009-03-31 | 2012-02-08 | JX Nippon Oil & Energy Corporation | Method for producing catalyst for use in selective oxidation reaction of carbon monoxide |
EP2415521A4 (en) * | 2009-03-31 | 2012-10-10 | Jx Nippon Oil & Energy Corp | Method for producing catalyst for use in selective oxidation reaction of carbon monoxide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2000048261A1 (en) | Carbon monoxide converting apparatus for fuel cell and generating system of fuel cell | |
Lu et al. | The performance of CNT as catalyst support on CO oxidation at low temperature | |
JP4864385B2 (en) | Hydrogen generator and fuel cell system | |
JP3473896B2 (en) | Hydrogen purification equipment | |
JP3482367B2 (en) | Hydrogen purification equipment | |
JP4089039B2 (en) | Hydrogen purification equipment | |
JP2003275587A (en) | Carbon monoxide selective oxidation catalyst and hydrogen purification apparatus using the same | |
US20040241509A1 (en) | Hydrogen generator and fuel cell system | |
JP2005034682A (en) | Co modification catalyst and its production method | |
JP2001212458A (en) | Catalyst for selectively oxidizing carbon monoxide in reforming gas | |
JP5809049B2 (en) | Method of using steam reforming catalyst for fuel cell and hydrogen production system | |
JPH09320624A (en) | Catalyst for carbon monoxide removal, fuel cell apparatus provided therewith, and carbon monoxide removing method from reformed gas to be supplied to the fuel cell | |
JP4663095B2 (en) | Hydrogen purification equipment | |
JP2002326803A (en) | Hydrogen refining apparatus | |
JP4867084B2 (en) | Hydrogen purification equipment | |
US7345007B2 (en) | Catalyst for selective oxidation of carbon monoxide in reformed gas | |
JP2006167501A (en) | Reforming catalyst, hydrogen generation apparatus, and fuel cell system | |
JP2005067917A (en) | Co removal catalyst system and method for selective removal of co | |
JP2005082409A (en) | Hydrogen generator | |
JP2005082409A6 (en) | Hydrogen generator | |
JP4083556B2 (en) | Selective oxidation catalyst for carbon monoxide in reformed gas | |
JP4521970B2 (en) | Carbon monoxide removal catalyst and carbon monoxide removal method using the same | |
WO2002090248A1 (en) | Hydrogen purification apparatus | |
JP2002226204A (en) | Hydrogen purification unit | |
JP2002348103A (en) | Hydrogen purification equipment |