JP2004006405A - Hydrogen purification apparatus - Google Patents

Hydrogen purification apparatus Download PDF

Info

Publication number
JP2004006405A
JP2004006405A JP2003280778A JP2003280778A JP2004006405A JP 2004006405 A JP2004006405 A JP 2004006405A JP 2003280778 A JP2003280778 A JP 2003280778A JP 2003280778 A JP2003280778 A JP 2003280778A JP 2004006405 A JP2004006405 A JP 2004006405A
Authority
JP
Japan
Prior art keywords
concentration
temperature
carbon monoxide
gas
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003280778A
Other languages
Japanese (ja)
Inventor
Kiyoshi Taguchi
田口 清
Takeshi Tomizawa
富澤 猛
Kunihiro Ukai
鵜飼 邦弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003280778A priority Critical patent/JP2004006405A/en
Publication of JP2004006405A publication Critical patent/JP2004006405A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen purification apparatus capable of detecting the concentration of carbon monoxide contained in gas which is passed through a purification part. <P>SOLUTION: The hydrogen purification apparatus is equipped with the purification part having a catalyst layer showing activity to methanation of carbon monoxide and a temperature detector detecting gas temperature on at least the downstream side of the purification part, and the concentration of the carbon monoxide of gas which is passed through the purification part is detected with a signal of the temperature detector, and the flow rate of oxygen-containing gas supplying to the purification part is controlled according to the concentration of the carbon monoxide. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、ガス濃度検知器および水素精製装置に関する。さらに詳しくは、燃料電池などの燃料に用いられる水素を主成分とし、一酸化炭素(以下、「CO」と記載する。)を含有する改質ガス中のCO濃度を検知する装置および水素精製装置に関する。 The present invention relates to a gas concentration detector and a hydrogen purification device. More specifically, a device for detecting a CO concentration in a reformed gas containing hydrogen used as a main component in fuel such as a fuel cell and containing carbon monoxide (hereinafter, referred to as “CO”), and a hydrogen purification device About.

 従来から、燃料電池などに用いられる水素は、メタン、プロパン、ガソリンおよび灯油などの炭化水素系燃料、メタノールなどのアルコール系燃料またはジメチルエーテルなどのエーテル系燃料に水蒸気を混合し、加熱した改質触媒に接触させて発生させている。
 通常、炭化水素系燃料は500〜800℃程度、アルコール系やエーテル系燃料は200〜400℃程度の温度で改質される。改質の際にはCOが発生するが、高温で改質を行うほど、発生するCOの濃度は上昇する。特に炭化水素系燃料を用いる場合には、改質ガスのCO濃度が10体積%前後となる。そこで、CO変成触媒を用いてCOと水素とを反応させ、数千ppm〜数体積%程度にCO濃度を低減させている。
Conventionally, hydrogen used in fuel cells and the like has been produced by mixing steam with hydrocarbon fuels such as methane, propane, gasoline and kerosene, alcohol fuels such as methanol, or ether fuels such as dimethyl ether, and heating. It is generated by contact with.
Usually, the hydrocarbon fuel is reformed at a temperature of about 500 to 800 ° C, and the alcohol or ether fuel is reformed at a temperature of about 200 to 400 ° C. CO is generated at the time of reforming, but as the reforming is performed at a higher temperature, the concentration of generated CO increases. In particular, when a hydrocarbon fuel is used, the CO concentration of the reformed gas is about 10% by volume. Therefore, CO and hydrogen are reacted using a CO shift catalyst to reduce the CO concentration to about several thousand ppm to several volume%.

 さらに、車載用や家庭用として用いられる固体高分子電解質型燃料電池のように、100℃以下の低温で作動する燃料電池の場合には、電極に用いられているPt触媒が改質ガスに含まれているCOによって被毒されるおそれがあるため、改質ガスを燃料電池に供給する前にそのCO濃度を100ppm以下、好ましくは10ppm以下に除去しておく必要がある。そのため、触媒を充填したCO浄化部を水素精製装置に設け、COをメタン化または微量の空気を加えて選択的に酸化することによって、COを除去している。
 COをCO浄化触媒で選択酸化によって除去する場合には、Pt、Ru、RhまたはPdなどの貴金属触媒が主として用いられる。充分にCOを除去するためには、COに対して1〜3倍程度の酸素を必要とする。
 ここで、燃料電池システムの発電量を変えるため供給する水素量が変化した場合や、長期間装置を運転させて触媒活性が多少低下した場合には、改質ガス中のCO濃度が変化する。そのため、酸素量を最適値に制御するためには、CO濃度を検知する必要がある。
Furthermore, in the case of a fuel cell that operates at a low temperature of 100 ° C. or less, such as a solid polymer electrolyte fuel cell used for vehicles or for home use, the reformed gas contains the Pt catalyst used for the electrode. Since the reformed gas may be poisoned by the CO, it is necessary to remove the CO concentration to 100 ppm or less, preferably 10 ppm or less before supplying the reformed gas to the fuel cell. Therefore, a CO purification unit filled with a catalyst is provided in a hydrogen purification device, and CO is removed by methanation or selective oxidation by adding a small amount of air.
When CO is removed by selective oxidation using a CO purification catalyst, a noble metal catalyst such as Pt, Ru, Rh or Pd is mainly used. In order to sufficiently remove CO, about 1 to 3 times as much oxygen as CO is required.
Here, when the amount of hydrogen supplied to change the amount of power generation of the fuel cell system changes, or when the catalyst activity is slightly reduced by operating the apparatus for a long time, the CO concentration in the reformed gas changes. Therefore, in order to control the amount of oxygen to an optimal value, it is necessary to detect the CO concentration.

 しかし、一般的に行われるような、COによる赤外波長の光線の吸収からCO濃度を検知したり、CO吸着による抵抗値の変化からCO濃度を検知する手法は、改質ガス中で安定に機能しなかったり、高コストであるため、現在のところ適用が困難である。
 このため、CO浄化触媒に供給する酸素量を常に最適に保つすることは困難であった。また、燃料電池システムの起動時において、水素精製器でCOが充分に除去された後でも、燃料電池に改質ガスが供給可能であることの判断が困難であった。
However, the method of detecting the CO concentration from the absorption of the infrared wavelength light by CO or detecting the CO concentration from the change in the resistance value due to CO adsorption, which is generally performed, is stable in the reformed gas. It is currently difficult to apply because it does not work or is expensive.
For this reason, it has been difficult to keep the amount of oxygen supplied to the CO purification catalyst always optimal. Further, at the time of starting the fuel cell system, it is difficult to determine that the reformed gas can be supplied to the fuel cell even after the CO is sufficiently removed by the hydrogen purifier.

 以上のように、従来の技術においては、改質ガス中で有効な安価で信頼性のあるCO濃度検知手段が無かったため、CO浄化触媒の機能が充分に発揮できなかったり、起動時における燃料電池への改質ガス供給を開始するために長い待機運転が必要であった。 As described above, in the prior art, since there was no inexpensive and reliable means for detecting the concentration of CO effective in the reformed gas, the function of the CO purification catalyst could not be fully exhibited, A long standby operation was required to start supplying reformed gas to the reactor.

 したがって、本発明は、改質ガス中のCO濃度を安価にかつ信頼性をもって検知することのできる手段、およびCO浄化触媒の機能が充分に発揮され得る水素精製装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a means capable of inexpensively and reliably detecting the CO concentration in a reformed gas and a hydrogen purifying apparatus capable of sufficiently exerting the function of a CO purification catalyst. .

 上述の目的を達成すべく、本発明は、一酸化炭素のメタン化に活性を示す触媒層を有する浄化部と、前記浄化部の少なくとも下流側のガス温度を検知する温度検出器とを備え、前記温度検知器の信号によって前記浄化部通過後のガスの一酸化炭素濃度を検知し、前記一酸化炭素濃度に対応して前記浄化部に供給する酸素含有ガス流量を制御することを特徴とする水素精製装置を提供する。
 前記一酸化炭素濃度に対応して、さらに前記一酸化炭素浄化部温度の制御を行うことが好ましい。
 また、水素、一酸化炭素および二酸化炭素を含む改質ガスを前記浄化部に供給するガス供給部を具備し、前記触媒層の温度を80℃以上250℃以下にすることで、前記温度検知器の信号によって前記触媒層通過後のガスの一酸化炭素濃度を検知することが好ましい。
In order to achieve the above object, the present invention includes a purification unit having a catalyst layer that is active in methanation of carbon monoxide, and a temperature detector that detects a gas temperature at least downstream of the purification unit, A signal from the temperature detector detects a carbon monoxide concentration of the gas after passing through the purification unit, and controls a flow rate of the oxygen-containing gas supplied to the purification unit in accordance with the carbon monoxide concentration. A hydrogen purification device is provided.
It is preferable that the temperature of the carbon monoxide purifying unit is further controlled in accordance with the carbon monoxide concentration.
A gas supply unit configured to supply a reformed gas containing hydrogen, carbon monoxide, and carbon dioxide to the purification unit, and by setting the temperature of the catalyst layer to 80 ° C. or more and 250 ° C. or less, the temperature detector It is preferable to detect the carbon monoxide concentration of the gas after passing through the catalyst layer by the signal of

 この水素精製装置においては、前記浄化部の温度が一定に制御されているのが有効である。
 また、前記触媒層の上流側に第一温度検知器が設けられ、前記触媒層の下流側に第二温度検知器が設けられているのが有効である。
 さらに、前記触媒層が、少なくともPt、Ru、Rh、PdまたはNiを活性成分とするのが有効である。
In this hydrogen purifier, it is effective that the temperature of the purifier is controlled to be constant.
It is effective that a first temperature detector is provided on the upstream side of the catalyst layer, and a second temperature detector is provided on the downstream side of the catalyst layer.
Further, it is effective that the catalyst layer contains at least Pt, Ru, Rh, Pd or Ni as an active component.

 本発明によれば、触媒の温度を検知することで改質ガス中のCO濃度を検知することができる。 According to the present invention, the CO concentration in the reformed gas can be detected by detecting the temperature of the catalyst.

 以下、本発明の実施の形態について、図面を参照して説明する。
 図1は本発明の実施の形態に係るガス濃度検知器の構成を示す概略図である。図1において、改質ガス入口1から供給された改質ガスは、反応室2へ送られ、触媒層3で反応した後、改質ガス出口7より排出される。触媒層の上流温度と下流温度は、第一熱電対5と第二熱電対6でそれぞれ測定され、信号処理装置8にこの信号が送られて処理された後、CO濃度として出力される。
 また、反応室2の温度はヒーター4によって一定温度に保持されている。ここでは、天然ガスを水蒸気改質した場合に得られる改質ガス(CO濃度が10〜1000ppm、二酸化炭素濃度が約20%、残りが水素)の場合について述べる。ただし、他の組成であってもCOに対して過剰の水素が存在する条件であれば、本発明のガス濃度検知器を用いることによる効果に本質的な違いが生じることはない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing a configuration of a gas concentration detector according to an embodiment of the present invention. In FIG. 1, a reformed gas supplied from a reformed gas inlet 1 is sent to a reaction chamber 2, reacted in a catalyst layer 3, and then discharged from a reformed gas outlet 7. The upstream temperature and the downstream temperature of the catalyst layer are measured by the first thermocouple 5 and the second thermocouple 6, respectively. The signal is sent to the signal processing device 8 and processed, and then output as the CO concentration.
The temperature of the reaction chamber 2 is maintained at a constant temperature by the heater 4. Here, a case of a reformed gas (CO concentration is 10 to 1000 ppm, carbon dioxide concentration is about 20%, and the balance is hydrogen) obtained when steam reforming natural gas is described. However, there is no substantial difference in the effect obtained by using the gas concentration detector of the present invention, even if the composition is other than the above, as long as there is an excess of hydrogen with respect to CO.

 つぎに、本発明におけるガス濃度検知器の動作原理について説明する。触媒層3では改質ガス中の一酸化炭素と水素が反応し、メタンと水蒸気が生成する。このときの反応熱はCO、1モル当たり約200kJであり、CO濃度に対応して触媒上での発熱量が変化する。そして、この発熱による温度変化を検知することによってCO濃度を測定する。
 図2に、第一熱電対5と第二熱電対6によって検知された温度差と改質ガス中のCO濃度の関係を示す。実線で示したようにCO濃度と温度差が一定の関係式で表すことができる領域では、検量線を作ることによって、CO濃度を検知することができる。CO濃度が著しく高い場合には、COの転換率が低下するため、CO濃度に対する温度差の変化は小さくなりCO濃度の検知が困難となる。この場合、反応室2の温度を高くすればCO転換率を上昇させることができ、検知限界濃度を高くすることができる。
Next, the operation principle of the gas concentration detector according to the present invention will be described. In the catalyst layer 3, carbon monoxide and hydrogen in the reformed gas react with each other to generate methane and steam. The heat of reaction at this time is about 200 kJ per mole of CO, and the calorific value on the catalyst changes according to the CO concentration. Then, the CO concentration is measured by detecting a temperature change due to the heat generation.
FIG. 2 shows the relationship between the temperature difference detected by the first thermocouple 5 and the second thermocouple 6 and the CO concentration in the reformed gas. As shown by the solid line, in a region where the CO concentration and the temperature difference can be expressed by a constant relational expression, the CO concentration can be detected by creating a calibration curve. When the CO concentration is extremely high, the conversion ratio of CO decreases, so that the change in the temperature difference with respect to the CO concentration becomes small and the detection of the CO concentration becomes difficult. In this case, if the temperature of the reaction chamber 2 is increased, the CO conversion can be increased, and the detection limit concentration can be increased.

 しかし、高温になると二酸化炭素もメタン化されるため、二酸化炭素のメタン化による発熱が影響しない温度で使用する必要がある。このため触媒種にもよるが、反応室2の温度は約250℃以下とすることが好ましい。
 逆にCO濃度が低い場合には、触媒上での発熱量が小さくなるため、温度差の変化が小さくなりCO濃度の検知が困難になる。この場合、反応室2の外部への放熱を遮断したり、改質ガスの流速を上げて触媒上での発熱量を上昇させることによって、より低濃度のCOを検知することができる。
However, since carbon dioxide is methanated at high temperatures, it must be used at a temperature that does not affect the heat generated by methanation of carbon dioxide. For this reason, the temperature of the reaction chamber 2 is preferably set to about 250 ° C. or lower, depending on the type of the catalyst.
Conversely, when the CO concentration is low, the calorific value on the catalyst becomes small, so that the change in the temperature difference becomes small, and it becomes difficult to detect the CO concentration. In this case, a lower concentration of CO can be detected by cutting off the heat radiation to the outside of the reaction chamber 2 or increasing the calorific value on the catalyst by increasing the flow rate of the reformed gas.

 また、触媒層3に用いられる触媒活性成分としては、COのメタン化に対して選択的に活性を示すもの、すなわち改質ガス中の二酸化炭素とCOのうち、COの水素化反応のみに活性を示すか、またはCOの水素化反応に対して高選択に活性を示すものが用いられる。
 このような触媒成分としては、Pt、Ru、Rh、PdおよびNiなどの金属が例示できる。特に、触媒活性成分として、少なくともRu、RhまたはNiを含有することが好ましい。
The catalytically active component used in the catalyst layer 3 is one that is selectively active against methanation of CO, that is, active only in the hydrogenation reaction of CO among carbon dioxide and CO in the reformed gas. Or those exhibiting high selectivity for the hydrogenation reaction of CO.
Examples of such a catalyst component include metals such as Pt, Ru, Rh, Pd, and Ni. In particular, it is preferable that at least Ru, Rh or Ni is contained as a catalytically active component.

 また、触媒層3に用いられる触媒の担持体としては、特に限定はなく、活性成分を高分散状態で担持できるものであればよい。このようなものとしては、アルミナ、シリカ、シリカアルミナ、マグネシア、チタニア、ゼオライトなどが例示できる。
 触媒層3に用いられる基材には、触媒と反応室中のガスとの接触面積を充分に確保できるものが用いられる。このようなものとしては、ハニカム形状または連通孔を有する発泡体形状の基材などが好ましく、ペレット形状でもよい。
 また、触媒層の温度は、COが充分に反応可能な80℃以上が好ましく、上限は二酸化炭素の反応が起こりにくい250℃以下が好ましい。ただし、動作温度において副反応も含めた条件で検量線を作るため、作動温度は用途に応じて決定することができる。
The catalyst carrier used for the catalyst layer 3 is not particularly limited as long as it can support the active component in a highly dispersed state. Examples of such a material include alumina, silica, silica alumina, magnesia, titania, zeolite, and the like.
As the base material used for the catalyst layer 3, a material that can sufficiently secure the contact area between the catalyst and the gas in the reaction chamber is used. As such a material, a honeycomb-shaped or foam-shaped substrate having communication holes is preferable, and a pellet-shaped substrate may be used.
Further, the temperature of the catalyst layer is preferably 80 ° C. or higher, at which CO can sufficiently react, and the upper limit is preferably 250 ° C. or lower, at which the reaction of carbon dioxide hardly occurs. However, since the calibration curve is created at the operating temperature under conditions including side reactions, the operating temperature can be determined according to the application.

 また、触媒上での発熱を精度良く検知するためには、反応室2の温度が外部環境に影響されないことが好ましく、充分な断熱を行い、一定温度となるように温度を調節するのが好ましい。
 ここでは、温度調節のためにヒーターを用いたが、冷却ファンによる冷却方式でも、オイルのような熱媒体を用いても構わない。また、CO濃度をあまり精度良く検知する必要のない用途であれば、温度調節の必要はない。
 また、図1においては触媒層の温度を検知するために熱電対を用いたが、温度を検知できるものであれば、サーミスタなどの他の検知手段を用いても構わない。
 さらに、ここでは触媒層の上流側と下流側の温度を検知したが、供給する改質ガス温度が一定となるような場合には触媒層の下流側だけを測定しても精度良くCO濃度を測ることができる。
In addition, in order to accurately detect heat generation on the catalyst, it is preferable that the temperature of the reaction chamber 2 is not affected by the external environment, and it is preferable to perform sufficient heat insulation and adjust the temperature to a constant temperature. .
Here, a heater is used for temperature control, but a cooling system using a cooling fan or a heat medium such as oil may be used. If the application does not need to detect the CO concentration with high accuracy, there is no need to adjust the temperature.
Although a thermocouple is used to detect the temperature of the catalyst layer in FIG. 1, other detecting means such as a thermistor may be used as long as the temperature can be detected.
Further, here, the temperatures on the upstream side and the downstream side of the catalyst layer are detected. However, when the temperature of the supplied reformed gas is constant, the CO concentration can be accurately measured by measuring only the downstream side of the catalyst layer. Can be measured.

 上述のようなガス温度検知器を利用したガス濃度検知器は、水素精製装置および燃料電池システムにも応用することができる。例えば、上述した改質反応室だけでなく、変成部および浄化部においても同様の構成を採ることによって、変性部から浄化部に流れていくガスや浄化部から流れ出るガスの一酸化炭素濃度を検出することができる。
 例えば、ガス温度検知器をCO浄化触媒の上流側に設置し、ガス温度検知器の信号によって検知したCO濃度に対して、適量の空気を供給するように制御を行うことによって、無駄な水素消費が抑制されるとともに、空気が不足することによる浄化触媒下流側のCO濃度上昇も回避できる。したがって、燃料電池システムに用いた場合に、その効率向上と安定動作が確保できる。
 また、ガス温度検知器をCO浄化触媒の下流側に設置した場合も浄化触媒下流側でのCO濃度が上昇しないように空気量を制御することによって、上流側に設置した場合と同様の効果が得られる。
The gas concentration detector using the gas temperature detector as described above can be applied to a hydrogen purifier and a fuel cell system. For example, by adopting a similar configuration not only in the above-described reforming reaction chamber, but also in the shift section and the purification section, the concentration of carbon monoxide flowing into the purification section and the gas flowing out of the purification section can be detected. can do.
For example, by installing a gas temperature detector upstream of the CO purification catalyst and controlling the CO concentration detected by the signal of the gas temperature detector to supply an appropriate amount of air, wasteful hydrogen consumption is achieved. , And an increase in the CO concentration downstream of the purification catalyst due to a shortage of air can be avoided. Therefore, when used in a fuel cell system, its efficiency can be improved and stable operation can be ensured.
Also, when a gas temperature detector is installed downstream of the CO purification catalyst, the same effect as when installed upstream is achieved by controlling the amount of air so that the CO concentration downstream of the purification catalyst does not increase. can get.

 さらに、上記ガス濃度検知器を水素精製装置および燃料電池を含む燃料電池システムに応用した場合は、ガス温度検知器を水素精製器と燃料電池の中間に設置し、ガス温度検知器の信号によって検知したCO濃度が高い場合には改質ガスが燃料電池に導入されないようにガス流路を閉じたり、または燃料電池外に排出するようにガス流路を切り替えることによって、燃料電池がCOで被毒されることを防止することができる。 Furthermore, when the above gas concentration detector is applied to a fuel cell system including a hydrogen purifier and a fuel cell, the gas temperature detector is installed between the hydrogen purifier and the fuel cell, and is detected by a signal from the gas temperature detector. If the CO concentration is high, the fuel cell is poisoned by CO by closing the gas flow path so that the reformed gas is not introduced into the fuel cell, or by switching the gas flow path so that the reformed gas is discharged out of the fuel cell. Can be prevented.

 さらに、起動時には水素精製器でCOが充分に除去されたことを検知できるため、浄化触媒が確実にCOを除去することができる定常運転時の温度になるまで待機運転させる等の必要がなく、速やかに発電をおこなうことができる。
 また、ここで用いた触媒はCO浄化触媒の機能をガス濃度検知器として応用したものであるため、CO浄化触媒の一部の温度を検知することによっても、CO濃度を検知することができる。CO濃度の変化に起因する以外の温度変化が大きい場合には、充分な精度でCO濃度を検知することができないため、改質ガス流量と温度の変動が少ない条件が好ましい。
Furthermore, at the time of startup, since it is possible to detect that the CO has been sufficiently removed by the hydrogen purifier, there is no need to perform a standby operation until the temperature of the purification catalyst reaches a steady state operation at which the CO can be reliably removed. Power can be generated quickly.
Further, since the catalyst used here applies the function of the CO purification catalyst as a gas concentration detector, the CO concentration can also be detected by detecting the temperature of a part of the CO purification catalyst. If the temperature change other than the change caused by the CO concentration is large, the CO concentration cannot be detected with sufficient accuracy, and thus it is preferable that the change in the flow rate of the reformed gas and the temperature is small.

 以下に、本発明に係るガス濃度検知器について、実施例を用いてより具体的に説明する。ただし、本発明はこれらのみに限定されるものではない。
《実施例1》
 直径1mm、長さ1mmのアルミナペレットに、5重量%のRuを担持したものを、図1に示すガス濃度検知器の反応室2の中に充填した。二酸化炭素を20体積%、残りが水素である改質ガスを毎分0.1リットルの流量で改質ガス入口より供給し、第一熱電対の温度が150℃となるようにヒーター4で温度調節を行った。改質ガス中のCO濃度が5ppm、20ppm、100ppm、500ppm、900ppm、1200ppm、2000ppmとなるようにCOを混合した改質ガスを供給し、第一熱電対と第二熱電対の温度を測定した。CO濃度(ppm)および上流と下流の温度差(℃)の結果を表1に示す。
Hereinafter, the gas concentration detector according to the present invention will be described more specifically with reference to examples. However, the present invention is not limited only to these.
<< Example 1 >>
An alumina pellet having a diameter of 1 mm and a length of 1 mm and carrying 5% by weight of Ru was charged into the reaction chamber 2 of the gas concentration detector shown in FIG. A reformed gas containing 20% by volume of carbon dioxide and the remainder being hydrogen is supplied from the reformed gas inlet at a flow rate of 0.1 liter per minute, and the temperature of the first thermocouple is set to 150 ° C. by the heater 4. Adjustments were made. A reformed gas containing CO was supplied such that the CO concentration in the reformed gas became 5 ppm, 20 ppm, 100 ppm, 500 ppm, 900 ppm, 1200 ppm, and 2000 ppm, and the temperatures of the first thermocouple and the second thermocouple were measured. . Table 1 shows the results of the CO concentration (ppm) and the temperature difference between upstream and downstream (° C.).

Figure 2004006405
Figure 2004006405

《実施例2》
 実施例1で、改質ガスの流量を毎分0.3リットルに増加させ、同様にCO濃度を1ppm、4ppm、20ppm、100ppm、180ppm、240ppm、400ppmとなるようにCOを混合して供給し、第一熱電対と第二熱電対の温度を測定した。結果を表2に示す。
<< Example 2 >>
In Example 1, the flow rate of the reformed gas was increased to 0.3 liter per minute, and CO was mixed and supplied so that the CO concentration became 1 ppm, 4 ppm, 20 ppm, 100 ppm, 180 ppm, 240 ppm, and 400 ppm. Then, the temperatures of the first thermocouple and the second thermocouple were measured. Table 2 shows the results.

Figure 2004006405
Figure 2004006405

《実施例3》
 Ruの代わりにRhを担持した他は、実施例1と同様にしてCO濃度を0ppm、5ppm、20ppm、100ppm、500ppm、900ppm、1200ppm、2000ppmとなるようにCOを混合して供給し、第一熱電対と第二熱電対の温度を測定した。結果を表3に示す。
<< Example 3 >>
CO was mixed and supplied so that the CO concentration became 0 ppm, 5 ppm, 20 ppm, 100 ppm, 500 ppm, 900 ppm, 1200 ppm, and 2000 ppm in the same manner as in Example 1 except that Rh was supported instead of Ru. The temperatures of the thermocouple and the second thermocouple were measured. Table 3 shows the results.

Figure 2004006405
Figure 2004006405

《実施例4》
 Ruの代わりにNiを担持した他は、実施例1と同様にしてCO濃度を0ppm、5ppm、20ppm、100ppm、500ppm、900ppm、1200ppm、2000ppmとなるようにCOを混合して供給し、第一熱電対と第二熱電対の温度を測定した。結果を表4に示す。
<< Example 4 >>
CO was mixed and supplied so that the CO concentration became 0 ppm, 5 ppm, 20 ppm, 100 ppm, 500 ppm, 900 ppm, 1200 ppm, and 2000 ppm in the same manner as in Example 1 except that Ni was supported instead of Ru. The temperatures of the thermocouple and the second thermocouple were measured. Table 4 shows the results.

Figure 2004006405
Figure 2004006405

本発明に係るガス濃度検知器の一実施の形態の構成を示す概略図である。It is a schematic diagram showing the composition of one embodiment of a gas concentration detector concerning the present invention. 本発明のガス濃度検知器の特性を示す図である。It is a figure showing the characteristic of the gas concentration detector of the present invention.

符号の説明Explanation of reference numerals

   1 改質ガス入口
   2 反応室
   3 触媒層
   4 ヒーター
   5 第一熱電対
   6 第二熱電対
   7 改質ガス出口
   8 信号処理装置
Reference Signs List 1 reformed gas inlet 2 reaction chamber 3 catalyst layer 4 heater 5 first thermocouple 6 second thermocouple 7 reformed gas outlet 8 signal processor

Claims (3)

一酸化炭素のメタン化に活性を示す触媒層を有する浄化部と、前記浄化部の少なくとも下流側のガス温度を検知する温度検出器とを備え、前記温度検知器の信号によって前記浄化部通過後のガスの一酸化炭素濃度を検知し、前記一酸化炭素濃度に対応して前記浄化部に供給する酸素含有ガス流量を制御することを特徴とする水素精製装置。 A purifying unit having a catalyst layer that is active in the methanation of carbon monoxide, and a temperature detector that detects a gas temperature at least downstream of the purifying unit, and after passing through the purifying unit according to a signal from the temperature detector. A hydrogen purification apparatus, wherein the concentration of carbon monoxide is detected and the flow rate of the oxygen-containing gas supplied to the purification unit is controlled in accordance with the concentration of carbon monoxide. 前記一酸化炭素濃度に対応して、さらに前記一酸化炭素浄化部温度の制御を行うことを特徴とする請求項2記載の水素精製装置。 3. The hydrogen purifier according to claim 2, further comprising controlling the temperature of the carbon monoxide purifying unit in accordance with the carbon monoxide concentration. 水素、一酸化炭素および二酸化炭素を含む改質ガスを前記浄化部に供給するガス供給部を具備し、前記触媒層の温度を80℃以上250℃以下にすることで、前記温度検知器の信号によって前記触媒層通過後のガスの一酸化炭素濃度を検知することを特徴とする請求項1記載の水素精製装置。 A gas supply unit that supplies a reformed gas containing hydrogen, carbon monoxide, and carbon dioxide to the purification unit, and by setting the temperature of the catalyst layer to 80 ° C. or more and 250 ° C. or less, the signal of the temperature detector The hydrogen purification apparatus according to claim 1, wherein the concentration of carbon monoxide after passing through the catalyst layer is detected by the method.
JP2003280778A 2003-07-28 2003-07-28 Hydrogen purification apparatus Pending JP2004006405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003280778A JP2004006405A (en) 2003-07-28 2003-07-28 Hydrogen purification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003280778A JP2004006405A (en) 2003-07-28 2003-07-28 Hydrogen purification apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000167986A Division JP3473757B2 (en) 2000-06-05 2000-06-05 Gas concentration detector, hydrogen purification device, and fuel cell system including the same

Publications (1)

Publication Number Publication Date
JP2004006405A true JP2004006405A (en) 2004-01-08

Family

ID=30438704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003280778A Pending JP2004006405A (en) 2003-07-28 2003-07-28 Hydrogen purification apparatus

Country Status (1)

Country Link
JP (1) JP2004006405A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111492A (en) * 2004-10-15 2006-04-27 Toshiba Fuel Cell Power Systems Corp Fuel handling system, its control method, and control program
JP2012014960A (en) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd Co removal system and method for co removal
JP2012012255A (en) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd Co removing system and method for removing co
KR101192946B1 (en) 2010-07-29 2012-10-18 지에스칼텍스 주식회사 reformation method of hydrogen purification devices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111492A (en) * 2004-10-15 2006-04-27 Toshiba Fuel Cell Power Systems Corp Fuel handling system, its control method, and control program
JP4675080B2 (en) * 2004-10-15 2011-04-20 東芝燃料電池システム株式会社 Fuel processing system
JP2012014960A (en) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd Co removal system and method for co removal
JP2012012255A (en) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd Co removing system and method for removing co
KR101192946B1 (en) 2010-07-29 2012-10-18 지에스칼텍스 주식회사 reformation method of hydrogen purification devices

Similar Documents

Publication Publication Date Title
US8129058B2 (en) Fuel cell system
US8486167B2 (en) Reformed gas production method and reformed gas production apparatus
JP5947804B2 (en) Sulfur leak detection structure and sulfur leak detection method for use in a fuel cell system
WO2001096846A1 (en) Gas concentration sensor, hydrogen purification unit using this and fuel cell system
KR100784038B1 (en) Preferential oxidation reactor integrated with heat exchanger and operating method thereof
JP3482367B2 (en) Hydrogen purification equipment
JP2000178007A (en) Hydrogen purifier
JP4471678B2 (en) Steam reformer
JP2004006405A (en) Hydrogen purification apparatus
US20040241509A1 (en) Hydrogen generator and fuel cell system
JP2007022826A (en) Hydrogen generation unit and fuel cell system
JP3473757B2 (en) Gas concentration detector, hydrogen purification device, and fuel cell system including the same
JP2000044204A (en) Hydrogen purifying device
JP2006202564A (en) Hydrogen manufacturing system for fuel cell
JP3473758B2 (en) Gas concentration detector and hydrogen purifier
EP1329417A1 (en) Hydrogen forming device
EP1471033B1 (en) Hydrogen generator and fuel cell system
JP2001180905A (en) Hydrogen generator
JP2004002162A (en) Elimination method of carbon monoxide, carbon monoxide elimination system using the same, and fuel cell system
JP2004292290A (en) Carbon monoxide removing method, operation method of carbon monoxide remover and operation control system of carbon monoxide remover using them
JP4446672B2 (en) Operation control system for carbon monoxide remover and operation control system for fuel cell system
JP4278021B2 (en) Hydrogen generator
JP2009078938A (en) Desulfurizer and method for operating the same, and fuel cell system
JP2002060206A (en) Hydrogen generator
JP2001180906A (en) Hydrogen producing equipment