JP4705375B2 - Method for stabilizing and activating CO removal catalyst - Google Patents

Method for stabilizing and activating CO removal catalyst Download PDF

Info

Publication number
JP4705375B2
JP4705375B2 JP2005005373A JP2005005373A JP4705375B2 JP 4705375 B2 JP4705375 B2 JP 4705375B2 JP 2005005373 A JP2005005373 A JP 2005005373A JP 2005005373 A JP2005005373 A JP 2005005373A JP 4705375 B2 JP4705375 B2 JP 4705375B2
Authority
JP
Japan
Prior art keywords
removal
hydrogen
removal catalyst
catalyst
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005005373A
Other languages
Japanese (ja)
Other versions
JP2006192349A (en
Inventor
俊匡 宇高
哲也 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2005005373A priority Critical patent/JP4705375B2/en
Publication of JP2006192349A publication Critical patent/JP2006192349A/en
Application granted granted Critical
Publication of JP4705375B2 publication Critical patent/JP4705375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、窒素含有ルテニウム化合物を用いてルテニウムを担持させたCOを選択的に除去するCO除去触媒の安定化方法及び活性化方法に関する。   The present invention relates to a method for stabilizing and activating a CO removal catalyst for selectively removing CO carrying ruthenium using a nitrogen-containing ruthenium compound.

近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術の一つとして燃料電池が注目されている。この燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換するものであって、エネルギーの利用効率が高いという特徴を有しており、民生用、産業用あるいは自動車用等として、実用化研究が積極的になされている。   In recent years, new energy technology has attracted attention due to environmental problems, and fuel cells are attracting attention as one of the new energy technologies. This fuel cell converts chemical energy into electrical energy by electrochemically reacting hydrogen and oxygen, and has a feature of high energy use efficiency. Or, practical research has been actively conducted for automobiles and the like.

水素源として石油系炭化水素を用いて水素を製造する場合、一般に、炭化水素を、改質触媒の存在下に水蒸気改質又は部分酸化改質処理する方法が用いられる。そして、これらの反応において得られる水素含有ガスには、通常、目的とする水素ガスとともにCOが含まれる。このCOがあるレベル以上含まれていると燃料電池の発電性能が低下したり、濃度によっては全く発電ができなくなってしまうという重大な問題が発生する。従って、このCOを無害なCO2等に転化し、燃料電池に供給される水素含有ガス中のCO濃度を減少させる技術の開発が強く望まれている。 In the case of producing hydrogen using petroleum-based hydrocarbons as a hydrogen source, generally, a method of subjecting hydrocarbons to steam reforming or partial oxidation reforming in the presence of a reforming catalyst is used. The hydrogen-containing gas obtained in these reactions usually contains CO together with the target hydrogen gas. If this CO is contained in a certain level or more, a serious problem arises that the power generation performance of the fuel cell is lowered, or power generation cannot be performed at all depending on the concentration. Therefore, there is a strong demand for the development of a technique for converting this CO into harmless CO 2 or the like and reducing the CO concentration in the hydrogen-containing gas supplied to the fuel cell.

改質ガス中のCOの濃度を低減させる手段の一つとして、燃料ガス中に酸素又は酸素含有ガス(空気等)を導入し、COをCO2 に変換する方法が提案されている。この際、水素はできる限り酸化しないでCOだけを選択的に酸化する触媒を使用することが望ましい。COの選択的酸化触媒として、特許文献1〜3には、アルミナに硝酸ルテニウムを用いてルテニウムを担持させた触媒が開示されている。 As one means for reducing the concentration of CO in the reformed gas, a method of converting CO into CO 2 by introducing oxygen or an oxygen-containing gas (such as air) into the fuel gas has been proposed. At this time, it is desirable to use a catalyst that selectively oxidizes only CO without oxidizing hydrogen as much as possible. As selective oxidation catalysts for CO, Patent Documents 1 to 3 disclose catalysts in which ruthenium is supported on alumina using ruthenium nitrate.

これらの触媒は、使用前予め300℃以上の高温で還元される。しかし、実際に触媒をCO除去装置で使用する場合、CO除去装置に充填する際に空気中の酸素によって触媒が酸化されてしまい、失活してしまうという問題があった。
また、CO除去装置の安全性を考慮して、運転終了後残った改質ガスをパージする必要がある。パージを行う際、触媒にダメージを与えないために窒素ガスを用いることが好ましいが、窒素ガスボンベ等が必要となり経済的ではないという問題があった。
特開2001−239169号公報 特開2001−239170号公報 特開2001−327868号公報
These catalysts are reduced at a high temperature of 300 ° C. or higher before use. However, when the catalyst is actually used in the CO removing device, there is a problem that the catalyst is oxidized by oxygen in the air when the CO removing device is filled and deactivated.
In addition, in view of the safety of the CO removal device, it is necessary to purge the reformed gas remaining after the operation is completed. When purging, it is preferable to use nitrogen gas so as not to damage the catalyst, but there is a problem that a nitrogen gas cylinder or the like is required and it is not economical.
JP 2001-239169 A JP 2001-239170 A JP 2001-327868 A

本発明は、窒素含有ルテニウム化合物を用いてルテニウムを担持させたCO除去触媒の安定化方法及び活性化方法を提供することを目的とする。   An object of the present invention is to provide a method for stabilizing and activating a CO removal catalyst in which ruthenium is supported using a nitrogen-containing ruthenium compound.

本発明者らは、鋭意研究の結果、窒素含有ルテニウム化合物を用いてルテニウムを担持させたCO除去触媒は、300℃以上の還元後特定の安定化をすれば、その後空気に触れて失活しても、再度活性化するのに300℃以上の還元をする必要がなく、120℃以上の還元でよいこと、即ち、耐空気性が高いことを見出し、本発明を完成させた。
本発明によれば、以下のCO除去触媒の安定化方法及び活性化方法等が提供される。
1.耐火性酸化物担体に窒素含有ルテニウム化合物を用いてルテニウムを担持させたCO除去触媒を、水素含有ガス雰囲気下300℃以上600℃以下で還元し、前記水素含有ガス又は不活性ガス雰囲気下で降温し、その後、酸素含有ガス中で120℃以下に保った状態で、触媒を酸化安定化することを特徴とするCO除去触媒の安定化方法。
2.前記耐火性酸化物担体が、アルミナ、チタニア、シリカ、ジルコニア及びセリアから選ばれる少なくとも1種であり、前記窒素含有ルテニウム化合物が、硝酸ルテニウムであることを特徴とする1記載のCO除去触媒の安定化方法。
3.1又は2記載のCO除去触媒の安定化方法により、安定化されたことを特徴とするCO除去触媒。
4.炭化水素から水素リッチの改質ガスを生成する改質装置と、この改質ガスに含まれるCOを除去するCO除去装置を有する水素製造システムにおける、CO除去装置に充填するCO除去触媒の活性化方法であって、前記CO除去装置に、3記載のCO除去触媒を充填し、その後、前記CO除去触媒を150℃以上で還元することを特徴とするCO除去触媒の活性化方法。
5.炭化水素から水素リッチの改質ガスを生成する改質装置と、この改質ガスに含まれるCOを除去するCO除去装置を有する水素製造システムにおける、CO除去装置に充填するCO除去触媒の活性化方法であって、3記載のCO除去触媒を充填したCO除去装置を稼動した後、停止し、前記CO除去装置を空気でパージし、その後、前記CO除去触媒を150℃以上で還元することを特徴とするCO除去触媒の活性化方法。
6.前記120℃以上の還元が、水素含有ガス雰囲気下での還元、改質ガスの導入下での還元、又は、改質ガスと選択酸化に用いる空気の導入下での還元であることを特徴とする請求項4又は5記載のCO除去触媒の活性化方法。
As a result of diligent research, the inventors of the present invention have found that a CO removal catalyst in which ruthenium is supported using a nitrogen-containing ruthenium compound is deactivated by contact with air after specific stabilization after reduction at 300 ° C. or higher. However, it was not necessary to reduce at 300 ° C. or higher for reactivation, and it was found that reduction at 120 ° C. or higher was possible, that is, the air resistance was high, and the present invention was completed.
According to the present invention, the following CO removal catalyst stabilization method and activation method are provided.
1. A CO removal catalyst in which ruthenium is supported on a refractory oxide support using a nitrogen-containing ruthenium compound is reduced at 300 ° C. to 600 ° C. in a hydrogen-containing gas atmosphere, and the temperature is lowered in the hydrogen-containing gas or inert gas atmosphere. And then stabilizing the oxidation of the catalyst in a state maintained at 120 ° C. or lower in an oxygen-containing gas.
2. 2. The stability of a CO removal catalyst according to 1, wherein the refractory oxide support is at least one selected from alumina, titania, silica, zirconia and ceria, and the nitrogen-containing ruthenium compound is ruthenium nitrate. Method.
3. A CO removal catalyst stabilized by the method for stabilizing a CO removal catalyst according to 1 or 2.
4). Activation of a CO removal catalyst charged in a CO removal apparatus in a hydrogen production system having a reformer that generates a hydrogen-rich reformed gas from hydrocarbons and a CO removal device that removes CO contained in the reformed gas A method for activating a CO removal catalyst, comprising filling the CO removal apparatus with the CO removal catalyst according to 3, and then reducing the CO removal catalyst at 150 ° C or higher.
5. Activation of a CO removal catalyst charged in a CO removal apparatus in a hydrogen production system having a reformer that generates a hydrogen-rich reformed gas from hydrocarbons and a CO removal device that removes CO contained in the reformed gas A method comprising: operating a CO removal device filled with the CO removal catalyst according to 3 and then stopping the operation, purging the CO removal device with air, and then reducing the CO removal catalyst at 150 ° C. or higher. A method for activating a CO removal catalyst characterized by the above.
6). The reduction at 120 ° C. or higher is a reduction under a hydrogen-containing gas atmosphere, a reduction under introduction of a reformed gas, or a reduction under introduction of air used for reforming gas and selective oxidation. The method for activating a CO removal catalyst according to claim 4 or 5.

本発明によれば、窒素含有ルテニウム化合物を用いてルテニウムを担持させたCO除去触媒の安定化方法及び活性化方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the stabilization method and activation method of the CO removal catalyst which carry | supported ruthenium using the nitrogen containing ruthenium compound can be provided.

水素含有ガスの原料として炭化水素を用いて水素を製造するシステムは、通常、脱硫装置、改質装置、変成装置、CO除去装置からなる(硫黄を含入しない原料を用いる場合は、脱硫装置を省略可能である。また、メタノールやジメチルエーテル等低温で改質可能な炭化水素を原料とする場合は、変成装置が省略できる場合もある。)。
ここで、脱硫装置は炭化水素原料に含まれる硫黄分を除去する装置であり、改質装置は脱硫処理した炭化水素原料から水素を得る装置である。改質の際、水素と共にCOが発生するので、変成装置でCOをCOとHに変成させる。CO除去装置は変成装置で変成されなかったCOを除去する装置であり、本発明のCO除去触媒はこの装置に用いられる。
尚、本発明のCO除去触媒は、酸素存在下COからCOを生成する反応に寄与するが、この反応と共にCOとHからCHとHOを生成する反応(メタネーション)にも寄与している。
A system for producing hydrogen using a hydrocarbon as a raw material for a hydrogen-containing gas usually comprises a desulfurization device, a reforming device, a shift device, and a CO removal device (if a raw material not containing sulfur is used, a desulfurization device is used). In addition, when using hydrocarbons that can be reformed at low temperatures such as methanol and dimethyl ether as raw materials, the shift device may be omitted.)
Here, the desulfurization apparatus is an apparatus for removing sulfur contained in the hydrocarbon raw material, and the reforming apparatus is an apparatus for obtaining hydrogen from the desulfurized hydrocarbon raw material. Since CO is generated together with hydrogen during reforming, CO is converted into CO 2 and H 2 by a converter. The CO removal device is a device that removes CO that has not been transformed by the transformation device, and the CO removal catalyst of the present invention is used in this device.
The CO removal catalyst of the present invention contributes to the reaction of generating CO 2 from CO in the presence of oxygen, but also to the reaction (methanation) of generating CH 4 and H 2 O from CO and H 2 together with this reaction. Has contributed.

本発明で用いられるCO除去触媒は、担体に窒素含有ルテニウム化合物を用いてルテニウムを担持させたものである。
本発明のCO除去触媒に用いられる耐火性酸化物担体としては、例えば、アルミナ、チタニア、シリカ、ジルコニア及びセリアから選ばれるものを挙げることができる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。この中でも、触媒活性の点からアルミナが好ましく用いられる。
The CO removal catalyst used in the present invention is a catalyst in which ruthenium is supported on a carrier using a nitrogen-containing ruthenium compound.
Examples of the refractory oxide carrier used in the CO removal catalyst of the present invention include those selected from alumina, titania, silica, zirconia and ceria. These may be used alone or in combination of two or more. Among these, alumina is preferably used from the viewpoint of catalytic activity.

本発明のCO除去触媒に用いられる窒素含有ルテニウム化合物としては、例えば、Ru(NO、Ru(NO)(NO、Ru(OH)Cl・7NH・3HO、(Ru(NH14)Cl6・HO、(NH(RuCl(HO))、K(RuCl(NO))、K(Ru(CN))・nHO、K(Ru(NO(OH)(NO))、(Ru(NH)Cl、(Ru(NH)Br、(Ru(NH)Cl、(Ru(NH)Br、(Ru(NO)(NH)Cl、(Ru(OH)(NO)(NH)(NO等が挙げられる。これらのルテニウム化合物のうち、入手のしやすさの点から好ましくはRu(NO、Ru(NO)(NO、(Ru(NH)Cl、(Ru(NH)Cl、より好ましくはRu(NOを用いる。 Examples of the nitrogen-containing ruthenium compound used in the CO removal catalyst of the present invention include Ru (NO 3 ) 3 , Ru (NO) (NO 3 ) 3 , Ru 2 (OH) 2 Cl 4 .7NH 3 .3H 2 O , (Ru 3 O 2 (NH 3 ) 14 ) C 16 • H 2 O, (NH 4 ) 2 (RuCl 5 (H 2 O)), K 2 (RuCl 5 (NO)), K 4 (Ru (CN) ) 6 ) · nH 2 O, K 2 (Ru (NO 2 ) 4 (OH) (NO)), (Ru (NH 3 ) 6 ) Cl 3 , (Ru (NH 3 ) 6 ) Br 3 , (Ru ( NH 3 ) 6 ) Cl 2 , (Ru (NH 3 ) 6 ) Br 2 , (Ru (NO) (NH 3 ) 5 ) Cl 3 , (Ru (OH) (NO) (NH 3 ) 4 ) (NO 3 ) 2 etc. are mentioned. Among these ruthenium compounds, Ru (NO 3 ) 3 , Ru (NO) (NO 3 ) 3 , (Ru (NH 3 ) 6 ) Cl 3 , (Ru (NH 3 ) are preferable from the viewpoint of availability. 6 ) Cl 2 , more preferably Ru (NO 3 ) 3 is used.

本発明のCO除去触媒は、担体にルテニウム化合物を接触させ、その後乾燥/焼成させる(担持)。
まず、上記のルテニウム化合物を水、エタノール等に溶解させて、触媒調製液を作成する。この触媒調製液を用いて、通常の含浸法、共沈法、競争吸着法によりルテニウム化合物を担体に接触させる。この際、処理条件は、各種方法に応じて適宜選定すればよいが、通常、室温〜90℃の温度で1分〜10時間、担体を触媒調製液と接触させる。ルテニウム化合物の担持量は特に制限はないが、通常、担体に対してRuとして0.05〜10重量%が好ましい。
In the CO removal catalyst of the present invention, a ruthenium compound is brought into contact with a carrier and then dried / calcined (supported).
First, the above-described ruthenium compound is dissolved in water, ethanol or the like to prepare a catalyst preparation solution. Using this catalyst preparation solution, the ruthenium compound is brought into contact with the support by the usual impregnation method, coprecipitation method, or competitive adsorption method. At this time, the treatment conditions may be appropriately selected according to various methods. Usually, the support is brought into contact with the catalyst preparation solution at a temperature of room temperature to 90 ° C. for 1 minute to 10 hours. The amount of the ruthenium compound supported is not particularly limited, but is usually preferably 0.05 to 10% by weight as Ru with respect to the support.

接触後、担体を乾燥させる。乾燥方法としては、例えば自然乾燥、蒸発乾固法、ロータリーエバポレーターもしくは送風乾燥機による乾燥がいずれも使用可能である。乾燥後、焼成を行う場合は、通常、350〜550℃で、1〜6時間焼成する。   After contact, the carrier is dried. As the drying method, for example, natural drying, evaporation to dryness, drying using a rotary evaporator or an air dryer can be used. When baking is performed after drying, the baking is usually performed at 350 to 550 ° C. for 1 to 6 hours.

上述のように調製されたCO除去触媒の担持金属は、通常、使用した塩の状態、あるいは水酸化物か酸化物の状態で存在する。本発明ではこの触媒を使用前に水素含有ガス雰囲気下、300℃以上600℃以下で還元する。水素含有ガスとして、水素100%、又は窒素やヘリウム等の不活性ガスと水素との混合ガスを使用できる。還元は、通常、水素気流下、300〜600℃、好ましくは350〜500℃で、1〜5時間、好ましくは1〜2時間行う。   The supported metal of the CO removal catalyst prepared as described above is usually present in the state of the salt used, or in the state of hydroxide or oxide. In the present invention, the catalyst is reduced at 300 ° C. to 600 ° C. in a hydrogen-containing gas atmosphere before use. As the hydrogen-containing gas, 100% hydrogen or a mixed gas of inert gas such as nitrogen or helium and hydrogen can be used. The reduction is usually performed at 300 to 600 ° C., preferably 350 to 500 ° C. in a hydrogen stream for 1 to 5 hours, preferably 1 to 2 hours.

還元後、上記触媒を冷却する。冷却は、後述する酸化安定化する時の温度まで降温することを目的とし、酸化安定時に発熱することを考慮して酸化安定化時の温度より低くしておくことが望ましい。通常、水素含有ガス又は窒素ヘリウム等の不活性ガス雰囲気下で、120℃以下、好ましくは室温〜100℃、より好ましくは室温〜80℃で行う。   After the reduction, the catalyst is cooled. The purpose of cooling is to lower the temperature to the temperature at the time of oxidation stabilization, which will be described later, and it is desirable that the temperature be lower than the temperature at the time of oxidation stabilization in consideration of heat generation during the oxidation stabilization. Usually, it is carried out at 120 ° C. or lower, preferably room temperature to 100 ° C., more preferably room temperature to 80 ° C. in an inert gas atmosphere such as hydrogen-containing gas or nitrogen helium.

冷却後、上記触媒を酸素含有ガス中で酸化させて安定化させる。酸素含有ガスとして空気や、不活性ガスと空気を混合したガス等を使用できる。酸化は120℃以下、好ましくは室温〜100℃、より好ましくは室温〜60℃に保った状態で発熱が観測されなくなるまで行う。通常は30分〜2時間行う。120℃を超えると担持されたルテニウムが凝集する恐れが生じる。
この酸化は、例えば、初期は発熱を抑えるために酸素濃度の低いガス中で行い、徐々に酸素濃度を増やしていくことが好ましい。
After cooling, the catalyst is oxidized and stabilized in an oxygen-containing gas. As the oxygen-containing gas, air, a gas obtained by mixing an inert gas and air, or the like can be used. The oxidation is performed at 120 ° C. or less, preferably at room temperature to 100 ° C., more preferably at room temperature to 60 ° C. until no heat generation is observed. Usually 30 minutes to 2 hours. If the temperature exceeds 120 ° C., the supported ruthenium may aggregate.
For example, this oxidation is preferably initially performed in a gas having a low oxygen concentration in order to suppress heat generation, and the oxygen concentration is gradually increased.

このように安定化すると、この後空気に触れても、再度300℃以上の水素還元をする必要がなく、120℃以上の還元で活性化できる。通常、触媒は、CO除去装置に充填した状態で再度300℃以上の水素還元をしなければ活性化できないと予測されるが、本発明のCO除去触媒は空気安定性がよく120℃以上の還元で活性化できる。CO除去装置に充填した状態での高温での還元は困難であったため、本発明の活性化方法は非常に有利である。   When stabilized in this way, even if the air is subsequently touched, it is not necessary to perform hydrogen reduction at 300 ° C. or higher again, and activation can be achieved by reduction at 120 ° C. or higher. Normally, it is expected that the catalyst cannot be activated unless hydrogen reduction at 300 ° C. or higher is performed again in a state where the catalyst is filled in the CO removal apparatus. However, the CO removal catalyst of the present invention has good air stability and is reduced at 120 ° C. or higher. Can be activated. Since the reduction at a high temperature in a state where the CO removing apparatus is filled is difficult, the activation method of the present invention is very advantageous.

上記の方法で安定化したCO除去触媒をCO除去装置に充填する。
充填の際、CO除去触媒は空気に触れるので、充填後、CO除去装置を稼動させる前にCO除去触媒を活性化する必要がある。一度空気に触れたCO除去触媒は、120℃以上、好ましくは120〜200℃、より好ましくは150〜180℃で還元することにより活性が再現する。
The CO removal catalyst stabilized by the above method is charged into a CO removal apparatus.
Since CO removal catalyst contacts air at the time of filling, it is necessary to activate the CO removal catalyst after filling and before operating the CO removal apparatus. Once the CO removal catalyst has been exposed to air, the activity is reproduced by reduction at 120 ° C. or higher, preferably 120 to 200 ° C., more preferably 150 to 180 ° C.

例えば、触媒を120℃以上まで加熱するのに十分高温な改質ガス、又は改質ガスにCOの選択酸化用の空気を混合したガスを流す。また、改質ガスに代えて水素含有ガス雰囲気下で還元することでもCO除去触媒の活性は再現する。これらの還元は、好ましくは1〜60分、より好ましくは2〜30分行う。
この活性化の後、CO除去装置を稼動させる。活性化の後であれば、活性化した温度以下の温度でも稼動できる。
For example, a reformed gas having a temperature high enough to heat the catalyst to 120 ° C. or higher, or a gas in which reformed gas is mixed with air for selective oxidation of CO is allowed to flow. In addition, the activity of the CO removal catalyst can be reproduced by reducing in a hydrogen-containing gas atmosphere instead of the reformed gas. These reductions are preferably performed for 1 to 60 minutes, more preferably 2 to 30 minutes.
After this activation, the CO removal device is activated. If it is after activation, it can be operated even at a temperature below the activated temperature.

通常、活性化したCO除去触媒を充填したCO除去装置は、稼動した後停止、その後再び稼動することを繰り返す。例えば、燃料電池に連動する水素製造システムに備えられたCO除去装置は、燃料電池の使用、停止のたびに、稼動、停止を繰り返す。CO除去装置を停止する際は、安全上の観点からCO除去装置に残っている改質ガスをパージする必要がある。従来は窒素ガスでパ−ジしていたが、空気でパージすることもできる。空気パージは窒素ガスパージのようにガスボンベを必要としないので経済的であるが、空気によりCO除去触媒が酸化される。   Usually, the CO removing device filled with the activated CO removing catalyst is repeatedly operated after being operated and then stopped again. For example, a CO removal device provided in a hydrogen production system linked to a fuel cell is repeatedly operated and stopped every time the fuel cell is used or stopped. When stopping the CO removal device, it is necessary to purge the reformed gas remaining in the CO removal device from the viewpoint of safety. Conventionally, it was purged with nitrogen gas, but it can also be purged with air. Although air purge does not require a gas cylinder like nitrogen gas purge, it is economical, but the CO removal catalyst is oxidized by air.

本発明では空気パージを行った後、CO除去触媒を120℃以上で還元することにより再使用することができる。還元は、前述の充填後の還元と同様に、例えば、水素含有ガス雰囲気下、又は改質ガスあるいは改質ガスと選択酸化用空気の混合ガスを導入しながら、120℃以上、好ましくは120〜200℃、より好ましくは150〜180℃で、好ましくは1〜60分、より好ましくは2〜30分行う。
尚、空気パージは、好ましくは200℃以下、より好ましくは室温〜150℃、さらに好ましくは室温〜100℃で行う。200℃を超えると触媒の活性が低下する恐れがある。ここで、200℃以下とは、触媒層の中の最高温度が、200℃以下であることである。
In the present invention, after the air purge, the CO removal catalyst can be reused by reducing it at 120 ° C. or higher. The reduction is performed at a temperature of 120 ° C. or more, preferably 120 to 120 ° C., preferably in a hydrogen-containing gas atmosphere or while introducing a reformed gas or a mixed gas of reformed gas and selective oxidation air, as in the above-described reduction after filling. 200 degreeC, More preferably, it is 150-180 degreeC, Preferably it is 1 to 60 minutes, More preferably, it carries out for 2 to 30 minutes.
The air purge is preferably performed at 200 ° C. or less, more preferably at room temperature to 150 ° C., and even more preferably at room temperature to 100 ° C. If it exceeds 200 ° C., the activity of the catalyst may be reduced. Here, 200 degrees C or less means that the maximum temperature in a catalyst layer is 200 degrees C or less.

本発明の方法で処理されたCO除去触媒は、水素製造用原料を改質又は部分酸化することによって得られる水素を主成分とするガス(改質ガス)中のCOを選択的に除去するのに好適に利用される。
このようにして製造される水素は燃料電池に好適に利用されるが、これに限定されるものではない。
The CO removal catalyst treated by the method of the present invention selectively removes CO in a hydrogen-based gas (reformed gas) obtained by reforming or partially oxidizing a raw material for hydrogen production. Is suitably used.
Hydrogen produced in this way is preferably used for a fuel cell, but is not limited thereto.

調製例(触媒調製)
硝酸ルテニウム溶液(小島化学薬品製。ルテニウムの含有率=(ルテニウム金属として)50g/リットル)7mlをビーカーにとり、これにイオン交換水1mlを入れ、均一になるまで攪拌した。別のビーカーにγアルミナ担体(KHD24、住友化学工業製。直径2〜4mmの球状)20gを量り取った。
このアルミナ担体をガラス棒でよくかき混ぜる中に上記希釈硝酸ルテニウム溶液を滴下した後、さらに硝酸ルテニウム溶液のほとんどがアルミナ担体に吸収されるまで5分間攪拌を続けた。硝酸ルテニウム溶液を吸収したアルミナ担体は焼成皿に回収し、これを120℃で3時間静置乾燥することによりルテニウム触媒を得た。
Preparation example (catalyst preparation)
7 ml of a ruthenium nitrate solution (manufactured by Kojima Chemical Co., Ltd., ruthenium content = 50 g / liter (as ruthenium metal)) was placed in a beaker, and 1 ml of ion-exchanged water was added thereto and stirred until uniform. In another beaker, 20 g of γ-alumina carrier (KHD24, manufactured by Sumitomo Chemical Co., Ltd., spherical shape having a diameter of 2 to 4 mm) was weighed.
The diluted ruthenium nitrate solution was added dropwise while stirring the alumina support well with a glass rod, and the stirring was continued for 5 minutes until most of the ruthenium nitrate solution was absorbed by the alumina support. The alumina carrier that absorbed the ruthenium nitrate solution was recovered in a baking dish, and this was left to stand at 120 ° C. for 3 hours to obtain a ruthenium catalyst.

参考例
上記調製例で調製した触媒2.5ccを量り取り、反応器に充填した。反応器中450℃で、以下の条件で水素還元を実施した(初期還元)。その後、水素気流中降温し、原料ガスを流入させてCO除去反応を開始した。反応条件を下記する。
1.水素還元条件
温度:450℃
圧力:大気圧
時間:1時間
水素濃度:100%
GHSV:6,000h−1
2.反応条件
温度:115℃
圧力:大気圧
GHSV:14,000h−1
原料ガス組成(容量%):CO/CO/O/N/HO/H
=0.6/15/0.9/3.5/20/Balance
反応時間:45分
上記条件中のGHSVは、供給ガスの標準状態における供給体積速度を使用する触媒層のみかけの体積で割った値(ガス空間速度)である。
尚、反応時の出口CO濃度は、15ppmであった。
Reference Example 2.5 cc of the catalyst prepared in the above preparation example was weighed and charged into a reactor. Hydrogen reduction was performed in the reactor at 450 ° C. under the following conditions (initial reduction). Thereafter, the temperature was lowered in a hydrogen stream, and the raw material gas was introduced to initiate the CO removal reaction. The reaction conditions are as follows.
1. Hydrogen reduction conditions Temperature: 450 ℃
Pressure: Atmospheric pressure Time: 1 hour Hydrogen concentration: 100%
GHSV: 6,000 h −1
2. Reaction conditions Temperature: 115 ° C
Pressure: Atmospheric pressure GHSV: 14,000 h −1
Raw material gas composition (volume%): CO / CO 2 / O 2 / N 2 / H 2 O / H 2
= 0.6 / 15 / 0.9 / 3.5 / 20 / Balance
Reaction time: 45 minutes GHSV in the above conditions is a value (gas space velocity) divided by the apparent volume of the catalyst layer using the supply volume velocity in the standard state of the feed gas.
The outlet CO concentration during the reaction was 15 ppm.

実施例1
触媒を10cc量り取り、反応器に充填した。それを参考例と同様の条件で水素還元した(初期還元)。この際、触媒量が多いので、GHSVをそろえるために、水素流量は多くした。
その後、水素100%の条件で39℃まで降温した。窒素ガスにて水素をパージした後、空気(酸素21%、窒素79%)を200cc/分で30分間流し、触媒を安定化した。30分間で発熱がなくなった。この時の触媒層の最高温度は59℃であった。
この触媒を反応器から取り出し、1日空気中に放置した。
次に、この触媒の中から2.5cc量り取り、反応器に充填した。還元温度を200℃に変えた以外は参考例と同一条件で水素還元を実施した。
その後、参考例と同一条件で反応を実施した。
反応時の出口CO濃度は16ppmであった。
Example 1
10 cc of catalyst was weighed and charged into the reactor. It was subjected to hydrogen reduction under the same conditions as in Reference Example (initial reduction). At this time, since the amount of catalyst was large, the hydrogen flow rate was increased in order to align GHSV.
Thereafter, the temperature was lowered to 39 ° C. under the condition of 100% hydrogen. After purging hydrogen with nitrogen gas, air (21% oxygen, 79% nitrogen) was allowed to flow at 200 cc / min for 30 minutes to stabilize the catalyst. The fever disappeared in 30 minutes. The maximum temperature of the catalyst layer at this time was 59 ° C.
The catalyst was removed from the reactor and left in the air for one day.
Next, 2.5 cc of the catalyst was weighed and charged into the reactor. Hydrogen reduction was carried out under the same conditions as in the reference example except that the reduction temperature was changed to 200 ° C.
Then, reaction was implemented on the same conditions as a reference example.
The outlet CO concentration during the reaction was 16 ppm.

実施例2
本実施例においては、安定化開始温度を74℃とした。安定化時の触媒層の最高温度は100℃であった。他は実施例1と同じ条件で、初期還元−安定化−還元−反応を実施した。
反応時の出口CO濃度は3ppmであった。
Example 2
In this example, the stabilization start temperature was set to 74 ° C. The maximum temperature of the catalyst layer at the time of stabilization was 100 ° C. Otherwise, the initial reduction-stabilization-reduction-reaction was carried out under the same conditions as in Example 1.
The outlet CO concentration during the reaction was 3 ppm.

実施例3
本実施例においては、安定化開始温度を103℃とした。安定化時の触媒層の最高温度は120℃であった。他は実施例1と同じ条件で、初期還元−安定化−還元−反応を実施した。
反応時の出口CO濃度は19ppmであった。
Example 3
In this example, the stabilization start temperature was 103 ° C. The maximum temperature of the catalyst layer at the time of stabilization was 120 ° C. Otherwise, the initial reduction-stabilization-reduction-reaction was carried out under the same conditions as in Example 1.
The outlet CO concentration during the reaction was 19 ppm.

実施例4
本実施例においては、安定化開始温度は39℃と実施例1と同じにしたが、安定化時の触媒層の最高温度は60℃であった。その後の反応前還元を150℃にて実施した。他は実施例1と同じ条件で、初期還元−安定化−還元−反応を実施した。
反応時の出口CO濃度は16ppmであった。
Example 4
In this example, the stabilization start temperature was 39 ° C., which was the same as in Example 1. However, the maximum temperature of the catalyst layer during stabilization was 60 ° C. Subsequent pre-reaction reduction was carried out at 150 ° C. Otherwise, the initial reduction-stabilization-reduction-reaction was carried out under the same conditions as in Example 1.
The outlet CO concentration during the reaction was 16 ppm.

実施例5
本実施例においては、反応前還元を120℃にて実施した。他は実施例1と同じ条件で、初期還元−安定化−還元−反応を実施した。
反応時の出口CO濃度は20ppmであった。
Example 5
In this example, the pre-reaction reduction was performed at 120 ° C. Otherwise, the initial reduction-stabilization-reduction-reaction was carried out under the same conditions as in Example 1.
The outlet CO concentration during the reaction was 20 ppm.

実施例6
本実施例においては、初期の還元温度を450℃から300℃に変えた。また、安定化時の触媒層の最高温度は、57℃であった。他は実施例1と同じ条件で、初期還元−安定化−還元−反応を実施した。
反応時の出口CO濃度は17ppmであった。
Example 6
In this example, the initial reduction temperature was changed from 450 ° C. to 300 ° C. Moreover, the maximum temperature of the catalyst layer at the time of stabilization was 57 degreeC. Otherwise, the initial reduction-stabilization-reduction-reaction was carried out under the same conditions as in Example 1.
The outlet CO concentration during the reaction was 17 ppm.

比較例1
本実施例においては、安定化開始温度を117℃とした。安定化時の触媒層の最高温度は142℃であった。他は実施例1と同じ条件で、初期還元−安定化−還元−反応を実施した。
反応時の出口CO濃度は33ppmであった。
Comparative Example 1
In this example, the stabilization start temperature was 117 ° C. The maximum temperature of the catalyst layer at the time of stabilization was 142 ° C. Otherwise, the initial reduction-stabilization-reduction-reaction was carried out under the same conditions as in Example 1.
The outlet CO concentration during the reaction was 33 ppm.

比較例2
本実施例においては、安定化開始温度を137℃とした。安定化時の触媒層の最高温度は165℃であった。他は実施例1と同じ条件で、初期還元−安定化−還元−反応を実施した。
反応時の出口CO濃度は36ppmであった。
Comparative Example 2
In this example, the stabilization start temperature was 137 ° C. The maximum temperature of the catalyst layer at the time of stabilization was 165 ° C. Otherwise, the initial reduction-stabilization-reduction-reaction was carried out under the same conditions as in Example 1.
The outlet CO concentration during the reaction was 36 ppm.

比較例3
本実施例においては、初期の還元温度を250℃とした。また、安定化開始温度は39℃と実施例1と同じとしたが、安定化時の最高温度は56℃であった。他は実施例1と同じ条件で、初期還元−安定化−還元−反応を実施した。
反応時の出口CO濃度は54ppmであった。
Comparative Example 3
In this example, the initial reduction temperature was 250 ° C. The stabilization start temperature was 39 ° C., which was the same as in Example 1. However, the maximum temperature during stabilization was 56 ° C. Otherwise, the initial reduction-stabilization-reduction-reaction was carried out under the same conditions as in Example 1.
The outlet CO concentration during the reaction was 54 ppm.

比較例4
本実施例においては、反応前還元を80℃にて実施した。他は実施例1と同じ条件で、初期還元−安定化−還元−反応を実施した。
反応時の出口CO濃度は41ppmであった。
Comparative Example 4
In this example, the pre-reaction reduction was performed at 80 ° C. Otherwise, the initial reduction-stabilization-reduction-reaction was carried out under the same conditions as in Example 1.
The outlet CO concentration during the reaction was 41 ppm.

実施例7
実施例1と同じ条件で、初期還元−安定化を実施した。その後、水素還元に代わり、前述した組成の原料ガス(改質ガス)を150℃にて30分間流通させ、次に115℃まで温度を下げて反応を実施した。
反応時の出口CO濃度は15ppmであった。
その後反応ガスを止め、何も流通させずに100℃まで降温した。次に、50cc/分の空気にて残存ガスをパージしたところ119℃まで発熱した。
続いて、空気を前述した原料ガスに切り替え、150℃まで昇温して30分間流通させた。さらにその後、115℃まで温度を下げて反応を実施した。
この2回目の反応時の出口CO濃度は18ppmであった。
Example 7
Under the same conditions as in Example 1, initial reduction-stabilization was performed. Then, instead of hydrogen reduction, the raw material gas (reformed gas) having the above-described composition was circulated at 150 ° C. for 30 minutes, and then the temperature was lowered to 115 ° C. to carry out the reaction.
The outlet CO concentration during the reaction was 15 ppm.
Thereafter, the reaction gas was stopped, and the temperature was lowered to 100 ° C. without any flow. Next, when the residual gas was purged with air at 50 cc / min, heat was generated up to 119 ° C.
Subsequently, the air was switched to the above-described source gas, and the temperature was raised to 150 ° C. and allowed to flow for 30 minutes. Thereafter, the temperature was lowered to 115 ° C. to carry out the reaction.
The outlet CO concentration during the second reaction was 18 ppm.

Figure 0004705375
Figure 0004705375

以上のように、実施例では反応時の出口CO濃度が20ppm以下まで下がり、非常に良好なCO除去活性が得られた。
一方、比較例1、2のように、酸化安定化時の触媒層の最高温度が、120℃を超えた場合には、反応時の出口CO濃度は、それぞれ、33、36ppmであり、30ppmを超えた。
また、比較例3のように、初期の還元温度が300℃より低い場合も、その後の酸化安定化、還元を実施例1と同様に行った場合でも、反応時の出口CO濃度は54ppmと高い。
比較例4では、初期還元−酸化安定化までは、実施例1と同一条件であるが、反応前還元を80℃で実施したため、活性化が十分ではなく反応時のCO濃度は41ppmであった。ただし反応は115℃で実施し、反応時間は45分であるため反応前還元は115℃で実施したといえる。
As described above, in the examples, the outlet CO concentration during the reaction decreased to 20 ppm or less, and very good CO removal activity was obtained.
On the other hand, as in Comparative Examples 1 and 2, when the maximum temperature of the catalyst layer during oxidation stabilization exceeded 120 ° C, the outlet CO concentrations during the reaction were 33 and 36 ppm, respectively, and 30 ppm. Beyond.
Further, even when the initial reduction temperature is lower than 300 ° C. as in Comparative Example 3, even when the subsequent oxidation stabilization and reduction are performed in the same manner as in Example 1, the outlet CO concentration during the reaction is as high as 54 ppm. .
In Comparative Example 4, the conditions until the initial reduction-oxidation stabilization were the same as in Example 1, but since the pre-reduction reduction was performed at 80 ° C., activation was not sufficient and the CO concentration during the reaction was 41 ppm. . However, since the reaction was carried out at 115 ° C. and the reaction time was 45 minutes, it can be said that the reduction before the reaction was carried out at 115 ° C.

本発明のCO除去触媒の安定化方法及び活性化方法は、燃料電池等に使用される水素を製造するシステムに利用できる。
また、本発明の方法により処理されたCO除去触媒によって得られた水素含有ガスは、各種のH2 燃焼型燃料電池の燃料として好適に使用することができ、特に、少なくとも燃料極(負極)の電極に白金(白金触媒)を用いるタイプの各種のH2 燃焼型燃料電池(リン酸型燃料電池、KOH型燃料電池、固体高分子型燃料電池をはじめとする低温作動型燃料電池等)への供給燃料として利用することができる。
The method for stabilizing and activating a CO removal catalyst of the present invention can be used in a system for producing hydrogen used in fuel cells and the like.
Further, the hydrogen-containing gas obtained by the CO removal catalyst treated by the method of the present invention can be suitably used as a fuel for various H 2 combustion type fuel cells, and particularly at least the fuel electrode (negative electrode). To various H 2 combustion type fuel cells (Phosphate type fuel cells, KOH type fuel cells, polymer electrolyte fuel cells and other low temperature operation type fuel cells) using platinum (platinum catalyst) as an electrode It can be used as a supply fuel.

Claims (6)

耐火性酸化物担体に窒素含有ルテニウム化合物を用いてルテニウムを担持させたCO除去触媒を、
水素含有ガス雰囲気下300℃以上600℃以下で還元し、
前記水素含有ガス又は不活性ガス雰囲気下で降温し、
その後、酸素含有ガス中で120℃以下に保った状態で、発熱がなくなるまで、触媒を酸化安定化することを特徴とするCO除去触媒の安定化方法。
A CO removal catalyst in which ruthenium is supported using a nitrogen-containing ruthenium compound on a refractory oxide carrier,
Reduction at 300 ° C. to 600 ° C. in a hydrogen-containing gas atmosphere,
Lowering the temperature in the hydrogen-containing gas or inert gas atmosphere,
Thereafter, the method for stabilizing a CO removal catalyst is characterized in that the catalyst is oxidized and stabilized in an oxygen-containing gas at 120 ° C. or lower until no heat is generated .
前記耐火性酸化物担体が、アルミナ、チタニア、シリカ、ジルコニア及びセリアから選ばれる少なくとも1種であり、
前記窒素含有ルテニウム化合物が、硝酸ルテニウムであることを特徴とする請求項1記載のCO除去触媒の安定化方法。
The refractory oxide carrier is at least one selected from alumina, titania, silica, zirconia and ceria;
The method for stabilizing a CO removal catalyst according to claim 1, wherein the nitrogen-containing ruthenium compound is ruthenium nitrate.
請求項1又は2記載のCO除去触媒の安定化方法により、安定化されたことを特徴とするCO除去触媒。   A CO removal catalyst stabilized by the method for stabilizing a CO removal catalyst according to claim 1 or 2. 炭化水素から水素リッチの改質ガスを生成する改質装置と、この改質ガスに含まれるCOを除去するCO除去装置を有する水素製造システムにおける、CO除去装置に充填するCO除去触媒の活性化方法であって、
前記CO除去装置に、請求項3記載のCO除去触媒を充填し、
その後、前記CO除去触媒を120℃以上で還元することを特徴とするCO除去触媒の活性化方法。
Activation of a CO removal catalyst charged in a CO removal apparatus in a hydrogen production system having a reformer that generates a hydrogen-rich reformed gas from hydrocarbons and a CO removal device that removes CO contained in the reformed gas A method,
The CO removal apparatus is filled with the CO removal catalyst according to claim 3,
Then, the CO removal catalyst is reduced at 120 ° C. or higher, and the CO removal catalyst activation method.
炭化水素から水素リッチの改質ガスを生成する改質装置と、この改質ガスに含まれるCOを除去するCO除去装置を有する水素製造システムにおける、CO除去装置に充填するCO除去触媒の活性化方法であって、
請求項3記載のCO除去触媒を充填したCO除去装置を稼動した後、停止し、
前記CO除去装置を空気でパージし、
その後、前記CO除去触媒を120℃以上で還元することを特徴とするCO除去触媒の活性化方法。
Activation of a CO removal catalyst charged in a CO removal apparatus in a hydrogen production system having a reformer that generates a hydrogen-rich reformed gas from hydrocarbons and a CO removal device that removes CO contained in the reformed gas A method,
After operating the CO removal device filled with the CO removal catalyst according to claim 3, stop,
Purging the CO remover with air;
Then, the CO removal catalyst is reduced at 120 ° C. or higher, and the CO removal catalyst activation method.
前記120℃以上の還元が、
水素含有ガス雰囲気下での還元、
改質ガスの導入下での還元、又は、
改質ガスと選択酸化に用いる空気の導入下での還元であることを特徴とする請求項4又は5記載のCO除去触媒の活性化方法。
The reduction at 120 ° C. or higher
Reduction under a hydrogen-containing gas atmosphere,
Reduction with introduction of reformed gas, or
6. The method for activating a CO removal catalyst according to claim 4 or 5, wherein the reduction is performed by introducing reformed gas and air used for selective oxidation.
JP2005005373A 2005-01-12 2005-01-12 Method for stabilizing and activating CO removal catalyst Active JP4705375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005005373A JP4705375B2 (en) 2005-01-12 2005-01-12 Method for stabilizing and activating CO removal catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005005373A JP4705375B2 (en) 2005-01-12 2005-01-12 Method for stabilizing and activating CO removal catalyst

Publications (2)

Publication Number Publication Date
JP2006192349A JP2006192349A (en) 2006-07-27
JP4705375B2 true JP4705375B2 (en) 2011-06-22

Family

ID=36798829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005005373A Active JP4705375B2 (en) 2005-01-12 2005-01-12 Method for stabilizing and activating CO removal catalyst

Country Status (1)

Country Link
JP (1) JP4705375B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029804A (en) * 1996-07-12 1998-02-03 Toyota Motor Corp Carbon monoxide concentration-reducing device and method thereof
JPH1029802A (en) * 1996-07-15 1998-02-03 Asahi Chem Ind Co Ltd Purifying method of hydrogen for fuel cell
JPH11178204A (en) * 1997-12-05 1999-07-02 Mitsubishi Electric Corp Relaying device for network protection
JP2000178007A (en) * 1998-12-18 2000-06-27 Matsushita Electric Ind Co Ltd Hydrogen purifier
JP2001239170A (en) * 2000-03-03 2001-09-04 Idemitsu Kosan Co Ltd Method for manufacturing catalyst for removing co in hydrogen-containing gas, catalyst manufactured by the method, and method for removing co in hydrogen- containing gas using the catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029804A (en) * 1996-07-12 1998-02-03 Toyota Motor Corp Carbon monoxide concentration-reducing device and method thereof
JPH1029802A (en) * 1996-07-15 1998-02-03 Asahi Chem Ind Co Ltd Purifying method of hydrogen for fuel cell
JPH11178204A (en) * 1997-12-05 1999-07-02 Mitsubishi Electric Corp Relaying device for network protection
JP2000178007A (en) * 1998-12-18 2000-06-27 Matsushita Electric Ind Co Ltd Hydrogen purifier
JP2001239170A (en) * 2000-03-03 2001-09-04 Idemitsu Kosan Co Ltd Method for manufacturing catalyst for removing co in hydrogen-containing gas, catalyst manufactured by the method, and method for removing co in hydrogen- containing gas using the catalyst

Also Published As

Publication number Publication date
JP2006192349A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
KR101193163B1 (en) Catalyst for oxidizing carbon monoxide and method of producing the same
JP4304187B2 (en) Carbon monoxide removal catalyst system, fuel processing apparatus and fuel cell system
WO2001093355A2 (en) Process for carbon monoxide preferential oxidation for use with fuel cells
TWI294413B (en) Method for converting co and hydrogen into methane and water
JP4284028B2 (en) Carbon monoxide removal method and fuel cell system operating method using the same
JP2005200266A (en) Reforming method, reformer, power generator and fuel vessel
JP2006239551A (en) Co methanizing catalyst, co removing catalyst device and fuel cell system
JP2006190586A (en) Method of using co selective oxidation reactor
JP4705375B2 (en) Method for stabilizing and activating CO removal catalyst
US7029640B2 (en) Process for selective oxidation of carbon monoxide in a hydrogen containing stream
MXPA02006437A (en) Process for selective oxidation of carbon monoxide in a hydrogen containing stream.
JP4820106B2 (en) Method for reducing CO selective oxidation catalyst
US8349762B2 (en) Method for producing catalyst for use in preferential oxidation reaction of carbon monoxide
JP2008200614A (en) Carbon monoxide oxidation catalyst and method for manufacturing the same, hydrogen generator, and fuel cell system
JP2008200614A5 (en)
JP4551745B2 (en) CO removal catalyst and method for producing the same
JP4970719B2 (en) CO removal catalyst and method for producing the same
JP2009149762A (en) Fuel oil for hydrogen preparation, and hydrogen preparation using it
US20050288180A1 (en) Catalyst for selective oxidation of carbon monoxide in reformed gas
JP4064953B2 (en) Method for producing preferential oxidation catalyst and catalyst for PROX reaction
JP4246978B2 (en) Cu-containing catalyst
JP2010184237A (en) Co-removing catalyst and method for producing the same
KR20070107501A (en) Methanation catalyst and fuel processor and fuel cell comprising the methanation catalyst
JP2001302205A (en) Method for reducing carbon monoxide in hydrogen- containing gas, and catalyst
JP2008264781A (en) Method of activating carbon monoxide removing catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110311

R150 Certificate of patent or registration of utility model

Ref document number: 4705375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150