JP4970719B2 - CO removal catalyst and method for producing the same - Google Patents

CO removal catalyst and method for producing the same Download PDF

Info

Publication number
JP4970719B2
JP4970719B2 JP2004337632A JP2004337632A JP4970719B2 JP 4970719 B2 JP4970719 B2 JP 4970719B2 JP 2004337632 A JP2004337632 A JP 2004337632A JP 2004337632 A JP2004337632 A JP 2004337632A JP 4970719 B2 JP4970719 B2 JP 4970719B2
Authority
JP
Japan
Prior art keywords
alumina
hydrogen
catalyst
ruthenium
removal catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004337632A
Other languages
Japanese (ja)
Other versions
JP2006142240A (en
Inventor
正浩 吉仲
哲也 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2004337632A priority Critical patent/JP4970719B2/en
Publication of JP2006142240A publication Critical patent/JP2006142240A/en
Application granted granted Critical
Publication of JP4970719B2 publication Critical patent/JP4970719B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、水素製造システムや燃料電池システム等に使用されるCO除去触媒及びその製造方法に関する。   The present invention relates to a CO removal catalyst used in a hydrogen production system, a fuel cell system, and the like, and a production method thereof.

近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術の一つとして燃料電池が注目されている。この燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換するものであって、エネルギーの利用効率が高いという特徴を有しており、民生用、産業用あるいは自動車用等として、実用化研究が積極的になされている。   In recent years, new energy technology has attracted attention due to environmental problems, and fuel cells are attracting attention as one of the new energy technologies. This fuel cell converts chemical energy into electrical energy by electrochemically reacting hydrogen and oxygen, and has a feature of high energy use efficiency. Or, practical research has been actively conducted for automobiles and the like.

水素源として石油系炭化水素を用いて水素を製造する場合、一般に、炭化水素を、改質触媒の存在下に水蒸気改質又は部分酸化改質処理する方法が用いられる。そして、これらの反応において得られる水素含有ガスには、通常、目的とする水素ガスとともにCOが含まれる。燃料電池中にCOがあるレベル以上含まれていると燃料電池の発電性能が低下したり、濃度によっては全く発電ができなくなってしまうという重大な問題が発生する。従って、このCOを無害なCO2
等に転化し、燃料電池の燃料中のCO濃度を減少させる技術の開発が強く望まれている。
In the case of producing hydrogen using petroleum-based hydrocarbons as a hydrogen source, generally, a method of subjecting hydrocarbons to steam reforming or partial oxidation reforming in the presence of a reforming catalyst is used. The hydrogen-containing gas obtained in these reactions usually contains CO together with the target hydrogen gas. If the fuel cell contains more than a certain level of CO, there will be a serious problem that the power generation performance of the fuel cell will be reduced, or depending on the concentration, it will be impossible to generate power at all. Therefore, this CO is harmless CO 2
The development of a technology for reducing the CO concentration in the fuel of the fuel cell is strongly desired.

改質ガス中のCOの濃度を低減させる手段の一つとして、燃料ガス中に酸素又は酸素含有ガス(空気等)を導入し、COをCO2 に変換する方法が提案されている。この際、できる限り水素は酸化しないでCOだけを選択的に酸化する触媒を使用することが望ましい。COの選択的酸化触媒として、特許文献1〜3には、アルミナに硝酸ルテニウムを担持させた触媒が開示されている。 As one means for reducing the concentration of CO in the reformed gas, a method of converting CO into CO 2 by introducing oxygen or an oxygen-containing gas (such as air) into the fuel gas has been proposed. At this time, it is desirable to use a catalyst that selectively oxidizes only CO without oxidizing hydrogen as much as possible. As selective oxidation catalysts for CO, Patent Documents 1 to 3 disclose catalysts in which ruthenium nitrate is supported on alumina.

ルテニウム化合物を担体に担持させる方法として、担体をルテニウム化合物の溶液に含浸させる方法がある。通常は、Incipient wetness法により、担体に、担体の吸水量とほぼ同量のルテニウム化合物溶液を含浸する。この方法では、含浸操作時に加熱操作や排気操作の必要がなく、簡便かつ、効率よく触媒を調製できる。   As a method of supporting a ruthenium compound on a carrier, there is a method of impregnating a carrier with a solution of a ruthenium compound. Usually, the carrier is impregnated with a ruthenium compound solution in an amount substantially equal to the amount of water absorbed by the carrier by a wet wetness method. In this method, there is no need for a heating operation or an exhaust operation during the impregnation operation, and a catalyst can be prepared easily and efficiently.

一方、CO除去触媒は、主にCOを酸素で酸化してCOにする反応を触媒するが、副反応であるCOを水素で還元してメタン(CH)を生成する反応も触媒する(COメタネーション)。この副反応は水素製造システムの生成目的物である水素を消費するため好ましくない。
特開2001−239169号公報 特開2001−239170号公報 特開2001−327868号公報
On the other hand, the CO removal catalyst mainly catalyzes the reaction of oxidizing CO with oxygen to CO 2 , but also catalyzing the reaction of reducing CO with hydrogen as a side reaction to produce methane (CH 4 ) ( CO methanation). This side reaction is not preferable because it consumes hydrogen which is a product of the hydrogen production system.
JP 2001-239169 A JP 2001-239170 A JP 2001-327868 A

本発明は、COメタネーション活性が低いCO除去触媒及びその製造方法を提供することを目的とする。   An object of this invention is to provide the CO removal catalyst with low CO methanation activity, and its manufacturing method.

本発明によれば、以下のCO除去触媒及びその製造方法等が提供される。
1.耐火性酸化物担体に、前記耐火性酸化物担体の吸水量の1.1〜1.3倍容量のルテニウム化合物溶液を、含浸させることを特徴とするCO除去触媒の製造方法。
2.前記耐火性酸化物担体が、アルミナ、チタニア、シリカ、ジルコニア及びセリアから選ばれる少なくとも1種であることを特徴とする1記載のCO除去触媒の製造方法。
3.前記ルテニウム化合物が、硝酸ルテニウムであることを特徴とする1又は2記載のCO除去触媒の製造方法。
4.1〜3のいずれか一項記載の製造方法により得られることを特徴とするCO除去触媒。
5.4記載のCO除去触媒を充填したCO除去装置を備えたことを特徴とする水素ガス製造システム。
According to the present invention, the following CO removal catalyst and the production method thereof are provided.
1. A method for producing a CO removal catalyst, comprising impregnating a refractory oxide carrier with a ruthenium compound solution having a volume of 1.1 to 1.3 times the water absorption amount of the refractory oxide carrier.
2. 2. The method for producing a CO removal catalyst according to 1, wherein the refractory oxide carrier is at least one selected from alumina, titania, silica, zirconia and ceria.
3. 3. The method for producing a CO removal catalyst according to 1 or 2, wherein the ruthenium compound is ruthenium nitrate.
A CO removal catalyst obtained by the production method according to any one of 4.1 to 3.
A hydrogen gas production system comprising a CO removal device filled with the CO removal catalyst described in 5.4.

本発明によれば、COメタネーション活性が低いCO除去触媒及びその製造方法が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the CO removal catalyst with low CO methanation activity and its manufacturing method can be provided.

本発明のCO除去触媒は、耐火性酸化物担体にルテニウム化合物を担持させたものである。
本発明のCO除去触媒に用いられる耐火性酸化物担体としては、例えば、アルミナ、チタニア、シリカ、ジルコニア及びセリアから選ばれるものを挙げることができる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。この中でも、触媒活性の点からアルミナが好ましく用いられる。さらに好ましくは、γ−アルミナが用いられる。
The CO removal catalyst of the present invention is obtained by supporting a ruthenium compound on a refractory oxide carrier.
Examples of the refractory oxide carrier used in the CO removal catalyst of the present invention include those selected from alumina, titania, silica, zirconia and ceria. These may be used alone or in combination of two or more. Among these, alumina is preferably used from the viewpoint of catalytic activity. More preferably, γ-alumina is used.

本発明のCO除去触媒に用いられるルテニウム化合物としては、例えば、Ru(NO、Ru(NO)(NO、Ru(OH)Cl・7NH・3HO、(Ru(NH14)Cl6・HO、(NH(RuCl(HO))、K(RuCl(NO))、K(Ru(CN))・nHO、K(Ru(NO(OH)(NO))、(Ru(NH)Cl、(Ru(NH)Br、(Ru(NH)Cl、(Ru(NH)Br、(Ru(NO)(NH)Cl、(Ru(OH)(NO)(NH)(NO、RuCl・nHO、K(RuCl(HO))、RuBr・nHO、NaRuO、(RuO(OAc)(HO))OAc・nHO、RuCl(PPh、RuCl(PPh、(RuClH(PPh・C、RuH(PPh、RuClH(CO)(PPh、RuH(CO)(PPh、(RuCl(cod))n、Ru(CO)12、Ru(acac)、(Ru(HCOO)(CO))n、Ru(p−cymene)等が挙げられる。上記化学式で、Acはアセチル基、Phはフェニル基、codはシクロオクタジエン基、acacはアセチルアセトナトイオン、p−cymeneはp−シメン基である。これらのルテニウム化合物のうち、調製、入手の容易さの点から好ましくはRu(NO、RuCl・nHO、(Ru(NH)Cl、(Ru(NH)Cl、より好ましくはRu(NOを用いる。 Examples of the ruthenium compound used in the CO removal catalyst of the present invention include Ru (NO 3 ) 3 , Ru (NO) (NO 3 ) 3 , Ru 2 (OH) 2 Cl 4 .7NH 3 .3H 2 O, ( Ru 3 O 2 (NH 3 ) 14 ) C 16 · H 2 O, (NH 4 ) 2 (RuCl 5 (H 2 O)), K 2 (RuCl 5 (NO)), K 4 (Ru (CN) 6 ) .NH 2 O, K 2 (Ru (NO 2 ) 4 (OH) (NO)), (Ru (NH 3 ) 6 ) Cl 3 , (Ru (NH 3 ) 6 ) Br 3 , (Ru (NH 3 6 ) Cl 2 , (Ru (NH 3 ) 6 ) Br 2 , (Ru (NO) (NH 3 ) 5 ) Cl 3 , (Ru (OH) (NO) (NH 3 ) 4 ) (NO 3 ) 2 , RuCl 3 · nH 2 O, K 2 (RuCl 5 (H 2 O)), RuBr 3 nH 2 O, Na 2 RuO 4 , (Ru 3 O (OAc) 6 (H 2 O) 3) OAc · nH 2 O, RuCl 2 (PPh 3) 3, RuCl 2 (PPh 3) 4, (RuClH (PPh 3 ) 3 · C 7 H 8 , RuH 2 (PPh 3 ) 4 , RuClH (CO) (PPh 3 ) 3 , RuH 2 (CO) (PPh 3 ) 3 , (RuCl 2 (cod)) n, Ru (CO ) 12 , Ru (acac) 3 , (Ru (HCOO) (CO) 2 ) n, Ru 2 I 4 (p-cymene) 2, etc. In the above chemical formula, Ac is an acetyl group, Ph is a phenyl group, cod is a cyclooctadiene group, acac is an acetylacetonate ion, and p-cymene is a p-cymene group, among these ruthenium compounds, which are preferable from the viewpoint of easy preparation and availability. Is properly Ru (NO 3) 3, RuCl 3 · nH 2 O, (Ru (NH 3) 6) Cl 3, (Ru (NH 3) 6) Cl 2, and more preferably using Ru (NO 3) 3.

本発明のCO除去触媒は、耐火性酸化物担体にルテニウム化合物溶液を含浸させ、その後、通常、乾燥/焼成させる。
まず、上記のルテニウム化合物を水、エタノール、硝酸等に溶解させて、ルテニウム化合物溶液を作成する。ルテニウム化合物溶液において、ルテニウム化合物の含有量は、通常、10重量%以下であり、好ましくは6重量%以下である。ルテニウム化合物の担持量は特に制限はないが、通常、担体に対してRuとして0.05〜10重量%が好ましい。
本発明では、耐火性酸化物担体に、耐火性酸化物担体の吸水量の1.1〜1.3倍容量のルテニウム化合物溶液を、含浸させる。ここで、耐火性酸化物担体の吸水量とは、1gの耐火性酸化物担体を、イオン交換水に15℃で5分間漬けた後、取り出して重量の増加を計ることにより算出した値である。1.1倍容量未満であるとCOメタネーション活性が低くならず、1.3倍を超えると担体にルテニウム化合物溶液が完全に吸収されない場合がある。
このように耐火性酸化物担体の吸水量の1.1〜1.3倍容量のルテニウム化合物溶液を含浸させると、得られるCO除去触媒のCOメタネーション活性が低くなる。
耐火性酸化物担体にルテニウム化合物溶液を含浸させる方法として、例えば、担体が入っている容器に、担体を撹拌しながらルテニウム化合物溶液を滴下する。滴下後、容器にルテニウム化合物溶液が残っている場合は、担体に完全に吸収されるまで撹拌を繰り返す。
In the CO removal catalyst of the present invention, a refractory oxide support is impregnated with a ruthenium compound solution, and then usually dried / calcined.
First, the ruthenium compound is dissolved in water, ethanol, nitric acid or the like to prepare a ruthenium compound solution. In the ruthenium compound solution, the content of the ruthenium compound is usually 10% by weight or less, preferably 6% by weight or less. The amount of the ruthenium compound supported is not particularly limited, but is usually preferably 0.05 to 10% by weight as Ru with respect to the support.
In the present invention, the refractory oxide support is impregnated with a ruthenium compound solution having a volume of 1.1 to 1.3 times the water absorption amount of the refractory oxide support. Here, the water absorption amount of the refractory oxide carrier is a value calculated by taking out 1 g of refractory oxide carrier in ion exchange water at 15 ° C. for 5 minutes and then taking out and measuring the increase in weight. . If the volume is less than 1.1 times, the CO methanation activity is not lowered, and if the volume exceeds 1.3 times, the ruthenium compound solution may not be completely absorbed by the carrier.
Thus, when the ruthenium compound solution having a volume of 1.1 to 1.3 times the water absorption amount of the refractory oxide carrier is impregnated, the CO methanation activity of the resulting CO removal catalyst becomes low.
As a method for impregnating a refractory oxide carrier with a ruthenium compound solution, for example, the ruthenium compound solution is dropped into a container containing the carrier while stirring the carrier. If the ruthenium compound solution remains in the container after the dropwise addition, the stirring is repeated until the carrier is completely absorbed.

接触後、好ましくは、担体を乾燥させる。乾燥方法としては、例えば自然乾燥、蒸発乾固法、ロータリーエバポレーターもしくは送風乾燥機による乾燥がいずれも使用可能である。通常乾燥は50〜200℃で、0.5〜24時間実施する。乾燥後、場合によっては350〜550℃で、2〜6時間焼成する。   After contact, the carrier is preferably dried. As the drying method, for example, natural drying, evaporation to dryness, drying by a rotary evaporator or a blow dryer can be used. Usually, drying is performed at 50 to 200 ° C. for 0.5 to 24 hours. After drying, it may be calcined at 350 to 550 ° C. for 2 to 6 hours.

次に、本発明の触媒を用いて、水素を主成分とするガス中の一酸化炭素を酸素により酸化し、一酸化炭素の低減された水素含有ガスを製造する水素製造システムについて説明する。
上述のように調製された触媒は通常焼成されているので担持金属は酸化物の状態で存在する。通常は、この触媒を使用前に水素還元により還元する。水素還元は、通常、水素気流下、250〜550℃、好ましくは300〜530℃の温度で、1〜5時間、好ましくは1〜2時間行う。以上のようにして得られる触媒により、水素を主成分とし、かつ少なくともCOを含有する水素含有ガスに酸素を添加して、COの酸素による選択的酸化反応を行う。本発明のCO除去触媒は、水素製造用原料を改質または部分酸化することによって得られる水素を主成分とするガス(改質ガス)中のCOを選択的に除去するのに好適に利用される。
Next, a hydrogen production system for producing a hydrogen-containing gas with reduced carbon monoxide by oxidizing carbon monoxide in a gas containing hydrogen as a main component with oxygen using the catalyst of the present invention will be described.
Since the catalyst prepared as described above is usually calcined, the supported metal exists in an oxide state. Usually, the catalyst is reduced by hydrogen reduction before use. The hydrogen reduction is usually carried out at a temperature of 250 to 550 ° C., preferably 300 to 530 ° C. for 1 to 5 hours, preferably 1 to 2 hours in a hydrogen stream. With the catalyst obtained as described above, oxygen is added to a hydrogen-containing gas containing hydrogen as a main component and containing at least CO, and a selective oxidation reaction of CO with oxygen is performed. The CO removal catalyst of the present invention is suitably used for selectively removing CO in hydrogen-based gas (reformed gas) obtained by reforming or partially oxidizing a raw material for hydrogen production. The

水素含有ガスの原料として炭化水素を用いて水素を製造するシステムは、通常、脱硫装置、改質装置、変成装置、CO除去装置からなる(脱硫装置、変成装置は省略し得る)。
ここで、脱硫装置は炭化水素原料に含まれる硫黄分を除去する装置であり、改質装置は脱硫処理した炭化水素原料から水素を得る装置である。改質の際、水素と共にCOが発生するので、変成装置でCOをCOに変成させる。CO除去装置は変成装置で変成されなかったCOを除去する装置であり、本発明のCO除去触媒はこの装置に用いられる。
本発明の方法で処理されたCO除去触媒は、水素製造用原料を改質又は部分酸化することによって得られる水素を主成分とするガス(改質ガス)中のCOを選択的に除去するのに好適に利用される。
このようにして製造される水素は燃料電池に好適に利用されるが、これに限定されるものではない。
A system for producing hydrogen using a hydrocarbon as a raw material for a hydrogen-containing gas usually comprises a desulfurization device, a reforming device, a shift device, and a CO removal device (the desulfurization device and shift device may be omitted).
Here, the desulfurization apparatus is an apparatus for removing sulfur contained in the hydrocarbon raw material, and the reforming apparatus is an apparatus for obtaining hydrogen from the desulfurized hydrocarbon raw material. Since CO is generated together with hydrogen during reforming, CO is converted to CO 2 by a shift device. The CO removal device is a device that removes CO that has not been transformed by the transformation device, and the CO removal catalyst of the present invention is used in this device.
The CO removal catalyst treated by the method of the present invention selectively removes CO in a hydrogen-based gas (reformed gas) obtained by reforming or partially oxidizing a raw material for hydrogen production. Is suitably used.
Hydrogen produced in this way is preferably used for a fuel cell, but is not limited thereto.

実施例1
硝酸ルテニウム溶液(小島化学薬品製、ルテニウムの含有率=(ルテニウム金属として)50g/リットル。溶媒は硝酸である)7mlをビーカーにとり、これにイオン交換水1.2mlを入れ、均一になるまで攪拌した。
別のビーカーにγ−アルミナ担体KHD24(住友化学製、直径2〜4mmの球状)20gをはかりとった。尚、このアルミナ担体1gが吸収できる水分量(1gのアルミナを水に5分間漬けた後、取り出して重量の増加を計ることにより算出した値)は0.37mlであった。従って、イオン交換水で希釈した硝酸ルテニウム溶液の容量は、アルミナ担体20gが吸収できる水分量の1.1倍であった。
ガラス棒でアルミナ担体をよくかき混ぜながら、このアルミナ担体に上記希釈硝酸ルテニウム溶液を滴下した後、さらに1分間程度よくかき混ぜた。さらに硝酸ルテニウム溶液のほとんどがアルミナ担体に吸収されるまで5分間隔で1分間合計6回撹拌を繰り返した。
硝酸ルテニウム溶液を吸収したアルミナ担体を焼成皿に回収し、これを120℃で3時間静置乾燥することによりCO除去触媒を得た。
Example 1
7 ml of ruthenium nitrate solution (manufactured by Kojima Chemical Co., Ltd., ruthenium content = 50 g / liter (as ruthenium metal), the solvent is nitric acid) is placed in a beaker, and 1.2 ml of ion-exchanged water is added thereto and stirred until uniform. did.
In another beaker, 20 g of γ-alumina carrier KHD24 (manufactured by Sumitomo Chemical Co., Ltd., spherical shape having a diameter of 2 to 4 mm) was weighed. The amount of water that can be absorbed by 1 g of this alumina carrier (value calculated by taking out 1 g of alumina in water for 5 minutes and then taking it out and measuring the increase in weight) was 0.37 ml. Therefore, the volume of the ruthenium nitrate solution diluted with ion-exchanged water was 1.1 times the amount of water that can be absorbed by 20 g of the alumina carrier.
While the alumina carrier was well agitated with a glass rod, the diluted ruthenium nitrate solution was added dropwise to the alumina carrier, and then further agitated for about 1 minute. Further, stirring was repeated a total of 6 times for 1 minute at intervals of 5 minutes until most of the ruthenium nitrate solution was absorbed by the alumina support.
The alumina carrier that absorbed the ruthenium nitrate solution was collected in a baking dish, and this was left to stand at 120 ° C. for 3 hours to obtain a CO removal catalyst.

実施例2
実施例1において、硝酸ルテニウム溶液に混合するイオン交換水容量を1.9mlに変更した以外は同様にして触媒を得た。ここで使用した希釈硝酸ルテニウム溶液の容量は、アルミナ担体20gが吸収できる水分量の1.2倍であった。
Example 2
In Example 1, a catalyst was obtained in the same manner except that the capacity of ion-exchanged water mixed in the ruthenium nitrate solution was changed to 1.9 ml. The volume of the diluted ruthenium nitrate solution used here was 1.2 times the amount of water that could be absorbed by 20 g of the alumina carrier.

実施例3
実施例1において、硝酸ルテニウム溶液に混合するイオン交換水容量を2.6mlに変更した以外は同様にして触媒を得た。ここで使用した希釈硝酸ルテニウム溶液の容量は、アルミナ担体20gが吸収できる水分量の1.3倍であった。
Example 3
A catalyst was obtained in the same manner as in Example 1 except that the ion exchange water capacity mixed with the ruthenium nitrate solution was changed to 2.6 ml. The volume of the diluted ruthenium nitrate solution used here was 1.3 times the amount of water that could be absorbed by 20 g of the alumina carrier.

比較例1
実施例1において、硝酸ルテニウム溶液に混合するイオン交換水容量を0.4mlに変更した以外は同様にして触媒を得た。ここで使用した希釈硝酸ルテニウム溶液の容量は、アルミナ担体20gが吸収できる水分量の1.0倍であった。
本比較例では、このアルミナ担体をガラス棒でよくかき混ぜる中に上記希釈硝酸ルテニウム溶液を滴下した後、さらに1分間程度よくかき混ぜた。その後1時間室温に放置するだけで、硝酸ルテニウム溶液はアルミナ担体にほとんど吸収された。
Comparative Example 1
A catalyst was obtained in the same manner as in Example 1 except that the ion exchange water capacity mixed with the ruthenium nitrate solution was changed to 0.4 ml. The volume of the diluted ruthenium nitrate solution used here was 1.0 times the amount of water that could be absorbed by 20 g of the alumina carrier.
In this comparative example, the diluted ruthenium nitrate solution was dropped while the alumina carrier was well stirred with a glass rod, and then stirred well for about 1 minute. Thereafter, the ruthenium nitrate solution was almost absorbed by the alumina support only by allowing it to stand at room temperature for 1 hour.

比較例2
硝酸ルテニウム溶液をイオン交換水により希釈せず、その代わりに70〜80℃のウォーターバスにより硝酸ルテニウム溶液を5.9mlにまで濃縮した。この濃縮した硝酸ルテニウム溶液を使用する以外は実施例1と同様にして触媒を得た。ここで使用した希釈硝酸ルテニウム溶液の容量は、アルミナ担体20gが吸収できる水分量の0.8倍であった。
本比較例では、アルミナ担体をガラス棒でよくかき混ぜる中に上記希釈硝酸ルテニウム溶液を滴下した後、さらに1分間程度よくかき混ぜた。その後1時間室温に放置するだけで、硝酸ルテニウム溶液はアルミナ担体にほとんど吸収された。
Comparative Example 2
The ruthenium nitrate solution was not diluted with ion-exchanged water. Instead, the ruthenium nitrate solution was concentrated to 5.9 ml with a water bath at 70 to 80 ° C. A catalyst was obtained in the same manner as in Example 1 except that this concentrated ruthenium nitrate solution was used. The volume of the diluted ruthenium nitrate solution used here was 0.8 times the amount of water that could be absorbed by 20 g of the alumina carrier.
In the present comparative example, the diluted ruthenium nitrate solution was dropped while the alumina support was well stirred with a glass rod, and then stirred well for about 1 minute. Thereafter, the ruthenium nitrate solution was almost absorbed by the alumina support only by allowing it to stand at room temperature for 1 hour.

比較例3
実施例1において、硝酸ルテニウム溶液に混合するイオン交換水容量を4.2mlに変更した以外は同様にして触媒を得た。ここで使用した希釈硝酸ルテニウム溶液の容量は、アルミナ担体20gが吸収できる水分量の1.5倍であった。
本比較例では、アルミナ担体をガラス棒でよくかき混ぜながら、上記希釈硝酸ルテニウム溶液を滴下した後、さらに1分間程度よくかき混ぜ、その後適度な時間間隔で撹拌を繰り返しても、十分に硝酸ルテニウム溶液を吸収できなかった。そこで、吸収しきれなかった溶液(約1ml)をそれ以上アルミナ担体に吸収させることは止め、可能な範囲で硝酸ルテニウム溶液を吸収したアルミナ担体に120℃乾燥処理を施した。
Comparative Example 3
A catalyst was obtained in the same manner as in Example 1 except that the ion-exchanged water volume mixed with the ruthenium nitrate solution was changed to 4.2 ml. The volume of the diluted ruthenium nitrate solution used here was 1.5 times the amount of water that could be absorbed by 20 g of the alumina carrier.
In this comparative example, the alumina support was thoroughly stirred with a glass rod, and the diluted ruthenium nitrate solution was added dropwise, and then the mixture was further stirred for about one minute. Could not be absorbed. Therefore, the solution that could not be absorbed (about 1 ml) was stopped from being absorbed by the alumina carrier any more, and the alumina carrier that absorbed the ruthenium nitrate solution was subjected to 120 ° C. drying treatment as much as possible.

評価例
[反応評価条件と性能]
以下の条件下で、触媒に原料ガス(多量のH中に微量のCOを含む)を通じた。その結果、表1に示すように、実施例1、2の触媒は比較例1,2の触媒と比較して、CO除去活性は同等であるがメタネーション活性が抑制されていた。
比較例3の触媒は、担体に硝酸ルテニウム溶液を十分吸収できず、少ない量のルテニウム化合物しかアルミナ担体に担持できなかったことから、十分のCO除去活性が得られなかった。
1.触媒前処理還元条件
温度:500℃
圧力:大気圧
時間:1時間
GHSV:24,000hr−1
2.反応条件
温度:140℃
圧力:大気圧
GHSV:20,000hr−1
原料ガス組成(容量%):CO/CO/O/N/HO/H
=0.6/15/0.9/3.5/20/Balance
尚、上記条件中のGHSVとは、供給ガスの標準状態における供給体積速度を使用する触媒層のみかけの体積で割った値をいい、この値をガス空間速度とする。
Evaluation example [Reaction evaluation conditions and performance]
A raw material gas (containing a small amount of CO in a large amount of H 2 ) was passed through the catalyst under the following conditions. As a result, as shown in Table 1, the catalysts of Examples 1 and 2 had the same CO removal activity as compared with the catalysts of Comparative Examples 1 and 2, but the methanation activity was suppressed.
The catalyst of Comparative Example 3 could not sufficiently absorb the ruthenium nitrate solution on the carrier, and only a small amount of the ruthenium compound could be supported on the alumina carrier, so that sufficient CO removal activity could not be obtained.
1. Catalyst pretreatment reduction conditions Temperature: 500 ° C
Pressure: Atmospheric pressure Time: 1 hour GHSV: 24,000 hr −1
2. Reaction conditions Temperature: 140 ° C
Pressure: Atmospheric pressure GHSV: 20,000 hr −1
Raw material gas composition (volume%): CO / CO 2 / O 2 / N 2 / H 2 O / H 2
= 0.6 / 15 / 0.9 / 3.5 / 20 / Balance
In addition, GHSV in the said conditions means the value which divided the supply volume velocity in the standard state of supply gas by the apparent volume of the catalyst layer to use, and let this value be gas space velocity.

Figure 0004970719
Figure 0004970719

以上の結果より、実施例ではCOは80ppm以下でかつメタン濃度も700ppmに抑えられていた。
水素に含まれる微量のCOを酸化する反応(COの選択的除去反応)において、本発明の実施例の触媒は、比較例の触媒よりも、同じCO転化率条件において、COメタネーション活性が低かった。
そのため、本発明では水素を余分に消費すること無く水素中のCOを低減することができる。また、発熱量の多いメタネーション活性が低くなることにより、反応の暴走を防止し反応条件を制御しやすくすることができる。
From the above results, in the examples, CO was 80 ppm or less and the methane concentration was suppressed to 700 ppm.
In the reaction for oxidizing a small amount of CO contained in hydrogen (selective removal reaction of CO), the catalyst of the example of the present invention has lower CO methanation activity at the same CO conversion rate condition than the catalyst of the comparative example. It was.
Therefore, in the present invention, CO in hydrogen can be reduced without consuming extra hydrogen. Moreover, since the methanation activity with a large calorific value is lowered, the runaway of the reaction can be prevented and the reaction conditions can be easily controlled.

本発明のCO除去触媒は、燃料電池等に使用される水素を製造するシステムに利用できる。
また、本発明のCO除去触媒によって得られる水素含有ガスは、各種のH2 燃焼型燃料電池の燃料として好適に使用することができ、特に、少なくとも燃料極(負極)の電極に白金(白金触媒)を用いるタイプの各種のH2 燃焼型燃料電池(リン酸型燃料電池、KOH型燃料電池、固体高分子型燃料電池をはじめとする低温作動型燃料電池等)への供給燃料として利用することができる。
The CO removal catalyst of the present invention can be used in a system for producing hydrogen used in fuel cells and the like.
Further, the hydrogen-containing gas obtained by the CO removal catalyst of the present invention can be suitably used as a fuel for various H 2 combustion type fuel cells. In particular, platinum (platinum catalyst) is used at least on the electrode of the fuel electrode (negative electrode). ) Is used as a fuel to supply various H 2 combustion fuel cells (such as phosphoric acid fuel cells, KOH fuel cells, polymer electrolyte fuel cells, etc.) Can do.

Claims (4)

アルミナに、
前記アルミナの吸水量の1.1〜1.3倍容量の硝酸ルテニウム溶液を、
含浸させ、
前記アルミナの吸水量は、アルミナ1gをイオン交換水に15℃で5分間漬けたとき前記アルミナが吸収できる水の量であることを特徴とするCO除去触媒の製造方法。
To alumina,
A ruthenium nitrate solution having a volume of 1.1 to 1.3 times the water absorption of the alumina,
Impregnate,
The method for producing a CO removal catalyst, wherein the amount of water absorbed by the alumina is an amount of water that can be absorbed by the alumina when 1 g of alumina is immersed in ion exchange water at 15 ° C. for 5 minutes .
前記アルミナは、前記アルミナの0.05〜10重量%のルテニウムを担持することを特徴とする請求項1記載のCO除去触媒の製造方法。 2. The method for producing a CO removal catalyst according to claim 1 , wherein the alumina carries 0.05 to 10% by weight of ruthenium of the alumina . 請求項1又は2記載の製造方法により得られることを特徴とするCO除去触媒。   A CO removal catalyst obtained by the production method according to claim 1 or 2. 請求項3記載のCO除去触媒を充填したCO除去装置を備えたことを特徴とする水素ガス製造システム。
A hydrogen gas production system comprising a CO removal device filled with the CO removal catalyst according to claim 3.
JP2004337632A 2004-11-22 2004-11-22 CO removal catalyst and method for producing the same Expired - Fee Related JP4970719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004337632A JP4970719B2 (en) 2004-11-22 2004-11-22 CO removal catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004337632A JP4970719B2 (en) 2004-11-22 2004-11-22 CO removal catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006142240A JP2006142240A (en) 2006-06-08
JP4970719B2 true JP4970719B2 (en) 2012-07-11

Family

ID=36622521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004337632A Expired - Fee Related JP4970719B2 (en) 2004-11-22 2004-11-22 CO removal catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP4970719B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857137B2 (en) * 2007-02-13 2012-01-18 出光興産株式会社 Method for producing carbon monoxide removal catalyst

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179097A (en) * 1999-12-24 2001-07-03 Idemitsu Kosan Co Ltd Method for manufacturing catalyst for removing co in hydrogen-containing gas, catalyst manufactured thereby and method for removing co in hydrogen gas
JP5164297B2 (en) * 2000-05-24 2013-03-21 出光興産株式会社 CO oxidation catalyst and method for producing hydrogen-containing gas
JP4478280B2 (en) * 2000-03-03 2010-06-09 出光興産株式会社 Method for producing CO removal catalyst in hydrogen-containing gas, catalyst produced by the production method, and method for removing CO in hydrogen-containing gas using the catalyst
JP4358405B2 (en) * 2000-03-30 2009-11-04 出光興産株式会社 Hydrocarbon reforming catalyst and steam reforming method
JP4172139B2 (en) * 2000-08-21 2008-10-29 株式会社日立製作所 CO removal catalyst and CO removal method using the same
JP2002273223A (en) * 2001-03-22 2002-09-24 Idemitsu Kosan Co Ltd Method for manufacturing co removing catalyst
EP1894622B1 (en) * 2001-03-29 2012-03-14 Idemitsu Kosan Co., Ltd. Process for reforming a hydrocarbon
JP3855880B2 (en) * 2001-09-03 2006-12-13 日産自動車株式会社 CO selective oxidation catalyst, method for reducing CO concentration in fuel reformed gas, and method for producing the catalyst

Also Published As

Publication number Publication date
JP2006142240A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
Bai et al. Carbon-supported platinum catalysts for on-site hydrogen generation from NaBH4 solution
WO2002038268A1 (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JP4284028B2 (en) Carbon monoxide removal method and fuel cell system operating method using the same
JP2006239551A (en) Co methanizing catalyst, co removing catalyst device and fuel cell system
JP2006190586A (en) Method of using co selective oxidation reactor
JP4970719B2 (en) CO removal catalyst and method for producing the same
EP1257502A1 (en) Process for selective oxidation of carbon monoxide in a hydrogen containing stream
JP5204633B2 (en) Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration, and fuel cell system
JP4652834B2 (en) CO removal catalyst and method for producing the same
JP2009022919A (en) Catalyst and method for selectively removing carbon monoxide
JP4551745B2 (en) CO removal catalyst and method for producing the same
US8349762B2 (en) Method for producing catalyst for use in preferential oxidation reaction of carbon monoxide
JP4820106B2 (en) Method for reducing CO selective oxidation catalyst
JP2001327868A (en) Oxidation catalyst for co and method for producing hydrogen-containing gas
JP2008200614A (en) Carbon monoxide oxidation catalyst and method for manufacturing the same, hydrogen generator, and fuel cell system
JP2008200614A5 (en)
JP4705375B2 (en) Method for stabilizing and activating CO removal catalyst
JP4569408B2 (en) Water gas shift reaction catalyst and method for removing carbon monoxide gas from hydrogen gas using the same
JP2010184237A (en) Co-removing catalyst and method for producing the same
RU2191070C1 (en) Catalyst, method of preparation thereof, and method for treatment of hydrogen- rich gas mixtures to remove carbon monoxide
JP2006297194A (en) Fuel reforming catalyst
JP2006314870A (en) Shift catalyst
JP2006043608A (en) Shift catalyst and method for producing it
US20030108471A1 (en) Method for removing carbon monoxide from a hydrogen-rich gas mixture by selective oxidation
JP2008264781A (en) Method of activating carbon monoxide removing catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees