JP2001327868A - Oxidation catalyst for co and method for producing hydrogen-containing gas - Google Patents

Oxidation catalyst for co and method for producing hydrogen-containing gas

Info

Publication number
JP2001327868A
JP2001327868A JP2000152483A JP2000152483A JP2001327868A JP 2001327868 A JP2001327868 A JP 2001327868A JP 2000152483 A JP2000152483 A JP 2000152483A JP 2000152483 A JP2000152483 A JP 2000152483A JP 2001327868 A JP2001327868 A JP 2001327868A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
containing gas
ruthenium
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000152483A
Other languages
Japanese (ja)
Other versions
JP5164297B2 (en
Inventor
Tetsuya Fukunaga
哲也 福永
Kozo Takatsu
幸三 高津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2000152483A priority Critical patent/JP5164297B2/en
Priority to AU2001236090A priority patent/AU2001236090A1/en
Priority to PCT/JP2001/001689 priority patent/WO2001064337A1/en
Publication of JP2001327868A publication Critical patent/JP2001327868A/en
Application granted granted Critical
Publication of JP5164297B2 publication Critical patent/JP5164297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Industrial Gases (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxidation catalyst for CO which can efficiently and selectively oxidize and remove CO in hydrogen-containing gas in a wide reaction temperature range and to provide a method for producing hydrogen-containing gas by using the catalyst, especially hydrogen-containing gas preferably suitable for a fuel cell. SOLUTION: The oxidation catalyst for CO having at least a ruthenium component deposited on an inorganic refractory carrier has the following features. In the graph (not shown) giving the relation of the distance r in the width direction of the cross section (distance from the center to the catalyst surface) and the intensity I of x-rays, wherein r is obtained by the measurement of the line analysis for the ruthenium atom in one direction by using an electron probe microanalysis (EPMA) device, the integral value N0 of I (r) from one catalyst surface -r0 to the other catalyst surface r0 and the integral value N1 of I (r) from -2/3r0 to 2/3r0 satisfy S=(N.N0×100>=50, wherein N=N0-N1. The method for preparing hydrogen-containing gas is carried out by using the oxidation catalyst for CO to remove CO in the hydrogen containing gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素含有ガスから
COを選択的に酸化除去するための触媒に関し、詳しく
は、ルテニウムを活性成分とし、水素含有ガスからのC
Oの選択的酸化活性を向上せしめるCO酸化触媒、及び
該触媒を用いた水素含有ガスの製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for selectively oxidizing and removing CO from a hydrogen-containing gas, and more particularly to a catalyst containing ruthenium as an active component and containing C from hydrogen-containing gas.
The present invention relates to a CO oxidation catalyst for improving the selective oxidation activity of O, and a method for producing a hydrogen-containing gas using the catalyst.

【0002】[0002]

【従来の技術】近年、環境問題から新エネルギー技術が
脚光を浴びており、この新エネルギー技術の一つとして
燃料電池が注目されている。この燃料電池は、水素と酸
素を電気化学的に反応させることにより、化学エネルギ
ーを電気エネルギーに変換するものであって、エネルギ
ーの利用効率が高いという特徴を有しており、民生用、
産業用あるいは自動車用などとして、実用化研究が積極
的になされている。この燃料電池には、使用する電解質
の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物
型、固体高分子型などのタイプが知られている。一方、
水素源としては、メタノール、メタンを主体とする液化
天然ガス、この天然ガスを主成分とする都市ガス、天然
ガスを原料とする合成液体燃料、さらには石油系のLP
G、ナフサ、灯油などの石油系炭化水素の使用が研究さ
れている。燃料電池を民生用や自動車用などに利用する
場合、上記石油系炭化水素は保管及び取扱いが容易であ
る上、ガソリンスタンドや販売店など、供給システムが
整備されていることから、水素源として有利である。こ
の石油系炭化水素を用いて水素を製造する場合、一般
に、該炭化水素を、改質触媒の存在下に水蒸気改質又は
部分酸化改質処理する方法が用いられる。そして、これ
らの反応において得られる水素含有ガスには、通常、目
的とする水素ガスとともにCOが含まれる。
2. Description of the Related Art In recent years, new energy technologies have been spotlighted due to environmental problems, and fuel cells have attracted attention as one of the new energy technologies. This fuel cell converts chemical energy into electric energy by electrochemically reacting hydrogen and oxygen, and has the feature of high energy use efficiency.
Practical research is being actively conducted for industrial or automotive use. As the fuel cell, types such as a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type are known according to the type of electrolyte used. on the other hand,
As a hydrogen source, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of natural gas, synthetic liquid fuel composed of natural gas as raw material, and petroleum LP
The use of petroleum hydrocarbons such as G, naphtha, and kerosene is being studied. When fuel cells are used for consumer or automotive applications, the petroleum hydrocarbons described above are easy to store and handle, and have an excellent supply system, such as gas stations and dealers. It is. When hydrogen is produced using this petroleum hydrocarbon, a method is generally used in which the hydrocarbon is subjected to steam reforming or partial oxidation reforming treatment in the presence of a reforming catalyst. The hydrogen-containing gas obtained in these reactions usually contains CO together with the intended hydrogen gas.

【0003】このようなCOガスは、燃料電池、特に上
記固体高分子型燃料電池等の低温作動型燃料電池におい
て、電極として用いられる白金(白金触媒)を被毒しや
すいので、燃料中にCOがあるレベル以上含まれている
と発電性能が低下したり、濃度によっては全く発電がで
きなくなってしまうという重大な問題が発生する。した
がって、こうした白金系電極触媒を用いる燃料電池の燃
料としては純粋な水素が好ましいが、上述のように、改
質ガス中には、一般に、水素の他にかなりの濃度のCO
が含まれているので、このCOを白金系電極触媒に無害
なCO2 等に転化し、燃料電池の燃料中のCO濃度を減
少させる技術の開発が強く望まれている。その際、CO
の濃度を、通常100ppm以下、好ましくは10pp
m以下という低濃度にまで低減することが望ましいとさ
れている。上記の問題を解決するために、燃料電池の燃
料ガス(改質ガス中の水素含有ガス)中のCOの濃度を
低減させる手段の一つとして、下記の式(1)で表され
るシフト反応(水性ガスシフト反応)を利用する技術が
提案されている。 CO + H2 O = CO2 + H2 (1) しかしながら、このシフト反応のみによる反応では、化
学平衡上の制約からCO濃度の低減には限界があり、一
般に、CO濃度を1%以下にするのは困難である。
[0003] Such a CO gas is liable to poison platinum (platinum catalyst) used as an electrode in a fuel cell, particularly in a low-temperature operation type fuel cell such as the above-mentioned polymer electrolyte fuel cell. If it is contained at a certain level or more, there is a serious problem that the power generation performance is reduced or power cannot be generated at all depending on the concentration. Accordingly, pure hydrogen is preferable as a fuel for a fuel cell using such a platinum-based electrocatalyst. However, as described above, a significant concentration of CO in addition to hydrogen is generally contained in the reformed gas.
Therefore, there is a strong demand for the development of a technology for converting this CO into CO 2 or the like harmless to the platinum-based electrode catalyst and reducing the CO concentration in the fuel of the fuel cell. At that time, CO
Is usually 100 ppm or less, preferably 10 pp
It is considered desirable to reduce the concentration to a low concentration of m or less. In order to solve the above problem, as one of means for reducing the concentration of CO in the fuel gas (hydrogen-containing gas in the reformed gas) of the fuel cell, a shift reaction represented by the following formula (1) is used. A technique using (water gas shift reaction) has been proposed. CO + H 2 O = CO 2 + H 2 (1) However, in the reaction using only this shift reaction, there is a limit in reducing the CO concentration due to restrictions on chemical equilibrium. In general, the CO concentration is reduced to 1% or less. It is difficult.

【0004】そこで、CO濃度をより低濃度まで低減す
る手段として、燃料ガス中に酸素又は酸素含有ガス(空
気等)を導入し、COをCO2 に変換する方法が提案さ
れている。しかしながら、この場合燃料ガス中には水素
が多量存在しているため、COを酸化しようとすると水
素も酸化されてしまい、CO濃度が十分に低減できない
ことがある。この問題を解決するため、燃料ガス中に酸
素又は酸素含有ガスを導入してCOをCO2 に酸化する
に際し、COだけを選択的に酸化する触媒を使用する方
法が考えられる。COの酸化触媒としては、従来、Pt
/アルミナ、Pt/SnO2 、Pt/C、Co/TiO
2 、ポプカライト、Pd/アルミナなどの触媒系が知ら
れているが、これらの触媒は対湿度耐性が十分でなく、
反応温度域が低くかつ狭く、また、COの酸化に対する
選択性が低いため、燃料電池の燃料ガスのような水素が
多量に存在している中の少量のCOを10ppm以下の
低濃度まで低減するためには、同時に大量の水素も酸化
により犠牲にしなければならない。特開平5−2017
02号公報には、水素富化CO含有ガスからCOを選択
除去して自動車用燃料電池系に供給するためのCOを含
まない水素含有ガスの製造方法が開示されている。ここ
では、触媒として、アルミナ担体にRhもしくはRuを
担持したものが使用されているが、低いCO濃度にしか
適用できないという問題点がある。また、特開平9−1
31531号公報には、チタニア担体にルテニウムと、
アルカリ金属化合物及び/又はアルカリ土類金属化合物
を担持してなる水素含有ガス中のCO除去用触媒が開示
されている。
Therefore, as a means for reducing the CO concentration to a lower concentration, a method has been proposed in which oxygen or an oxygen-containing gas (air or the like) is introduced into a fuel gas to convert CO into CO 2 . However, in this case, since a large amount of hydrogen is present in the fuel gas, when oxidizing CO, the hydrogen is also oxidized, and the CO concentration may not be sufficiently reduced. In order to solve this problem, when introducing oxygen or an oxygen-containing gas into the fuel gas to oxidize CO into CO 2 , a method using a catalyst that selectively oxidizes only CO can be considered. As a CO oxidation catalyst, conventionally, Pt
/ Alumina, Pt / SnO 2 , Pt / C, Co / TiO
2. Catalyst systems such as popcalite and Pd / alumina are known, but these catalysts are not sufficiently resistant to humidity.
Since the reaction temperature range is low and narrow, and the selectivity for CO oxidation is low, a small amount of CO in a large amount of hydrogen such as fuel gas of a fuel cell is reduced to a low concentration of 10 ppm or less. To this end, large amounts of hydrogen must also be sacrificed by oxidation. JP-A-5-2017
No. 02 discloses a method for producing a CO-free hydrogen-containing gas for selectively removing CO from a hydrogen-enriched CO-containing gas and supplying the CO to an automotive fuel cell system. Here, a catalyst in which Rh or Ru is supported on an alumina carrier is used as a catalyst, but there is a problem that it can be applied only to a low CO concentration. Also, Japanese Patent Application Laid-Open No.
No. 31,531 discloses that a titania carrier contains ruthenium,
A catalyst for removing CO in a hydrogen-containing gas, which carries an alkali metal compound and / or an alkaline earth metal compound, is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかし、ルテニウム系
触媒に用いるルテニウムは貴金属であるため、これを担
持成分として用いる触媒は一般的に高価なものとなるこ
とから、ルテニウム成分を含有する触媒を工業的に有用
なものとするためには、触媒性能のみならず触媒価格を
低減させる必要がある。一方で、上記従来のルテニウム
系触媒は担持ルテニウム当たりの触媒活性が実用的に十
分でなく、更に高活性の触媒が望まれていた。従って、
水素含有ガス中のCOを広い反応温度範囲で効率よく選
択的に酸化除去することができ、かつ担持ルテニウムあ
たりの触媒活性が著しく優れた触媒、及びこれを使用し
た水素含有ガス、特に燃料電池用に好適に適用できる水
素含有ガスの製造方法が望まれていた。本発明は、この
ような状況下でなされたものであり、活性成分としてル
テニウム成分を用い、水素含有ガス中のCOを広い反応
温度範囲で効率よく選択的に酸化除去することができる
CO酸化触媒、及びこれを使用した水素含有ガス、特に
燃料電池用に好適に適用できる水素含有ガスの製造方法
を提供することを目的とするものである。
However, since ruthenium used for a ruthenium-based catalyst is a noble metal, a catalyst using the same as a supporting component is generally expensive, so that a catalyst containing a ruthenium component is industrially used. In order to make the catalyst useful, it is necessary to reduce not only the catalyst performance but also the catalyst price. On the other hand, the above-mentioned conventional ruthenium-based catalyst has practically insufficient catalytic activity per supported ruthenium, and a catalyst with higher activity has been desired. Therefore,
A catalyst capable of efficiently and selectively oxidizing and removing CO in a hydrogen-containing gas over a wide reaction temperature range and having extremely excellent catalytic activity per supported ruthenium, and a hydrogen-containing gas using the same, particularly for a fuel cell There has been a demand for a method for producing a hydrogen-containing gas that can be suitably applied to a gas. The present invention has been made under such circumstances, and uses a ruthenium component as an active component and is capable of efficiently and selectively oxidizing and removing CO in a hydrogen-containing gas over a wide reaction temperature range. An object of the present invention is to provide a method for producing a hydrogen-containing gas using the same, particularly a hydrogen-containing gas which can be suitably applied to a fuel cell.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために鋭意研究を重ねた。その結果、従来の
ルテニウム系酸化触媒においては、ルテニウム成分が担
体中に比較的均一に分散されているが、反応時において
反応に寄与するルテニウム成分は、担体の外表面近傍に
存在するもののみであり、内部に存在するルテニウム成
分はほとんど反応に寄与しないことを見出した。そし
て、担体中における活性成分であるルテニウムを、担体
の外表面側に多く分布させたものが、同一担持量であっ
てもその触媒活性において著しく優れておりCO酸化触
媒としてその目的に適合しうること、更に、この触媒を
用いCO酸化除去処理することにより、燃料電池に好適
に適用できる水素含有ガスが効率よく得られることを見
出した。本発明は、かかる知見に基づいて完成したもの
である。すなわち、本発明は、無機耐火性担体に少なく
ともルテニウム成分を担持してなるCO酸化触媒におい
て、該触媒の断面を、エレクトロンプローブ・マイクロ
アナリシス(EPMA)装置を用いて、一方向にルテニ
ウム原子について線分析測定をして得られる断面幅方向
距離r(中心から触媒表面までの距離)とX線強度Iと
の関係を示す図において、上記rが一方の触媒表面−r
0 から他方の触媒表面r0 の間におけるI(r)の積分
値N0 から、−2/3r0 から2/3r0の間における
I(r)の積分値N1 を減じた値をNとし、上記N0
対するNの割合S=(N/N0 )×100の値が50以
上であることを特徴とするCO酸化触媒、及び、該触媒
を用いて、水素含有ガス中のCOを除去することを特徴
とする水素含有ガスの製造方法、を提供するものであ
る。
Means for Solving the Problems The present inventors have intensively studied to achieve the above object. As a result, in the conventional ruthenium-based oxidation catalyst, the ruthenium component is relatively uniformly dispersed in the support, but the ruthenium component that contributes to the reaction during the reaction is only the one existing near the outer surface of the support. It was found that the ruthenium component present inside hardly contributed to the reaction. In addition, ruthenium, which is an active component in the carrier, which is largely distributed on the outer surface side of the carrier, is remarkably excellent in catalytic activity even with the same loading amount, and can be adapted to the purpose as a CO oxidation catalyst. In addition, it has been found that by performing the CO oxidation removal treatment using this catalyst, a hydrogen-containing gas suitably applicable to a fuel cell can be efficiently obtained. The present invention has been completed based on such findings. That is, the present invention relates to a CO oxidation catalyst comprising at least a ruthenium component supported on an inorganic refractory carrier, by using an electron probe microanalysis (EPMA) apparatus to cross-section the cross section of the catalyst in one direction for ruthenium atoms. In the diagram showing the relationship between the cross-sectional width direction distance r (distance from the center to the catalyst surface) obtained by analytical measurement and the X-ray intensity I, r is one catalyst surface -r
Integrated values N 0 of the I (r) between the other catalyst surface r 0 from 0, the value obtained by subtracting the integration value N 1 of the I (r) in between -2 / 3r 0 of 2 / 3r 0 N Wherein the value of the ratio of N to N 0 S = (N / N 0 ) × 100 is 50 or more, and CO in the hydrogen-containing gas is reduced by using the catalyst. A method for producing a hydrogen-containing gas, which is characterized in that it is removed.

【0007】[0007]

【発明の実施の形態】図1に、本発明の触媒の一例の断
面図及びその幅方向距離とX線強度の関係を示す。本発
明の炭化水素のCO酸化触媒は、無機耐火性担体に少な
くともルテニウム成分を担持してなるCO酸化触媒にお
いて、該触媒の断面をエレクトロンプローブ・マイクロ
アナリシス(EPMA)装置を用いて、一方向にルテニ
ウム原子について線分析測定をして得られる断面幅方向
距離r(中心から触媒表面までの距離)とX線強度Iと
の関係を示す図において、上記rが一方の触媒表面−r
0 から他方の触媒表面r0 の間におけるI(r)の積分
値N0 から、−2/3r0 から2/3r0 の間における
I(r)の積分値N1 を減じた値をNとし、上記N0
対するNの割合S=(N/N0 )×100の値が50以
上、好ましくは55以上、更に好ましくは70以上であ
るものである。上記のルテニウム分布を有すること、す
なわち、ルテニウム成分を担体の外表面側に多く分布さ
せることにより、担持ルテニウム当たりの触媒活性が著
しく優れたCO酸化触媒が得られる。
FIG. 1 is a cross-sectional view of an example of the catalyst of the present invention and the relationship between the distance in the width direction and the X-ray intensity. The CO oxidation catalyst for hydrocarbons of the present invention is a CO oxidation catalyst comprising at least a ruthenium component supported on an inorganic refractory carrier, wherein the cross section of the catalyst is unidirectionally measured using an electron probe microanalysis (EPMA) apparatus. In the diagram showing the relationship between the cross-sectional width direction distance r (the distance from the center to the catalyst surface) and the X-ray intensity I obtained by performing a line analysis measurement on ruthenium atoms, r is one catalyst surface -r
Integrated values N 0 of the I (r) between the other catalyst surface r 0 from 0, the value obtained by subtracting the integration value N 1 of the I (r) in between -2 / 3r 0 of 2 / 3r 0 N The ratio of N to N 0, S = (N / N 0 ) × 100, is 50 or more, preferably 55 or more, and more preferably 70 or more. By having the above-mentioned ruthenium distribution, that is, by distributing a large amount of ruthenium components on the outer surface side of the support, a CO oxidation catalyst having extremely excellent catalytic activity per supported ruthenium can be obtained.

【0008】本発明においては、上記担体が球状あるい
は円柱状の形状を有するものであることが好ましい。従
って、本発明におけるr(中心から触媒表面までの距
離)とは、担体が球状の場合はその半径をいい、円柱状
である場合はその底面に平行に切断した断面の半径をい
う。球状及び円柱状の形状には、厳密にいう球及び円柱
のみならず、その一部の形状が変形してはいるが実質的
には球及び円柱とみなすことができるものも包含する。
また、球状及び円柱状以外の他の形状の担体において
も、上記球状及び円柱状の場合に準じて触媒を調製する
ことにより本発明のルテニウム分布を達成することがで
きる。本発明に用いられる上記CO酸化触媒は通常その
直径あるいは上記断面の直径が1〜10mm、更に2〜
6mmであることが好ましい。触媒の径が上記範囲より
小さい場合は、外表面担持の効果が十分でなく、また、
上記範囲より大きい場合は触媒活性が十分でなく好まし
くない場合がある。
In the present invention, it is preferable that the carrier has a spherical or columnar shape. Therefore, r (distance from the center to the catalyst surface) in the present invention refers to the radius of the support when it is spherical, and refers to the radius of a cross section cut parallel to the bottom surface when the support is cylindrical. Spherical and cylindrical shapes include not only strictly spherical and cylindrical shapes but also those which can be regarded as substantially spherical and cylindrical although some of the shapes are deformed.
The ruthenium distribution of the present invention can also be achieved by preparing a catalyst in a carrier having a shape other than the spherical and cylindrical shapes according to the above-mentioned spherical and cylindrical shapes. The CO oxidation catalyst used in the present invention usually has a diameter or a cross-sectional diameter of 1 to 10 mm, and more preferably 2 to 10 mm.
It is preferably 6 mm. If the diameter of the catalyst is smaller than the above range, the effect of supporting the outer surface is not sufficient,
If it is larger than the above range, the catalytic activity may not be sufficient and may not be preferable.

【0009】本発明のCO酸化触媒に用いられる担体と
しては無機耐火性担体が好ましい。このようなものとし
ては、例えばアルミナ、チタニア及びシリカから選ばれ
るものを挙げることができる。これらは単独で用いても
よく、二種以上を組み合わせて用いてもよい。本発明に
おいては、特にアルミナとチタニアからなるものが触媒
活性の点から好ましく用いられる。これらの担体上に担
持させる金属成分としては、ルテニウム成分が必須であ
る。本発明においては、このルテニウム成分の多くを外
表面側に存在せしめるが、ルテニウム源としては、例え
ば、RuCl3 ・nH2 O、Ru(NO3 3 、Ru2
(OH)2 Cl4 ・7NH3 ・3H2 O、K2 (RuC
5 (H2 O))、(NH4 2 (RuCl5 (H
2 O))、K2 (RuCl5 (NO))、RuBr3
nH2 O、Na2 RuO4 、Ru(NO)(N
3 3 、(Ru3 O(OAc)6 (H2 O)3 )OA
c・nH2 O、K4 (Ru(CN)6 )・nH2 O、K
2 (Ru(NO2 4 (OH)(NO))、(Ru(N
3 6 )Cl3 、(Ru(NH3 6 )Br3 、(R
u(NH3 6 )Cl2 、(Ru(NH3 6 )B
2 、(Ru3 2 (NH3 14)Cl6 ・H2 O、
(Ru(NO)(NH3 5 )Cl3 、(Ru(OH)
(NO)(NH3 4 )(NO3 2 、RuCl2 (P
Ph3 3 、RuCl2 (PPh3 4 、(RuClH
(PPh3 3 )・C7 8 、RuH2 (PP
3 4 、RuClH(CO)(PPh3 3、RuH
2 (CO)(PPh3 3 、(RuCl2 (cod))
n 、Ru(CO)12、Ru(acac)3 、(Ru(H
COO)(CO)2 )n 、Ru2 4 (p−cymen
e)2 などのルテニウム塩が用いられ、これらを水、エ
タノール等に溶解させて得られる触媒調製液を用いてル
テニウム成分を担体に担持することができる。上記ルテ
ニウム塩のうち、好ましくは、取扱い上の点でRuCl
3・nH2 O、Ru(NO3 3 、Ru2 (OH)2
4 ・7NH3 ・3H2 Oが用いられる。
The carrier used in the CO oxidation catalyst of the present invention
Thus, inorganic refractory carriers are preferred. Like this
Is selected from, for example, alumina, titania and silica.
Can be mentioned. These can be used alone
It is also possible to use two or more kinds in combination. In the present invention
In particular, the catalyst consisting of alumina and titania
It is preferably used from the viewpoint of activity. Carry on these carriers
The ruthenium component is indispensable as the metal component
You. In the present invention, much of this ruthenium component is
Although it exists on the surface side, as a ruthenium source, for example,
For example, RuClThree・ NHTwoO, Ru (NOThree)Three, RuTwo
(OH)TwoClFour・ 7NHThree・ 3HTwoO, KTwo(RuC
lFive(HTwoO)), (NHFour)Two(RuClFive(H
TwoO)), KTwo(RuClFive(NO)), RuBrThree
nHTwoO, NaTwoRuOFour, Ru (NO) (N
OThree)Three, (RuThreeO (OAc)6(HTwoO)Three) OA
c ・ nHTwoO, KFour(Ru (CN)6) · NHTwoO, K
Two(Ru (NOTwo)Four(OH) (NO)), (Ru (N
HThree)6) ClThree, (Ru (NHThree)6) BrThree, (R
u (NHThree)6) ClTwo, (Ru (NHThree) 6) B
rTwo, (RuThreeOTwo(NHThree)14) Cl6・ HTwoO,
(Ru (NO) (NHThree)Five) ClThree, (Ru (OH)
(NO) (NHThree)Four) (NOThree)Two, RuClTwo(P
PhThree)Three, RuClTwo(PPhThree)Four, (RuClH
(PPhThree) Three) ・ C7H8, RuHTwo(PP
hThree)Four, RuClH (CO) (PPhThree)Three, RuH
Two(CO) (PPhThree)Three, (RuClTwo(Cod))
n, Ru (CO)12, Ru (acac)Three, (Ru (H
COO) (CO)Two) N, RuTwoIFour(P-cymen
e)TwoRuthenium salts such as water,
Using a catalyst preparation obtained by dissolving
The ruthenium component can be supported on a carrier. Lute above
Of the sodium salts, RuCl is preferable in terms of handling.
Three・ NHTwoO, Ru (NOThree)Three, RuTwo(OH)TwoC
lFour・ 7NHThree・ 3HTwoO is used.

【0010】ルテニウム成分の担体への担持は、該触媒
調製液を用いて、通常の含侵法、共沈法、競争吸着法に
より行うことができる。この際、処理条件は、各種方法
に応じて適宜選定すればよいが、通常、室温乃至90℃
の温度で1分乃至10時間、担体を触媒調製液と接触さ
せればよい。特に、担体の吸水量以下の水溶液で含浸
後、直ちに乾燥することによって、本発明のルテニウム
成分を外表面側に偏在せしめることができる。ルテニウ
ム成分の担持量は特に制限はないが、通常、担体に対し
てRuとして0.05〜10重量%が好ましく、特に0.
5〜5重量%の範囲が最適である。このルテニウムの含
有量が下限より少ないと、COの転化活性が不十分とな
り、一方、あまり高担持率にするとルテニウム成分の使
用量が必要以上に過剰になり触媒コストが大きくなる。
担体にルテニウム成分を担持した後、乾燥を行う。乾燥
方法としては、例えば自然乾燥、蒸発乾固法、ロータリ
ーエバポレーターもしくは送風乾燥機による乾燥がいず
れも使用可能である。乾燥後、通常、350〜550
℃、好ましくは380〜500℃の温度で、2〜6時
間、好ましくは2〜4時間焼成する。
The loading of the ruthenium component on the carrier can be carried out using the catalyst preparation solution by a usual impregnation method, coprecipitation method or competitive adsorption method. At this time, the processing conditions may be appropriately selected according to various methods, and are usually from room temperature to 90 ° C.
The carrier may be contacted with the catalyst preparation solution at a temperature of 1 minute to 10 hours. In particular, by immediately impregnating the carrier with an aqueous solution having a water absorption of the carrier or less, the ruthenium component of the present invention can be unevenly distributed on the outer surface side. The loading amount of the ruthenium component is not particularly limited, but is usually preferably 0.05 to 10% by weight as Ru relative to the carrier, and particularly preferably 0.1 to 0.1% by weight.
The range of 5 to 5% by weight is optimal. If the content of ruthenium is less than the lower limit, the conversion activity of CO becomes insufficient. On the other hand, if the loading is too high, the amount of the ruthenium component used becomes excessively large and the catalyst cost increases.
After supporting the ruthenium component on the carrier, drying is performed. As the drying method, for example, any of natural drying, evaporation to dryness, and drying with a rotary evaporator or a blow dryer can be used. After drying, usually 350-550
C., preferably at a temperature of 380 to 500.degree. C. for 2 to 6 hours, preferably 2 to 4 hours.

【0011】本発明においては、上記ルテニウム成分
に、更に担持成分としてアルカリ金属及び/又はアルカ
リ土類金属を用いることができる。アルカリ金属として
は、カリウム、ナトリウム、リチウム、セシウム、又は
ルビジウムが好適に用いられる。これらは単独で用いる
こともできるが、2種以上組み合わせて使用することも
できる。アルカリ金属源としては、K2 1016、KB
r、KBrO3 、KCN、K2CO3 、KCl、KCl
3 、KClO4 、KF、KHCO3 、KHF2 、KH
2 PO4 、KH5 (PO4 2 、KHSO4 、KI、K
IO3 、KIO4 、K42 9 、KN3 、KNO2
KNO3 、KOH、KPF6 、K3 PO4 、KSCN、
2 SO3 、K2 SO4 、K2 2 3 、K2
2 5 、K2 2 6 、K2 2 8 、K(CH3 CO
O)等のK塩;CsCl、CsClO3 、CsCl
4 、CsHCO3 、CsI、CsNO3 、Cs2 SO
4 、Cs(CH3 COO)、Cs2 CO3 、CsF等の
Cs塩;Rb2 1016、RbBr、RbBrO3 、R
bCl、RbClO3 、PbClO4 、RbI、RbN
3 、Rb2 SO4 、Rb(CH3 COO)2 、Rb2
CO3 等のRb塩;Na2 4 7 、NaB1016、N
aBr、NaBrO3 、NaCN、Na2 CO3 、Na
Cl、NaClO、NaClO3 、NaClO4 、Na
F、NaHCO3 、NaHPO3、Na2 HPO3 、N
2 HPO4 、NaH2 PO4 、Na3 HP2 6 、N
2 2 2 7 、NaI、NaIO3 、NaIO4
NaN3 、NaNO2 、NaNO3 、NaOH、Na2
PO3 、Na3 PO4 、Na4 2 7 、Na2 S、N
aSCN、Na2 SO3 、Na2 SO4 、Na2 2
5 、Na2 2 6、Na(CH3 COO)等のNa
塩;LiBO2 、Li2 4 7 、LiBr、LiBr
3 、Li2 CO3 、LiCl、LiClO3 、LiC
lO4 、LiHCO3 、Li2 HPO3 、LiI、Li
3 、LiNH4 SO4 、LiNO2 、LiNO3 、L
iOH、LiSCN、Li2 SO4 、Li3 VO4 等の
Li塩が用いられ、これらを水、エタノール等に溶解さ
せて得られる触媒調製液を用いて上記アルカリ金属成分
を担体に担持することができる。
In the present invention, the ruthenium component
And further, an alkali metal and / or an alkali
Lithium metal can be used. As alkali metal
Is potassium, sodium, lithium, cesium, or
Rubidium is preferably used. These are used alone
Can also be used in combination of two or more
it can. As the alkali metal source, KTwoBTenO16, KB
r, KBrOThree, KCN, KTwoCOThree, KCl, KCl
OThree, KCLOFour, KF, KHCOThree, KHFTwo, KH
TwoPOFour, KHFive(POFour)Two, KHSOFour, KI, K
IOThree, KIOFour, KFourITwoO9, KNThree, KNOTwo,
KNOThree, KOH, KPF6, KThreePOFour, KSCN,
KTwoSOThree, KTwoSOFour, KTwoSTwoOThree, KTwoS
TwoOFive, KTwoSTwoO6, KTwoSTwoO8, K (CHThreeCO
K) salts such as O); CsCl, CsClOThree, CsCl
OFour, CsHCOThree, CsI, CsNOThree, CsTwoSO
Four, Cs (CHThreeCOO), CsTwoCOThree, CsF etc.
Cs salt; RbTwoBTenO16, RbBr, RbBrOThree, R
bCl, RbClOThree, PbCLOFour, RbI, RbN
OThree, RbTwoSOFour, Rb (CHThreeCOO)Two, RbTwo
COThreeRb salt; NaTwoBFourO7, NaBTenO16, N
aBr, NaBrOThree, NaCN, NaTwoCOThree, Na
Cl, NaClO, NaClOThree, NaClOFour, Na
F, NaHCOThree, NaHPOThree, NaTwoHPOThree, N
aTwoHPOFour, NaHTwoPOFour, NaThreeHPTwo06, N
a TwoHTwoPTwoO7, NaI, NaIOThree, NaIOFour,
NaNThree, NaNOTwo, NaNOThree, NaOH, NaTwo
POThree, NaThreePOFour, NaFourPTwoO7, NaTwoS, N
aSCN, NaTwoSOThree, NaTwoSOFour, NaTwoSTwoO
Five, NaTwoSTwoO6, Na (CHThreeNa such as COO)
Salt; LiBOTwo, LiTwoBFourO7, LiBr, LiBr
OThree, LiTwoCOThree, LiCl, LiClOThree, LiC
10Four, LiHCOThree, LiTwoHPOThree, LiI, Li
NThree, LiNHFourSOFour, LiNOTwo, LiNOThree, L
iOH, LiSCN, LiTwoSOFour, LiThreeVOFourEtc.
Li salts are used and these are dissolved in water, ethanol, etc.
The above alkali metal component using the catalyst preparation solution obtained by
Can be carried on a carrier.

【0012】また、アルカリ土類金属としては、バリウ
ム、カルシウム、マグネシウムおよびストロンチウムが
好適に用いられる。これらは単独で用いることもできる
が、2種以上組み合わせて使用することもできる。アル
カリ土類金属源としては、BaBr2 、Ba(Br
3 2 、BaCl2、Ba(ClO2 2 、Ba(C
lO3 2 、Ba(ClO4 2 、BaI2 、Ba(N
3 2 、Ba(NO2 2 、Ba(NO3 2 、Ba
(OH)2 、BaS、BaS2 6 、BaS4 6 、B
a(SO3 NH2 2 等のBa塩;CaBr2 、CaI
2 、CaCl2 、Ca(ClO3 2 、Ca(IO3
2 、Ca(NO2 2 、Ca(NO3 2 、CaS
4 、CaS2 3 、CaS2 6 、Ca(SO3 NH
2 2 、Ca(CH3 COO)2 、Ca(H2 PO4
2 等のCa塩;MgBr2 、MgCO3 、MgCl2
Mg(ClO3 2 、MgI2 、Mg(IO3 2 、M
g(NO2 2 、Mg(NO3 2 、MgSO3 、Mg
SO4 、MgS2 6 、Mg(CH3 COO)2 、Mg
(OH)2 、Mg(ClO 4 2 等のMg塩;SrBr
2 、SrCl2 、SrI2 、Sr(NO3 2 、Sr
O、SrS2 3 、SrS2 6 、SrS4 6 、Sr
(CH3 COO)2 、Sr(OH)2 等のSr塩が用い
られ、これらを水、エタノール等に溶解させて得られる
触媒調製液を用いて、アルカリ土類金属成分を担体に担
持することができる。
Further, as the alkaline earth metal, barium
Calcium, magnesium, and strontium
It is preferably used. These can be used alone
However, two or more kinds can be used in combination. Al
As a potassium earth metal source, BaBrTwo, Ba (Br
OThree)Two, BaClTwo, Ba (ClOTwo)Two, Ba (C
10Three)Two, Ba (ClOFour)Two, BaITwo, Ba (N
Three)Two, Ba (NOTwo)Two, Ba (NOThree)Two, Ba
(OH)Two, BaS, BaSTwoO6, BaSFourO6, B
a (SOThreeNHTwo)TwoSuch as Ba salt; CaBrTwo, CaI
Two, CaClTwo, Ca (ClOThree)Two, Ca (IOThree)
Two, Ca (NOTwo)Two, Ca (NOThree)Two, CaS
OFour, CaSTwoOThree, CaSTwoO6, Ca (SOThreeNH
Two)Two, Ca (CHThreeCOO)Two, Ca (HTwoPOFour)
TwoCa salt, etc .; MgBrTwo, MgCOThree, MgClTwo,
Mg (ClOThree)Two, MgITwo, Mg (IOThree)Two, M
g (NOTwo)Two, Mg (NOThree)Two, MgSOThree, Mg
SOFour, MgSTwoO6, Mg (CHThreeCOO)Two, Mg
(OH)Two, Mg (ClO Four)TwoMg salt such as SrBr
Two, SrClTwo, SrITwo, Sr (NOThree)Two, Sr
O, SrSTwoOThree, SrSTwoO6, SrSFourO6, Sr
(CHThreeCOO)Two, Sr (OH)TwoSr salt is used
Are obtained by dissolving them in water, ethanol, etc.
Using the catalyst preparation solution, the alkaline earth metal component is
You can have.

【0013】アルカリ金属成分、アルカリ土類金属成分
は、上記触媒調製液を用いて、通常の含浸法、共沈法、
競争吸着法により担体に担持することができる。この
際、処理条件としは、各種方法に応じて適宜選定すれば
よいが、通常、室温乃至90℃の温度で1分〜10時
間、担体を触媒調製液と接触させることで行うことがで
きる。なお、ルテニウム、アルカリ金属およびアルカリ
土類金属の担持はどの順序で行ってもよいし、同時に行
うことが出来る場合には同時に行ってもよい。アルカリ
金属、アルカリ土類金属の担持量は特に制限はないが、
各々、通常、担体に対して金属として0.01〜10重
量%が好ましく、特に0.03〜3重量%の範囲が最適
である。これらの金属の含有量が下限より少ないと、C
Oの選択的酸化活性が不十分となり、一方、あまり高担
持率にした場合もCOの選択的酸化活性が不十分となる
とともに金属の使用量が必要以上に過剰になり触媒コス
トが大きくなる。担体に上記アルカリ金属、アルカリ土
類金属を担持した後、乾燥を行う。乾燥方法としては、
例えば自然乾燥、蒸発乾固法、ロータリーエバポレータ
ーもしくは送風乾燥機による乾燥等を行うことができ
る。乾燥後、通常、350〜550℃、好ましくは38
0〜500℃の温度で、2〜6時間、好ましくは2〜4
時間焼成を行う。なお、本発明の触媒は、たとえば触媒
そのものを押出成形等により成形してもよいし、ハニカ
ムやリング状などの基体に触媒を付着させる方法でもよ
く、その方法については特に限定されない。
The alkali metal component and the alkaline earth metal component can be prepared by using the above-mentioned catalyst preparation solution by the usual impregnation method, coprecipitation method,
It can be supported on a carrier by a competitive adsorption method. At this time, the treatment conditions may be appropriately selected according to various methods, but usually, the treatment can be performed by bringing the carrier into contact with the catalyst preparation solution at a temperature of room temperature to 90 ° C. for 1 minute to 10 hours. The loading of ruthenium, alkali metal and alkaline earth metal may be carried out in any order, and if they can be carried out simultaneously, they may be carried out simultaneously. The amount of alkali metal or alkaline earth metal supported is not particularly limited,
Each is usually preferably 0.01 to 10% by weight as a metal relative to the carrier, and most preferably 0.03 to 3% by weight. If the content of these metals is less than the lower limit, C
The selective oxidation activity of O becomes insufficient. On the other hand, when the loading ratio is too high, the selective oxidation activity of CO becomes insufficient and the amount of metal used becomes excessively large, so that the catalyst cost increases. After the above-mentioned alkali metal and alkaline earth metal are supported on the carrier, drying is performed. As a drying method,
For example, natural drying, evaporation to dryness, drying with a rotary evaporator or a blow dryer can be performed. After drying, it is usually 350 to 550 ° C, preferably 38 ° C.
2 to 6 hours at a temperature of 0 to 500 ° C, preferably 2 to 4 hours
Perform firing for a time. The catalyst of the present invention may be formed by, for example, extruding the catalyst itself or by a method of attaching the catalyst to a honeycomb or ring-shaped substrate, and the method is not particularly limited.

【0014】つぎに、上記本発明の触媒を用いて水素を
主成分とするガス中の一酸化炭素を酸素により酸化し、
一酸化炭素の低減された水素含有ガスを製造する方法に
ついいて説明する。上述のように調製された触媒は通常
焼成されているので担持金属は酸化物の状態で存在す
る。通常は、この触媒を使用前に水素還元により還元す
る。水素還元は、通常、水素気流下、250〜550
℃、好ましくは300〜530℃の温度で、1〜5時
間、好ましくは1〜2時間行う。以上のようにして得ら
れる触媒により、水素を主成分とし、かつ少なくともC
Oを含有する水素含有ガスに酸素を添加して、COの酸
素による選択的酸化反応を行う。本発明のCOの酸化方
法は、水素製造用原料を改質または部分酸化することに
よって得られる水素を主成分とするガス(改質ガス等と
いう、以下同じ)中のCOを選択的に除去するのに好適
に利用され、燃料電池用水素含有ガスの製造に利用され
るが、これに限定されるものではない。
Next, carbon monoxide in a gas containing hydrogen as a main component is oxidized with oxygen using the catalyst of the present invention,
A method for producing a hydrogen-containing gas with reduced carbon monoxide will be described. Since the catalyst prepared as described above is usually calcined, the supported metal exists in an oxide state. Usually, this catalyst is reduced by hydrogen reduction before use. Hydrogen reduction is usually carried out under a hydrogen stream at 250 to 550.
C., preferably at a temperature of 300 to 530.degree. C., for 1 to 5 hours, preferably for 1 to 2 hours. The catalyst obtained as described above contains hydrogen as a main component and at least C
Oxygen is added to the hydrogen-containing gas containing O to perform a selective oxidation reaction of CO with oxygen. The CO oxidation method of the present invention selectively removes CO in a gas containing hydrogen as a main component obtained by reforming or partially oxidizing a raw material for hydrogen production (hereinafter referred to as a reformed gas or the like). It is preferably used for the production of a hydrogen-containing gas for a fuel cell, but is not limited thereto.

【0015】1.水素製造用原料の改質または部分酸化
工程 本発明においては、各種の水素製造用原料の改質等によ
って得られる改質ガス等に含まれるCOを触媒を用いて
酸素により選択的に酸化除去し、CO濃度が十分に低減
された所望の水素含有ガスを製造する。該改質ガス等を
得るための工程は、以下に示すように、従来の水素製造
工程、特に燃料電池システムにおける水素製造工程にお
いて従来実施あるいは提案されている方法など任意の方
法によって行うことができる。したがって、予め改質装
置等を備えた燃料電池システムにおいては、それをその
まま利用して改質ガス等を調製してもよい。水素製造用
原料とは、水蒸気改質や部分酸化により水素に富んだガ
スを製造できる炭化水素類、すなわちメタン、エタン、
プロパン、ブタン等の炭化水素、あるいは天然ガス(L
NG)、ナフサ、ガソリン、灯油、軽油、重油、アスフ
ァルト等の炭化水素系原料、メタノール、エタノール、
プロパノール、ブタノール等のアルコール類、蟻酸メチ
ル、メチルターシャリーブチルエーテル、ジメチルエー
テルなどの含酸素化合物、更には、各種の都市ガス、L
PG、合成ガス、石炭などがあげられる。これらのう
ち、どのような水素製造用原料を用いるかは、燃料電池
システムの規模や原料の供給事情などの諸条件を考慮し
て定めればよいが、通常は、メタノール、メタンもしく
はLNG、プロパンもしくはLPG、ナフサ、灯油もし
くは低級飽和炭素、都市ガスなどが好適に使用される。
1. Reforming or Partial Oxidation Step of Hydrogen Production Raw Material In the present invention, CO contained in a reformed gas or the like obtained by reforming various hydrogen production raw materials is selectively oxidized and removed by oxygen using a catalyst. , To produce the desired hydrogen-containing gas with sufficiently reduced CO concentration. The step of obtaining the reformed gas or the like can be performed by any method such as a conventional hydrogen production step, particularly a conventionally practiced or proposed method in a hydrogen production step in a fuel cell system, as described below. . Therefore, in a fuel cell system provided with a reformer or the like in advance, a reformed gas or the like may be prepared by using the reformer as it is. Hydrogen production raw materials are hydrocarbons that can produce gas rich in hydrogen by steam reforming or partial oxidation, that is, methane, ethane,
Hydrocarbons such as propane and butane, or natural gas (L
NG), naphtha, gasoline, kerosene, light oil, heavy oil, asphalt and other hydrocarbon-based raw materials, methanol, ethanol,
Alcohols such as propanol and butanol, oxygen-containing compounds such as methyl formate, methyl tertiary butyl ether and dimethyl ether, and various city gases, L
PG, synthesis gas, coal and the like. Among these, what kind of raw material for hydrogen production is used may be determined in consideration of various conditions such as the scale of the fuel cell system and the circumstances of supply of the raw material, but usually, methanol, methane or LNG, propane, etc. Alternatively, LPG, naphtha, kerosene or lower saturated carbon, city gas and the like are suitably used.

【0016】また一般に、これらの原料炭化水素中に硫
黄分が存在する場合は、脱硫工程を通して、通常、硫黄
分が0.1ppm程度以下になるまで脱硫を行うことが好
ましい。原料炭化水素中の硫黄分が0.1ppm程度より
多くなると、改質触媒が失活する原因となることがあ
る。脱硫方法は特に限定されないが、水添脱硫,吸着脱
硫などを適宜用いることができる。改質または部分酸化
に属する技術(以下、改質反応等という。)としては、
水蒸気改質をはじめ部分酸化、水蒸気改質と部分酸化の
複合化したもの、オートサーマル改質、その他の改質反
応などを挙げることができる。通常、改質反応等として
は、水蒸気改質(スチームリホーミング)が最も一般的
であるが、原料によっては、部分酸化やその他の改質反
応(例えば、熱分解等の熱改質反応、接触分解やシフト
反応等の各種接触改質反応など)も適宜適用することが
できる。その際、異なる種類の改質反応を適宜組み合わ
せて利用してもよい。以下、代表的な改質反応として水
蒸気改質を中心に説明する。このような改質反応は、一
般に、水素の収率ができるだけ大きくなるように、触媒
や反応条件等を選定するが、COの副生を完全に抑制す
ることは困難であり、たとえシフト反応を利用しても改
質ガス中のCO濃度の低減には限界がある。実際、灯油
等の炭化水素の水蒸気改質反応については、水素の得率
及びCOの副生の抑制のために、次の式(2)あるいは
式(3): CH4 + 2H2 O → 4H2 + CO2 (2) Cn Hm + 2nH2 O →(2n+m/2)H2 +nCO2 (3) で表される反応ができるだけ選択性よく起こるように諸
条件を選定するのが好ましい。
In general, when sulfur is present in these raw material hydrocarbons, desulfurization is preferably performed through the desulfurization step until the sulfur content is generally about 0.1 ppm or less. When the sulfur content in the raw material hydrocarbon is more than about 0.1 ppm, it may cause the deactivation of the reforming catalyst. Although the desulfurization method is not particularly limited, hydrodesulfurization, adsorption desulfurization and the like can be used as appropriate. Techniques belonging to reforming or partial oxidation (hereinafter referred to as reforming reaction, etc.) include:
Examples include steam reforming, partial oxidation, a combination of steam reforming and partial oxidation, autothermal reforming, and other reforming reactions. Usually, steam reforming (steam reforming) is the most common reforming reaction, but depending on the raw material, partial oxidation or other reforming reactions (for example, thermal reforming reaction such as thermal decomposition, contact reforming) Various catalytic reforming reactions such as decomposition and shift reaction) can also be appropriately applied. At this time, different types of reforming reactions may be used in appropriate combination. Hereinafter, steam reforming will be mainly described as a typical reforming reaction. In such a reforming reaction, catalysts and reaction conditions are generally selected so that the yield of hydrogen is as large as possible. However, it is difficult to completely suppress CO by-products. Even if it is used, there is a limit to the reduction of the CO concentration in the reformed gas. In fact, for the steam reforming reaction of hydrocarbons such as kerosene, the following equation (2) or equation (3): CH 4 + 2H 2 O → 4H, in order to suppress the yield of hydrogen and the by-product of CO. 2 + CO 2 (2) Cn Hm + 2nH 2 O → (2n + m / 2) H 2 + nCO 2 (3) It is preferable to select various conditions so that the reaction occurs as efficiently as possible.

【0017】更に、COを前記(1)式で表されるシフ
ト反応を利用して変成改質してもよい。しかし、このシ
フト反応は平衡反応であるのである程度の濃度のCOが
残存する。したがって、こうした反応による改質ガス等
(本発明の原料である水素を主成分とするガス、以下同
じ)中には、通常、多量の水素の他にCO2 や未反応の
水蒸気等と若干のCOが含まれることになる。前記改質
反応に有効な触媒としては、原料の種類や反応の種類あ
るいは反応条件等に応じて多種多様なものが知られてい
る。その中のいくつかを具体的に例示すると、炭化水素
類の接触改質反応や部分酸化に有効な触媒として、例え
ば、担持Ru系触媒、担持Pt系触媒、担持Ni系触媒
などを挙げることができる。改質反応の条件は、用いる
原料、改質反応、触媒、反応装置の種類あるいは反応方
式等の条件によって異なるので適宜定めればよい。いず
れにしても、原料の転化率を十分に(好ましくは100
%あるいは100%近くまで)大きくし、かつ、水素の
得率ができるだけ大きくなるように諸条件を選定するの
が望ましい。また、必要に応じて、未反応の炭化水素や
アルコール等を分離しリサイクルする方式を採用しても
よい。また、必要に応じて、生成したあるいは未反応の
CO2や水分等を適宜除去してもよい。
Further, CO may be reformed and reformed by utilizing the shift reaction represented by the above formula (1). However, since this shift reaction is an equilibrium reaction, a certain concentration of CO remains. Thus, the reformed gas or the like by such reaction (of the present invention is a starting material gas containing mainly hydrogen, hereinafter the same) during normal, the CO 2 and unreacted another large amount of hydrogen water vapor or the like and slightly CO will be included. A wide variety of catalysts are known as effective catalysts for the reforming reaction according to the type of raw materials, the type of reaction, the reaction conditions, and the like. Specific examples of some of them include catalysts effective for catalytic reforming reaction and partial oxidation of hydrocarbons, for example, supported Ru-based catalyst, supported Pt-based catalyst, supported Ni-based catalyst, and the like. it can. Since the conditions of the reforming reaction vary depending on the conditions such as the raw material used, the reforming reaction, the catalyst, the type of the reaction apparatus, the reaction system, and the like, they may be appropriately determined. In any case, the conversion of the raw material should be sufficient (preferably 100
% Or nearly 100%), and various conditions are desirably selected so that the yield of hydrogen is as large as possible. If necessary, a method of separating and recycling unreacted hydrocarbons and alcohols may be adopted. If necessary, generated or unreacted CO 2 and water may be appropriately removed.

【0018】2.COの選択的酸化(転化)除去工程 上記のようにして、水素含有量が多く、かつ、炭化水素
やアルコール等の水素以外の原料成分が十分に低減され
た所望の改質ガスを得ることができる。本発明の水素含
有ガスの製造方法は、水素を主成分とし少量のCOを含
む原料ガス(改質ガス等)に酸素を添加してCOを選択
的に酸化(転化)してCO2 とするものであり、水素の
酸化は極力抑える必要がある。また、生成したり、原料
ガス中に存在したCO2 のCOへの転化反応(原料ガス
中には水素が存在するので、逆シフト反応が起こる可能
性がある。)を抑えることも必要である。本発明の触媒
は、通常、還元状態で使用されるので、還元状態に至っ
ていない場合は水素による還元操作を行っておくことが
好ましい。本発明の触媒を使用することにより、CO2
含有量の低い原料ガスに対してCOの選択的酸化除去に
良好な成績を示すことは勿論、CO2 含有量が多い条件
でも良好な成績が得られる。通常、燃料電池システムに
おいては一般的なCO2 の濃度の改質ガス等、すなわ
ち、CO2 を5〜33容量%、好ましくは10〜25容
量%、更に好ましくは15〜20容量%含有するガスが
用いられる。
2. Selective Oxidation (Conversion) Removal Step of CO As described above, it is possible to obtain a desired reformed gas having a large hydrogen content and a sufficiently reduced amount of raw material components other than hydrogen such as hydrocarbons and alcohols. it can. In the method for producing a hydrogen-containing gas of the present invention, CO is selectively oxidized (converted) to CO 2 by adding oxygen to a raw material gas (reformed gas or the like) containing hydrogen as a main component and containing a small amount of CO. Therefore, oxidation of hydrogen must be suppressed as much as possible. It is also necessary to suppress the conversion reaction of CO 2 generated or present in the source gas to CO (there is a possibility that a reverse shift reaction occurs because hydrogen is present in the source gas). . Since the catalyst of the present invention is generally used in a reduced state, it is preferable to perform a reduction operation with hydrogen when the catalyst is not in a reduced state. By using the catalyst of the present invention, CO 2
It shows good results in the selective oxidation and removal of CO with respect to the raw material gas having a low content, and also obtains good results even under the condition where the CO 2 content is high. Normally, in a fuel cell system, a reformed gas having a general concentration of CO 2 , that is, a gas containing 5 to 33% by volume, preferably 10 to 25% by volume, more preferably 15 to 20% by volume of CO 2 Is used.

【0019】一方、水蒸気改質等により得られる原料ガ
ス中には、通常、スチームが存在するが、原料ガス中の
スチーム濃度は低い方がよい。通常は、5〜30%程度
含まれておりこの程度であれば問題はない。また、本発
明の触媒を使用すると、CO濃度が低い(0.6容量%
以下)原料ガス中のCO濃度も有効に低減でき、CO濃
度が比較的高い(0.6〜2.0容量%)原料ガス中の
CO濃度も好適に低減することができる。本発明におい
ては、本発明の触媒を用いることにより原料ガス中にC
2 が15%容量以上存在するような条件でも60〜3
00℃という比較的高い温度を含む温度域においてCO
の選択転化除去を効率的に行うことができる。また、C
Oの転化除去反応は同時に起こる副反応の水素の酸化反
応と同様、発熱反応であり、そこで発熱した熱を回収し
て燃料電池内で活用することは発電効率を向上させる上
で効果がある。改質ガス等に酸素ガスを添加する場合、
通常、純酸素(O2 )、空気あるいは酸素富化空気が好
適に使用される。該酸素ガスの添加量は、酸素/CO
(モル比)が好ましくは、0.5〜5、更に好ましくは
1〜4となるように調整するのが適当である。この比が
小さいとCOの除去率が低くなり、大きいと水素の消費
量が多くなり過ぎて好ましくない。反応圧力は特に限定
されないが、燃料電池の場合は通常、常圧乃至1MPa
・G、好ましくは常圧乃至0.5MPa・Gの圧力範囲で
行う。反応圧力をあまり高く設定すると、昇圧のための
動力をその分大きくする必要があるので経済的に不利に
なるし、特に、1MPa・Gを超えると高圧ガス取締法
の規制を受けるし、また、爆発限界が広がるので安全性
が低下するという問題も生じる。
On the other hand, steam is usually present in the source gas obtained by steam reforming or the like, but the lower the steam concentration in the source gas, the better. Usually, it is contained in an amount of about 5 to 30%. When the catalyst of the present invention is used, the CO concentration is low (0.6% by volume).
Hereinafter, the CO concentration in the source gas can also be effectively reduced, and the CO concentration in the source gas having a relatively high CO concentration (0.6 to 2.0% by volume) can be suitably reduced. In the present invention, by using the catalyst of the present invention, C
O 2 is from 60 to 3 in conditions such that there more than 15% volume
CO2 in a temperature range including a relatively high temperature of 00 ° C.
Can be efficiently removed. Also, C
The conversion and removal reaction of O is an exothermic reaction like the oxidation reaction of hydrogen, which is a concurrent side reaction, and recovering the generated heat and utilizing it in the fuel cell is effective in improving the power generation efficiency. When adding oxygen gas to reformed gas, etc.
Usually, pure oxygen (O 2 ), air or oxygen-enriched air is preferably used. The added amount of the oxygen gas is oxygen / CO
(Molar ratio) is preferably adjusted to be 0.5 to 5, more preferably 1 to 4. If this ratio is small, the removal rate of CO is low, and if it is large, the consumption of hydrogen is too large, which is not preferable. The reaction pressure is not particularly limited, but in the case of a fuel cell, it is usually from normal pressure to 1 MPa.
G, preferably in a pressure range from normal pressure to 0.5 MPa · G. If the reaction pressure is set too high, the power for pressurization must be increased accordingly, which is economically disadvantageous. In particular, if it exceeds 1 MPa · G, it is subject to the regulations of the High Pressure Gas Control Law, As the explosion limit is widened, there is also the problem of reduced safety.

【0020】前記反応は、通常、60℃以上、好ましく
は、60〜300℃という非常に広い温度範囲で、CO
転化反応に対する選択性を安定的に維持しつつ、好適に
行うことができる。この反応温度が60℃未満では反応
速度が遅くなるので実用的なGHSV(ガス体積空間速
度)の範囲ではCOの除去率(転化率)が不十分となり
やすい。また、前記反応は、通常、GHSV(供給ガス
の標準状態における供給体積速度を使用する触媒層のみ
かけの体積で割った値=ガス空間速度)を5000〜1
00000hr-1の範囲に選定して行うのが好適であ
る。ここで、GHSVを小さくすると多量の触媒が必要
となり、一方、GHSVをあまり大きくするとCOの除
去率が低下する。このため、GHSVは、好ましくは、
6000〜60000hr-1の範囲に選定する。このC
Oの転化除去の工程におけるCOの転化反応は発熱反応
であるため、反応により触媒層の温度が上昇する。触媒
層の温度が高くなりすぎると、通常、触媒のCO転化除
去の選択性が悪化する。このため、少量の触媒上であま
り多くのCOを短時間で反応させることは好ましくな
い。その意味からもGHSVは大きすぎない方がよい場
合もある。このCOの転化除去に用いる反応装置として
は、特に制限はなく、上記の反応条件を満たせるもので
あれば各種の形式のものが適用可能であるが、この転化
反応は発熱反応であるので、温度制御を容易にするため
に反応熱の除去性のよい反応装置もしくは反応器を用い
ることが望ましい。具体的には、例えば、多管型、ある
いは、プレートフィン型等の熱交換型の反応器が好適に
使用される。場合によっては、冷却媒体を触媒層内に循
環したり、触媒層の外側に冷却媒体を流通させたりする
方法を採用することができる。
The reaction is usually carried out in a very wide temperature range of 60 ° C. or higher, preferably 60 to 300 ° C.
The reaction can be suitably performed while stably maintaining the selectivity for the conversion reaction. If the reaction temperature is lower than 60 ° C., the reaction rate becomes slow, so that the CO removal rate (conversion rate) tends to be insufficient within a practical range of GHSV (gas volume space velocity). In addition, the reaction is usually performed using GHSV (value obtained by dividing the supplied volume velocity in the standard state of the supplied gas by the apparent volume of the catalyst layer to be used = gas space velocity) from 5000 to 1
It is preferable to perform the selection in the range of 00000 hr -1 . Here, when the GHSV is reduced, a large amount of the catalyst is required. On the other hand, when the GHSV is excessively increased, the CO removal rate is reduced. For this reason, GHSV preferably
It is selected in the range of 6000 to 60000 hr -1 . This C
Since the CO conversion reaction in the O conversion and removal step is an exothermic reaction, the reaction increases the temperature of the catalyst layer. If the temperature of the catalyst layer is too high, the selectivity of the catalyst for CO conversion removal usually deteriorates. For this reason, it is not preferable to react too much CO on a small amount of catalyst in a short time. In that sense, it may be better that the GHSV is not too large. There is no particular limitation on the reactor used for the conversion and removal of CO, and various types of reactors can be applied as long as the reaction conditions described above can be satisfied. In order to facilitate the control, it is desirable to use a reactor or a reactor having a good removal of reaction heat. Specifically, for example, a heat exchange type reactor such as a multitube type or a plate fin type is suitably used. Depending on the case, a method of circulating the cooling medium in the catalyst layer or circulating the cooling medium outside the catalyst layer can be adopted.

【0021】こうして本発明の方法によって製造された
水素含有ガスは、上記のようにCO濃度が十分に低減さ
れているので燃料電池の白金電極触媒の被毒及び劣化を
十分に低減することができ、その寿命及び発電効率・発
電性能を大幅に向上することができる。また、このCO
の転化反応により発生した熱を回収することも可能であ
る。また、比較的高濃度のCOを含む水素含有ガス中の
CO濃度を十分に低下することができる。燃料電池用の
水素含有ガス中のCO濃度は100容量ppm以下、好
ましくは50容量ppm以下、さらに好ましくは10容
量ppm以下であることが望ましいが、本発明の方法に
よれば広い反応条件下でこれを達成することは十分可能
である。本発明により得られた水素含有ガスは、各種の
2 燃焼型燃料電池の燃料として好適に使用することが
でき、特に、少なくとも燃料極(負極)の電極に白金
(白金触媒)を用いるタイプの各種のH2 燃焼型燃料電
池(リン酸型燃料電池、KOH型燃料電池、固体高分子
型燃料電池をはじめとする低温作動型燃料電池など)へ
の供給燃料として有利に利用することができる。なお、
従来の燃料電池システムの改質装置(改質装置の後に変
成装置が有る場合、その変成装置も改質装置の一部とみ
なす)と燃料電池の間に、本発明の方法に従った酸素導
入装置と反応装置を組み込むことによって、あるいは、
すでに酸素導入装置と転化反応装置を具備しているもの
ではCOの転化除去触媒として前記触媒を用い反応条件
を前記のように調整することによって、従来に比べ優れ
た燃料電池システムを構成することが可能となる。
The hydrogen-containing gas produced by the method of the present invention has a sufficiently reduced CO concentration as described above, so that the poisoning and deterioration of the platinum electrode catalyst of the fuel cell can be sufficiently reduced. , Its life, power generation efficiency and power generation performance can be greatly improved. Also, this CO
It is also possible to recover the heat generated by the conversion reaction. Further, the CO concentration in the hydrogen-containing gas containing a relatively high concentration of CO can be sufficiently reduced. The CO concentration in the hydrogen-containing gas for a fuel cell is preferably 100 ppm by volume or less, preferably 50 ppm by volume or less, more preferably 10 ppm by volume or less. It is quite possible to achieve this. The hydrogen-containing gas obtained according to the present invention can be suitably used as a fuel for various types of H 2 combustion type fuel cells. In particular, a type using platinum (platinum catalyst) for at least the fuel electrode (negative electrode) is used. can be advantageously utilized as a fuel supply for various into H 2 combustion fuel cell (phosphoric acid fuel cell, KOH-type fuel cell, such as low temperature operation type fuel cell including a polymer electrolyte fuel cell). In addition,
Oxygen introduction according to the method of the present invention between a reformer of a conventional fuel cell system (if a reformer is provided after the reformer, the reformer is also regarded as a part of the reformer) and the fuel cell. By incorporating equipment and reactors, or
In those already equipped with an oxygen introduction device and a conversion reaction device, by using the catalyst as a CO conversion removal catalyst and adjusting the reaction conditions as described above, it is possible to configure a fuel cell system superior to the conventional one. It becomes possible.

【0022】[0022]

【実施例】次に、本発明を実施例により、さらに具体的
に説明するが、本発明は、これらの例によってなんら限
定されるものではない。なお、各例で得られた触媒のS
の値及び選択酸化反応後のCO濃度は、下記の方法によ
り測定した。 <Sの測定>球状触媒の球の中心を通る断面、あるいは
円柱状触媒の円柱底面と平行に切断した断面において、
触媒表面からその半径の3分の1の距離までの外周部分
に含まれるRu金属の量を電子線マイクロアナライザー
(EPMA)を用いて線分析して得た値をNとし、触媒
全体に含まれるRu金属の線分析値をNoとした時のS
の値を、S=(N/No)×100(%)の式から求め
た。 <CO濃度の測定>各触媒10ccを内径25mmの石
英反応管に充填した。反応管内で触媒を500℃で1時
間水素による還元処理を行なった後、GHSV:100
00h-1の条件で下記水素含有ガスA,Bを入り口温度
100℃で導入し、CO選択酸化反応を実施した。得ら
れたガスをサンプリングしてガスクロマトグラフィーに
てCO濃度を測定した。結果を第1表に示す。 水素含有ガスA; CO/O2 /CO2 /H2 O/N2 /H2 =0.6/0.6/ (容量%) 15/20/2.4/Balance 水素含有ガスB; CO/O2 /CO2 /H2 O/N2 /H2 =0.6/1.5/ (容量%) 15/20/6.0/Balance
EXAMPLES Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. The S of the catalyst obtained in each example was
And the CO concentration after the selective oxidation reaction were measured by the following methods. <Measurement of S> In a cross section passing through the center of the sphere of the spherical catalyst or a cross section cut in parallel with the bottom surface of the columnar catalyst,
The value obtained by linearly analyzing the amount of Ru metal contained in the outer peripheral portion up to a distance of one third of the radius from the catalyst surface using an electron beam microanalyzer (EPMA) is defined as N, and is included in the entire catalyst. S when the line analysis value of Ru metal is No
Was determined from the equation of S = (N / No) × 100 (%). <Measurement of CO concentration> 10 cc of each catalyst was filled in a quartz reaction tube having an inner diameter of 25 mm. After reducing the catalyst with hydrogen in a reaction tube at 500 ° C. for 1 hour, GHSV: 100
Under the conditions of 00h -1, the following hydrogen-containing gases A and B were introduced at an inlet temperature of 100 ° C. to perform a CO selective oxidation reaction. The obtained gas was sampled, and the CO concentration was measured by gas chromatography. The results are shown in Table 1. Hydrogen-containing gas A; CO / O 2 / CO 2 / H 2 O / N 2 / H 2 = 0.6 / 0.6 / (volume%) 15/20 / 2.4 / Balance Hydrogen-containing gas B; CO / O 2 / CO 2 / H 2 O / N 2 / H 2 = 0.6 / 1.5 / (volume%) 15/20 / 6.0 / Balance

【0023】実施例1 硝酸ルテニウム(Ru(NO3 3 )水溶液(Ru金属
として50g/リットル)2ミリリットルを50ミリリ
ットルビーカーにとり、これにイオン交換水1.6ミリリ
ットルを入れ、均一になるまで攪拌した。別の50ミリ
リットルビーカーにアルミナ担体KHD24(住友化学
製、直径2〜4mmの球状)10gをはかりとった。該
アルミナ担体に上記調製した硝酸ルテニウム水溶液を、
ガラス棒で担体をよくかき混ぜながら滴下した後、更
に、1分間程度よくかき混ぜた。次いで、3時間室温に
放置した後乾燥器に入れ、120℃で24時間乾燥し
て、アルミナ担体にRuを1.0重量%担持した触媒を得
た。 比較例1 硝酸ルテニウム(Ru(NO3 3 )水溶液(Ru金属
として50g/リットル)5ミリリットルを50ミリリ
ットルビーカーにとり、これにエタノール10ミリリッ
トルと水10ミリリットルを入れ攪拌した。別の50ミ
リリットルビーカーにアルミナ担体KHD24(住友化
学製、直径2〜4mmの球状)10gをはかりとった。
上記調製した硝酸ルテニウム溶液に該アルミナ担体を浸
漬し、そのまま12時間程放置した。得られた触媒をビ
ーカーから取り出し、3時間室温で放置した後乾燥器に
入れ、120℃で24時間乾燥して、アルミナ担体にR
uを1.1重量%担持した触媒を得た。
Example 1 2 ml of an aqueous ruthenium nitrate (Ru (NO 3 ) 3 ) solution (50 g / l as Ru metal) was placed in a 50 ml beaker, and 1.6 ml of ion-exchanged water was added thereto and stirred until uniform. did. In another 50 ml beaker, 10 g of alumina carrier KHD24 (manufactured by Sumitomo Chemical Co., Ltd., spherical shape having a diameter of 2 to 4 mm) was weighed. Ruthenium nitrate aqueous solution prepared above on the alumina carrier,
After the carrier was added dropwise with good stirring with a glass rod, the mixture was further stirred well for about 1 minute. Next, the mixture was allowed to stand at room temperature for 3 hours, then placed in a drier, and dried at 120 ° C. for 24 hours to obtain a catalyst in which Ru was supported on an alumina carrier at 1.0% by weight. Comparative Example 1 5 ml of an aqueous ruthenium nitrate (Ru (NO 3 ) 3 ) solution (50 g / l as Ru metal) was placed in a 50 ml beaker, and 10 ml of ethanol and 10 ml of water were added thereto and stirred. In another 50 ml beaker, 10 g of alumina carrier KHD24 (manufactured by Sumitomo Chemical Co., Ltd., spherical shape having a diameter of 2 to 4 mm) was weighed.
The alumina carrier was immersed in the ruthenium nitrate solution prepared above, and left as it was for about 12 hours. The obtained catalyst was taken out of the beaker, left at room temperature for 3 hours, then put in a drier and dried at 120 ° C. for 24 hours.
Thus, a catalyst carrying 1.1% by weight of u was obtained.

【0024】実施例2 ルチル型チタニア(TiO2 、石原産業(株)製、CR
−EL、表面積:7m2 /g)160gと擬ベーマイト
アルミナ粉末(触媒化成工業株式会社製、Catalo
id−AP)59.7gを混合し、イオン交換水ととも
に混練機で加温下で十分混練し、押出成形に適する程度
に水分を調整した。これを押出成形機で直径2mm、長
さ0.5〜1cmの円柱状に成形し、乾燥機で120
℃、24時間乾燥した。続いて、焼成炉で500℃、4
時間焼成してチタニア/アルミナ担体を得た。チタニア
/アルミナの重量比は80/20であった。塩化ルテニ
ウム(RuCl3 ・nH2 O、Ru金属含有量:38.0
3重量%)0.263gをビーカーにはかりとる。これ
に、硝酸カリウム(KNO3 )0.259gを入れ、更に
イオン交換水1ミリリットルを加え溶解させた。別の5
0ミリリットルビーカーに上記調製した担体10gをは
かりとり、これに上記調製したルテニウム溶液をかき混
ぜながら注いだ後、放置することなく乾燥器にいれ12
0℃で1晩乾燥した。更に、焼成炉に入れ500℃で4
時間焼成して、チタニア/アルミナ担体にRuを1重量
%、Kを0.1重量%担持した触媒を得た。
Example 2 Rutile type titania (TiO 2 , manufactured by Ishihara Sangyo Co., Ltd., CR
-EL, surface area: 7 m 2 / g) 160 g and pseudo-boehmite alumina powder (Catalo, manufactured by Kako Kagaku Kogyo Co., Ltd.)
59.7 g of (id-AP) were mixed and sufficiently kneaded with ion-exchanged water in a kneader under heating to adjust the water content to an extent suitable for extrusion molding. This was formed into a cylindrical shape having a diameter of 2 mm and a length of 0.5 to 1 cm using an extruder, and drying was performed using a dryer.
C. and dried for 24 hours. Then, in a firing furnace at 500 ° C., 4
Calcination for a period of time gave a titania / alumina support. The weight ratio of titania / alumina was 80/20. Ruthenium chloride (RuCl 3 .nH 2 O, Ru metal content: 38.0
0.263 g is weighed into a beaker. 0.259 g of potassium nitrate (KNO 3 ) was added thereto, and 1 ml of ion-exchanged water was further added and dissolved. Another 5
In a 0 ml beaker, weigh 10 g of the carrier prepared above, pour the above-prepared ruthenium solution with stirring, and place it in a dryer without standing.
Dry at 0 ° C. overnight. Furthermore, put in a firing furnace at 500 ° C for 4 hours.
After calcination for an hour, a catalyst in which Ru and K were supported on a titania / alumina support at 1% by weight and 0.1% by weight, respectively, was obtained.

【0025】実施例3 実施例2において、担体にルテニウムおよびカリウム含
有溶液を注いだ後、乾燥器にいれる前に3時間室温放置
を行った以外は実施例2と同様にしてチタニア/アルミ
ナ担体にRuを1重量%、Kを0.1重量%担持した触媒
を得た。 比較例2 実施例2において、塩化ルテニウムと硝酸カリウムを溶
解させるイオン交換水を2倍量の2ミリリットルとし、
真空含浸装置のフラスコに実施例2で調製したチタニア
/アルミナ担体10gをはかりとり、該真空含浸装置の
内部をロータリポンプで排気した後、上記調製したルテ
ニウム及びカリウム含有溶液を注ぎ含浸操作を行った。
次いで、真空含浸装置を常圧に戻し、室温で3時間放置
した後、実施例2と同様にして乾燥、焼成を行い、チタ
ニア/アルミナ担体にRuを1重量%、Kを0.1重量%
担持した触媒を得た。
Example 3 A titania / alumina carrier was prepared in the same manner as in Example 2 except that the ruthenium- and potassium-containing solution was poured into the carrier, and then left at room temperature for 3 hours before being put into a dryer. A catalyst supporting 1% by weight of Ru and 0.1% by weight of K was obtained. Comparative Example 2 In Example 2, the amount of ion-exchanged water in which ruthenium chloride and potassium nitrate were dissolved was doubled to 2 ml,
10 g of the titania / alumina carrier prepared in Example 2 was weighed into a flask of a vacuum impregnating apparatus, and the inside of the vacuum impregnating apparatus was evacuated with a rotary pump. .
Next, the vacuum impregnating apparatus was returned to normal pressure, and left at room temperature for 3 hours. Then, drying and firing were performed in the same manner as in Example 2, and 1 wt% of Ru and 0.1 wt% of K were added to the titania / alumina carrier.
A supported catalyst was obtained.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】本発明の触媒によれば、担持ルテニウム
当たりの触媒活性が著しく優れ、水素を主成分とするガ
ス中のCOを広い温度範囲にわたって効率よく選択的に
転化除去することが可能であり、水素−酸素型の燃料電
池の水素極の白金のCOによる被毒を防止することがで
き、電池を長寿命化させるとともに出力の安定性も向上
させることができる。
According to the catalyst of the present invention, the catalytic activity per supported ruthenium is remarkably excellent, and CO in a gas containing hydrogen as a main component can be efficiently converted and removed over a wide temperature range. In addition, the poisoning of platinum at the hydrogen electrode of the hydrogen-oxygen type fuel cell by CO can be prevented, the life of the battery can be prolonged, and the stability of output can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のCO酸化触媒の一例の断面図、及び幅
方向距離とX線強度の関係を示す図である。
FIG. 1 is a cross-sectional view of an example of a CO oxidation catalyst of the present invention and a diagram showing a relationship between a distance in a width direction and an X-ray intensity.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/06 H01M 8/06 R Fターム(参考) 4G040 EA02 EA03 EA06 EA07 EB31 4G069 AA03 AA08 BA01A BA02A BA04A BB04A BB06A BB06B BC01A BC02A BC03A BC04A BC05A BC06A BC08A BC09A BC10A BC12A BC13A BC50A BC70A BC70B CC32 DA06 EA02X EA04X FA02 FB67 FC08 4H060 AA01 AA04 BB08 BB11 FF02 GG02 5H027 AA06 BA17 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 8/06 H01M 8/06 RF term (Reference) 4G040 EA02 EA03 EA06 EA07 EB31 4G069 AA03 AA08 BA01A BA02A BA04A BB04A BB06A BB06B BC01A BC02A BC03A BC04A BC05A BC06A BC08A BC09A BC10A BC12A BC13A BC50A BC70A BC70B CC32 DA06 EA02X EA04X FA02 FB67 FC08 4H060 AA01 AA04 BB08 BB11 FF02 GG02 5H027 A06

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 無機耐火性担体に少なくともルテニウム
成分を担持してなるCO酸化触媒において、該触媒の断
面を、エレクトロンプローブ・マイクロアナリシス(E
PMA)装置を用いて、一方向にルテニウム原子につい
て線分析測定をして得られる断面幅方向距離r(中心か
ら触媒表面までの距離)とX線強度Iとの関係を示す図
において、上記rが一方の触媒表面−r0 から他方の触
媒表面r0 の間におけるI(r)の積分値N0 から、−
2/3r0 から2/3r0 の間におけるI(r)の積分
値N1 を減じた値をNとし、上記N0 に対するNの割合
S=(N/N0 )×100の値が50以上であることを
特徴とするCO酸化触媒。
In a CO oxidation catalyst comprising at least a ruthenium component supported on an inorganic refractory carrier, a cross section of the catalyst is measured by electron probe microanalysis (E).
In a diagram showing the relationship between the cross-sectional width direction distance r (the distance from the center to the catalyst surface) and the X-ray intensity I obtained by performing line analysis measurement on ruthenium atoms in one direction using a PMA) apparatus, From the integrated value N 0 of I (r) between one catalyst surface -r 0 and the other catalyst surface r 0 ,
The value obtained by subtracting the integral value N 1 of I (r) between 2 / 3r 0 and 2 / 3r 0 is defined as N, and the ratio of N to N 0 S = (N / N 0 ) × 100 is 50. A CO oxidation catalyst characterized by the above.
【請求項2】 球状あるいは円柱状の形状を有する請求
項1記載の触媒。
2. The catalyst according to claim 1, which has a spherical or cylindrical shape.
【請求項3】 無機耐火性担体が、アルミナ、チタニア
及びシリカから選ばれる少なくとも1種である請求項1
又は2に記載の触媒。
3. The inorganic refractory carrier is at least one selected from alumina, titania and silica.
Or the catalyst according to 2.
【請求項4】 担体に、更にアルカリ金属成分及び/又
はアルカリ土類金属成分を担持してなる請求項1〜3の
いずれかに記載の触媒。
4. The catalyst according to claim 1, wherein the carrier further supports an alkali metal component and / or an alkaline earth metal component.
【請求項5】 アルカリ金属が、カリウム、ナトリウ
ム、リチウム、セシウム又はルビジウムである請求項1
〜4のいずれかに記載の触媒。
5. The method according to claim 1, wherein the alkali metal is potassium, sodium, lithium, cesium or rubidium.
A catalyst according to any one of claims 1 to 4.
【請求項6】 アルカリ土類金属が、バリウム、カルシ
ウム、マグネシウムまたストロンチウムである請求項1
〜5のいずれかに記載の触媒。
6. The method according to claim 1, wherein the alkaline earth metal is barium, calcium, magnesium or strontium.
The catalyst according to any one of claims 1 to 5,
【請求項7】 請求項1〜6のいずれかに記載の触媒を
用いて、水素含有ガス中のCOを除去することを特徴と
する水素含有ガスの製造方法。
7. A method for producing a hydrogen-containing gas, comprising removing CO from a hydrogen-containing gas using the catalyst according to claim 1. Description:
【請求項8】 水素含有ガスが、燃料電池用水素含有ガ
スである請求項7記載の方法。
8. The method according to claim 7, wherein the hydrogen-containing gas is a hydrogen-containing gas for a fuel cell.
JP2000152483A 2000-03-03 2000-05-24 CO oxidation catalyst and method for producing hydrogen-containing gas Expired - Lifetime JP5164297B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000152483A JP5164297B2 (en) 2000-05-24 2000-05-24 CO oxidation catalyst and method for producing hydrogen-containing gas
AU2001236090A AU2001236090A1 (en) 2000-03-03 2001-03-05 Method of preparation of catalyst for use in removing co in hydrogen containing gas
PCT/JP2001/001689 WO2001064337A1 (en) 2000-03-03 2001-03-05 Method of preparation of catalyst for use in removing co in hydrogen containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000152483A JP5164297B2 (en) 2000-05-24 2000-05-24 CO oxidation catalyst and method for producing hydrogen-containing gas

Publications (2)

Publication Number Publication Date
JP2001327868A true JP2001327868A (en) 2001-11-27
JP5164297B2 JP5164297B2 (en) 2013-03-21

Family

ID=18657904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000152483A Expired - Lifetime JP5164297B2 (en) 2000-03-03 2000-05-24 CO oxidation catalyst and method for producing hydrogen-containing gas

Country Status (1)

Country Link
JP (1) JP5164297B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006142240A (en) * 2004-11-22 2006-06-08 Idemitsu Kosan Co Ltd Co-removing catalyst and its manufacturing method
JP2006212466A (en) * 2005-02-01 2006-08-17 Idemitsu Kosan Co Ltd Co removal catalyst and its production method
JP2007229672A (en) * 2006-03-03 2007-09-13 Satoo Techno:Kk Gas reforming method, gas reforming net, gas reforming sheet, gas reforming piping, and fuel cell
JP2008155181A (en) * 2006-12-26 2008-07-10 Catalysts & Chem Ind Co Ltd Catalyst for removing carbon monoxide and method for preparing the same
US8093178B2 (en) 2006-12-20 2012-01-10 Nippon Oil Corporation Catalyst for reducing carbon monoxide concentration
WO2012090869A1 (en) * 2010-12-27 2012-07-05 住友化学株式会社 Process for producing supported ruthenium oxide and process for producing chlorine
US8349762B2 (en) 2009-03-31 2013-01-08 Jx Nippon Oil & Energy Corporation Method for producing catalyst for use in preferential oxidation reaction of carbon monoxide

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295503A (en) * 1995-03-01 1996-11-12 Idemitsu Kosan Co Ltd Method for removing co in gaseous hydrogen
JPH09131531A (en) * 1995-11-10 1997-05-20 Idemitsu Kosan Co Ltd Catalyst for removal of co in hydrogen-containing gas and method for removing co in hydrogen-containing gas with same
JPH09199156A (en) * 1996-01-22 1997-07-31 Toyota Motor Corp Manufacture on noble metal catalyst, carbon monoxide concentration reducer, methanol concentration reducer and fuel reformer
JPH11102719A (en) * 1997-09-26 1999-04-13 Toyota Motor Corp Carbon monoxide concentration reducing device, carbon monoxide concentration reducing method, and carbon monoxide selectively oxidizing catalyst
JP2000262899A (en) * 1999-03-23 2000-09-26 Ishikawajima Harima Heavy Ind Co Ltd Co oxidizing catalyst for use in fuel cell system and co selectively removing method
JP2001017861A (en) * 1999-07-05 2001-01-23 Tanaka Kikinzoku Kogyo Kk Selective oxidizing catalyst of carbon monoxide in modified gas
JP2001239170A (en) * 2000-03-03 2001-09-04 Idemitsu Kosan Co Ltd Method for manufacturing catalyst for removing co in hydrogen-containing gas, catalyst manufactured by the method, and method for removing co in hydrogen- containing gas using the catalyst

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295503A (en) * 1995-03-01 1996-11-12 Idemitsu Kosan Co Ltd Method for removing co in gaseous hydrogen
JPH09131531A (en) * 1995-11-10 1997-05-20 Idemitsu Kosan Co Ltd Catalyst for removal of co in hydrogen-containing gas and method for removing co in hydrogen-containing gas with same
JPH09199156A (en) * 1996-01-22 1997-07-31 Toyota Motor Corp Manufacture on noble metal catalyst, carbon monoxide concentration reducer, methanol concentration reducer and fuel reformer
JPH11102719A (en) * 1997-09-26 1999-04-13 Toyota Motor Corp Carbon monoxide concentration reducing device, carbon monoxide concentration reducing method, and carbon monoxide selectively oxidizing catalyst
JP2000262899A (en) * 1999-03-23 2000-09-26 Ishikawajima Harima Heavy Ind Co Ltd Co oxidizing catalyst for use in fuel cell system and co selectively removing method
JP2001017861A (en) * 1999-07-05 2001-01-23 Tanaka Kikinzoku Kogyo Kk Selective oxidizing catalyst of carbon monoxide in modified gas
JP2001239170A (en) * 2000-03-03 2001-09-04 Idemitsu Kosan Co Ltd Method for manufacturing catalyst for removing co in hydrogen-containing gas, catalyst manufactured by the method, and method for removing co in hydrogen- containing gas using the catalyst

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006142240A (en) * 2004-11-22 2006-06-08 Idemitsu Kosan Co Ltd Co-removing catalyst and its manufacturing method
JP2006212466A (en) * 2005-02-01 2006-08-17 Idemitsu Kosan Co Ltd Co removal catalyst and its production method
JP4652834B2 (en) * 2005-02-01 2011-03-16 出光興産株式会社 CO removal catalyst and method for producing the same
JP2007229672A (en) * 2006-03-03 2007-09-13 Satoo Techno:Kk Gas reforming method, gas reforming net, gas reforming sheet, gas reforming piping, and fuel cell
US8093178B2 (en) 2006-12-20 2012-01-10 Nippon Oil Corporation Catalyst for reducing carbon monoxide concentration
JP2008155181A (en) * 2006-12-26 2008-07-10 Catalysts & Chem Ind Co Ltd Catalyst for removing carbon monoxide and method for preparing the same
US8349762B2 (en) 2009-03-31 2013-01-08 Jx Nippon Oil & Energy Corporation Method for producing catalyst for use in preferential oxidation reaction of carbon monoxide
WO2012090869A1 (en) * 2010-12-27 2012-07-05 住友化学株式会社 Process for producing supported ruthenium oxide and process for producing chlorine
JP2012135722A (en) * 2010-12-27 2012-07-19 Sumitomo Chemical Co Ltd Method for manufacturing carried ruthenium oxide and method for manufacturing chlorine

Also Published As

Publication number Publication date
JP5164297B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
KR101280200B1 (en) Reforming catalyst for hydrocarbon, method for producing hydrogen using such reforming catalyst, and fuel cell system
US20080241039A1 (en) Method for production of carbon monoxide-reduced hydrogen-containing gas
JP4460126B2 (en) Method for removing carbon monoxide from hydrogen-containing gas
JP4398670B2 (en) Oxygen-containing hydrocarbon reforming catalyst, hydrogen or synthesis gas production method using the same, and fuel cell system
JP3756229B2 (en) Catalyst for removing CO in hydrogen-containing gas and method for removing CO in hydrogen-containing gas using the same
JP4620230B2 (en) Carbon monoxide removal catalyst in hydrogen-containing gas and method for removing carbon monoxide in hydrogen-containing gas using the catalyst
JP5164297B2 (en) CO oxidation catalyst and method for producing hydrogen-containing gas
JP4478280B2 (en) Method for producing CO removal catalyst in hydrogen-containing gas, catalyst produced by the production method, and method for removing CO in hydrogen-containing gas using the catalyst
JP3756565B2 (en) Method for removing CO in hydrogen gas
JP4478281B2 (en) Method for producing CO removal catalyst in hydrogen-containing gas, catalyst produced by the production method, and method for removing CO in hydrogen-containing gas using the catalyst
JP2005066516A (en) Catalyst for reforming dimethyl ether and synthesizing method therefor
EP1852181A1 (en) Reforming catalyst for hydrocarbon, method for producing hydrogen using such reforming catalyst, and fuel cell system
JP2001179097A (en) Method for manufacturing catalyst for removing co in hydrogen-containing gas, catalyst manufactured thereby and method for removing co in hydrogen gas
JP4463914B2 (en) Method for producing hydrogen-containing gas for fuel cell
JP2000169107A (en) Production of hydrogen-containing gas reduced in carbon monoxide
JP3943606B2 (en) Method for selective removal of carbon monoxide
JP2001213612A (en) Process of producing hydrogen containing gas for fuel cell
JP2002273225A (en) Method for manufacturing co removing catalyst
WO2001064337A1 (en) Method of preparation of catalyst for use in removing co in hydrogen containing gas
JP2002273223A (en) Method for manufacturing co removing catalyst
JP4569408B2 (en) Water gas shift reaction catalyst and method for removing carbon monoxide gas from hydrogen gas using the same
JP2002273222A (en) Catalyst for removing co
JP2005185989A (en) Reforming catalyst of oxygen containing hydrocarbon, method for manufacturing hydrogen or synthetic gas using the same and fuel cell system
JP2006314870A (en) Shift catalyst
JP2006043608A (en) Shift catalyst and method for producing it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5164297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term