JP2008105892A - Stopping method for fuel reformer - Google Patents

Stopping method for fuel reformer Download PDF

Info

Publication number
JP2008105892A
JP2008105892A JP2006289659A JP2006289659A JP2008105892A JP 2008105892 A JP2008105892 A JP 2008105892A JP 2006289659 A JP2006289659 A JP 2006289659A JP 2006289659 A JP2006289659 A JP 2006289659A JP 2008105892 A JP2008105892 A JP 2008105892A
Authority
JP
Japan
Prior art keywords
reactor
temperature
gas
raw fuel
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006289659A
Other languages
Japanese (ja)
Inventor
Isao Nakagawa
功夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2006289659A priority Critical patent/JP2008105892A/en
Publication of JP2008105892A publication Critical patent/JP2008105892A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stopping method for a fuel reformer preventing lowering of catalytic performance and generation of hazardous substances or the like. <P>SOLUTION: After a fuel reformer is stopped and while the temperatures of catalyst layers of both a first reactor 22 and a second reactor 23 are lowered to the cracking temperature of a raw fuel gas or below, steam is flown through the first reactor 22 and the second reactor 23 to purge residual reformed gas and raw fuel gas. After the temperatures of catalyst layers of both first reactor 22 and second reactor 23 are lowered to the cracking temperature of the raw fuel gas or below and while the temperature of catalyst layer of either the first reactor 22 or the second reactor 23 is lowered to the condensation temperature of steam or below, the raw fuel gas is flown through the first reactor 22 and the second reactor 23 to purge residual steam. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、原燃料を水素を含む改質ガスに改質する燃料改質装置の停止方法に関する。   The present invention relates to a method for stopping a fuel reformer that reforms raw fuel into a reformed gas containing hydrogen.

水素はクリーンエネルギーとして期待されており、工業上様々な分野で利用が検討されている。例えば、燃料電池は、電解質層を挟んで一対の電極を配置し、一方の電極(アノード側)に水素を含有する燃料ガスを供給するとともに他方の電極(カソード側)に酸素を含有する酸化ガスを供給し、両極間で起きる電気化学反応を利用して起電力を得る発電システムであって、高いエネルギー効率が実現可能であり、また、窒素酸化物(NOx)や硫黄酸化物(SOx)等の大気汚染物質の排出量が少ないことから、クリーンエネルギーの供給法としてその利用が期待されている。   Hydrogen is expected as clean energy, and its use is being studied in various industrial fields. For example, in a fuel cell, a pair of electrodes are arranged with an electrolyte layer in between, a fuel gas containing hydrogen is supplied to one electrode (anode side), and an oxidizing gas containing oxygen is supplied to the other electrode (cathode side) Is a power generation system that obtains an electromotive force by utilizing an electrochemical reaction that occurs between the two electrodes, and can achieve high energy efficiency, and can also be used for nitrogen oxide (NOx), sulfur oxide (SOx), etc. As the amount of air pollutants emitted is small, it is expected to be used as a clean energy supply method.

通常これらの燃料電池では、空気を酸化ガスとして用い、天然ガス等の炭化水素類の原燃料を水蒸気改質して得られる水素を含むガスを燃料ガスとして用いている。そのため、この様な燃料電池を備える燃料電池発電装置には、燃料改質装置等の水素発生装置等が設けられており、天然ガス等の炭化水素類を、連設した脱硫器、改質器で、脱硫、水蒸気改質して水素を主成分とした改質ガスを得て、この改質ガスをCO変成器によってCO濃度を1%以下にまで低減した後、燃料電池に供給している。また、例えば、動作温度が更に低い60〜80℃の固体高分子形燃料電池では、CO変成器にてCO濃度を1%以下に低減させ、更にCO除去器にてCO濃度を10ppm以下まで低減した後、燃料電池に供給している。   Usually, in these fuel cells, air is used as an oxidizing gas, and a gas containing hydrogen obtained by steam reforming a raw material fuel of a hydrocarbon such as natural gas is used as a fuel gas. Therefore, a fuel cell power generation apparatus including such a fuel cell is provided with a hydrogen generator such as a fuel reformer, and a desulfurizer and reformer in which hydrocarbons such as natural gas are continuously provided. Thus, desulfurization and steam reforming are performed to obtain a reformed gas mainly composed of hydrogen, and this reformed gas is supplied to the fuel cell after the CO concentration is reduced to 1% or less by a CO converter. . For example, in a polymer electrolyte fuel cell having a lower operating temperature of 60 to 80 ° C., the CO concentration is reduced to 1% or less by a CO converter, and further the CO concentration is reduced to 10 ppm or less by a CO remover. After that, the fuel cell is supplied.

一方、燃料電池発電装置は、電力の需要に応じて起動・停止する、いわゆるDSS(Daily Start and Stop)運転が行われており、これに対応して燃料改質装置も起動・停止が繰り返されている。   On the other hand, the fuel cell power generation apparatus is so-called DSS (Daily Start and Stop) operation that starts and stops according to the demand for electric power, and the fuel reforming apparatus is repeatedly started and stopped in response to this. ing.

しかしながら、燃料改質装置内に水蒸気や改質ガス等が滞留した状態で燃料改質装置の作動を停止させると、水蒸気が凝縮して燃料改質装置内に水が滞留してしまい、これによって触媒が劣化して性能低下が生じたり、再起動時に目的の温度に速やかに昇温しにくくなるといった問題がある。   However, if the operation of the fuel reformer is stopped while water vapor, reformed gas, or the like remains in the fuel reformer, the water vapor is condensed and water is retained in the fuel reformer. There is a problem that the catalyst is deteriorated and performance is lowered, and it is difficult to quickly raise the temperature to a target temperature upon restart.

このため、燃料改質装置の作動を停止させる際には、燃料改質装置内に滞留している水蒸気や改質ガスを流去する必要がある。その際、触媒層の温度如何により、改質器に導入するパージガスの種類を変えて、触媒層の酸化及び結露雰囲気になることを防ぐとともに、その操作をより経済的に実施するといった試みが種々行われており、例えば、下記特許文献1には、改質器内の改質ガスを水蒸気でパージした後、改質触媒層の温度が原料ガスの熱分解が起こらない温度以下で、且つ、水蒸気の凝縮温度以上に低下した後、原料ガスを導入して改質器内の水蒸気をパージして、燃料改質装置の作動を停止することが開示されている。   For this reason, when stopping the operation of the fuel reformer, it is necessary to drain off the water vapor and the reformed gas remaining in the fuel reformer. At that time, various attempts have been made to change the type of purge gas to be introduced into the reformer depending on the temperature of the catalyst layer to prevent the catalyst layer from being oxidized and to form a dew condensation atmosphere, and to carry out the operation more economically. For example, in Patent Document 1 below, after the reformed gas in the reformer is purged with steam, the temperature of the reforming catalyst layer is equal to or lower than the temperature at which the raw material gas does not thermally decompose, and It is disclosed that after the temperature of the water vapor condenses below the temperature, the raw material gas is introduced and the water vapor in the reformer is purged to stop the operation of the fuel reformer.

また、下記特許文献2には、改質器内に水蒸気を供給し改質器内の温度が水蒸気の結露温度又はその近傍温度まで低下したとき、改質器への水蒸気供給を停止すると共に、改質器に不活性ガスを供給して内部に残存する水蒸気を該不活性ガスで置換し、その後は内部の圧力が負圧値にならないだけの不活性ガスを改質器に供給して、燃料改質装置の作動を停止させることが開示されている。   In addition, in Patent Document 2 below, when steam is supplied into the reformer and the temperature in the reformer decreases to the condensation temperature of steam or the vicinity thereof, the steam supply to the reformer is stopped, An inert gas is supplied to the reformer to replace water vapor remaining in the interior with the inert gas, and then an inert gas is supplied to the reformer so that the internal pressure does not become a negative pressure value. Disclosing the operation of the fuel reformer is disclosed.

また、改質反応によって原燃料中の炭化水素が分解されて、COが副生成物として生成されるが、COは、おおよそ200℃以下の温度条件下にてNiと反応し、揮発性で有毒なニッケルカルボニルが生成する虞れがある。このため、各反応器の触媒層にNi系触媒を使用した場合、環境面、安全性の観点から、ニッケルカルボニルの生成を防止する必要があり、例えば下記特許文献3には、Ni系触媒の配置された触媒層に導入するパージガスの温度を200℃以上に維持することが開示されている。
特開2002−151124号公報 特開2004−137108号公報 特表2005−506659号公報
In addition, hydrocarbons in the raw fuel are decomposed by the reforming reaction, and CO is produced as a by-product. However, CO reacts with Ni under a temperature condition of approximately 200 ° C. or less, and is volatile and toxic. New nickel carbonyl may be formed. For this reason, when a Ni-based catalyst is used in the catalyst layer of each reactor, it is necessary to prevent the formation of nickel carbonyl from the viewpoint of the environment and safety. It is disclosed that the temperature of the purge gas introduced into the disposed catalyst layer is maintained at 200 ° C. or higher.
JP 2002-151124 A JP 2004-137108 A JP 2005-506659 A

燃料改質装置にパージガスを導入して内部に滞留している水蒸気や改質ガスを流去するにあたり、構造的に途中からガスを抜きだす構造がとられてない限りにおいて、改質器、CO変成器、CO除去器の順番、もしくは、CO除去器、CO変成器、改質器の順番でパージされる。   As long as the purge gas is introduced into the fuel reformer and the water vapor and the reformed gas staying inside are flushed, the reformer, CO Purge is performed in the order of the transformer, the CO remover, or the order of the CO remover, the CO converter, and the reformer.

したがって、燃料改質装置の改質器側からパージガスを導入して水蒸気を流去させる構成においては、CO変成器、CO除去器も順番に流去される。   Therefore, in the configuration in which the purge gas is introduced from the reformer side of the fuel reformer and the water vapor is washed away, the CO converter and the CO remover are also washed away in order.

しかし、上記個々の反応器は、それぞれ運転温度が異なるため、燃料改質装置の停止後における温度降下速度においても違いがある。   However, since the individual reactors have different operating temperatures, there is a difference in the temperature drop rate after the fuel reformer is stopped.

このため、各反応器の触媒層温度を監視しながら、パージ条件を判定する必要があるものの、これまでは改質器内の温度変化に基づき改質器に導入するパージガスの種類を適宜変化させていたので、運転温度等の条件や、各反応器の触媒層の種類等によっては、後段のCO変成器やCO除去器に水が滞留してしまうことがあった。   For this reason, it is necessary to determine the purge conditions while monitoring the catalyst layer temperature of each reactor, but until now, the type of purge gas introduced into the reformer is appropriately changed based on the temperature change in the reformer. Therefore, depending on conditions such as the operating temperature and the type of catalyst layer of each reactor, water may remain in the downstream CO converter or CO remover.

また、Ni系触媒は比較的安価であり、高性能・高耐久性であるものの、200℃以下の温度条件下にて、NiはCOと反応し、揮発性で有毒なニッケルカルボニルが生成する虞れがある。このため、Ni系触媒を使用した場合、環境面、安全性の観点から、ニッケルカルボニルの生成を防止する必要がある。   Ni-based catalysts are relatively inexpensive, have high performance and high durability, but Ni may react with CO under the temperature condition of 200 ° C. or less to produce volatile and toxic nickel carbonyl. There is. For this reason, when a Ni-based catalyst is used, it is necessary to prevent the formation of nickel carbonyl from the viewpoint of environment and safety.

しかしながら、上記特許文献3に開示されているような方法では、Ni系触媒の配置された触媒層に比較的高温のパージガスを導入するので、反応器の冷却効率が悪く、また、パージガスを比較的多く要し、経済的な問題もあった。   However, in the method disclosed in Patent Document 3, a relatively high temperature purge gas is introduced into the catalyst layer on which the Ni-based catalyst is arranged, so that the cooling efficiency of the reactor is poor, and the purge gas is relatively low. There were many economic problems.

したがって、本発明の目的は、上記課題を解決し、触媒性能の低下や有害物質等の発生を防止できる燃料改質装置の停止方法を提供することである。   Accordingly, an object of the present invention is to provide a method for stopping a fuel reforming apparatus that can solve the above-described problems and prevent the deterioration of catalyst performance and the generation of harmful substances.

上記目的を達成するため、本発明の燃料改質装置の停止方法は、水蒸気と原燃料ガスとを水蒸気改質反応させて改質ガスを生成する第一反応器と、前記第一反応器に連結され、前記改質ガスに含まれる不純物の濃度を低減して精製改質ガスとする第二反応器とを有する燃料改質装置の停止方法であって、前記燃料改質装置の停止後、前記第一反応器及び前記第二反応器の双方の触媒層の温度が原燃料ガスの分解温度以下となるまでの間に、前記第一反応器及び前記第二反応器に水蒸気を流通させて残留する改質ガス及び原燃料ガスを流去させ、前記第一反応器及び前記第二反応器の双方の触媒層の温度が原燃料ガスの分解温度以下となった後、前記第一反応器及び前記第二反応器のいずれかの触媒層の温度が水蒸気の凝縮温度以下となるまでの間に、前記第一反応器及び前記第二反応器に原燃料ガスを流通させて残留する水蒸気を流去させることを特徴とする。   In order to achieve the above object, a method for stopping a fuel reformer according to the present invention includes a first reactor for generating a reformed gas by a steam reforming reaction between steam and raw fuel gas, and the first reactor. And a second method of stopping the fuel reformer, the second reactor being connected to the second reactor for reducing the concentration of impurities contained in the reformed gas to obtain a refined reformed gas, Until the temperature of the catalyst layer of both the first reactor and the second reactor becomes equal to or lower than the decomposition temperature of the raw fuel gas, steam is circulated through the first reactor and the second reactor. The remaining reformed gas and raw fuel gas are flowed away, and after the temperature of the catalyst layer of both the first reactor and the second reactor becomes equal to or lower than the decomposition temperature of the raw fuel gas, the first reactor And until the temperature of the catalyst layer of any of the second reactors is equal to or lower than the condensation temperature of water vapor During characterized by causing runoff water vapor remaining in the raw fuel gas is circulated to the first reactor and the second reactor.

本発明によれば、燃料改質装置の停止後、第一反応器及び第二反応器の双方の触媒層の温度が原燃料ガスの分解温度以下となるまでの間に、第一反応器及び第二反応器に水蒸気を流通させて残留する改質ガス及び原燃料ガスを流去させるので、残留する原燃料ガスが熱分解して炭素が析出し、触媒の炭素被毒による性能劣化が生じたり、残留する改質ガス中のCOが温度低下したときにNiと反応して揮発性の高い有害物質であるニッケルカルボニルが生成したりすることを防止できる。そして、第一反応器及び第二反応器の双方の触媒層の温度が原燃料ガスの分解温度以下となった後、第一反応器及び第二反応器のいずれかの触媒層の温度が水蒸気の凝縮温度以下となるまでの間に、第一反応器及び第二反応器に原燃料ガスを流通させて残留する水蒸気を流去させることにより、燃料改質装置内に凝縮水が滞留することを防止でき、凝縮水による触媒の性能劣化を防止するとともに、再起動時に速やかに目的の温度にまで昇温することができる。   According to the present invention, after the fuel reformer is stopped, the first reactor and the temperature of the catalyst layers of both the first reactor and the second reactor become lower than the decomposition temperature of the raw fuel gas. Since the remaining reformed gas and raw fuel gas are caused to flow away by circulating water vapor through the second reactor, the remaining raw fuel gas is thermally decomposed to deposit carbon, resulting in performance deterioration due to carbon poisoning of the catalyst. It is possible to prevent nickel carbonyl, which is a highly volatile harmful substance, from reacting with Ni when the temperature of CO in the remaining reformed gas decreases. Then, after the temperature of the catalyst layer of both the first reactor and the second reactor becomes equal to or lower than the decomposition temperature of the raw fuel gas, the temperature of the catalyst layer of either the first reactor or the second reactor is steam. The condensed water stays in the fuel reforming device by flowing the raw fuel gas through the first reactor and the second reactor and allowing the remaining water vapor to flow out until the temperature becomes below the condensation temperature. It is possible to prevent the catalyst performance from being deteriorated by the condensed water, and to quickly raise the temperature to the target temperature upon restart.

また、本発明の燃料改質装置の停止方法は、前記燃料改質装置の停止後、前記第一反応器の触媒層の温度が500℃以下となるまでの間に、前記第一反応器及び前記第二反応器に水蒸気を流通させることが好ましい。第一反応器の触媒層の温度が500℃以下となるまでに、第一反応器及び第二反応器に水蒸気を流通させて、残留する改質ガス及び原燃料ガスを流去させることにより、残留する原燃料ガスが分解して炭素が析出することを抑制でき、各触媒層の炭素被毒による触媒性能の低下を防止できる。   Further, the method for stopping the fuel reformer of the present invention includes the first reactor and the method until the temperature of the catalyst layer of the first reactor becomes 500 ° C. or less after the fuel reformer is stopped. It is preferable to circulate water vapor through the second reactor. By passing water vapor through the first reactor and the second reactor until the temperature of the catalyst layer of the first reactor becomes 500 ° C. or less, the remaining reformed gas and raw fuel gas are washed away, It is possible to suppress the decomposition of the remaining raw fuel gas and the deposition of carbon, and it is possible to prevent the catalyst performance from being deteriorated due to the carbon poisoning of each catalyst layer.

また、本発明の燃料改質装置の停止方法は、前記第一反応器及び前記第二反応器に水蒸気を流通させて残留する改質ガス及び原燃料ガスを流去させた後、前記第一反応器及び前記第二反応器の双方の触媒層の温度が原燃料ガスの分解温度以下となるまでの間、前記第一反応器及び前記第二反応器の流路内を封止して、該流路内圧が外気に対して正圧を維持するように、水蒸気を前記流路内に間欠的に導入することが好ましい。前記第一反応器及び前記第二反応器内の内圧が外気に対し負圧となると、大気が燃料改質装置内に流入し、各反応器の触媒層が酸化劣化するおそれがあるが、第一反応器及び第二反応器内の内圧が外気に対して正圧を維持するように、水蒸気を前記流路内に間欠的に導入することにより、燃料改質装置内への大気の流入を防止でき、各触媒層の触媒性能の低下を防止できる。   Further, the fuel reforming apparatus stopping method of the present invention is characterized in that the first reformer and the second reactor are circulated with water vapor to flow out the remaining reformed gas and raw fuel gas, and then the first reactor and the second reactor. Until the temperature of the catalyst layer of both the reactor and the second reactor is equal to or lower than the decomposition temperature of the raw fuel gas, the inside of the flow path of the first reactor and the second reactor is sealed, It is preferable that water vapor is intermittently introduced into the flow path so that the internal pressure of the flow path maintains a positive pressure with respect to the outside air. When the internal pressure in the first reactor and the second reactor becomes negative with respect to the outside air, the atmosphere flows into the fuel reformer and the catalyst layer of each reactor may be oxidized and deteriorated. By introducing water vapor intermittently into the flow path so that the internal pressure in one reactor and the second reactor is kept positive with respect to the outside air, the inflow of air into the fuel reformer is reduced. It can prevent, and the fall of the catalyst performance of each catalyst layer can be prevented.

また、本発明の燃料改質装置の停止方法は、前記第一反応器の触媒層の温度が500℃以下となった後、前記第一反応器及び前記第二反応器の流路内を封止して、該流路内圧が外気に対して正圧を維持するように、前記第一反応器の触媒層の温度が400℃以下となるまでの間は、水蒸気を前記流路内に間欠的に導入し、前記第一反応器の触媒層の温度が400℃以下で、350℃以下となるまでの間は、水蒸気及び/又は原燃料ガスを前記流路内に間欠的に導入することが好ましい。この態様によれば、燃料改質装置内への大気の流入を防止しつつ、第一反応器及び第二反応器の双方の触媒層の温度が原燃料ガスの分解温度以下となるまで温度を低下させることができる。   Further, the fuel reforming apparatus stopping method of the present invention seals the flow paths of the first reactor and the second reactor after the temperature of the catalyst layer of the first reactor becomes 500 ° C. or less. Until the temperature of the catalyst layer of the first reactor becomes 400 ° C. or lower so that the internal pressure of the flow path maintains a positive pressure with respect to the outside air. Until the temperature of the catalyst layer of the first reactor is 400 ° C. or lower and 350 ° C. or lower, water vapor and / or raw fuel gas is intermittently introduced into the flow path. Is preferred. According to this aspect, while preventing the inflow of air into the fuel reformer, the temperature is increased until the temperature of the catalyst layers of both the first reactor and the second reactor becomes equal to or lower than the decomposition temperature of the raw fuel gas. Can be reduced.

また、本発明の燃料改質装置の停止方法は、前記第一反応器の触媒層の温度が350℃以下となった後、前記第一反応器の触媒層の温度が200℃以下となるまでの間に、前記第一反応器及び第二反応器に前記原燃料ガスを流通させて残留する水蒸気を流去させることが好ましい。この態様によれば、水蒸気を流去させて、燃料改質装置内に凝縮水が滞留することを防止でき、凝縮水による触媒の性能劣化を防止するとともに、再起動時に速やかに目的の温度にまで昇温することができる。また、原燃料ガスを流通させても熱分解を起こすことがない。   In addition, the method for stopping the fuel reforming apparatus of the present invention is performed until the temperature of the catalyst layer of the first reactor becomes 200 ° C. or less after the temperature of the catalyst layer of the first reactor becomes 350 ° C. or less. In the meantime, it is preferable to flow the raw fuel gas through the first reactor and the second reactor and to drain the remaining water vapor. According to this aspect, it is possible to prevent the condensed water from staying in the fuel reformer by causing the water vapor to flow away, to prevent deterioration of the catalyst performance due to the condensed water, and to quickly reach the target temperature at the time of restart. The temperature can be raised to. Further, thermal decomposition does not occur even when raw fuel gas is circulated.

また、本発明の燃料改質装置の停止方法は、前記第一反応器及び前記第二反応器に流通させた原燃料ガスを、前記第一反応器及び第二反応器を加熱するための、非点火状態の燃焼装置に送り、該燃焼装置に導入された空気で希釈して排気することが好ましい。この態様によれば、水蒸気を流去させるために流通させた原燃料ガスを、十分に希釈して安全に排気することができる。   Further, the method for stopping the fuel reformer of the present invention is for heating the first reactor and the second reactor with the raw fuel gas circulated through the first reactor and the second reactor. It is preferable to send the gas to a non-ignition combustion device, dilute with the air introduced into the combustion device, and exhaust. According to this aspect, the raw fuel gas circulated for running off the water vapor can be sufficiently diluted and safely exhausted.

また、本発明の燃料改質装置の停止方法は、前記第一反応器は、アルミナ及び/又はジルコニアにNiを担持してなる改質触媒を備えていることが好ましい。この態様によれば、触媒コストを低減できるので、燃料改質装置の材料コストを低減できる。   In the method for stopping a fuel reforming apparatus of the present invention, it is preferable that the first reactor includes a reforming catalyst in which Ni is supported on alumina and / or zirconia. According to this aspect, since the catalyst cost can be reduced, the material cost of the fuel reformer can be reduced.

本発明の燃料改質装置の停止方法によれば、触媒層が、炭素被毒や酸化等による性能劣化が生じたり、残留する改質ガス中のCOが温度低下したときにNiと反応して揮発性の高い有害物質であるニッケルカルボニルが生成したりすることを防止できる。また、燃料改質装置内に凝縮水が滞留することを防止できるので、凝縮水による触媒の性能劣化を防止するとともに、再起動時に速やかに目的の温度にまで昇温することができる。   According to the method for shutting down the fuel reforming apparatus of the present invention, the catalyst layer reacts with Ni when performance deterioration occurs due to carbon poisoning or oxidation, or when the CO in the remaining reformed gas is lowered in temperature. The formation of nickel carbonyl, which is a highly volatile harmful substance, can be prevented. Further, since the condensed water can be prevented from staying in the fuel reformer, the catalyst performance can be prevented from being deteriorated by the condensed water, and the temperature can be quickly raised to the target temperature upon restart.

以下、本発明の実施形態について、図1に基づいて説明する。図1は、本発明の燃料改質装置の停止方法を適用できるようにした燃料電池発電装置の概略構成図である。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of a fuel cell power generator capable of applying a method for stopping a fuel reformer according to the present invention.

燃料電池本体10は、電解質11と、この両側に配置された燃料極12及び空気極13とで主に構成されている。   The fuel cell main body 10 is mainly composed of an electrolyte 11 and a fuel electrode 12 and an air electrode 13 disposed on both sides thereof.

燃料極12の改質ガス供給側は、改質ガス切り替えバルブ31の開口31aから伸びた配管L1と接続している。   The reformed gas supply side of the fuel electrode 12 is connected to a pipe L <b> 1 extending from the opening 31 a of the reformed gas switching valve 31.

燃料極12のオフガス排出側からは、配管L2が伸び、燃料改質装置20の燃焼装置21の燃焼原料投入口21aと接続している。この配管L2には、オフガス遮断弁32が途中に配置されている。また、配管L2のオフガス遮断弁32と燃焼装置21との間の管路は、一部が分岐しており、改質ガス切り替えバルブ31の開口31cから伸び、途中に改質ガス遮断弁33の配置された配管L3と接続している。   From the off-gas discharge side of the fuel electrode 12, the pipe L <b> 2 extends and is connected to the combustion raw material inlet 21 a of the combustion device 21 of the fuel reformer 20. An off-gas cutoff valve 32 is arranged in the middle of the pipe L2. In addition, a part of the pipe line between the off-gas cutoff valve 32 and the combustion device 21 of the pipe L2 is branched and extends from the opening 31c of the reformed gas switching valve 31. It is connected to the arranged pipe L3.

空気極13の酸化剤ガス供給側は、酸化剤ガス供給源から伸びた配管L4と接続している。この配管L4には、第1酸化剤ガス供給ポンプ41が途中に配置されている。   The oxidant gas supply side of the air electrode 13 is connected to a pipe L4 extending from the oxidant gas supply source. A first oxidant gas supply pump 41 is disposed in the middle of the pipe L4.

空気極13のオフガス排出側からは、配管L5が伸び、電極反応で使用された酸化剤ガスを外気へ放出、あるいは図示しない次工程で利用できるように構成されている。   From the off-gas discharge side of the air electrode 13, the pipe L <b> 5 extends so that the oxidant gas used in the electrode reaction can be discharged to the outside air or used in the next process (not shown).

燃料改質装置20は、第一反応器22と、第二反応器23とで主に構成されている。   The fuel reformer 20 is mainly composed of a first reactor 22 and a second reactor 23.

第一反応器22は、ナフサ、天然ガス、石炭ガス、アルコール類等の炭化水素類の原燃料から、水蒸気改質反応により、水素を主体とした改質ガスを生成させる反応器であり、いわゆる改質器と呼ばれるものが好ましく採用される。   The first reactor 22 is a reactor that generates a reformed gas mainly composed of hydrogen from a raw fuel of hydrocarbons such as naphtha, natural gas, coal gas, and alcohols by a steam reforming reaction. What is called a reformer is preferably employed.

第一反応器22には、改質触媒の充填された改質触媒層を加熱して、改質反応を行うための反応熱を供給する燃焼装置21が連設されている。   The first reactor 22 is provided with a combustion device 21 that heats the reforming catalyst layer filled with the reforming catalyst and supplies reaction heat for performing the reforming reaction.

燃焼装置21の燃焼原料投入口21aには、燃焼空気を取り込むための配管L6が接続されており、途中に燃焼空気ブロア42が配置されている。   A piping L6 for taking in combustion air is connected to the combustion raw material inlet 21a of the combustion device 21, and a combustion air blower 42 is arranged in the middle.

また、燃焼装置21の燃焼排ガス排出口21bからは、燃焼排ガスを排気するための配管L7が伸び、図示しない次工程で処理、あるいは、大気へ放出できるように構成されている。   Further, a piping L7 for exhausting the combustion exhaust gas extends from the combustion exhaust gas discharge port 21b of the combustion device 21 so that it can be processed in the next process (not shown) or released to the atmosphere.

第一反応器22の改質原料の投入側は、原燃料源から伸びた配管L8と接続している。この配管L8には、途中に原燃料供給弁34、脱硫器24、原燃料供給ポンプ43が配置されており、原燃料源から供給される原燃料ガスを脱硫器24で脱硫処理できるように構成されている。また、この配管L8は、一部が分岐しており、改質水源から伸び、途中に改質水供給ポンプ44が配置された配管L9と接続している。   The reforming raw material input side of the first reactor 22 is connected to a pipe L8 extending from the raw fuel source. The pipe L8 is provided with a raw fuel supply valve 34, a desulfurizer 24, and a raw fuel supply pump 43 on the way, so that the raw fuel gas supplied from the raw fuel source can be desulfurized by the desulfurizer 24. Has been. The pipe L8 is partially branched, extends from the reforming water source, and is connected to the pipe L9 in which the reforming water supply pump 44 is disposed in the middle.

また、第一反応器22の内部には、触媒層の温度を計測する温度センサー51と、圧力を計測する圧力センサー52が配置されている。   Further, a temperature sensor 51 that measures the temperature of the catalyst layer and a pressure sensor 52 that measures the pressure are disposed inside the first reactor 22.

上記第二反応器23は、改質ガス中の不純物濃度を低減して精製処理する反応器であって、例えば、改質ガスに含まれるCOを、水蒸気と反応させて、水素とCOに変成(水性ガスシフト反応;発熱反応)させるCO変成器や、改質ガスに含まれるCOを選択的に酸化(選択酸化反応;発熱反応)させてCOとするCO除去器等が好ましく採用される。 The second reactor 23 is a reactor for purifying by reducing the impurity concentration in the reformed gas. For example, the second reactor 23 reacts with CO in the reformed gas with water vapor to form hydrogen and CO 2 . A CO converter that performs modification (water gas shift reaction; exothermic reaction), a CO remover that selectively oxidizes CO contained in the reformed gas (selective oxidation reaction; exothermic reaction) to form CO 2, and the like are preferably employed. .

この実施形態では、第二反応器23は、下方の反応室と、上方の反応室とに分かれており、下方の反応室は、シフト触媒を充填されてCO変成器23aをなし、上方の反応室は、CO選択酸化触媒を充填されてCO除去器23bをなしている。また、CO変成器23a、CO除去器23bのそれぞれには、各触媒層の温度を計測する温度センサー53、54が配置されている。   In this embodiment, the second reactor 23 is divided into a lower reaction chamber and an upper reaction chamber, and the lower reaction chamber is filled with a shift catalyst to form a CO converter 23a, and the upper reaction chamber. The chamber is filled with a CO selective oxidation catalyst to form a CO remover 23b. Further, temperature sensors 53 and 54 for measuring the temperature of each catalyst layer are arranged in each of the CO converter 23a and the CO remover 23b.

また、CO除去器23bには、CO除去器23bにおける酸化反応に必要な空気等の酸化剤ガスを取り込むための配管L10が接続されており、途中に第2酸化剤ガス供給ポンプ45が配置されている。そして、CO除去器23bの上端には、CO等の不純物の低減された精製改質ガスを送出させる配管L11が設けられており、フィルター25を介して改質ガス切り替えバルブ31の開口31bと接続している。   The CO remover 23b is connected to a pipe L10 for taking in an oxidant gas such as air necessary for the oxidation reaction in the CO remover 23b, and a second oxidant gas supply pump 45 is disposed on the way. ing. The upper end of the CO remover 23b is provided with a pipe L11 for sending purified reformed gas with reduced impurities such as CO, and is connected to the opening 31b of the reformed gas switching valve 31 via the filter 25. is doing.

なお、第二反応器23としては、適用される燃料電池の種類や、第一反応器22に供給される原燃料の種類や、第一反応器22に充填された触媒の種類や、要求される精製改質ガスの純度等に応じて使用する反応器を適宜選択でき、CO変成器23aのみであってもよい場合がある。また、CO変成器23a及びCO除去器23b以外の反応器を用いてもよく、CO変成器23a及び/又はCO除去器23bと、それ以外の反応器とを組み合わせて用いてもよい。また、CO除去器は、COと空気中の酸素を選択的に反応させてCO濃度を低減する選択酸化反応を用いる反応器以外に、COと水素を反応させてメタン化させることでCO濃度を低減するメタネーション反応を用いる反応器であってもよい。   As the second reactor 23, the type of fuel cell to be applied, the type of raw fuel supplied to the first reactor 22, the type of catalyst charged in the first reactor 22, and the like are required. Depending on the purity of the refined reformed gas, the reactor to be used can be appropriately selected, and only the CO converter 23a may be used. Further, a reactor other than the CO converter 23a and the CO remover 23b may be used, or the CO converter 23a and / or the CO remover 23b may be used in combination with another reactor. In addition to the reactor using the selective oxidation reaction that selectively reacts CO with oxygen in the air to reduce the CO concentration, the CO remover can react with CO and hydrogen to cause methanation to reduce the CO concentration. It may be a reactor using a methanation reaction to be reduced.

次に、本発明の燃料改質装置の停止方法を含めた燃料電池発電装置の動作について説明する。   Next, the operation of the fuel cell power generator including the method for stopping the fuel reformer of the present invention will be described.

この燃料電池発電装置は、電力需要量に応じて起動・停止が繰り返される。   This fuel cell power generator is repeatedly started and stopped according to the amount of power demand.

起動中は、オフガス遮断弁32及び原燃料供給弁34を開とし、改質ガス遮断弁33を閉とする。また、改質ガス切り替えバルブ31は、開口31cの弁を閉とし、開口31aの弁及び開口31bの弁をそれぞれ開とする。すなわち、配管L1と配管L11とを連結させる。また、第1酸化剤ガス供給ポンプ41と、燃焼空気ブロア42と、原燃料供給ポンプ43と、改質水供給ポンプ44と、第2酸化剤ガス供給ポンプ45とをそれぞれ作動させる。また、燃焼装置21を点火状態とする。   During startup, the off-gas cutoff valve 32 and the raw fuel supply valve 34 are opened, and the reformed gas cutoff valve 33 is closed. The reformed gas switching valve 31 closes the valve of the opening 31c and opens the valve of the opening 31a and the valve of the opening 31b. That is, the pipe L1 and the pipe L11 are connected. Further, the first oxidant gas supply pump 41, the combustion air blower 42, the raw fuel supply pump 43, the reforming water supply pump 44, and the second oxidant gas supply pump 45 are operated. Further, the combustion device 21 is set in an ignition state.

原燃料源から供給される原燃料ガスは、まず脱硫器24へ導入されて原燃料ガスに含まれる硫黄成分が除去される。そして、硫黄成分が除去された原燃料ガスは、配管L9から供給される改質水と混合して第一反応器22へと供給し、改質反応により水素に富む改質ガスを生成させる。なお、上記改質反応は、吸熱反応であることから、点火状態の燃焼装置21に、配管L6から燃焼用空気と、配管L2からオフガスとを供給し、これらを燃焼して第一反応器22の触媒層を加熱する。   The raw fuel gas supplied from the raw fuel source is first introduced into the desulfurizer 24 to remove sulfur components contained in the raw fuel gas. The raw fuel gas from which the sulfur component has been removed is mixed with the reforming water supplied from the pipe L9 and supplied to the first reactor 22 to generate a hydrogen-rich reformed gas by the reforming reaction. Since the above reforming reaction is an endothermic reaction, combustion air 21 and off-gas are supplied from the piping L6 and the off-gas from the piping L2 to the combustion device 21 in an ignition state, and these are combusted to produce the first reactor 22. The catalyst layer is heated.

そして、第一反応器22で生成された改質ガスは、第二反応器(CO変成器23a、CO除去器23b)にて一酸化炭素濃度を低減した後、フィルター25を通過させて、配管L1から、燃料電池本体10の燃料極12へと供給される。   And the reformed gas produced | generated by the 1st reactor 22 reduces the carbon monoxide density | concentration with a 2nd reactor (CO converter 23a, CO removal device 23b), Then, it lets the filter 25 pass, and is piping L1 is supplied to the fuel electrode 12 of the fuel cell body 10.

燃料電池本体10では、燃料極12に供給された改質ガスと、空気極13に供給された酸化剤ガスとを、電気化学反応させて発電し、この発電出力をインバータユニット(図示せず)等にて所定電圧の交流電力に変換し電力系統に連係される。   In the fuel cell main body 10, the reformed gas supplied to the fuel electrode 12 and the oxidant gas supplied to the air electrode 13 are electrochemically reacted to generate power, and this power generation output is an inverter unit (not shown). Etc., and converted to AC power of a predetermined voltage and linked to the power system.

燃料極12から排出されるオフガスは、配管L2を通して燃焼装置21へと供せられ、燃焼源として用いられる。   The off gas discharged from the fuel electrode 12 is supplied to the combustion device 21 through the pipe L2 and used as a combustion source.

一方、電力の需要量が低下し、燃料電池発電装置を停止させる必要が生じた場合には、オフガス遮断弁32と、改質ガス遮断弁33と、原燃料供給弁34とを閉とする。また、改質ガス切り替えバルブ31は、開口31aの弁を閉とし、開口31bの弁及び開口31cの弁をそれぞれ開とする。すなわち、配管L3とL11とを連結させる。また、第1酸化剤ガス供給ポンプ41と、燃焼空気ブロア42と、原燃料供給ポンプ43と、第2酸化剤ガス供給ポンプ45とをそれぞれ停止させる。また、燃焼装置21を非点火状態とする。   On the other hand, when the demand amount of electric power falls and it becomes necessary to stop a fuel cell power generation device, the off-gas cutoff valve 32, the reformed gas cutoff valve 33, and the raw fuel supply valve 34 are closed. The reformed gas switching valve 31 closes the valve of the opening 31a and opens the valve of the opening 31b and the valve of the opening 31c. That is, the pipes L3 and L11 are connected. Further, the first oxidant gas supply pump 41, the combustion air blower 42, the raw fuel supply pump 43, and the second oxidant gas supply pump 45 are stopped. Further, the combustion device 21 is set to a non-ignition state.

なお、改質ガス切り換えバルブ31が切り替わる前に第2酸化剤ガス供給ポンプ45を停止させると、高濃度のCOが燃料極12に供給され、燃料極12がCOによって被毒する虞れがあることから、第2酸化剤ガス供給ポンプ45は、改質ガス切り換えバルブ31の経路が切り替わるタイミングを見計らっては停止させることが好ましい。すなわち、改質ガス切り換えバルブ31の経路が切り替わると同時、もしくは、改質ガス切り換えバルブ31の経路が切り替わった後に停止させることが好ましい。   If the second oxidant gas supply pump 45 is stopped before the reformed gas switching valve 31 is switched, high-concentration CO may be supplied to the fuel electrode 12 and the fuel electrode 12 may be poisoned by CO. Therefore, it is preferable to stop the second oxidant gas supply pump 45 in view of the timing at which the path of the reformed gas switching valve 31 is switched. That is, it is preferable to stop at the same time when the path of the reformed gas switching valve 31 is switched or after the path of the reformed gas switching valve 31 is switched.

このように、停止直後においては、燃料改質装置20には、各管路が封止された状態で改質水のみが供給される。そして、燃料改質装置20内にて水蒸気化される。   Thus, immediately after the stop, only the reforming water is supplied to the fuel reforming device 20 in a state where each pipeline is sealed. Then, it is steamed in the fuel reformer 20.

第一反応器22の触媒層の温度が十分高い状態であれば、供給された改質水はそのほぼ全量が蒸発して水蒸気化するので、燃料改質装置20内の圧力は低下しにくい。しかし、時間の経過に伴ない、第一反応器の触媒層の温度が降下するので、徐々に水蒸気化されにくくなり、また、燃料改質装置20内の圧力は徐々に降下する傾向にある。   If the temperature of the catalyst layer of the first reactor 22 is sufficiently high, almost all of the supplied reformed water evaporates and is vaporized, so that the pressure in the fuel reformer 20 is unlikely to decrease. However, since the temperature of the catalyst layer of the first reactor decreases with the passage of time, it becomes difficult to be gradually steamed, and the pressure in the fuel reformer 20 tends to gradually decrease.

このため、燃料改質装置20への改質水の供給は、第一反応器22の触媒層の温度が500℃以下となるまでは連続供給としてもよく、また、間欠的に供給してもよいが、第一反応器22の触媒層の温度が500℃以下となった後は、第一反応器22の温度が400℃以下となるまで、好ましくは350℃以下となるまで、改質水を第一反応器22に間欠的に供給して、水蒸気を発生させて燃料改質装置20内の体積を膨張させることが好ましい。   Therefore, the supply of reforming water to the fuel reformer 20 may be continuous until the temperature of the catalyst layer of the first reactor 22 is 500 ° C. or lower, or may be intermittently supplied. However, after the temperature of the catalyst layer of the first reactor 22 becomes 500 ° C. or less, the reforming water is used until the temperature of the first reactor 22 becomes 400 ° C. or less, preferably 350 ° C. or less. Is intermittently supplied to the first reactor 22 to generate steam and expand the volume in the fuel reformer 20.

このように改質水を供給することで、燃料改質装置20内の圧力を外気に対して正圧に維持し続けることができ、燃料改質装置20内への大気の流入を防止しつつ、第一反応器22及び第二反応器23の双方の触媒層の温度が原燃料ガスの分解温度以下まで温度を低下させることができる。   By supplying the reforming water in this way, the pressure in the fuel reformer 20 can be maintained at a positive pressure with respect to the outside air, and the inflow of air into the fuel reformer 20 is prevented. The temperature of the catalyst layers of both the first reactor 22 and the second reactor 23 can be lowered to a temperature below the decomposition temperature of the raw fuel gas.

なお、燃料改質装置20への改質水の供給は、第一反応器内に設置した圧力センサー52の指標に基づき、圧力の低下が生じた時点で改質水を供給するように制御してもよい。また、温度と圧力との相関関係を事前にデータとして取得し、第一反応器22の温度が所定温度に降下すると改質水を一定間隔で供給するように制御してもよい。   The supply of the reforming water to the fuel reformer 20 is controlled based on the index of the pressure sensor 52 installed in the first reactor so that the reforming water is supplied when a pressure drop occurs. May be. Further, the correlation between temperature and pressure may be acquired as data in advance, and control may be performed so that reforming water is supplied at regular intervals when the temperature of the first reactor 22 falls to a predetermined temperature.

そして、第一反応器22及び第二反応器23の双方の触媒層の温度が、原燃料ガスの分解温度以下となった後、具体的には、触媒層の温度が350℃以下となった後、好ましくは300℃以下となった後、原燃料供給弁34を開とし、原燃料供給ポンプ43を作動させ、改質水供給ポンプ44を停止させる。なお、原燃料供給ポンプ43は連続的に作動させてもよく、また、間欠的に作動させてもよい。すなわち、燃料改質装置20への原燃料ガスの供給は、連続供給としてもよく、間欠的に供給してもよい。   And after the temperature of the catalyst layer of both the 1st reactor 22 and the 2nd reactor 23 became below the decomposition temperature of raw fuel gas, specifically, the temperature of the catalyst layer became 350 degrees C or less. Thereafter, preferably after the temperature reaches 300 ° C. or less, the raw fuel supply valve 34 is opened, the raw fuel supply pump 43 is operated, and the reforming water supply pump 44 is stopped. The raw fuel supply pump 43 may be operated continuously or intermittently. That is, the supply of the raw fuel gas to the fuel reformer 20 may be a continuous supply or an intermittent supply.

次いで、改質ガス遮断弁33を開とし、燃焼空気ブロア42を作動させて、燃料改質装置20内に滞留している水蒸気を原燃料ガスで流去して燃焼装置21へと導入し、配管L6から供給される燃焼用空気で希釈して配管L7から系外へと排気させる。   Next, the reformed gas shut-off valve 33 is opened, the combustion air blower 42 is operated, and the water vapor retained in the fuel reformer 20 is washed away with the raw fuel gas and introduced into the combustor 21. It is diluted with combustion air supplied from the pipe L6 and exhausted from the pipe L7 to the outside of the system.

本発明においては、第一反応器22及び第二反応器23のいずれかの触媒層の温度が水蒸気の凝縮温度以下となるまでの間、好ましくは、第一反応器22の触媒層の温度が200℃以下となる前に、第一反応器22及び第二反応器23に原燃料ガスを流通させて燃料改質装置20に残留する水蒸気を流去させる。   In the present invention, until the temperature of the catalyst layer of either the first reactor 22 or the second reactor 23 is equal to or lower than the condensation temperature of water vapor, preferably the temperature of the catalyst layer of the first reactor 22 is Before the temperature reaches 200 ° C. or lower, the raw fuel gas is circulated through the first reactor 22 and the second reactor 23 to cause the water vapor remaining in the fuel reformer 20 to flow away.

第一反応器22及び第二反応器23のいずれかの触媒層の温度が水蒸気の凝縮温度以下となるまでの間に、第一反応器22及び第二反応器23に原燃料ガスを流通させて残留する水蒸気を流去させることにより、燃料改質装置20内に凝縮水が発生することを防止でき、凝縮水による触媒の性能劣化を防止するとともに、再起動時に速やかに目的の温度にまで昇温することができる。   The raw fuel gas is allowed to flow through the first reactor 22 and the second reactor 23 until the temperature of the catalyst layer of either the first reactor 22 or the second reactor 23 becomes equal to or lower than the condensation temperature of water vapor. By flowing away the remaining water vapor, it is possible to prevent the generation of condensed water in the fuel reforming device 20, to prevent the performance of the catalyst from being deteriorated by the condensed water, and to quickly reach the target temperature upon restarting. The temperature can be raised.

また、Ni系触媒は、改質触媒として比較的安価で高性能、高耐久性を備えたものであるものの、200℃以下の状態でCOを含むガスが滞留していると、NiとCOとが反応して揮発性のある有害なニッケルカルボニルが生成する虞れがある。一方で、原燃料ガスは、水蒸気の存在下にて分解されてCOを生成することから、燃料改質装置20内に滞留している水蒸気中には、改質反応によって生成されたCOも僅かながら含まれている虞れがある。したがって、200℃以下となるまでの間に、燃料改質装置20に残留する水蒸気を流去させることで、ニッケルカルボニルの生成を抑制できる。   Ni-based catalysts are relatively inexpensive, have high performance and high durability as reforming catalysts, but if gas containing CO stays at a temperature of 200 ° C. or lower, Ni and CO May react to produce volatile and harmful nickel carbonyl. On the other hand, since the raw fuel gas is decomposed in the presence of water vapor to produce CO, in the water vapor staying in the fuel reformer 20, CO produced by the reforming reaction is slightly present. However, it may be included. Therefore, the production of nickel carbonyl can be suppressed by causing the water vapor remaining in the fuel reformer 20 to flow out until the temperature becomes 200 ° C. or lower.

そして、燃料改質装置20に残留する水蒸気を流去させた後、改質ガス遮断弁33及び原燃料供給弁34を閉とし、原燃料供給ポンプ43を停止させる。すなわち、燃料改質装置20内には、原燃料ガスが封止された状態とする。   Then, after the water vapor remaining in the fuel reformer 20 is drained, the reformed gas cutoff valve 33 and the raw fuel supply valve 34 are closed, and the raw fuel supply pump 43 is stopped. That is, the raw fuel gas is sealed in the fuel reformer 20.

このようにすることで、触媒層が、炭素被毒や酸化等による性能劣化が生じたり、残留する改質ガス中のCOが温度低下したときにNiと反応して揮発性の高い有害物質であるニッケルカルボニルが生成したりすることを防止できる。また、燃料改質装置内に凝縮水が発生することを防止できるので、凝縮水による触媒の性能劣化を防止するとともに、再起動時に速やかに目的の温度にまで昇温することができる。   By doing so, the catalyst layer reacts with Ni when the performance deterioration due to carbon poisoning, oxidation, etc. occurs or the temperature of the CO in the remaining reformed gas decreases, and it is a highly volatile harmful substance. The formation of certain nickel carbonyl can be prevented. Further, since it is possible to prevent the generation of condensed water in the fuel reformer, it is possible to prevent the catalyst performance from being deteriorated by the condensed water and to quickly raise the temperature to the target temperature upon restart.

なお、再起動時においては、燃料改質装置20に原燃料ガスが滞留していることから、そのまま加熱しつづけると原燃料ガスが分解して炭素が析出する虞れがあることから、炭素析出し易い温度に上昇する前に、水蒸気を流通させて原燃料ガスを流去させることが好ましい。   At the time of restart, since the raw fuel gas stays in the fuel reformer 20, if the raw fuel gas continues to be heated as it is, there is a possibility that the raw fuel gas is decomposed and carbon is deposited. Before the temperature rises to a temperature that is easy to do, it is preferable to circulate the raw fuel gas by circulating water vapor.

以下実施例によって具体的に説明する。図1に示す燃料改質装置を用いて原燃料の改質を行った。   Examples will be described in detail below. The raw fuel was reformed using the fuel reformer shown in FIG.

燃料改質装置の停止動作に入ると、オフガス遮断弁32と、改質ガス遮断弁33と、原燃料供給弁34とを閉とした。また、改質ガス切り替えバルブ31は、開口31aの弁を閉とし、開口31bの弁及び開口31cの弁をそれぞれ開とした。そして、改質水供給ポンプ44から、改質水を5g/minの供給量で60秒間燃料改質装置に供給した後、改質水供給ポンプ44を停止させ、第一反応器22の触媒層の温度が400℃以下となった時点、及び350℃以下となった時点で、再度改質水供給ポンプを作動させて、改質水を5g/minの供給量で60秒間改質水を燃料改質装置に供給し、その後改質水供給ポンプ44を停止させた。   When the stop operation of the fuel reformer was started, the off-gas cutoff valve 32, the reformed gas cutoff valve 33, and the raw fuel supply valve 34 were closed. In the reformed gas switching valve 31, the valve of the opening 31a is closed, and the valve of the opening 31b and the valve of the opening 31c are opened. Then, after supplying the reforming water from the reforming water supply pump 44 to the fuel reformer at a supply rate of 5 g / min for 60 seconds, the reforming water supply pump 44 is stopped and the catalyst layer of the first reactor 22 is stopped. When the temperature of the water becomes 400 ° C. or lower and 350 ° C. or lower, the reforming water supply pump is operated again, and the reforming water is supplied with reforming water at a supply rate of 5 g / min for 60 seconds. After supplying to the reformer, the reforming water supply pump 44 was stopped.

そして、第一反応器22の触媒層の温度が300℃以下となった時点で、原燃料供給弁34を開とし、原燃料供給ポンプ43を作動させて、原燃料を300cc/minの供給量で330秒間供給した。この間、改質ガス遮断弁33を開とし、燃焼空気ブロア42を作動させて、燃料改質装置20内に滞留している水蒸気を原燃料ガスで流去して燃焼装置21へと導入し、配管L6から供給される燃焼用空気で希釈して配管L7から系外へと排気した。原燃料供給ポンプ43を停止させたの後、改質ガス遮断弁33を閉とし、燃焼空気ブロア42を停止させた。そして、第一反応器22の触媒層の温度が280℃以下となった時点で、原燃料供給ポンプ43を作動させて、原燃料を30分間間隔で、300cc/minの供給量で60秒間供給し第一反応器22へ供給し、触媒層の温度が150℃以下となった時点で原燃料を60分間間隔で、300cc/minの供給量で60秒間供給した。   When the temperature of the catalyst layer of the first reactor 22 becomes 300 ° C. or less, the raw fuel supply valve 34 is opened, the raw fuel supply pump 43 is operated, and the supply amount of the raw fuel is 300 cc / min. For 330 seconds. During this time, the reformed gas shut-off valve 33 is opened, the combustion air blower 42 is operated, water vapor remaining in the fuel reformer 20 is washed away with the raw fuel gas, and introduced into the combustor 21. It diluted with the combustion air supplied from the piping L6, and exhausted out of the system from the piping L7. After the raw fuel supply pump 43 was stopped, the reformed gas shutoff valve 33 was closed and the combustion air blower 42 was stopped. When the temperature of the catalyst layer of the first reactor 22 becomes 280 ° C. or lower, the raw fuel supply pump 43 is operated to supply the raw fuel at an interval of 30 minutes at a supply rate of 300 cc / min for 60 seconds. Then, when the temperature of the catalyst layer became 150 ° C. or lower, the raw fuel was supplied at a supply rate of 300 cc / min for 60 seconds at an interval of 60 minutes.

このように燃料改質装置を停止させ、起動停止を繰り返した時の原燃料から水素への改質率、及び改質ガス中の各成分(H、CH、CO、CO)の含有量を測定した。結果を図2に示す。 In this way, the reforming ratio from raw fuel to hydrogen when the fuel reforming apparatus is stopped and repeated starting and stopping, and the content of each component (H 2 , CH 4 , CO 2 , CO) in the reformed gas The amount was measured. The results are shown in FIG.

図2から明らかなように、本発明の燃料改質装置の停止方法によれば、燃料改質装置の起動停止を繰り返したとしてもその改質性能は低下しにくいことがわかる。   As can be seen from FIG. 2, according to the method for stopping the fuel reforming apparatus of the present invention, even if the start and stop of the fuel reforming apparatus are repeated, the reforming performance is hardly lowered.

本発明の燃料改質装置の停止方法を適用できるようにした燃料電池発電装置の概略構成図である。It is a schematic block diagram of the fuel cell power generator which enabled it to apply the stop method of the fuel reformer of this invention. 本発明の燃料改質装置の停止方法を適用したときの原燃料から水素への改質率及び、得られる改質ガスに含まれるH、CH、CO及びCOの含有量の推移を示す図表である。Changes in the reforming rate from raw fuel to hydrogen and the contents of H 2 , CH 4 , CO 2 and CO contained in the resulting reformed gas when the method for stopping the fuel reformer of the present invention is applied. It is a chart shown.

符号の説明Explanation of symbols

10:燃料電池本体
11:電解質
12:燃料極
13:空気極
20:燃料改質装置
21:燃焼装置
22:第一反応器
23:第二反応器
24:脱硫器
25:フィルター
31:改質ガス切り替えバルブ
32:オフガス遮断弁
33:改質ガス遮断弁
34:原燃料供給弁
41:第1酸化剤ガス供給ポンプ
42:燃焼空気ブロア
43:原燃料供給ポンプ
44:改質水供給ポンプ
45:第2酸化剤ガス供給ポンプ
51、53、54:温度センサー
52:圧力センサー
10: Fuel cell body 11: Electrolyte 12: Fuel electrode 13: Air electrode 20: Fuel reformer 21: Combustion device 22: First reactor 23: Second reactor 24: Desulfurizer 25: Filter 31: Reformed gas Switching valve 32: Off-gas cutoff valve 33: Reformed gas cutoff valve 34: Raw fuel supply valve 41: First oxidant gas supply pump 42: Combustion air blower 43: Raw fuel supply pump 44: Reformed water supply pump 45: First Dioxidant gas supply pumps 51, 53, 54: Temperature sensor 52: Pressure sensor

Claims (7)

水蒸気と原燃料ガスとを水蒸気改質反応させて改質ガスを生成する第一反応器と、前記第一反応器に連結され、前記改質ガスに含まれる不純物の濃度を低減して精製改質ガスとする第二反応器とを有する燃料改質装置の停止方法であって、
前記燃料改質装置の停止後、前記第一反応器及び前記第二反応器の双方の触媒層の温度が原燃料ガスの分解温度以下となるまでの間に、前記第一反応器及び前記第二反応器に水蒸気を流通させて残留する改質ガス及び原燃料ガスを流去させ、
前記第一反応器及び前記第二反応器の双方の触媒層の温度が原燃料ガスの分解温度以下となった後、前記第一反応器及び前記第二反応器のいずれかの触媒層の温度が水蒸気の凝縮温度以下となるまでの間に、前記第一反応器及び前記第二反応器に原燃料ガスを流通させて残留する水蒸気を流去させることを特徴とする燃料改質装置の停止方法。
A first reactor that generates a reformed gas by performing a steam reforming reaction between steam and raw fuel gas, and a refinement reformer that is connected to the first reactor and reduces the concentration of impurities contained in the reformed gas. A method for stopping a fuel reformer having a second reactor as a gas,
After the fuel reformer is stopped, the first reactor and the first reactor are heated until the temperature of the catalyst layers of both the first reactor and the second reactor becomes equal to or lower than the decomposition temperature of the raw fuel gas. The remaining reformed gas and raw fuel gas are caused to flow by passing steam through the two reactors,
After the temperature of the catalyst layer of both the first reactor and the second reactor becomes equal to or lower than the decomposition temperature of the raw fuel gas, the temperature of the catalyst layer of either the first reactor or the second reactor The fuel reformer is stopped until the raw fuel gas is circulated through the first reactor and the second reactor and the remaining steam is allowed to flow out until the temperature becomes equal to or lower than the condensation temperature of the steam. Method.
前記第一反応器の触媒層の温度が500℃以下となるまでの間に、前記第一反応器及び前記第二反応器に水蒸気を流通させる請求項1に記載の燃料改質装置の停止方法。   The method of stopping a fuel reformer according to claim 1, wherein water vapor is circulated through the first reactor and the second reactor until the temperature of the catalyst layer of the first reactor becomes 500 ° C or lower. . 前記第一反応器及び前記第二反応器に水蒸気を流通させて残留する改質ガス及び原燃料ガスを流去させた後、前記第一反応器及び前記第二反応器の双方の触媒層の温度が原燃料ガスの分解温度以下となるまでの間、前記第一反応器及び前記第二反応器の流路内を封止して、該流路内圧が外気に対して正圧を維持するように、水蒸気を前記流路内に間欠的に導入する請求項1又は2に記載の燃料改質装置の停止方法。   After flowing the steam through the first reactor and the second reactor to remove the remaining reformed gas and raw fuel gas, the catalyst layers of both the first reactor and the second reactor Until the temperature becomes equal to or lower than the decomposition temperature of the raw fuel gas, the flow paths in the first reactor and the second reactor are sealed, and the pressure in the flow path maintains a positive pressure with respect to the outside air. Thus, the method for stopping the fuel reformer according to claim 1 or 2, wherein water vapor is intermittently introduced into the flow path. 前記第一反応器の触媒層の温度が500℃以下となった後、前記第一反応器及び前記第二反応器の流路内を封止して、該流路内圧が外気に対して正圧を維持するように、前記第一反応器の触媒層の温度が400℃以下となるまでの間は、水蒸気を前記流路内に間欠的に導入し、前記第一反応器の触媒層の温度が400℃以下で、350℃以下となるまでの間は、水蒸気及び/又は原燃料ガスを前記流路内に間欠的に導入する請求項3に記載の燃料改質装置の停止方法。   After the temperature of the catalyst layer of the first reactor becomes 500 ° C. or less, the flow paths of the first reactor and the second reactor are sealed, and the flow path pressure is positive with respect to the outside air. In order to maintain the pressure, steam is intermittently introduced into the flow path until the temperature of the catalyst layer of the first reactor becomes 400 ° C. or lower, and the catalyst layer of the first reactor The method for stopping a fuel reformer according to claim 3, wherein steam and / or raw fuel gas are intermittently introduced into the flow path until the temperature is 400 ° C or lower and 350 ° C or lower. 前記第一反応器の触媒層の温度が350℃以下となった後、前記第一反応器の触媒層の温度が200℃以下となるまでの間に、前記第一反応器及び第二反応器に前記原燃料ガスを流通させて残留する水蒸気を流去させる請求項1〜4のいずれか1つに記載の燃料改質装置の停止方法。   After the temperature of the catalyst layer of the first reactor becomes 350 ° C. or lower and before the temperature of the catalyst layer of the first reactor becomes 200 ° C. or lower, the first reactor and the second reactor The method for stopping the fuel reformer according to any one of claims 1 to 4, wherein the raw fuel gas is circulated to cause residual water vapor to flow out. 前記第一反応器及び前記第二反応器に流通させた原燃料ガスを、前記第一反応器及び第二反応器を加熱するための、非点火状態の燃焼装置に送り、該燃焼装置に導入された空気で希釈して排気する請求項1〜5のいずれか1つに記載の燃料改質装置の停止方法。   The raw fuel gas passed through the first reactor and the second reactor is sent to a non-ignition combustion device for heating the first reactor and the second reactor, and introduced into the combustion device. The method of stopping a fuel reformer according to any one of claims 1 to 5, wherein the exhaust gas is diluted with exhausted air and exhausted. 前記第一反応器は、アルミナ及び/又はジルコニアにNiを担持してなる改質触媒を備えている請求項1〜6のいずれか一つに記載の燃料改質装置の停止方法。   The said 1st reactor is the stop method of the fuel reformer as described in any one of Claims 1-6 provided with the reforming catalyst formed by carrying | supporting Ni on an alumina and / or zirconia.
JP2006289659A 2006-10-25 2006-10-25 Stopping method for fuel reformer Pending JP2008105892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006289659A JP2008105892A (en) 2006-10-25 2006-10-25 Stopping method for fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006289659A JP2008105892A (en) 2006-10-25 2006-10-25 Stopping method for fuel reformer

Publications (1)

Publication Number Publication Date
JP2008105892A true JP2008105892A (en) 2008-05-08

Family

ID=39439561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006289659A Pending JP2008105892A (en) 2006-10-25 2006-10-25 Stopping method for fuel reformer

Country Status (1)

Country Link
JP (1) JP2008105892A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184864A (en) * 2008-02-05 2009-08-20 T Rad Co Ltd Stopping method of reformer
JP2009227479A (en) * 2008-03-19 2009-10-08 Nippon Oil Corp Method for stopping hydrogen production apparatus and fuel cell system
JP2011051847A (en) * 2009-09-03 2011-03-17 Panasonic Corp Hydrogen generation apparatus and method for starting/stopping the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356305A (en) * 2001-03-26 2002-12-13 Osaka Gas Co Ltd Reformer and start-up method for reformer
JP2003286005A (en) * 2002-03-28 2003-10-07 Nisshin Steel Co Ltd Fuel reformer
JP2003306309A (en) * 2002-02-18 2003-10-28 Osaka Gas Co Ltd Method for operating hydrogen-containing gas-producing apparatus
JP2005026033A (en) * 2003-07-01 2005-01-27 Rinnai Corp Fuel cell type power generation system, and method of stopping operation thereof
JP2005314180A (en) * 2004-04-30 2005-11-10 T Rad Co Ltd Method for stopping auto-oxidizable internal heating reformer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356305A (en) * 2001-03-26 2002-12-13 Osaka Gas Co Ltd Reformer and start-up method for reformer
JP2003306309A (en) * 2002-02-18 2003-10-28 Osaka Gas Co Ltd Method for operating hydrogen-containing gas-producing apparatus
JP2003286005A (en) * 2002-03-28 2003-10-07 Nisshin Steel Co Ltd Fuel reformer
JP2005026033A (en) * 2003-07-01 2005-01-27 Rinnai Corp Fuel cell type power generation system, and method of stopping operation thereof
JP2005314180A (en) * 2004-04-30 2005-11-10 T Rad Co Ltd Method for stopping auto-oxidizable internal heating reformer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184864A (en) * 2008-02-05 2009-08-20 T Rad Co Ltd Stopping method of reformer
JP2009227479A (en) * 2008-03-19 2009-10-08 Nippon Oil Corp Method for stopping hydrogen production apparatus and fuel cell system
JP2011051847A (en) * 2009-09-03 2011-03-17 Panasonic Corp Hydrogen generation apparatus and method for starting/stopping the same

Similar Documents

Publication Publication Date Title
JP4724029B2 (en) Method for shutting down reformer
JP4274754B2 (en) Operation method of hydrogen-containing gas generator
JP2005162580A (en) Hydrogen generator, operation stopping method for hydrogen generator, and fuel cell power generating unit
JPWO2007091632A1 (en) Fuel cell system
US20190190050A1 (en) Solid oxide fuel cell system
JP2003282114A (en) Stopping method of fuel cell power generating device
JP2020105024A (en) Hydrogen generation system, and operation method
JP2007314410A (en) Fuel reformer equipped with movable burner, its operating method, and fuel cell system
JP2010015808A (en) Gas leak detection method of fuel cell power generating system and fuel cell power generating system
JP2005093115A (en) Fuel cell power generating device and its operating method
JP2008105892A (en) Stopping method for fuel reformer
JP2007157407A (en) Fuel reforming system
JP2002008701A (en) Method for starting and stopping solid polymer fuel cell
JP2007179851A (en) Liquid fuel solid polymer fuel cell system and method of stopping same
JP4784047B2 (en) Fuel cell system
JP2005206414A (en) Hydrogen producing apparatus
JP2008226602A (en) Temperature control system of reformer in fuel cell device
JP2009076392A (en) Liquid fuel cell power generation system
JP5065627B2 (en) Starting method of fuel cell system
JP2005332834A (en) Fuel cell power generation system and method of controlling fuel cell power generation system
JP4909339B2 (en) Operation method of hydrogen-containing gas generator
JP2006306665A (en) Operation method of hydrogen manufacturing device
JP2015140285A (en) Method for operating hydrogen-containing gas generation apparatus, and hydrogen-containing gas generation apparatus
JP5466871B2 (en) Fuel cell reformer
JP2004296102A (en) Fuel cell system and fuel cell system stopping method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129