JP2008226602A - Temperature control system of reformer in fuel cell device - Google Patents

Temperature control system of reformer in fuel cell device Download PDF

Info

Publication number
JP2008226602A
JP2008226602A JP2007062089A JP2007062089A JP2008226602A JP 2008226602 A JP2008226602 A JP 2008226602A JP 2007062089 A JP2007062089 A JP 2007062089A JP 2007062089 A JP2007062089 A JP 2007062089A JP 2008226602 A JP2008226602 A JP 2008226602A
Authority
JP
Japan
Prior art keywords
temperature
reformer
desulfurizer
fuel
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007062089A
Other languages
Japanese (ja)
Other versions
JP5379353B2 (en
Inventor
Seisaku Azumaguchi
誠作 東口
Masami Hamaso
正美 濱走
Kenichiro Yasuhara
健一郎 安原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2007062089A priority Critical patent/JP5379353B2/en
Publication of JP2008226602A publication Critical patent/JP2008226602A/en
Application granted granted Critical
Publication of JP5379353B2 publication Critical patent/JP5379353B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To lower CO concentration in a reformed gas to a value below a predetermined value without degrading desulfurization efficiency even when temperature variation of an ambient environment due to season or temporal change due to an individual difference of operation of a system occurs, to prevent voltage drop of a fuel cell from being caused, to improve reliability of the system, to improve durability of a catalyst of a low-temperature reactor, and to improve durability of the system. <P>SOLUTION: The fuel cell device is provided with: a fuel reform part 5 having a desulfurizer 1, a reformer 2, a CO converter 3, and a CO remover 4 on this order from the upstream side to produce hydrogen from a fuel gas; and a fuel cell part 6 generating power by reacting the hydrogen produced by the fuel reform part 5 with oxygen; and is structured to exchange heat between the fuel gas before being supplied to the desulfurizer 1 and the reformed gas on the downstream side of the reformer 2. By detecting the temperature of the desulfurizer 1 or/and the temperature of the CO converter 3, the temperature of the reformer 2 is controlled based on the detected temperature(s). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池装置における改質器の温度制御システムに関するものである。   The present invention relates to a temperature control system for a reformer in a fuel cell device.

従来から、上流側から順に脱硫器、改質器、CO変成器、CO除去器を有して燃料ガスから水素を製造する燃料改質部と、燃料改質部で製造された水素に酸素を反応させて発電する燃料電池部とを備え、脱硫器に供給される燃料ガスとCO除去器から燃料電池部のアノードに送られる改質ガスとを熱交換するように構成した燃料電池装置が特許文献1などにより知られている。   Conventionally, a fuel reformer that has a desulfurizer, a reformer, a CO converter, and a CO remover in order from the upstream side to produce hydrogen from fuel gas, and oxygen to the hydrogen produced by the fuel reformer Patent application title: FUEL CELL DEVICE, comprising a fuel cell unit that reacts to generate electricity, and configured to exchange heat between the fuel gas supplied to the desulfurizer and the reformed gas sent from the CO remover to the anode of the fuel cell unit It is known from Document 1 and the like.

上記のような従来の燃料電池装置においては、一般的に改質器の温度をある一定値に設定するようになっている。しかしながら、季節による周囲環境の温度変化や、システムの固体差や運転による経時変化により、他の低温反応器(脱硫器やCO変成器)の温度が変化し、本来の性能が出せなくなる。低温反応器の温度が最適な温度を逸脱すると、脱硫効率が低下し、また、改質ガス中のCO濃度が上がり、燃料電池の電圧低下を招く他、システムの信頼性を低下させるという問題がある。また、低温反応器の触媒温度が高い場合は、触媒自体の耐久性を損ない、システムの耐久性を低下させるという問題がある。
特開2002−25588号公報
In the conventional fuel cell apparatus as described above, the temperature of the reformer is generally set to a certain value. However, the temperature of other low-temperature reactors (desulfurizers and CO converters) changes due to changes in the temperature of the surrounding environment due to the season, changes in the system due to differences in the system, and changes over time, and the original performance cannot be achieved. If the temperature of the low-temperature reactor deviates from the optimum temperature, the desulfurization efficiency is reduced, the CO concentration in the reformed gas is increased, the voltage of the fuel cell is lowered, and the reliability of the system is lowered. is there. Moreover, when the catalyst temperature of a low temperature reactor is high, there exists a problem that durability of a catalyst itself is impaired and durability of a system is reduced.
JP 2002-25588 A

本発明は上記の従来の問題点に鑑みて発明したものであって、季節による周囲環境の温度変化や、システムの固体差や運転による経時変化があっても、脱硫効率が低下せず、改質ガス中のCO濃度を所定値以下に下げることができて、燃料電池の電圧低下を招くことが無く、また、システムの信頼性を向上させ、低温反応器の触媒の耐久性を向上させ、システムの耐久性を向上させることができる燃料電池装置における改質器の温度制御システムを提供することを課題とするものである。   The present invention has been invented in view of the above-mentioned conventional problems, and even if there is a change in the temperature of the surrounding environment due to the season, a difference in system solids or a change over time due to operation, the desulfurization efficiency does not decrease, and the improvement is made. The CO concentration in the gaseous gas can be lowered to a predetermined value or less, so that the fuel cell voltage is not lowered, the system reliability is improved, and the durability of the catalyst in the low temperature reactor is improved. It is an object of the present invention to provide a temperature control system for a reformer in a fuel cell device that can improve the durability of the system.

上記課題を解決するために本発明に係る燃料電池装置における改質器の温度制御システムは、上流側から順に脱硫器1、改質器2、CO変成器3、CO除去器4を有して燃料ガスから水素を製造する燃料改質部5と、燃料改質部5で製造された水素に酸素を反応させて発電する燃料電池部6とを備え、脱硫器1に供給される前の燃料ガスと、改質器2よりも下流側の改質ガスとの間で熱交換するように構成した燃料電池装置において、脱硫器1温度又は/及びCO変成器3温度を検出して、該検出温度に基づいて改質器2の温度を制御することを特徴とするものである。   In order to solve the above problems, a reformer temperature control system in a fuel cell apparatus according to the present invention includes a desulfurizer 1, a reformer 2, a CO converter 3, and a CO remover 4 in order from the upstream side. The fuel before being supplied to the desulfurizer 1 is provided with a fuel reforming section 5 that produces hydrogen from the fuel gas, and a fuel cell section 6 that generates electricity by reacting oxygen with the hydrogen produced by the fuel reforming section 5. In the fuel cell device configured to exchange heat between the gas and the reformed gas downstream of the reformer 2, the temperature of the desulfurizer 1 and / or the CO converter 3 is detected and detected. The temperature of the reformer 2 is controlled based on the temperature.

このような構成とすることで、脱硫器1温度又は/及びCO変成器3温度があらかじめ設定された最適な温度範囲を外れた場合は、改質器2の温度を下げたり、上げたりする制御を行って、低温反応器(脱硫器1やCO変成器3)の温度を最適の温度範囲にすることができ、脱硫効率が低下せず、改質ガス中のCO濃度を所定濃度以下にすることができ、また、低温反応器の触媒温度が所定温度よりも高くなるのを防止して触媒自体の耐久性を向上できる。   By adopting such a configuration, when the temperature of the desulfurizer 1 or / and the temperature of the CO converter 3 deviates from the preset optimum temperature range, the temperature of the reformer 2 is lowered or raised. The temperature of the low-temperature reactor (desulfurizer 1 or CO converter 3) can be adjusted to the optimum temperature range, the desulfurization efficiency does not decrease, and the CO concentration in the reformed gas is reduced to a predetermined concentration or less. In addition, the durability of the catalyst itself can be improved by preventing the catalyst temperature of the low temperature reactor from becoming higher than a predetermined temperature.

本発明は、脱硫器温度又は/及びCO変成器温度を検出して、検出温度に基づいて改質器の温度を制御するので、季節による周囲環境の温度変化や、システムの固体差や運転による経時変化があっても、脱硫器やCO変成器を本来の最適の温度にすることができて、脱硫効率が低下せず、改質ガス中のCO濃度を所定値以下に下げることができて、燃料電池の電圧低下を招くことが無く、また、システムの信頼性を向上させるという効果があり、また、低温反応器の触媒温度が所定温度よりも高くなるのを防止して触媒の耐久性を向上させることができ、システムの耐久性を向上させることができるという効果がある。   In the present invention, the temperature of the reformer is controlled based on the detected temperature by detecting the desulfurizer temperature or / and the CO converter temperature. Even if there is a change over time, the desulfurizer and CO converter can be brought to the original optimum temperature, the desulfurization efficiency is not lowered, and the CO concentration in the reformed gas can be lowered to a predetermined value or less. In addition, the fuel cell voltage is not reduced, the system reliability is improved, and the catalyst temperature of the low temperature reactor is prevented from becoming higher than a predetermined temperature, thereby improving the durability of the catalyst. And the durability of the system can be improved.

以下、本発明を添付図面に示す実施形態に基いて説明する。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings.

本発明の燃料電池装置は、図 の概略構成図に示すように、燃料改質部5と燃料電池部6とよりなる。   The fuel cell device of the present invention comprises a fuel reforming unit 5 and a fuel cell unit 6 as shown in the schematic configuration diagram of FIG.

燃料改質部5は、都市ガスのような燃料ガス(プロセスガス)から水素を製造するためのもので、上流側から順に脱硫器1、改質器2、CO変成器3、CO除去器4を備えている。   The fuel reforming unit 5 is for producing hydrogen from a fuel gas (process gas) such as city gas. The desulfurizer 1, the reformer 2, the CO converter 3, and the CO remover 4 are sequentially installed from the upstream side. It has.

脱硫器1は都市ガスのような燃料ガスを脱硫するためのものである。脱硫器1で脱硫した燃料ガスには改質用スチーム発生器8で発生させた水蒸気を混合するようになっており、脱硫され且つ水蒸気が混合された燃料ガスは改質器2に送られる。   The desulfurizer 1 is for desulfurizing fuel gas such as city gas. The fuel gas desulfurized by the desulfurizer 1 is mixed with water vapor generated by the reforming steam generator 8, and the fuel gas desulfurized and mixed with water vapor is sent to the reformer 2.

改質器2は改質器バーナ9を有しており、改質器バーナ9を燃焼させることで、改質触媒を加熱しながら前述のように都市ガスに水蒸気を混合した燃料ガスを水蒸気改質反応により改質するようになっており、改質器2で改質されたガスはCO変成器3でCO変成を行い、CO変成器3でCO変成を行ったCO変成ガスはCO除去器4に送られ、CO除去器4でCO選択酸化を行って一酸化炭素を除去してCO濃度の低い水素リッチの改質ガスを製造するようになっている。   The reformer 2 has a reformer burner 9, and by burning the reformer burner 9, the fuel gas in which the city gas is mixed with steam as described above is steam-modified while the reforming catalyst is heated. The gas reformed by the reformer 2 is CO-converted by the CO converter 3, and the CO-converted gas that has been CO-converted by the CO converter 3 is the CO remover. 4, CO selective oxidation is performed by the CO remover 4 to remove carbon monoxide, and a hydrogen-rich reformed gas having a low CO concentration is produced.

燃料電池部6は、アノード(燃料極)12、電解質13、カソード(空気極)14が層となったセルを一単位とし、このセルをセパレータ(図示せず)を介して多数積層して構成してある。ここで、アノード12、カソード14は気体を通す構造をしており、図2に示すように上記燃料改質部5で製造した水素リッチの改質ガス、つまり水素をアノード12に供給し、カソード14にブロアから空気を供給することで、水素はアノード12中の触媒の働きで電子を切り離して水素イオンになり、電解質13はイオンしか通さないという性質を持っているため、切り離された電子は外に出て行き、電解質の中を移動した水素イオンは、反対側のカソード14に送られた酸素と、外部から電線(外部回路)を通して戻ってきた電子と反応して水となる。このようにして発電した電気は直流なので、直流交流変換装置10により交流に変換するようになっている。   The fuel cell unit 6 is formed by stacking a large number of cells each having a layer of an anode (fuel electrode) 12, an electrolyte 13, and a cathode (air electrode) 14 via separators (not shown). It is. Here, the anode 12 and the cathode 14 have a structure that allows gas to pass through, and as shown in FIG. 2, the hydrogen-rich reformed gas produced by the fuel reforming unit 5, that is, hydrogen is supplied to the anode 12, and the cathode By supplying air from the blower to the hydrogen 14, hydrogen is separated into electrons by the action of the catalyst in the anode 12 to become hydrogen ions, and the electrolyte 13 has a property that only ions pass through. The hydrogen ions that have gone out and moved in the electrolyte react with oxygen sent to the cathode 14 on the opposite side and electrons returned from the outside through an electric wire (external circuit) to become water. Since the electricity generated in this way is direct current, it is converted to alternating current by the direct current alternating current converter 10.

燃料電池部6のアノード12から排気されるアノードオフガスは残水素を含んでいるため、アノードオフガス管路16を介して改質器2の改質器バーナ9に送られて燃料ガスとして利用されるようになっており、またこの改質器バーナ9には前記の都市ガス、空気も供給され、残水素を含むアノードオフガスと都市ガスと空気とを混合して改質器バーナ9で燃焼させることで、前述のように改質触媒を加熱しながら都市ガスに水蒸気を混合した燃料ガスを改質するようになっている。改質器バーナ9の燃焼排ガスは燃焼排ガス排気管路17を介して排出される。   Since the anode off-gas exhausted from the anode 12 of the fuel cell unit 6 contains residual hydrogen, it is sent to the reformer burner 9 of the reformer 2 via the anode off-gas line 16 and used as fuel gas. The reformer burner 9 is also supplied with the city gas and air, and the anode off-gas containing residual hydrogen, city gas and air are mixed and burned in the reformer burner 9. As described above, the fuel gas obtained by mixing the city gas with water vapor is reformed while heating the reforming catalyst. The combustion exhaust gas from the reformer burner 9 is discharged via the combustion exhaust gas exhaust line 17.

燃料電池部6のカソード14から排出されるカソードオフガスはカソードオフガス管路18を介して排出される。   Cathode off-gas discharged from the cathode 14 of the fuel cell unit 6 is discharged via a cathode off-gas conduit 18.

また、燃料電池部6は電池冷却水循環管路19を循環する電池冷却水により冷却するようになっている。   The fuel cell unit 6 is cooled by battery cooling water circulating through the battery cooling water circulation pipe 19.

ここで、本発明においては脱硫器1に供給される前の燃料ガスと、改質器2よりも下流側の改質ガスとの間で熱交換部21で熱交換して、脱硫器1に供給される燃料ガスを脱硫器1においては脱硫触媒により付臭剤中の硫黄化合物を除去するための脱硫反応に適した温度となるようにしている。   Here, in the present invention, heat is exchanged between the fuel gas before being supplied to the desulfurizer 1 and the reformed gas on the downstream side of the reformer 2 in the heat exchanging unit 21. In the desulfurizer 1, the supplied fuel gas is set to a temperature suitable for a desulfurization reaction for removing sulfur compounds in the odorant by a desulfurization catalyst.

図 に示す実施形態では改質器2よりも下流側のCO除去器4から燃料電池部6のアノード12に送られる改質ガスと、脱硫器1に供給される前の燃料ガスとを熱交換部21で熱交換し、燃料ガスを加熱するようになっている。   In the embodiment shown in the figure, heat exchange is performed between the reformed gas sent from the CO remover 4 downstream of the reformer 2 to the anode 12 of the fuel cell unit 6 and the fuel gas before being supplied to the desulfurizer 1. Heat is exchanged in the section 21 to heat the fuel gas.

脱硫器1やCO変成器3は改質器2よりも低温で反応させる低温反応器であり、この低温反応器である脱硫器1やCO変成器3には温度センサ23が設けてある。温度センサ23としては脱硫器1内の温度を検出する温度センサ23a、CO変成器3内の温度(例としてはCO変成器3の出口温度)を検出する温度センサ23bがあり、図1に示す実施形態では、脱硫器1及びCO変成器3にそれぞれ温度センサ23a、23bを設けた例が示してあるが、脱硫器1のみに温度センサ23aを設ける場合、あるいは、CO変成器3のみに温度センサ23bを設ける場合であってもよい。   The desulfurizer 1 and the CO converter 3 are low-temperature reactors that react at a lower temperature than the reformer 2, and the desulfurizer 1 and the CO converter 3 that are the low-temperature reactors are provided with a temperature sensor 23. As the temperature sensor 23, there are a temperature sensor 23a for detecting the temperature in the desulfurizer 1, and a temperature sensor 23b for detecting the temperature in the CO converter 3 (for example, the outlet temperature of the CO converter 3), which are shown in FIG. In the embodiment, the temperature sensors 23a and 23b are provided in the desulfurizer 1 and the CO converter 3, respectively. However, when the temperature sensor 23a is provided only in the desulfurizer 1, or only in the CO converter 3 is a temperature. The case where the sensor 23b is provided may be sufficient.

この温度センサ23による脱硫器1内の検出温度又は/及びCO変成器3内の検出温度の情報に基づいて制御部24により改質器バーナ9を制御して、改質器2の温度を制御するようになっている。   Based on the detected temperature in the desulfurizer 1 and / or the detected temperature in the CO converter 3 by the temperature sensor 23, the controller 24 controls the reformer burner 9 to control the temperature of the reformer 2. It is supposed to be.

すなわち、制御部24には、脱硫器1における脱硫触媒による脱硫反応に適した温度範囲、CO変成器3におけるCO変成のためのシフト反応に適した温度範囲があらかじめ登録してあり、上記温度センサ23により検出した脱硫器1内の温度又は/及びCO変成器3内の温度が、上記あらかじめ登録された脱硫反応に適した温度範囲又は/及びCO変成のためのシフト反応に適した温度範囲を外れないように改質器バーナ9に供給される都市ガスの流量を調整することにより行う。実施形態では改質器バーナ9に都市ガスを供給するガス供給管26に設けた調整弁27を調整することで都市ガスの流量を調整し、改質器2の温度を制御するようになっている。   That is, the temperature range suitable for the desulfurization reaction by the desulfurization catalyst in the desulfurizer 1 and the temperature range suitable for the shift reaction for the CO conversion in the CO converter 3 are registered in the controller 24 in advance, and the temperature sensor The temperature in the desulfurizer 1 or / and the temperature in the CO converter 3 detected by 23 is a temperature range suitable for the previously registered desulfurization reaction or / and a temperature range suitable for a shift reaction for CO conversion. This is done by adjusting the flow rate of the city gas supplied to the reformer burner 9 so that it does not come off. In the embodiment, the flow rate of the city gas is adjusted by adjusting the adjustment valve 27 provided in the gas supply pipe 26 that supplies the city gas to the reformer burner 9, and the temperature of the reformer 2 is controlled. Yes.

ところで、夏場、あるいは雰囲気温度が高い場所で燃料電池装置を運転すると、低温反応器である脱硫器1やCO変成器3の温度が本来の脱硫器1やCO変成器3における性能を引き出すための温度より高くなる(つまり、あらかじめ登録してある脱硫反応に適した温度範囲やCO変成のためのシフト反応に適した温度範囲を外れる)。このような場合は、調整弁27を調整して都市ガスの流量が少なくなるように制御して改質器2の温度を下げ、これにより、脱硫器1やCO変成器3の温度をあらかじめ登録してある脱硫反応に適した温度範囲やCO変成のためのシフト反応に適した温度範囲とするのである。また、逆に冬場、あるいは雰囲気温度が低い場所で燃料電池装置を運転すると、低温反応器である脱硫器1やCO変成器3の温度が本来の脱硫器1やCO変成器3における性能を引き出すための温度より低くなる(つまり、あらかじめ登録してある脱硫反応に適した温度範囲やCO変成のためのシフト反応に適した温度範囲を外れる)。このような場合は、調整弁27を調整して都市ガスの流量が多くなるように制御して改質器2の温度を上げ、これにより、脱硫器1やCO変成器3の温度をあらかじめ登録してある脱硫反応に適した温度範囲やCO変成のためのシフト反応に適した温度範囲とするのである。   By the way, when the fuel cell device is operated in summer or in a place where the atmospheric temperature is high, the temperature of the desulfurizer 1 and the CO converter 3 which are low-temperature reactors is used to bring out the performance of the original desulfurizer 1 and the CO converter 3. It becomes higher than the temperature (that is, outside the temperature range suitable for the desulfurization reaction registered in advance and the temperature range suitable for the shift reaction for CO conversion). In such a case, the temperature of the reformer 2 is lowered by adjusting the regulating valve 27 so as to reduce the flow rate of the city gas, thereby preliminarily registering the temperatures of the desulfurizer 1 and the CO converter 3. Therefore, the temperature range is suitable for the desulfurization reaction and the temperature range suitable for the shift reaction for CO conversion. Conversely, when the fuel cell device is operated in winter or in a place where the ambient temperature is low, the temperature of the desulfurizer 1 and the CO converter 3 that are low-temperature reactors brings out the performance of the original desulfurizer 1 and the CO converter 3. (That is, out of the temperature range suitable for the desulfurization reaction registered in advance and the temperature range suitable for the shift reaction for CO conversion). In such a case, the temperature of the reformer 2 is raised by adjusting the regulating valve 27 so as to increase the flow rate of the city gas, thereby preliminarily registering the temperatures of the desulfurizer 1 and the CO converter 3. Therefore, the temperature range is suitable for the desulfurization reaction and the temperature range suitable for the shift reaction for CO conversion.

このようにして簡易な方法で、低温反応器である脱硫器1やCO変成器3の温度をそれぞれ適温に保ち、設置場所の雰囲気温度や季節変動によらず、反応器である脱硫器1やCO変成器3における本来の性能を確実に引き出すことができ、システムの信頼性、耐久性を高めることができる。   In this way, the temperature of the desulfurizer 1 and the CO converter 3 that are low-temperature reactors is kept at an appropriate temperature by a simple method, and the desulfurizer 1 that is a reactor is maintained regardless of the atmospheric temperature and seasonal variations at the installation site. The original performance of the CO transformer 3 can be reliably extracted, and the reliability and durability of the system can be improved.

上記例では改質器バーナ9に供給する都市ガスの量を制御して改質器2の温度制御を行う例で説明したが、プロセスガス量を制御することで改質器2の温度制御を行うようにしてもよく、また、改質器バーナ9に供給する都市ガスの量及びプロセスガス量の双方を制御することで改質器2の温度制御を行うようにしてもよい。   In the above example, the temperature of the reformer 2 is controlled by controlling the amount of city gas supplied to the reformer burner 9, but the temperature control of the reformer 2 can be controlled by controlling the amount of process gas. Alternatively, the temperature of the reformer 2 may be controlled by controlling both the amount of city gas supplied to the reformer burner 9 and the amount of process gas.

以下、本発明の一例を具体的に説明する。   Hereinafter, an example of the present invention will be specifically described.

燃料電池装置において、従来から脱硫器1やCO変成器3の温度は、改質器2の出口温度(出口における改質ガスの温度)によりなりゆきの温度となるように設計されており、このような従来の制御ではシステムの外気温が40℃変化した場合、低温反応器である脱硫器1やCO変成器3の温度の温度は約30℃変化していた。例えば、改質器2の出口温度は通常650℃前後に設定してあり、この改質器2の設定温度以下では冬場の脱硫器1温度は280℃、CO変成器3の出口温度は180℃程度であり、良好な温度分布でシステム運転を行うことが可能である。   Conventionally, in the fuel cell device, the temperature of the desulfurizer 1 and the CO converter 3 is designed so as to become a temperature that depends on the outlet temperature of the reformer 2 (the temperature of the reformed gas at the outlet). In the conventional control, when the outside air temperature of the system changes by 40 ° C., the temperature of the desulfurizer 1 and the CO converter 3 which are low temperature reactors changes by about 30 ° C. For example, the outlet temperature of the reformer 2 is normally set to around 650 ° C. Below this set temperature of the reformer 2, the temperature of the desulfurizer 1 in winter is 280 ° C., and the outlet temperature of the CO converter 3 is 180 ° C. It is possible to operate the system with a good temperature distribution.

しかしながら、この改質器2の出口温度のまま夏場の運転を実施すると、脱硫器1温度は310℃CO変成器3の出口温度は210℃程度となり、脱硫器1の触媒は耐久性を担保するための温度(200℃)を越え、また、CO変成器3はCO変成器3の出口のCO濃度0.5%以下を担保するための温度(200℃)を越える結果となる。   However, if summer operation is carried out with the outlet temperature of the reformer 2, the temperature of the desulfurizer 1 becomes 310 ° C, the outlet temperature of the CO converter 3 becomes about 210 ° C, and the catalyst of the desulfurizer 1 ensures durability. As a result, the CO converter 3 exceeds the temperature (200 ° C.) for ensuring the CO concentration of 0.5% or less at the outlet of the CO converter 3.

そこで、本発明においては、脱硫器1温度が300℃、もしくはCO変成器3の出口温度が200℃を越えた場合は、改質器2の出口温度設定を10℃下げる制御をするものである。   Therefore, in the present invention, when the temperature of the desulfurizer 1 is 300 ° C. or the outlet temperature of the CO converter 3 exceeds 200 ° C., the outlet temperature setting of the reformer 2 is controlled to be lowered by 10 ° C. .

また、逆に、脱硫器1の温度が260℃、もしくはCO変成器3の出口温度が160℃を下回る場合は改質器2の出口温度設定を10℃上げる制御をするものである。   Conversely, when the temperature of the desulfurizer 1 is 260 ° C. or the outlet temperature of the CO converter 3 is lower than 160 ° C., the outlet temperature setting of the reformer 2 is controlled to be raised by 10 ° C.

本発明の燃料電池装置の概略構成図である。It is a schematic block diagram of the fuel cell apparatus of this invention. 同上の概略説明図である。It is a schematic explanatory drawing same as the above.

符号の説明Explanation of symbols

1 脱硫器
2 改質器
3 CO変成器
4 CO除去器
5 燃料改質部
6 燃料電池部
DESCRIPTION OF SYMBOLS 1 Desulfurizer 2 Reformer 3 CO converter 4 CO remover 5 Fuel reforming part 6 Fuel cell part

Claims (1)

上流側から順に脱硫器、改質器、CO変成器、CO除去器を有して燃料ガスから水素を製造する燃料改質部と、燃料改質部で製造された水素に酸素を反応させて発電する燃料電池部とを備え、脱硫器に供給される前の燃料ガスと、改質器よりも下流側の改質ガスとの間で熱交換するように構成した燃料電池装置において、脱硫器温度又は/及びCO変成器温度を検出して、該検出温度に基づいて改質器の温度を制御することを特徴とする燃料電池装置における改質器の温度制御システム。

In order from the upstream side, there are a desulfurizer, a reformer, a CO converter, and a CO remover. A fuel reformer that produces hydrogen from fuel gas, and oxygen reacted with the hydrogen produced in the fuel reformer A fuel cell device comprising a fuel cell unit for generating electricity and configured to exchange heat between a fuel gas before being supplied to a desulfurizer and a reformed gas downstream from the reformer. A temperature control system for a reformer in a fuel cell device, wherein the temperature of the reformer is detected based on the detected temperature or / and the CO transformer temperature.

JP2007062089A 2007-03-12 2007-03-12 Temperature control system of reformer in fuel cell device Expired - Fee Related JP5379353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007062089A JP5379353B2 (en) 2007-03-12 2007-03-12 Temperature control system of reformer in fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007062089A JP5379353B2 (en) 2007-03-12 2007-03-12 Temperature control system of reformer in fuel cell device

Publications (2)

Publication Number Publication Date
JP2008226602A true JP2008226602A (en) 2008-09-25
JP5379353B2 JP5379353B2 (en) 2013-12-25

Family

ID=39844972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007062089A Expired - Fee Related JP5379353B2 (en) 2007-03-12 2007-03-12 Temperature control system of reformer in fuel cell device

Country Status (1)

Country Link
JP (1) JP5379353B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222209A (en) * 2009-03-25 2010-10-07 Panasonic Corp Hydrogen generating device and fuel cell power generator using the same
JP2012104384A (en) * 2010-11-10 2012-05-31 Osaka Gas Co Ltd Fuel cell power generation system
KR101188017B1 (en) * 2010-08-11 2012-10-05 현대하이스코 주식회사 Prediction method of replacement time of catalyst in reformer for fuel cell and apparatus for the same
JP2012206905A (en) * 2011-03-30 2012-10-25 Osaka Gas Co Ltd Hydrogen-containing gas producing apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053043A (en) * 1991-06-24 1993-01-08 Hitachi Ltd Fuel cell device
JPH11195424A (en) * 1997-12-26 1999-07-21 Toshiba Corp Fuel cell power generation plant and its control device
JP2002356309A (en) * 2001-03-28 2002-12-13 Osaka Gas Co Ltd Operation control method for generation apparatus for gas containing hydrogen
JP2004031280A (en) * 2002-06-28 2004-01-29 Ebara Ballard Corp Fuel processing device, fuel cell power generation system, fuel processing method and fuel cell power generation method
JP2004317095A (en) * 2003-04-21 2004-11-11 Osaka Gas Co Ltd Heating burner for reforming device
JP2005206413A (en) * 2004-01-22 2005-08-04 Matsushita Electric Ind Co Ltd Hydrogen generating apparatus and fuel cell system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053043A (en) * 1991-06-24 1993-01-08 Hitachi Ltd Fuel cell device
JPH11195424A (en) * 1997-12-26 1999-07-21 Toshiba Corp Fuel cell power generation plant and its control device
JP2002356309A (en) * 2001-03-28 2002-12-13 Osaka Gas Co Ltd Operation control method for generation apparatus for gas containing hydrogen
JP2004031280A (en) * 2002-06-28 2004-01-29 Ebara Ballard Corp Fuel processing device, fuel cell power generation system, fuel processing method and fuel cell power generation method
JP2004317095A (en) * 2003-04-21 2004-11-11 Osaka Gas Co Ltd Heating burner for reforming device
JP2005206413A (en) * 2004-01-22 2005-08-04 Matsushita Electric Ind Co Ltd Hydrogen generating apparatus and fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222209A (en) * 2009-03-25 2010-10-07 Panasonic Corp Hydrogen generating device and fuel cell power generator using the same
KR101188017B1 (en) * 2010-08-11 2012-10-05 현대하이스코 주식회사 Prediction method of replacement time of catalyst in reformer for fuel cell and apparatus for the same
JP2012104384A (en) * 2010-11-10 2012-05-31 Osaka Gas Co Ltd Fuel cell power generation system
JP2012206905A (en) * 2011-03-30 2012-10-25 Osaka Gas Co Ltd Hydrogen-containing gas producing apparatus

Also Published As

Publication number Publication date
JP5379353B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
KR100961838B1 (en) External reforming type molten carbonate fuel cell system
EP2426769A1 (en) Reformer for fuel cell
KR100790850B1 (en) Fuel processor having movable burner, method of operating the same and fuel cell system having the same
JP5379353B2 (en) Temperature control system of reformer in fuel cell device
JP2008300251A (en) Fuel cell cogeneration device
JP2007137719A (en) Fuel reforming apparatus, and fuel cell power generation apparatus using it and its operation method
JP2005166283A (en) Hydrogen manufacturing device for fuel cell
JP5066020B2 (en) Fuel cell power generation system and operation method thereof
US8328886B2 (en) Fuel processor having temperature control function for co shift reactor and method of operating the fuel processor
JP2007200771A (en) Reforming catalyst temperature control system and control method of fuel cell power generator
JP5389520B2 (en) Fuel cell reformer
JP2009117120A (en) Method of operating hydrogen and power generation system
KR101295237B1 (en) Fuel cell system
JP4466049B2 (en) Water flow control method for reforming steam
JP4872760B2 (en) Operation control method and apparatus for fuel processor
JP2009117170A (en) Hydrogen and power generating system, and load following power generation method therein
JP2007073302A (en) Fuel reforming system
JP4442204B2 (en) Fuel cell power generation system
JP5592760B2 (en) Fuel cell power generation system
JP2005216488A (en) Operation method of fuel cell power generation device
KR100830161B1 (en) Fuel cell system start-up method
JP2004002120A (en) Carbon monoxide stripping-off device
JP2008226603A (en) Heat recovery system in fuel cell device
JP4929565B2 (en) Fuel cell power generator
JP2005336029A (en) Reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130927

R150 Certificate of patent or registration of utility model

Ref document number: 5379353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees