JP2005206413A - Hydrogen generating apparatus and fuel cell system - Google Patents

Hydrogen generating apparatus and fuel cell system Download PDF

Info

Publication number
JP2005206413A
JP2005206413A JP2004013937A JP2004013937A JP2005206413A JP 2005206413 A JP2005206413 A JP 2005206413A JP 2004013937 A JP2004013937 A JP 2004013937A JP 2004013937 A JP2004013937 A JP 2004013937A JP 2005206413 A JP2005206413 A JP 2005206413A
Authority
JP
Japan
Prior art keywords
temperature
unit
ambient temperature
catalyst
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004013937A
Other languages
Japanese (ja)
Inventor
Kiyoshi Taguchi
清 田口
Kunihiro Ukai
邦弘 鵜飼
Hidenobu Wakita
英延 脇田
Seiji Fujiwara
誠二 藤原
Yukimune Kani
幸宗 可児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004013937A priority Critical patent/JP2005206413A/en
Publication of JP2005206413A publication Critical patent/JP2005206413A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen generating apparatus which realizes a high efficiency and a stable operation; and a fuel cell power generation system using the same. <P>SOLUTION: The hydrogen generating apparatus is equipped with an ambient temperature detection means for detecting the ambient temperature of the apparatus. In the apparatus, any of the temperature of a reforming catalyst body packed in a reforming part, the temperature of the downstream of the reforming catalyst body, the temperature of a carbon monoxide removal catalyst body packed in a carbon monoxide removal part, and the temperature of a reformed gas at the upstream and downstream sides of the carbon monoxide removal catalyst body is regarded as a catalyst temperature. Based on the ambient temperature acquired by the ambient temperature detection means, at least either of the catalyst temperature and the ratio of water to an organic-compound-containing raw material is changed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、炭化水素系の燃料を改質して水素ガスを生成する水素生成装置と、それを用いた燃料電池システムに関する。   The present invention relates to a hydrogen generator that reforms a hydrocarbon-based fuel to generate hydrogen gas, and a fuel cell system using the hydrogen generator.

燃料電池発電装置は発電効率が高いことに加えて、発電時に発生した熱が有効に利用できるため、家庭用のコージェネレーションへの応用が期待されている。   In addition to high power generation efficiency, fuel cell power generators can effectively use the heat generated during power generation, and are expected to be applied to household cogeneration.

家庭用途においては、装置の頻繁な起動停止への対応、装置の耐久性およびコスト低減の観点から、燃料電池発電装置は比較的低温で作動させることが望ましい。そこで、発電部として高分子電解質膜を用いた固体高分子型燃料電池の開発が進められている。   In home use, it is desirable to operate the fuel cell power generator at a relatively low temperature from the viewpoint of responding to frequent start / stop of the apparatus, durability of the apparatus, and cost reduction. Therefore, development of a polymer electrolyte fuel cell using a polymer electrolyte membrane as a power generation unit has been advanced.

燃料電池の多くは水素を燃料として発電する。現状ではその燃料となる水素ガスインフラが整っていないため、発電装置設置場所において、天然ガス、LPG等の炭化水素成分、メタノール等のアルコール、あるいはナフサ成分等の少なくとも炭素及び水素から構成される有機化合物を含む原料と、水とを反応させて水素を含む改質ガスを生成するための水素生成装置が併用される。また、生成した改質ガス中には、水素の他、原料に由来する二酸化炭素および一酸化炭素(以下COと示す)が副成分として含まれる。現在開発が進められている固体高分子型燃料電池は100℃以下の低温で作動するため、電池電極触媒の活性を維持するため、改質ガスに含有するCOをできるだけ低減(一般的には10〜50ppm以下)させる必要がある。そこで、水素生成装置では、水素ガスを生成する改質部と、前記水素ガス中のCOと水をシフト反応させる変成部、およびCOを酸化反応させる浄化部で構成されるCO除去部が併用される。   Many fuel cells generate electricity using hydrogen as fuel. At present, the hydrogen gas infrastructure that serves as the fuel is not in place, so at the place where the power generation equipment is installed, organic gas composed of at least carbon and hydrogen such as natural gas, hydrocarbon components such as LPG, alcohol such as methanol, or naphtha components A hydrogen generator for generating a reformed gas containing hydrogen by reacting a raw material containing a compound with water is used in combination. In addition to hydrogen, carbon dioxide and carbon monoxide (hereinafter referred to as CO) derived from the raw materials are included as subcomponents in the generated reformed gas. Since the polymer electrolyte fuel cell currently under development operates at a low temperature of 100 ° C. or lower, CO contained in the reformed gas is reduced as much as possible (generally 10% to maintain the activity of the battery electrode catalyst). ~ 50 ppm or less). Therefore, in the hydrogen generator, a reforming unit that generates hydrogen gas, a shift unit that shifts CO and water in the hydrogen gas, and a CO removal unit that includes a purification unit that oxidizes CO are used in combination. The

改質部、変成部、およびCO除去部にはそれぞれの反応に適した触媒体が充填されており、最も装置効率が高くかつ安定に動作する所定の温度に制御される。   The reforming section, the shift section, and the CO removal section are filled with a catalyst body suitable for each reaction, and are controlled to a predetermined temperature at which the apparatus efficiency is highest and operates stably.

ところで、水素生成装置の動作は周囲温度が上下した場合には供給する原料や水の温度、機体からの放熱量等が変化するため、最適な制御条件が変化する。   By the way, in the operation of the hydrogen generator, when the ambient temperature rises or falls, the temperature of the raw material and water to be supplied, the amount of heat released from the machine, and the like change, so that the optimum control conditions change.

水素生成装置の周囲温度の変化に対処する技術として、周囲温度が0℃以下になった場合の凍結を防止する技術が提案されている(例えば、特許文献1を参照)。
特開2000−313602号公報
As a technique for coping with a change in the ambient temperature of the hydrogen generator, a technique for preventing freezing when the ambient temperature becomes 0 ° C. or lower has been proposed (see, for example, Patent Document 1).
JP 2000-313602 A

しかしながら、設置する地域が寒冷地や温暖地であったり、季節によって気温変化が激しい地域では、装置の周囲温度が大きく変化し、放熱条件が著しく変動する。この場合、改質部やCO除去部の温度を同一に制御しても実質触媒温度が変化する。このため、周囲温度が高い場合には、必要以上に加熱量が増加して装置効率が低下したり、周囲温度が低い場合には実質触媒温度が低下しすぎて、水素発生量が低下したり、COが充分に除去できなくなる場合がある。なお、実質触媒温度とは触媒温度検知手段で測定される触媒温度に対して、触媒全体の平均温度のことである。   However, when the installation area is a cold region or a warm region, or the region where the temperature changes drastically depending on the season, the ambient temperature of the device changes greatly, and the heat radiation conditions vary significantly. In this case, even if the temperatures of the reforming unit and the CO removing unit are controlled to be the same, the substantial catalyst temperature changes. For this reason, when the ambient temperature is high, the heating amount increases more than necessary and the apparatus efficiency decreases, and when the ambient temperature is low, the actual catalyst temperature decreases too much and the hydrogen generation amount decreases. , CO may not be sufficiently removed. The substantial catalyst temperature is the average temperature of the entire catalyst with respect to the catalyst temperature measured by the catalyst temperature detecting means.

本発明は、上記従来の水素生成装置に関しての上記課題を解決するものであり、高い効率と安定動作を実現する水素生成装置および燃料電池発電システムを提供することを目的とする。   The present invention solves the above-described problems related to the conventional hydrogen generator, and an object thereof is to provide a hydrogen generator and a fuel cell power generation system that realize high efficiency and stable operation.

第一の本発明は、有機化合物を含む原料と水とを反応させ、少なくとも水素および一酸化炭素を含有する改質ガスを生成する改質部と、
前記改質部が生成した改質ガス中の前記一酸化炭素をシフト反応により低減を行う変成部を少なくとも有する一酸化炭素除去部と、
前記改質部に充填された改質触媒体の温度、または前記改質触媒体下流の温度、もしくは前記一酸化炭素除去部に充填された一酸化炭素除去触媒体の温度または前記一酸化炭素除去触媒体の上流側および下流側の改質ガスの温度のいずれかを検知する触媒温度検知手段と、
前記検知温度があらかじめ決められた触媒温度となるように制御する触媒温度制御手段と、
水素生成装置の周囲温度を検知する周囲温度検知手段または周囲温度を予測する周囲温度予測手段とを具備し、
前記周囲温度検知手段または周囲温度予測手段から得られる周囲温度に基づいて、前記触媒温度または前記原料に対する水の比率を変化させることを特徴とする水素生成装置である。
The first aspect of the present invention comprises a reforming unit that reacts a raw material containing an organic compound with water to generate a reformed gas containing at least hydrogen and carbon monoxide;
A carbon monoxide removal unit having at least a transformation unit that reduces the carbon monoxide in the reformed gas generated by the reforming unit by a shift reaction;
The temperature of the reforming catalyst body charged in the reforming section, the temperature downstream of the reforming catalyst body, the temperature of the carbon monoxide removal catalyst body charged in the carbon monoxide removal section, or the carbon monoxide removal. A catalyst temperature detecting means for detecting either the upstream side or downstream side reformed gas temperature of the catalyst body;
Catalyst temperature control means for controlling the detected temperature to be a predetermined catalyst temperature;
An ambient temperature detecting means for detecting the ambient temperature of the hydrogen generator, or an ambient temperature predicting means for predicting the ambient temperature,
The hydrogen generator is characterized in that the catalyst temperature or the ratio of water to the raw material is changed based on the ambient temperature obtained from the ambient temperature detecting means or the ambient temperature predicting means.

また、第二の本発明は、周囲温度が低下した場合に、改質部および一酸化炭素除去部の少なくとも一方の触媒温度を上昇させることを特徴とする水素生成装置である。   The second aspect of the present invention is the hydrogen generator characterized in that when the ambient temperature is lowered, the catalyst temperature of at least one of the reforming unit and the carbon monoxide removing unit is increased.

また、第三の本発明は、周囲温度が低下した場合に、改質部に供給する原料に対する水の比率を増加させることを特徴とする水素生成装置である。   The third aspect of the present invention is the hydrogen generator characterized by increasing the ratio of water to the raw material supplied to the reforming section when the ambient temperature is lowered.

また、第四の本発明は、一酸化炭素除去部は酸化剤ガス供給部と、前記酸化剤ガス供給部から供給される酸化剤ガスと改質ガス中の一酸化炭素を選択酸化反応させ、一酸化炭素を低減するための浄化部とを具備し、周囲温度が低下した場合に、前記酸化剤ガス供給部から供給する酸化剤ガス量を増加させることを特徴とする水素生成装置である。   The fourth aspect of the present invention is a carbon monoxide removing unit that selectively oxidizes carbon monoxide in the reformed gas and an oxidant gas supply unit, an oxidant gas supplied from the oxidant gas supply unit, And a purifying unit for reducing carbon monoxide, wherein the amount of oxidant gas supplied from the oxidant gas supply unit is increased when the ambient temperature is lowered.

また、第五の本発明は、水素生成装置の設置場所または地方の月日と、温度データとの関係を記録した記憶装置を具備し、周囲温度予測手段は、前記記憶装置に記憶された温度データに基づき予測することを特徴とする水素生成装置である。   The fifth aspect of the present invention includes a storage device that records the relationship between the location of the hydrogen generator or the local date and temperature, and the temperature data, and the ambient temperature predicting means includes the temperature stored in the storage device. This is a hydrogen generator characterized by prediction based on data.

また、第六の本発明は、上記の水素生成装置と、酸素を含有する酸化剤ガスおよび前記水素生成装置から供給される水素を含有する燃料ガスを用いて発電する燃料電池とを備える燃料電池システムである。   According to a sixth aspect of the present invention, there is provided a fuel cell comprising the above hydrogen generator, and a fuel cell that generates electricity using an oxygen-containing oxidant gas and a hydrogen-containing fuel gas supplied from the hydrogen generator. System.

また、第七の本発明は、燃料電池は冷却媒体を流通させるとともに前記冷却媒体の流量によって燃料電池温度を制御する冷却手段を備え、改質部に対する水の比率を増加させた場合には、前記冷却手段により前記燃料電池温度を上げ、改質部に対する水の比率を減少させた場合には、前記冷却手段により前記燃料電池温度を下げることを特徴とする燃料電池システムである。   The seventh aspect of the present invention is a fuel cell comprising a cooling means for controlling the temperature of the fuel cell according to the flow rate of the cooling medium while circulating the cooling medium, and when the ratio of water to the reforming section is increased, In the fuel cell system, when the temperature of the fuel cell is raised by the cooling means and the ratio of water to the reforming portion is reduced, the temperature of the fuel cell is lowered by the cooling means.

本発明によると、水素生成装置の周囲の雰囲気温度の変化に応じてそれぞれの触媒体が最適温度に制御され、季節による気温変動が大きな条件下において高い発電効率を維持しつつ安定に作動させることができる。   According to the present invention, each catalyst body is controlled to an optimum temperature according to a change in the ambient temperature around the hydrogen generator, and can be operated stably while maintaining high power generation efficiency under conditions where the temperature fluctuation due to the season is large. Can do.

つまり、本発明によれば気温の変化に応じて高い発電効率を維持する燃料電池発電装置を提供することができる。   That is, according to the present invention, it is possible to provide a fuel cell power generator that maintains high power generation efficiency in accordance with changes in temperature.

以下では、本発明にかかる実施の形態について、図面を参照しつつ説明を行う。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings.

(実施の形態1)
はじめに、図1を参照しながら、本実施の形態における水素生成装置の構成について説明する。なお、図1は、本実施の形態における水素生成装置を含む燃料電池発電システムの構成を示す概略図である。
(Embodiment 1)
First, the configuration of the hydrogen generator in the present embodiment will be described with reference to FIG. FIG. 1 is a schematic diagram showing a configuration of a fuel cell power generation system including a hydrogen generator in the present embodiment.

図1において、改質部1は改質触媒を充填した反応器であり、加熱部2は改質部1を加熱する燃焼バーナーである。また、改質部1に原料を供給する原料供給部3、改質部1に水を供給する水供給部4を設置してある。改質部1の下流側には本発明の一酸化炭素除去部の一つである変成部5、変成部5の下流側には、酸素を含有する酸化剤ガス(本実施の形態では空気)を供給する本発明の酸化剤ガス供給部である空気供給部6と、本発明の一酸化炭素除去部の一つである浄化部7、さらに浄化部7の下流側には燃料電池発電部8を設置している。燃料電池発電部8の温度は、燃料電池内を流通する冷却媒体の流量を調整する冷却手段102により制御される。また、燃料電池発電部8を通過した後のメタンや水素を含んだオフガスは加熱部2に供給されて、改質部1の加熱に用いられる。また、燃焼ガス供給部9は水素生成装置起動時や改質部1を加熱するための加熱量が不足した場合に、加熱部2に燃焼ガスを供給する。   In FIG. 1, the reforming unit 1 is a reactor filled with a reforming catalyst, and the heating unit 2 is a combustion burner that heats the reforming unit 1. Further, a raw material supply unit 3 that supplies the raw material to the reforming unit 1 and a water supply unit 4 that supplies water to the reforming unit 1 are installed. On the downstream side of the reforming unit 1 is a shift unit 5 which is one of the carbon monoxide removal units of the present invention, and on the downstream side of the shift unit 5, an oxidant gas containing oxygen (air in the present embodiment). An air supply unit 6 that is an oxidant gas supply unit of the present invention, a purification unit 7 that is one of the carbon monoxide removal units of the present invention, and a fuel cell power generation unit 8 on the downstream side of the purification unit 7 Is installed. The temperature of the fuel cell power generation unit 8 is controlled by the cooling means 102 that adjusts the flow rate of the cooling medium flowing in the fuel cell. Further, the offgas containing methane and hydrogen after passing through the fuel cell power generation unit 8 is supplied to the heating unit 2 and used for heating the reforming unit 1. The combustion gas supply unit 9 supplies combustion gas to the heating unit 2 when the hydrogen generator is started up or when the heating amount for heating the reforming unit 1 is insufficient.

また、本発明の周囲温度測定手段であって、水素生成装置の周囲の温度を測定する周囲温度検知器10を設置してある。なお、周囲温度検知器10の設置場所は、特に限定はしないが、外気温度または水素生成装置の周囲で外気温度に連動した温度の変化を検知出来る場所が好ましい。このような場所として、外気の取り入れ口等が挙げられる。   In addition, an ambient temperature detector 10 for measuring the ambient temperature of the hydrogen generator is provided as the ambient temperature measuring means of the present invention. In addition, although the installation location of the ambient temperature detector 10 is not particularly limited, an ambient temperature or a location where a change in temperature linked to the ambient temperature can be detected around the hydrogen generator is preferable. An example of such a place is an outside air intake.

また、改質部1内部には、Ruをアルミナに担持した改質触媒体を充填し、改質触媒体の温度を検知する本発明の触媒温度検知手段としての改質部熱電対101を設置してある。なお、上記改質部熱電対は、上述のように改質触媒体そのものか、上記改質触媒体の下流の温度を測定可能な箇所に設置するのが好ましい。   Further, the reforming section 1 is filled with a reforming catalyst body supporting Ru on alumina, and the reforming section thermocouple 101 is installed as the catalyst temperature detecting means of the present invention for detecting the temperature of the reforming catalyst body. It is. In addition, it is preferable to install the said reforming part thermocouple in the location which can measure the temperature downstream of the reforming catalyst body itself or the said reforming catalyst body as mentioned above.

また、変成部5内部は図2に示すように、本発明の一酸化炭素除去触媒体の一つである変成触媒体12として銅亜鉛系触媒を充填し、変成触媒体12の上流側と下流側にそれぞれ温度を検知する変成上流熱電対13と変成下流熱電対14を設置してある。さらに、変成触媒体12に導入される改質ガス温度を制御する熱交換部16を変成部入口11に設置してある。   Further, as shown in FIG. 2, the inside of the shift unit 5 is filled with a copper zinc-based catalyst as the shift catalyst body 12 which is one of the carbon monoxide removal catalyst bodies of the present invention, and the upstream side and the downstream side of the shift catalyst body 12. On the side, a modified upstream thermocouple 13 and a modified downstream thermocouple 14 for detecting the temperature are installed. Further, a heat exchanging section 16 for controlling the reformed gas temperature introduced into the shift catalyst body 12 is installed at the shift section inlet 11.

また、浄化部7内部は図3に示すように、浄化触媒体22としてアルミナにPtを担持した触媒を充填し、本発明の一酸化炭素除去触媒体の一つである浄化触媒体22の上流側と下流側にそれぞれ温度を検知する浄化上流熱電対23と浄化下流熱電対24を設置してある。また、浄化触媒体22に導入される改質ガス温度を制御する熱交換部26を浄化部入口21に設置してある。   Further, as shown in FIG. 3, the inside of the purification unit 7 is filled with a catalyst in which Pt is supported on alumina as the purification catalyst body 22, and is upstream of the purification catalyst body 22 which is one of the carbon monoxide removal catalyst bodies of the present invention. A purification upstream thermocouple 23 and a purification downstream thermocouple 24 for detecting temperatures are provided on the side and the downstream side, respectively. Further, a heat exchanging portion 26 for controlling the reformed gas temperature introduced into the purifying catalyst body 22 is installed at the purifying portion inlet 21.

なお、改質部1、変成部5、および浄化部7にそれぞれ用いた触媒体の形状は2〜3mmの球状のものを用いた。   In addition, the shape of the catalyst body used for each of the reforming unit 1, the transformation unit 5 and the purification unit 7 was a spherical shape of 2 to 3 mm.

これらの触媒は、水素生成装置において一般的に用いられる触媒であり、同様な機能を有する他の触媒を用いても本発明による効果は変わらない。例えば、改質触媒としてはNi触媒、変成触媒としてはPt触媒や鉄−クロム触媒、浄化触媒としてはRu触媒やPt−Ru合金触媒等も用いられる。また、形状も球状ではなく円柱形状やハニカム形状等も
用いられる。
These catalysts are catalysts generally used in hydrogen generators, and the effect of the present invention does not change even when other catalysts having similar functions are used. For example, a Ni catalyst is used as a reforming catalyst, a Pt catalyst or an iron-chromium catalyst is used as a shift catalyst, and a Ru catalyst or a Pt—Ru alloy catalyst is used as a purification catalyst. Further, the shape is not spherical but a columnar shape, a honeycomb shape, or the like is also used.

次に、本実施の形態における水素生成装置の動作について説明する。   Next, the operation of the hydrogen generator in this embodiment will be described.

改質部1に供給する原料としては、メタン、プロパン、都市ガス、天然ガス、LPG等の炭化水素、メタノール等のアルコール、ガソリン、灯油、ナフサなど少なくとも炭素及び水素から構成される有機化合物を含む材料があり、改質方法も、水蒸気を加える水蒸気改質、空気を加えておこなう部分改質などがあるが、ここでは、天然ガスを水蒸気改質して改質ガスを得る場合について述べる。   The raw material to be supplied to the reforming unit 1 includes organic compounds composed of at least carbon and hydrogen such as methane, propane, city gas, natural gas, hydrocarbons such as LPG, alcohols such as methanol, gasoline, kerosene, and naphtha. There are materials, and reforming methods include steam reforming in which steam is added and partial reforming in which air is added. Here, a case where a reformed gas is obtained by steam reforming natural gas will be described.

原料である天然ガスは原料供給部3から改質部1に供給する。水供給部4から水を供給して、改質部1内で蒸発させるとともに原料と混合し、改質部1内に充填された改質触媒体に接触させる。   Natural gas as a raw material is supplied from the raw material supply unit 3 to the reforming unit 1. Water is supplied from the water supply unit 4, evaporated in the reforming unit 1, mixed with the raw material, and brought into contact with the reforming catalyst body filled in the reforming unit 1.

改質部1では水蒸気/炭素比率(スチームカーボン比、以下S/Cと示す)が2.5〜3.5程度となるように、原料と水の供給量を調節する。S/Cが2より低い場合には改質触媒上に炭素が析出したり、原料から水素への転換率が低下する。逆にS/Cが高い場合には、水を蒸発させるために加熱部2での加熱量を大きくさせる必要があり、水素生成装置の効率が低下する場合がある。本実施の形態ではS/Cを3となるようにした。   In the reforming unit 1, the supply amounts of the raw material and water are adjusted so that the water vapor / carbon ratio (steam carbon ratio, hereinafter referred to as S / C) is about 2.5 to 3.5. When S / C is lower than 2, carbon is deposited on the reforming catalyst, or the conversion rate from the raw material to hydrogen decreases. Conversely, when the S / C is high, it is necessary to increase the amount of heating in the heating unit 2 in order to evaporate water, and the efficiency of the hydrogen generator may be reduced. In this embodiment, S / C is set to 3.

改質触媒体は600℃〜700℃になるように加熱し、原料と水蒸気を反応させて水素を主成分とする改質ガスに転換する。生成した改質ガスの組成は、改質触媒体の温度や水蒸気と原料の比率によって多少変化するが、水蒸気を除いた平均的な値として、水素が約80体積%、二酸化炭素、一酸化炭素がそれぞれ約10体積%含まれる。この改質ガスは、改質部1の下流側に設置された変成部5において、250℃〜300℃程度の温度でシフト反応によりCOと水蒸気を反応させ、CO濃度を0.5体積%〜1体積%まで低減する。次に浄化部7で空気供給部6から供給された空気中の酸素とCOが、浄化触媒体上で100℃〜200℃程度の温度で選択酸化反応し、10ppm以下までCO濃度を低減する。こうしてCOを除去された改質ガスは燃料電池発電部8に供給される。燃料電池発電部8を通過した後のオフガスは発電に使用されなかった水素や改質部で水素に転換しなかったメタンが残留しているため、燃焼ガス供給部9から供給される燃焼ガスとともに加熱部2で燃焼させる。   The reforming catalyst body is heated to 600 ° C. to 700 ° C., and the raw material and water vapor are reacted to convert to a reformed gas mainly composed of hydrogen. The composition of the generated reformed gas varies somewhat depending on the temperature of the reforming catalyst body and the ratio of steam and raw material, but as an average value excluding steam, hydrogen is about 80% by volume, carbon dioxide, carbon monoxide. About 10% by volume. This reformed gas is produced by reacting CO with water vapor by a shift reaction at a temperature of about 250 ° C. to 300 ° C. in the shift unit 5 installed downstream of the reforming unit 1, and reducing the CO concentration to 0.5 vol% Reduce to 1% by volume. Next, oxygen and CO in the air supplied from the air supply unit 6 in the purification unit 7 are selectively oxidized at a temperature of about 100 ° C. to 200 ° C. on the purification catalyst body to reduce the CO concentration to 10 ppm or less. The reformed gas from which the CO has been removed is supplied to the fuel cell power generation unit 8. The off gas after passing through the fuel cell power generation unit 8 contains hydrogen that has not been used for power generation and methane that has not been converted to hydrogen in the reforming unit, and therefore, together with the combustion gas supplied from the combustion gas supply unit 9 Combustion in the heating unit 2.

水素生成装置の外部にある周囲温度検知器10で検知される周囲温度によって、改質部1、変成部5、浄化部7の触媒温度を周囲温度に対して予め設定された所定値となるように加熱部2に供給する燃料の流量を制御する。   Depending on the ambient temperature detected by the ambient temperature detector 10 outside the hydrogen generator, the catalyst temperatures of the reforming unit 1, the shift unit 5 and the purifying unit 7 are set to predetermined values set in advance with respect to the ambient temperature. The flow rate of the fuel supplied to the heating unit 2 is controlled.

各触媒の温度制御は、改質部1では加熱部2における加熱量の制御、変成部5では熱交換部16における冷却量の制御、浄化部7では、供給する空気の量または、熱交換部26による冷却量の制御によりおこなう。これら加熱部2、熱交換部16、及び熱交換部26が、それぞれ本発明の触媒温度制御手段に相当する。   The temperature control of each catalyst is carried out by controlling the heating amount in the heating unit 2 in the reforming unit 1, controlling the cooling amount in the heat exchanging unit 16 in the transformation unit 5, and the amount of air supplied or the heat exchanging unit in the purification unit 7. This is done by controlling the cooling amount by 26. These heating unit 2, heat exchanging unit 16, and heat exchanging unit 26 correspond to the catalyst temperature control means of the present invention.

なお、本実施の形態では熱交換部16と熱交換部26で空気ファン(図示せず)による冷却を行い、変成部5の触媒温度として熱電対13で検知される温度、浄化部7の触媒温度として熱電対23で検知される温度をコントロールした。   In the present embodiment, the heat exchange unit 16 and the heat exchange unit 26 are cooled by an air fan (not shown), the temperature detected by the thermocouple 13 as the catalyst temperature of the shift unit 5, and the catalyst of the purification unit 7 The temperature detected by the thermocouple 23 was controlled as the temperature.

次に、本実施の形態における原理について説明する。   Next, the principle in the present embodiment will be described.

通常、変成部5や浄化部7は、改質部1から300℃〜500℃程度で供給される改質ガスの顕熱と各反応部の中間にある熱交換部での冷却によって温度制御を行う。このとき
、周囲温度が低くなると、熱交換部に用いている冷却用の空気ファンが吸い込む空気温度が低下して熱交換部での冷却能力が大きくなったり、各部の機体放熱が大きくなるため、変成部5や浄化部7の触媒温度を反応に必要な温度を維持することが困難になることがある。このため、周囲温度が低い場合に合わせて、改質部1の触媒温度を高く設定しておいて改質ガスの顕熱を増やしたり、空気ファンに出力の可変幅の大きなものを用いて対応する等の方法がとられていた。
Normally, the transformation unit 5 and the purification unit 7 perform temperature control by sensible heat of the reformed gas supplied from the reforming unit 1 at about 300 ° C. to 500 ° C. and cooling in the heat exchange unit between the reaction units. Do. At this time, if the ambient temperature is low, the air temperature sucked by the cooling air fan used in the heat exchange part is lowered and the cooling capacity in the heat exchange part is increased, or the heat radiation of the airframe of each part is increased, It may be difficult to maintain the catalyst temperature of the shift unit 5 or the purification unit 7 at a temperature necessary for the reaction. Therefore, in response to the low ambient temperature, the catalyst temperature of the reforming unit 1 is set high to increase the sensible heat of the reformed gas, or use an air fan with a large variable output range. The method of doing was taken.

しかしながら、周囲温度が低い場合にあわせて、改質部1、変成部5、および浄化部7の触媒温度の目標値を設定すると周囲温度が高い場合には以下の様な課題が生じる。   However, when the target values of the catalyst temperatures of the reforming unit 1, the shift unit 5, and the purification unit 7 are set in accordance with the low ambient temperature, the following problems occur when the ambient temperature is high.

まず、改質部1における実質触媒温度(触媒全体の温度平均値)が高くなるため必要以上に改質触媒を加熱することにより、効率が低くなるとともに触媒の劣化を早める。また、変成部5や浄化部7で大きな冷却能力が必要なため、大きな電力が必要となり、燃料電池発電システムを作動させる様々な補助機器を含めたシステム全体の効率が低下する。   First, since the substantial catalyst temperature in the reforming unit 1 (temperature average value of the entire catalyst) is increased, heating the reformed catalyst more than necessary reduces the efficiency and accelerates the deterioration of the catalyst. Further, since the transformer 5 and the purifier 7 require a large cooling capacity, a large amount of electric power is required, and the efficiency of the entire system including various auxiliary devices that operate the fuel cell power generation system is reduced.

なお、水素生成装置の効率は、燃料電池で消費した水素の発熱量を、供給する原料と加熱用燃料の発熱量の合計で割ったものであり、改質部1を加熱する加熱量が少ないほど効率は高くなる。   The efficiency of the hydrogen generator is obtained by dividing the calorific value of hydrogen consumed by the fuel cell by the total calorific value of the raw material to be supplied and the heating fuel, and the heating amount for heating the reforming unit 1 is small. The higher the efficiency.

また、燃料電池発電システムの効率はインバーターやシステム駆動用のポンプや空気ファン等の補機を含めたシステム全体の効率であり、各補機の消費電力が小さいほど高い効率となる。   The efficiency of the fuel cell power generation system is the efficiency of the entire system including auxiliary devices such as an inverter, a pump for driving the system, and an air fan. The smaller the power consumption of each auxiliary device, the higher the efficiency.

一方、本実施の形態のように、周囲温度にあわせて、改質部1の改質触媒体の温度を変化させると、冷却能力の変化幅を大きくすることなく、周囲温度が低い場合にも安定に動作し、かつ周囲温度が高い場合の効率低下を抑制することができる。なお、上述の周囲温度に応じた改質部1の触媒温度の変化のさせ方は、周囲温度が下がった場合に、触媒温度を上昇させ、周囲温度が上昇した場合に、触媒温度を下げる。   On the other hand, when the temperature of the reforming catalyst body of the reforming unit 1 is changed in accordance with the ambient temperature as in the present embodiment, even when the ambient temperature is low without increasing the change range of the cooling capacity. It is possible to suppress a decrease in efficiency when the operation is stable and the ambient temperature is high. In addition, the method of changing the catalyst temperature of the reforming unit 1 according to the ambient temperature described above increases the catalyst temperature when the ambient temperature decreases, and decreases the catalyst temperature when the ambient temperature increases.

また、変成部5や浄化部7の触媒温度も同様に周囲温度が上昇した場合に触媒温度を下げ、周囲温度が下がった場合に触媒温度を上げる。   Similarly, the catalyst temperature of the shift section 5 and the purifying section 7 is also lowered when the ambient temperature rises, and raised when the ambient temperature falls.

また、周囲温度に対する触媒温度の決め方は、特に、限定するものではないが、例えば自由に雰囲気温度を変えることができる環境試験室等を用いて、雰囲気温度を0℃〜40℃程度まで変化させ、各温度で最も効率が高くなる各触媒部の温度条件を求めて対応表をつくることによって行う。   The method for determining the catalyst temperature relative to the ambient temperature is not particularly limited, but the ambient temperature is changed from about 0 ° C. to about 40 ° C. using, for example, an environmental test chamber that can freely change the ambient temperature. This is done by determining the temperature condition of each catalyst part where the efficiency is highest at each temperature and creating a correspondence table.

これらの結果から周囲温度と触媒温度の関係式を求め、測定される周囲温度によって、触媒温度を変えて制御する。   From these results, a relational expression between the ambient temperature and the catalyst temperature is obtained, and the catalyst temperature is changed and controlled according to the measured ambient temperature.

なお、本実施の形態においては、熱交換部16と熱交換部26に空気ファンによる冷却を用いたが、水や高沸点液体等の熱媒体を流通させる冷却構成としてもよく、熱回収して発生した水蒸気や回収した熱を改質部1や変成部5の上流側に搬送することにより、装置の効率を上昇させることができる。この場合も周囲温度に対して改質部等の触媒温度を変えることによって、冷却に使用される熱媒体の流通量の周囲温度による差を小さくでき、冷却の制御が容易になったり、周囲温度が高い場合に改質部を過剰に加熱することも無くなる。   In the present embodiment, cooling by an air fan is used for the heat exchanging unit 16 and the heat exchanging unit 26. However, a cooling configuration in which a heat medium such as water or a high boiling point liquid is circulated may be used. By conveying the generated water vapor or the recovered heat to the upstream side of the reforming unit 1 or the transformation unit 5, the efficiency of the apparatus can be increased. In this case as well, by changing the catalyst temperature of the reforming part etc. with respect to the ambient temperature, the difference due to the ambient temperature of the flow rate of the heat medium used for cooling can be reduced, and the control of the cooling becomes easier, When the temperature is high, the reforming section is not excessively heated.

また、周囲温度を測定するために、周囲温度検知器10を設置したが、周囲温度が分かる手段であれば良く、他の部分で用いている温度検知器(例えば、原料ガス温度等の温度
検知器)で検知された温度を用いても良い。また、温度検知器としては、熱電対に限らず一般的に用いられているサーミスタでもかまわない。さらに、あらかじめ設置する地方や設置個所の季節や朝晩の温度変化のデータを記憶装置に記録しておき、データに基づいて各触媒の制御温度を変えれば、温度測定は省略できる。また、触媒温度は、毎月切り替えても、夏と冬の2段階、または春夏秋冬の4段階のような簡易的な切り替えでもかまわない。ただし周囲温度にあわせて細かく触媒温度を変える方が効果は大きくなる。
In addition, the ambient temperature detector 10 is installed to measure the ambient temperature, but any means that can understand the ambient temperature may be used. Temperature detectors used in other parts (for example, temperature detection such as source gas temperature) The temperature detected by the device may be used. Further, the temperature detector is not limited to a thermocouple, and a thermistor generally used may be used. Furthermore, temperature data can be omitted if the data of the temperature change in the seasons and mornings and evenings of the regions and installation locations that are installed in advance are recorded in a storage device, and the control temperature of each catalyst is changed based on the data. Further, the catalyst temperature may be switched monthly, or may be simply switched in two stages of summer and winter, or four stages of spring, summer, autumn and winter. However, the effect becomes larger when the catalyst temperature is changed finely according to the ambient temperature.

また、水素生成装置と燃料電池を組み合わせたシステムは外装をつけて設置することが多く、水素生成装置の特性に影響する温度を用いる方が良い。熱回収が充分であれば、外装の内部の温度は周囲温度に近くなるが、熱回収が不十分であれば外装内部温度は周囲温度よりも高くなるため、周囲温度よりも水素生成装置に影響する外装内部の温度を用いる方が好ましい。   Also, a system that combines a hydrogen generator and a fuel cell is often installed with an exterior, and it is better to use a temperature that affects the characteristics of the hydrogen generator. If the heat recovery is sufficient, the temperature inside the exterior will be close to the ambient temperature, but if the heat recovery is insufficient, the temperature inside the exterior will be higher than the ambient temperature, thus affecting the hydrogen generator more than the ambient temperature. It is preferable to use the temperature inside the exterior.

また、本実施の形態では周囲温度にあわせて、触媒温度を変化させたが、浄化部7に供給する空気量を変化させても良い。一般に浄化触媒体の温度を同じ温度に制御しても、空気量が多くなると低温で触媒は反応するようになる。このため、周囲温度が低い場合に空気量を増加させると触媒温度を変化させた場合と同様の効果が得られる。逆に周囲温度が高い場合には空気量を減少させる。   In this embodiment, the catalyst temperature is changed in accordance with the ambient temperature. However, the amount of air supplied to the purification unit 7 may be changed. In general, even if the temperature of the purification catalyst body is controlled to the same temperature, the catalyst reacts at a low temperature when the amount of air increases. For this reason, if the air amount is increased when the ambient temperature is low, the same effect as when the catalyst temperature is changed can be obtained. Conversely, when the ambient temperature is high, the amount of air is decreased.

(実施の形態2)
次に、本発明の第2の実施の形態について述べる。本実施の形態は、図1に示す周囲温度10の温度に連動して、改質部1の触媒温度を制御する方法が、改質部1に供給するS/Cを変化させるということ以外は、実施の形態1と同一である。したがって異なる点を中心に本実施の形態を説明する。
(Embodiment 2)
Next, a second embodiment of the present invention will be described. In the present embodiment, the method of controlling the catalyst temperature of the reforming unit 1 in conjunction with the ambient temperature 10 shown in FIG. 1 changes the S / C supplied to the reforming unit 1. This is the same as in the first embodiment. Therefore, the present embodiment will be described focusing on the different points.

周囲温度が低下すると、変成部5と浄化部7における機体放熱は大きくなり、同じ冷却量であれば、触媒温度は低下する。周囲温度が高い場合と同一温度に制御するためには、変成部5と浄化部7での冷却量を減らすことで対応できる。しかしながら、夏と冬で30℃程度(例えば5℃〜35℃)温度変化がある場合、夏には冷却に大きな電力を消費したり、冷却が不足して温度が上がりすぎ、逆に冬には冷却の制御範囲をはずれて、冷却を停止させても触媒の反応温度以下に触媒温度が低下する。これを回避するためには、熱交換部16や熱交換部26に用いる冷却装置の能力に大きな幅を持たせる必要がある。   When the ambient temperature decreases, the heat radiation from the airframe in the shift unit 5 and the purification unit 7 increases, and the catalyst temperature decreases if the cooling amount is the same. In order to control to the same temperature as when the ambient temperature is high, it is possible to cope with this by reducing the cooling amount in the transformation unit 5 and the purification unit 7. However, when there is a temperature change of about 30 ° C (for example, 5 ° C to 35 ° C) in summer and winter, large power is consumed for cooling in summer, or the temperature rises too much due to insufficient cooling. Even if the cooling is out of the control range of the cooling and the cooling is stopped, the catalyst temperature falls below the reaction temperature of the catalyst. In order to avoid this, it is necessary to give a large range to the capacity of the cooling device used for the heat exchange unit 16 and the heat exchange unit 26.

水冷方式の場合、通常は冷却に用いて熱回収した水は改質部1や変成部5に供給する。この場合、水の供給量を変えて冷却量を変化させた場合には、改質部1や変成部5に供給される水蒸気量に増減が生じ、装置効率が低下したり、COが充分に低減できなくなる可能性がある。さらに、、改質ガスの露点が低い場合には燃料電池発電部8が乾いて発電効率が落ちたり、逆に露点が高い場合には水凝縮して燃料電池発電部8の流路が詰まるという課題もある。   In the case of the water cooling method, the water recovered by heat usually used for cooling is supplied to the reforming unit 1 and the transformation unit 5. In this case, when the amount of cooling is changed by changing the amount of water supplied, the amount of water vapor supplied to the reforming unit 1 or the transformation unit 5 increases or decreases, resulting in a reduction in apparatus efficiency or sufficient CO. There is a possibility that it cannot be reduced. Further, when the dew point of the reformed gas is low, the fuel cell power generation unit 8 dries and the power generation efficiency decreases, and conversely, when the dew point is high, water condensation occurs and the flow path of the fuel cell power generation unit 8 is clogged. There are also challenges.

また、空気ファンで変成部5や浄化部7を冷却する場合には、改質ガスが有している熱を放熱するだけで、有効に利用することが困難なため、冷却能力の高い状態で運転した場合には効率が低下する。   In addition, when the transformation section 5 and the purification section 7 are cooled by an air fan, it is difficult to effectively use the heat of the reformed gas, so it is difficult to effectively use the reformed gas. When driving, the efficiency decreases.

変成部5や浄化部7は、改質部1から供給される改質ガスの顕熱と機体放熱のバランスが温度に影響する。なかでも改質ガス中の水蒸気の顕熱は大きく、S/Cを増加させて改質部1から供給される改質ガス量を増加させると変成部5の温度を高くすることができる。周囲温度にあわせて、S/Cを増減することにより、冷却装置の能力の幅が小さくても安定に動作させることができる。   In the metamorphic unit 5 and the purifying unit 7, the balance between the sensible heat of the reformed gas supplied from the reforming unit 1 and the heat dissipation of the body affects the temperature. In particular, the sensible heat of water vapor in the reformed gas is large, and the temperature of the shift section 5 can be increased by increasing the S / C and increasing the amount of reformed gas supplied from the reforming section 1. By increasing / decreasing the S / C according to the ambient temperature, it is possible to operate stably even if the cooling device capacity is small.

なお、上述の周囲温度に対応したS/Cの変化のさせ方は、周囲温度が高い場合にS/Cを低下させ、周囲温度が低い場合にはS/Cを増加させることが好ましい。   In addition, it is preferable to reduce the S / C when the ambient temperature is high and to increase the S / C when the ambient temperature is low as a method of changing the S / C corresponding to the ambient temperature.

また、S/Cを高くすると改質ガスの露点が高くなるため、冷却手段102により冷却媒体の流量を低下させ、燃料電池発電部8の温度も高くすることが好ましい。燃料電池発電部8での水凝縮が防げるため、S/Cを変化させる幅が大きくできるとともに、燃料電池発電部8の温度を高めると給湯効率も上昇する。また、S/Cを高くするのは、周囲温度が低く給湯需要の高くなる冬であるため、湯不足を回避することもできる。   Further, since the dew point of the reformed gas increases when S / C is increased, it is preferable that the flow rate of the cooling medium is decreased by the cooling means 102 and the temperature of the fuel cell power generation unit 8 is also increased. Since water condensation in the fuel cell power generation unit 8 can be prevented, the width for changing the S / C can be increased, and when the temperature of the fuel cell power generation unit 8 is increased, the hot water supply efficiency is also increased. Moreover, since the S / C is increased in the winter when the ambient temperature is low and the demand for hot water supply is high, it is possible to avoid a shortage of hot water.

逆に周囲温度が高くなる夏場には、S/Cを低くして、かつ冷却手段102により冷却媒体の流量を増加させ、燃料電池発電部8の温度を低くすることが好ましい。このことにより、熱湯の湯余りを抑制することが可能になる。   Conversely, in summer when the ambient temperature is high, it is preferable to lower the temperature of the fuel cell power generation unit 8 by lowering the S / C and increasing the flow rate of the cooling medium by the cooling means 102. This makes it possible to suppress excess hot water.

(実施例1)
図1の水素生成装置において、改質部1にはRu触媒、変成部5には銅亜鉛触媒、浄化部7にはPt触媒をそれぞれ充填した。この水素生成装置を環境試験室に設置し、雰囲気温度を5℃となるようにして実験をおこなった。原料供給部3より、1分間当たり4LのメタンをS/Cが3となるように水供給部4で水を加え、改質部1に供給した。改質部1内のRu触媒が700℃となるように加熱部2の燃焼量を調節し、改質ガスを生成させた。変成部5は図2に示した変成部の上流に設置した熱電対13の検知温度が、280℃となるように熱交換部16につけた空気ファンで制御した。浄化部7は図3に示した浄化部の上流に設置した熱電対23の検知温度が150℃となるように熱交換部26につけた空気ファンで制御した。なお、本実施の形態では、変成触媒体の温度については、変成上流熱電対の検知温度を用いたが、変成下流熱電対の検知温度を用いても構わない。また、浄化触媒体の触媒温度も同様に浄化下流熱電対の検知温度を用いて構わない。
(Example 1)
In the hydrogen generator shown in FIG. 1, the reforming unit 1 is filled with a Ru catalyst, the shift unit 5 is filled with a copper zinc catalyst, and the purification unit 7 is filled with a Pt catalyst. This hydrogen generator was installed in an environmental test room, and an experiment was conducted with the ambient temperature set to 5 ° C. From the raw material supply unit 3, 4 L of methane per minute was added in the water supply unit 4 so that the S / C was 3, and supplied to the reforming unit 1. The amount of combustion in the heating unit 2 was adjusted so that the Ru catalyst in the reforming unit 1 was 700 ° C., and reformed gas was generated. The transformation unit 5 was controlled by an air fan attached to the heat exchange unit 16 so that the detected temperature of the thermocouple 13 installed upstream of the transformation unit shown in FIG. The purification unit 7 was controlled by an air fan attached to the heat exchange unit 26 so that the detected temperature of the thermocouple 23 installed upstream of the purification unit shown in FIG. In this embodiment, the detected temperature of the shift upstream thermocouple is used as the temperature of the shift catalyst body, but the detected temperature of the shift downstream thermocouple may be used. Similarly, the detected temperature of the purified downstream thermocouple may be used as the catalyst temperature of the purified catalyst body.

充分に各部の温度が安定したところで、燃料電池で消費した水素の発熱量を供給する原料と加熱用燃料の発熱量の合計で割った効率を求めたところ、80%であった。   When the temperature of each part was sufficiently stabilized, the efficiency obtained by dividing the calorific value of the hydrogen consumed in the fuel cell by the total of the calorific value of the raw material for supplying the heating fuel was 80%.

次に雰囲気温度を35℃に変え、改質部1の温度を680℃、変成部5の触媒温度を260℃、浄化部7の触媒温度を130℃に制御し、同様に効率を求めたところ、83%であった。   Next, the atmospheric temperature was changed to 35 ° C., the temperature of the reforming section 1 was controlled to 680 ° C., the catalyst temperature of the shift section 5 was controlled to 260 ° C., and the catalyst temperature of the purification section 7 was controlled to 130 ° C. 83%.

また、浄化部7から排出された改質ガスのCO濃度を測定したところ、どちらの条件も5ppmであった。   Further, when the CO concentration of the reformed gas discharged from the purification unit 7 was measured, both conditions were 5 ppm.

(実施例2)
実施例1で、雰囲気温度を35℃にしてS/Cを2.8、改質部の触媒温度を700℃、変成部の触媒温度を280℃、浄化部の触媒温度を150℃に制御して、効率を求めたところ82%であった。
(Example 2)
In Example 1, the S / C was 2.8, the reforming part catalyst temperature was 700 ° C., the reforming part catalyst temperature was 280 ° C., and the purifying part catalyst temperature was 150 ° C. with the ambient temperature set at 35 ° C. The efficiency was found to be 82%.

さらに、上記雰囲気温度35℃で、S/Cを2.8、改質部の触媒温度を680℃、変成部の触媒温度を260℃、浄化部の触媒温度を130℃に制御して、効率を求めたところ83.5%であった。   Furthermore, at the above atmospheric temperature of 35 ° C., S / C is controlled to 2.8, the catalyst temperature of the reforming section is 680 ° C., the catalyst temperature of the shift section is 260 ° C., and the catalyst temperature of the purification section is controlled to 130 ° C. Was found to be 83.5%.

また、浄化部7から排出された改質ガスのCO濃度を測定したところ、それぞれ、6ppm、および5ppmであった。   Moreover, when the CO concentration of the reformed gas discharged from the purification unit 7 was measured, it was 6 ppm and 5 ppm, respectively.

(比較例1)
実施例1で、雰囲気温度を35℃に変えて、そのまま触媒温度を変えず効率を求めたところ、81%であった。
(Comparative Example 1)
In Example 1, the atmospheric temperature was changed to 35 ° C., and the efficiency was determined without changing the catalyst temperature as it was, and it was 81%.

(比較例2)
実施例2で、雰囲気温度を5℃にしてS/Cを2.8、改質部の触媒温度を680℃、変成部の触媒温度を260℃、浄化部の触媒温度を130℃に制御したところ、しばらくして変成部の温度が250℃まで低下し、浄化部7から排出された改質ガスのCO濃度が500ppmとなった。効率は、81.5%であった。
(Comparative Example 2)
In Example 2, the ambient temperature was 5 ° C., the S / C was 2.8, the reforming portion catalyst temperature was 680 ° C., the transformation portion catalyst temperature was 260 ° C., and the purification portion catalyst temperature was 130 ° C. However, after a while, the temperature of the metamorphic part dropped to 250 ° C., and the CO concentration of the reformed gas discharged from the purification part 7 became 500 ppm. The efficiency was 81.5%.

以上の結果を表1にまとめて示す。   The above results are summarized in Table 1.

Figure 2005206413
Figure 2005206413

表1から明らかな様に、周囲温度に合わせて改質部、変成部、浄化部の触媒温度やS/Cを変化させることによって、温度やS/Cを変えない場合よりも高い効率で運転することができる。なお、周囲温度が変化した場合に最も高い効率を出すことが出来る組み合わせは、表1中では実施例1の周囲温度5℃の場合と実施例2の効率83.5%の場合の組み合わせである。   As is clear from Table 1, by changing the catalyst temperature and S / C of the reforming section, the shift section, and the purifying section according to the ambient temperature, the operation is performed with higher efficiency than when the temperature and S / C are not changed. can do. In Table 1, combinations that can produce the highest efficiency when the ambient temperature changes are combinations in the case of the ambient temperature of 5 ° C. in Example 1 and the efficiency of 83.5% in Example 2. .

本発明の水素生成装置は、周囲の雰囲気温度の変化に応じてそれぞれの触媒体が最適温度に制御され、季節による気温変動が大きな条件下において高い発電効率を維持しつつ安定に作動させることができるという効果を有し、本水素生成装置を使用する家庭用、携帯、自動車用等の燃料電池システムとして有用である。   In the hydrogen generator of the present invention, each catalyst body is controlled to an optimum temperature according to the change in ambient ambient temperature, and can operate stably while maintaining high power generation efficiency under conditions where the temperature fluctuations due to the season are large. This is advantageous in that it is useful as a fuel cell system for home use, portable use, automobile use, etc. using this hydrogen generator.

本発明の実施の形態1に係る水素生成装置および燃料電池発電装置の構成を示す概略縦断面図1 is a schematic longitudinal sectional view showing a configuration of a hydrogen generator and a fuel cell power generator according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る変成部の構成を示す概略縦断面図Schematic longitudinal cross-sectional view which shows the structure of the transformation | transformation part which concerns on Embodiment 1 of this invention 本発明の実施の形態1に係る浄化部の構成を示す概略縦断面図Schematic longitudinal cross-sectional view which shows the structure of the purification | cleaning part which concerns on Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 改質部
2 加熱部
3 原料供給部
4 水供給部
5 変成部
6 空気供給部
7 浄化部
8 燃料電池発電部
9 燃焼ガス供給部
10 周囲温度検知器
11 変成部入口
12 変成触媒体
13 変成上流熱電対
14 変成下流熱電対
15 変成部出口
16 変成熱交換部
21 浄化部入口
22 浄化触媒体
23 浄化上流熱電対
24 浄化下流熱電対
25 浄化部出口
26 熱交換部
101 改質部熱電対
102 冷却手段
DESCRIPTION OF SYMBOLS 1 Reforming part 2 Heating part 3 Raw material supply part 4 Water supply part 5 Transformation part 6 Air supply part 7 Purification part 8 Fuel cell power generation part 9 Combustion gas supply part 10 Ambient temperature detector 11 Transformation part inlet 12 Transformation catalyst 13 Transformation Upstream thermocouple 14 transformation downstream thermocouple 15 transformation section outlet 16 transformation heat exchange section 21 purification section inlet 22 purification catalyst body 23 purification upstream thermocouple 24 purification downstream thermocouple 25 purification section outlet 26 heat exchange section 101 reforming section thermocouple 102 Cooling means

Claims (7)

有機化合物を含む原料と水とを反応させ、水素を含有する改質ガスを生成する改質部と、
前記改質部が生成した改質ガス中の一酸化炭素をシフト反応により低減を行う変成部を少なくとも有する一酸化炭素除去部と、
前記改質部に充填された改質触媒体の温度または前記改質触媒体下流の温度、もしくは前記一酸化炭素除去部に充填された一酸化炭素除去触媒体の温度または前記一酸化炭素除去触媒体の上流側および下流側の改質ガスの温度のいずれかを触媒温度として検知する触媒温度検知手段と、
前記検知温度が、あらかじめ決められた触媒温度となるように制御する触媒温度制御手段と、
外気温度もしくは水素生成装置の周囲温度を検知する周囲温度検知手段または周囲温度を予測する周囲温度予測手段とを具備し、
前記周囲温度検知手段または周囲温度予測手段から得られる周囲温度に基づいて、前記触媒温度または前記原料に対する水の比率を変化させることを特徴とする水素生成装置。
A reforming section that reacts a raw material containing an organic compound with water to generate a reformed gas containing hydrogen;
A carbon monoxide removal unit having at least a transformation unit that reduces carbon monoxide in the reformed gas generated by the reforming unit by a shift reaction;
The temperature of the reforming catalyst body filled in the reforming section or the temperature downstream of the reforming catalyst body, the temperature of the carbon monoxide removal catalyst body filled in the carbon monoxide removal section, or the carbon monoxide removal catalyst. Catalyst temperature detection means for detecting either the upstream side or downstream side reformed gas temperature of the medium as the catalyst temperature;
Catalyst temperature control means for controlling the detected temperature to be a predetermined catalyst temperature;
An ambient temperature detecting means for detecting the outside air temperature or the ambient temperature of the hydrogen generator, or an ambient temperature predicting means for predicting the ambient temperature,
A hydrogen generating apparatus, wherein the catalyst temperature or the ratio of water to the raw material is changed based on the ambient temperature obtained from the ambient temperature detecting means or the ambient temperature predicting means.
周囲温度が低下した場合に、改質部および一酸化炭素除去部の少なくとも一方の触媒温度を上昇させ、周囲温度が上昇した場合には前記触媒温度を下げることを特徴とする請求項1記載の水素生成装置。 The catalyst temperature of at least one of the reforming unit and the carbon monoxide removing unit is increased when the ambient temperature is decreased, and the catalyst temperature is decreased when the ambient temperature is increased. Hydrogen generator. 周囲温度が低下した場合に、改質部に供給する原料に対する水の比率を増加させ、周囲温度が上昇した場合には前記比率を減少させることを特徴とする請求項1記載の水素生成装置。 The hydrogen generator according to claim 1, wherein when the ambient temperature is lowered, the ratio of water to the raw material supplied to the reforming unit is increased, and when the ambient temperature is increased, the ratio is decreased. 一酸化炭素除去部は、酸化剤ガス供給部と、前記酸化剤ガス供給部から供給される酸化剤ガスと改質ガス中の一酸化炭素を選択酸化反応させ、一酸化炭素を低減するための浄化部とを具備し、周囲温度が低下した場合に、前記酸化剤ガス供給部から供給する酸化剤ガス量を増加させることを特徴とする請求項1記載の水素生成装置。 The carbon monoxide removing unit is for selectively oxidizing the oxidant gas supply unit, the oxidant gas supplied from the oxidant gas supply unit, and the carbon monoxide in the reformed gas to reduce the carbon monoxide. The hydrogen generator according to claim 1, further comprising: a purifying unit, wherein when the ambient temperature decreases, the amount of oxidant gas supplied from the oxidant gas supply unit is increased. 水素生成装置の設置場所または地方の月日と、温度データとの関係を記録した記憶装置を具備し、周囲温度予測手段は、前記記憶装置に記憶された温度データに基づき予測することを特徴とする請求項1記載の水素生成装置。 A storage device that records the relationship between the location of the hydrogen generator or the local date and temperature and the temperature data, and the ambient temperature predicting means predicts based on the temperature data stored in the storage device. The hydrogen generator according to claim 1. 請求項1〜5のいずれかに記載の水素生成装置と、酸素を含む酸化剤ガスおよび前記水素生成装置から供給される水素を含有する燃料ガスを用いて発電する燃料電池とを備える燃料電池システム。 A fuel cell system comprising: the hydrogen generator according to any one of claims 1 to 5; and a fuel cell that generates electric power using an oxidant gas containing oxygen and a fuel gas containing hydrogen supplied from the hydrogen generator. . 燃料電池は、冷却媒体を流通させるとともに前記冷却媒体の流量によって燃料電池温度を制御する冷却手段を備え、改質部に対する水の比率を増加させた場合には、前記冷却手段により前記燃料電池温度を上げ、改質部に対する水の比率を減少させた場合には、前記冷却手段により前記燃料電池温度を下げることを特徴とする請求項6記載の燃料電池システム。 The fuel cell includes a cooling unit that circulates the cooling medium and controls the temperature of the fuel cell according to the flow rate of the cooling medium. When the ratio of water to the reforming unit is increased, the fuel cell temperature is increased by the cooling unit. The fuel cell system according to claim 6, wherein when the ratio of water to the reforming unit is decreased, the fuel cell temperature is lowered by the cooling means.
JP2004013937A 2004-01-22 2004-01-22 Hydrogen generating apparatus and fuel cell system Pending JP2005206413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004013937A JP2005206413A (en) 2004-01-22 2004-01-22 Hydrogen generating apparatus and fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004013937A JP2005206413A (en) 2004-01-22 2004-01-22 Hydrogen generating apparatus and fuel cell system

Publications (1)

Publication Number Publication Date
JP2005206413A true JP2005206413A (en) 2005-08-04

Family

ID=34899866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004013937A Pending JP2005206413A (en) 2004-01-22 2004-01-22 Hydrogen generating apparatus and fuel cell system

Country Status (1)

Country Link
JP (1) JP2005206413A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226602A (en) * 2007-03-12 2008-09-25 Osaka Gas Co Ltd Temperature control system of reformer in fuel cell device
JP2008230867A (en) * 2007-03-16 2008-10-02 Osaka Gas Co Ltd Fuel reformer
JP2010222209A (en) * 2009-03-25 2010-10-07 Panasonic Corp Hydrogen generating device and fuel cell power generator using the same
JP2012038608A (en) * 2010-08-09 2012-02-23 Jx Nippon Oil & Energy Corp Fuel cell system and control method of reforming water supply amount in fuel cell system
WO2013150721A1 (en) * 2012-04-05 2013-10-10 パナソニック株式会社 Hydrogen generating device and operation method for same, and fuel cell system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226602A (en) * 2007-03-12 2008-09-25 Osaka Gas Co Ltd Temperature control system of reformer in fuel cell device
JP2008230867A (en) * 2007-03-16 2008-10-02 Osaka Gas Co Ltd Fuel reformer
JP2010222209A (en) * 2009-03-25 2010-10-07 Panasonic Corp Hydrogen generating device and fuel cell power generator using the same
JP2012038608A (en) * 2010-08-09 2012-02-23 Jx Nippon Oil & Energy Corp Fuel cell system and control method of reforming water supply amount in fuel cell system
WO2013150721A1 (en) * 2012-04-05 2013-10-10 パナソニック株式会社 Hydrogen generating device and operation method for same, and fuel cell system
WO2013150722A1 (en) * 2012-04-05 2013-10-10 パナソニック株式会社 Hydrogen generating device and operation method for same, and fuel cell system
JPWO2013150721A1 (en) * 2012-04-05 2015-12-17 パナソニックIpマネジメント株式会社 Hydrogen generator, operating method thereof, and fuel cell system
JPWO2013150722A1 (en) * 2012-04-05 2015-12-17 パナソニックIpマネジメント株式会社 Hydrogen generator, operating method thereof, and fuel cell system

Similar Documents

Publication Publication Date Title
US10644338B2 (en) Dynamically responsive high efficiency CCHP system
JP5121533B2 (en) Hydrogen production apparatus and fuel cell system using the same
JPWO2012091096A1 (en) Fuel cell system
JP4912742B2 (en) Hydrogen generator and fuel cell system
US20190190050A1 (en) Solid oxide fuel cell system
JP4933818B2 (en) Operation method of solid oxide fuel cell system
JP6405211B2 (en) Fuel cell system
US7771676B2 (en) Preferential oxidation reactor integrated with heat exchanger and operating method thereof
WO2008016257A1 (en) Fuel cell system and operating method
JP4296741B2 (en) Cogeneration system
JP4677023B2 (en) Fuel cell system
JP2005206413A (en) Hydrogen generating apparatus and fuel cell system
JP2015041443A (en) Solid oxide fuel cell system
JP4133628B2 (en) Cogeneration system
JP2001176527A (en) Fuel cell system and fuel cell cogeneration system
JP2001313053A (en) Fuel cell system
JP2007165130A (en) Fuel cell system and control method of fuel cell system
JP2004196611A (en) Fuel reforming apparatus and fuel cell system
JP2006120421A (en) Fuel cell power generation system
JP4938299B2 (en) Operation method of fuel cell power generator
KR101295237B1 (en) Fuel cell system
JP4917791B2 (en) Fuel cell system
JP2004210609A (en) Fuel reforming apparatus and fuel cell system
JP2003252605A (en) Apparatus for generating hydrogen and fuel cell generating system
JP2004185987A (en) Fuel evaporator and fuel cell automobile