JP4938299B2 - Operation method of fuel cell power generator - Google Patents

Operation method of fuel cell power generator Download PDF

Info

Publication number
JP4938299B2
JP4938299B2 JP2005341841A JP2005341841A JP4938299B2 JP 4938299 B2 JP4938299 B2 JP 4938299B2 JP 2005341841 A JP2005341841 A JP 2005341841A JP 2005341841 A JP2005341841 A JP 2005341841A JP 4938299 B2 JP4938299 B2 JP 4938299B2
Authority
JP
Japan
Prior art keywords
fuel cell
hydrogen
gas
fuel
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005341841A
Other languages
Japanese (ja)
Other versions
JP2007149489A (en
Inventor
英雄 西垣
哲也 森
俊之 伊藤
勇公 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Fuji Electric Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Tokyo Gas Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2005341841A priority Critical patent/JP4938299B2/en
Publication of JP2007149489A publication Critical patent/JP2007149489A/en
Application granted granted Critical
Publication of JP4938299B2 publication Critical patent/JP4938299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

この発明は、都市ガス,LPGおよびメタノール等の炭化水素系化合物を原燃料として改質器に供給して水蒸気改質し、得られた水素に富む改質ガスを燃料として発電する燃料電池と、前記改質ガスを、燃料電池への改質ガス供給配管から分岐し、水素精製装置に供給して高純度水素を生成し、燃料電池外へ供給可能とした水素製造供給手段とを備えた燃料電池発電装置の運転方法に関する。   The present invention provides a fuel cell that supplies a hydrocarbon compound such as city gas, LPG, and methanol as a raw fuel to a reformer and performs steam reforming, and generates electricity using the resulting hydrogen-rich reformed gas as a fuel, A fuel comprising a hydrogen production and supply means that branches the reformed gas from a reformed gas supply pipe to a fuel cell, supplies the hydrogen to a hydrogen purifier, and generates high-purity hydrogen, which can be supplied outside the fuel cell. The present invention relates to a method for operating a battery power generator.

上記のように、改質ガスを燃料として発電する燃料電池と、前記改質ガスを精製する水素製造供給手段とを備えた燃料電池発電装置の構成は、本願発明者と一部同一発明者により出願された特許文献1に開示されている。図5は、特許文献1において図1として開示された燃料電池発電装置の反応ガス系統の構成を示す基本系統図である。   As described above, the configuration of the fuel cell power generation apparatus including the fuel cell that generates power using the reformed gas as fuel and the hydrogen production and supply means that purifies the reformed gas is partly the same as the inventor of the present application. This is disclosed in the patent document 1 filed. FIG. 5 is a basic system diagram showing the configuration of the reaction gas system of the fuel cell power generator disclosed in Patent Document 1 as FIG.

特許文献1の記載を引用すれば、図5は、「原燃料を改質器2によって改質し、得られた改質ガスを燃料電池1の燃料極1bに供給する燃料ガスとするものにおいて、得られた改質ガスを燃料電池1の燃料極1bに供給する配管に、圧縮機4と水素精製装置5を備えた水素精製系へと改質ガスを分岐する分岐配管を連結した燃料電池発電装置」を開示する。なお、図5において、1aは空気極、1cは冷却板、2aは改質器バーナー、2bは改質触媒層、3は生成水回収装置、6および7は弁である。   To quote the description of Patent Document 1, FIG. 5 shows that “the raw gas is reformed by the reformer 2 and the resulting reformed gas is used as the fuel gas supplied to the fuel electrode 1 b of the fuel cell 1. The fuel cell in which the obtained reformed gas is connected to the fuel electrode 1b of the fuel cell 1 with a branch pipe for branching the reformed gas to the hydrogen purification system including the compressor 4 and the hydrogen purifier 5. Disclosed is “power generation device”. In FIG. 5, 1a is an air electrode, 1c is a cooling plate, 2a is a reformer burner, 2b is a reforming catalyst layer, 3 is a generated water recovery device, and 6 and 7 are valves.

上記特許文献1の構成を備えた燃料電池発電装置によれば、「例えば、昼間は、改質ガスの供給先を燃料電池の燃料極に選択して燃料電池の発電運転を行い、電力需要量が少なく、買電価格の安い夜間には、燃料電池の発電運転を停止して改質ガスの供給先を水素精製系へと切り替えて高純度水素を製造し、直接、あるいはタンクに貯蔵したのち、使用先へと供給する方法を採ることができ、燃料電池の発電運転の有無にかかわらず改質器が有効に運転されることとなり、効率的に運用される燃料電池発電装置が得られる。」
ところで、特許文献1には、改質器の温度を運転可能な適正範囲に制御し、かつ要請に応じた量の高純度水素を発電装置外へ供給可能とするための具体的な方法については記載がなく、その他の先行技術文献においても特段の開示はない。要請に応じた高純度水素量を供給するためには、改質器の温度制御に関わる下記のような問題点があり、この点について以下に詳述する。
According to the fuel cell power generation apparatus having the configuration of Patent Document 1, “For example, during the daytime, the reformed gas supply destination is selected as the fuel electrode of the fuel cell to perform the power generation operation of the fuel cell, and the power demand amount. At night when the electricity purchase price is low and the electricity purchase price is low, the power generation operation of the fuel cell is stopped and the reform gas supply destination is switched to the hydrogen purification system to produce high-purity hydrogen, which is stored directly or in a tank. Thus, a method of supplying to the user can be adopted, and the reformer is effectively operated regardless of whether or not the fuel cell is in the power generation operation, so that a fuel cell power generator that is operated efficiently can be obtained. "
By the way, in patent document 1, about the concrete method for controlling the temperature of a reformer to the appropriate range which can be operated, and enabling supply of the quantity of high-purity hydrogen according to a demand outside a power generator. There is no description, and there is no particular disclosure in other prior art documents. In order to supply a high-purity hydrogen amount in response to the request, there are the following problems related to the temperature control of the reformer, which will be described in detail below.

燃料電池の水素利用率(燃料電池に供給される水素量に対する、燃料電池の反応で消費される水素量の割合)は、発電装置の効率を向上させるために可能な限り高い値で運転するのが一般的であり、一例として、りん酸形燃料電池の水素利用率は80%程度で運転するように設計されている。一方、水素の精製装置として一般に使用されるPSA(Pressure Swing Adsorption:圧力スイング吸着)装置における水素収率(PSAに供給される水素量に対する、分離精製される高純度水素量の割合)は、装置容量,運転条件等によって違いはあるが、70%程度である。   The fuel cell hydrogen utilization (ratio of the amount of hydrogen consumed in the reaction of the fuel cell to the amount of hydrogen supplied to the fuel cell) should be operated as high as possible in order to improve the efficiency of the generator. As an example, the phosphoric acid fuel cell is designed to operate at a hydrogen utilization rate of about 80%. On the other hand, in a PSA (Pressure Swing Adsorption) apparatus generally used as a hydrogen purification apparatus, the hydrogen yield (ratio of the amount of high-purity hydrogen to be separated and purified with respect to the amount of hydrogen supplied to the PSA) is Although there are differences depending on the capacity and operating conditions, it is about 70%.

ところで、装置全系での発電効率および水素製造効率を向上させるためには、燃料電池で未反応の水素およびメタン、一酸化炭素等の可燃性成分を含む燃料オフガス、およびPSAで水素を分離精製した後の水素,メタン,一酸化炭素等を含む残余ガスを、改質器のバーナーに供給して改質反応の熱源として利用することが望ましい。   By the way, in order to improve the power generation efficiency and hydrogen production efficiency in the entire system, hydrogen is separated and purified by PSA with unreacted hydrogen and fuel off-gas containing flammable components such as methane and carbon monoxide. It is desirable that the residual gas containing hydrogen, methane, carbon monoxide and the like after being supplied is supplied to the reformer burner and used as a heat source for the reforming reaction.

一般に改質器は、燃料電池用として最適設計を追及した結果、80%程度の水素利用率とし、燃料電池で水素を消費した後の燃料オフガスを改質器のバーナーで燃焼させることにより、熱量がバランスするように設計されている。仮に、PSAの水素収率が燃料電池の水素利用率と同じ80%程度であれば、PSAで水素を生成分離した後の残余ガスを、燃料電池での燃料オフガスとともに改質器バーナで燃焼させた場合においても、熱量バランスを調整する特段の制御は不要である。   In general, the reformer has pursued an optimal design for a fuel cell. As a result, the hydrogen utilization rate is about 80%, and the fuel off-gas after consuming hydrogen in the fuel cell is burned by the burner of the reformer. Is designed to balance. If the hydrogen yield of PSA is about 80%, which is the same as the hydrogen utilization rate of the fuel cell, the remaining gas after hydrogen is generated and separated by PSA is burned in the reformer burner together with the fuel off-gas in the fuel cell. Even in such a case, no special control for adjusting the heat balance is required.

また、PSAの水素収率が80%を上回る場合には、PSAでの残余ガスの発熱量は燃料電池での燃料オフガスに比べて単位流量あたりの発熱量が小さくなり、改質器バーナに投入されるガスの持つ全発熱量は改質に必要な発熱量を下回る。従って、この場合には、燃料電池における水素利用率を下げ、燃料オフガスが持つ発熱量を増加させることで不足分を補うことができるので、制御は容易となりエネルギの無駄な消費もない。   Also, when the hydrogen yield of PSA exceeds 80%, the calorific value of the residual gas in PSA is smaller than that of fuel off-gas in the fuel cell, and is input to the reformer burner. The total calorific value of the generated gas is lower than the calorific value necessary for reforming. Therefore, in this case, since the shortage can be compensated for by reducing the hydrogen utilization rate in the fuel cell and increasing the calorific value of the fuel off gas, the control becomes easy and there is no wasteful consumption of energy.

ところが、現在入手可能なPSAの水素収率は70%程度であるため、PSAでの残余ガスが持つ発熱量は、水素利用率80%の燃料電池での燃料オフガスが持つ発熱量に比べて単位流量あたりの値が大きく、PSAでの残余ガスと燃料電池での燃料オフガスの全量を改質器のバーナで燃焼させた場合、必要な熱量に比べて過剰な熱量状態となるため、改質器の構造部材,触媒の温度が過度に上昇する問題が発生する。   However, since the hydrogen yield of currently available PSA is about 70%, the calorific value of the residual gas in PSA is unit compared to the calorific value of the fuel off-gas in a fuel cell with a hydrogen utilization rate of 80%. The value per flow rate is large, and when the entire amount of residual gas in the PSA and fuel off-gas in the fuel cell is burned by the burner of the reformer, it becomes an excessive heat amount state compared to the necessary heat amount. This causes a problem that the temperature of the structural member and the catalyst rises excessively.

このような問題を回避し、PSAでの残余ガスの一部を系外へ無駄に放出することなく改質器温度を適正な温度に維持するためには、改質反応に必要とする熱量に対して余剰となる分の熱量を装置内で適正に処理しなければならない。   In order to avoid such problems and maintain the reformer temperature at an appropriate temperature without wastefully releasing a part of the residual gas in the PSA, the amount of heat required for the reforming reaction is reduced. On the other hand, it is necessary to appropriately process the surplus heat amount in the apparatus.

従来の水素製造供給手段を備えた燃料電池発電装置の改質器温度制御においては、その構造部材および充填触媒を保護するために、温度が過度に上昇する場合には燃焼空気流量を増加させて、その温度上昇を防止していた。しかしながら、改質器燃焼排ガス系の圧力損失を考慮すると、無制限に燃焼空気流量を増加させることはできず、自ずと上限の燃焼空気流量が存在する。
特開2000−348750号公報
In the reformer temperature control of a conventional fuel cell power generator equipped with hydrogen production and supply means, in order to protect the structural members and the filled catalyst, the flow rate of combustion air is increased when the temperature rises excessively. That prevented the temperature from rising. However, in consideration of the pressure loss of the reformer combustion exhaust gas system, the combustion air flow rate cannot be increased without limitation, and an upper limit combustion air flow rate naturally exists.
JP 2000-348750 A

この発明は、上記のような点に鑑みてなされたもので、この発明の課題は、水素精製装置(PSA)での残余ガスの一部を系外へ無駄に放出することなく、改質器温度を適正な温度に維持し、かつ要請に応じた量の高純度水素を供給することが可能な、水素製造供給手段を備えた燃料電池発電装置の運転方法を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide a reformer without wasting a part of the residual gas in the hydrogen purifier (PSA) out of the system. An object of the present invention is to provide a method of operating a fuel cell power generation apparatus having a hydrogen production and supply means that can maintain a temperature at an appropriate temperature and can supply high-purity hydrogen in an amount as required.

前述の課題を解決するため、この発明は、下記のようにするIn order to solve the above-described problems, the present invention is as follows .

ち、炭化水素系化合物からなる原燃料と水蒸気とを含む原燃料ガスを、反応熱供給用のバーナーを有する改質器によって改質し、得られた水素に富む改質ガスを燃料電池の燃料ガスとして用いる燃料電池と、前記改質ガスを燃料電池への改質ガス供給配管から分岐し、水素精製装置に供給して高純度水素を生成し、燃料電池外へ供給可能とした水素製造供給手段とを備えた燃料電池発電装置であって、前記水素精製装置における水素収率が、前記燃料電池における水素利用率に比べて低い燃料電池発電装置の運転方法において、前記燃料電池における発電反応後の燃料オフガスと、前記水素精製装置における水素精製後の残余ガスとを、前記改質器のバーナーに供給して燃焼させ、改質器の温度が上昇した場合には、改質器温度によって制御される燃焼空気流量を調節して改質器の温度を低下させ、この燃焼空気流量が所定の上限値に到達した際には、S/C(原燃料ガス中の炭素原子1モルに対するスチームのモル数比)を増加することにより改質器の温度を低下させることを特徴とする(請求項)。 Immediately Chi, a raw fuel gas containing the raw fuel and water vapor comprising a hydrocarbon compound, reformed by a reformer having a burner for the reaction heat supply, the reformed gas rich in hydrogen obtained a fuel cell A fuel cell used as a fuel gas, and a hydrogen production branching the reformed gas from a reformed gas supply pipe to the fuel cell and supplying it to a hydrogen purifier to produce high-purity hydrogen that can be supplied outside the fuel cell A fuel cell power generation apparatus comprising a supply means, wherein a hydrogen yield in the hydrogen purification apparatus is lower than a hydrogen utilization rate in the fuel cell. When the later fuel off-gas and the residual gas after hydrogen purification in the hydrogen purifier are supplied to the burner of the reformer and combusted and the temperature of the reformer rises, it depends on the reformer temperature. System Adjusting the combustion air flow rate to be lowering the temperature of the reformer, when the combustion air flow rate has reached the predetermined upper limit value, S / C (steam to carbon atoms 1 mole of the raw fuel gas The temperature of the reformer is lowered by increasing the molar ratio) (Claim 1 ).

上記請求項1の発明によれば、改質器の温度が上昇した場合には、燃焼空気流量を調節して改質器の温度を低下させ、この燃焼空気流量が所定の上限値に到達した際には、S/Cを増加させる。S/Cを増加させることにより、炭化水素系合物である原燃料を水素に変換する割合が向上し、炭化水素系化合物の水蒸気改質反応に係る例えば下式(化1)による吸熱量が増加するとともに、改質ガス中の水素の割合に対してメタン,一酸化炭素の割合が低下する。 According to the first aspect of the present invention, when the temperature of the reformer rises, the combustion air flow rate is adjusted to lower the reformer temperature, and this combustion air flow rate reaches a predetermined upper limit value. In this case, the S / C is increased. By increasing the S / C, the ratio of converting the raw fuel, which is a hydrocarbon compound, to hydrogen is improved, and the endothermic amount according to, for example, the following formula (Chemical Formula 1) related to the steam reforming reaction of the hydrocarbon compound is reduced. As it increases, the proportion of methane and carbon monoxide decreases with respect to the proportion of hydrogen in the reformed gas.

Figure 0004938299
Figure 0004938299

その結果、燃料電池で水素を消費した後の燃料オフガス、および水素精製装置で高純度水素を分離精製した後の残余ガスのメタン,一酸化炭素濃度が低下し、改質器のバーナで燃焼させるガスの単位流量あたりの発熱量が低下するので、改質器温度が過度に上昇することを抑制できる。また、S/Cを増加させることで、反応に寄与しない水蒸気量が増えるが、この余剰な水蒸気の加熱に要する熱量に相当する分も前記過剰な燃焼熱量の消費に寄与する。   As a result, the concentration of methane and carbon monoxide in the fuel off-gas after consuming hydrogen in the fuel cell and the residual gas after separating and purifying high-purity hydrogen in the hydrogen purifier decreases and burns in the reformer burner. Since the calorific value per unit flow rate of gas decreases, it is possible to suppress an excessive increase in the reformer temperature. Further, by increasing the S / C, the amount of water vapor that does not contribute to the reaction increases, but the amount corresponding to the amount of heat required for heating this excess water vapor also contributes to the consumption of the excessive amount of combustion heat.

即ち、S/Cの増加は原燃料の水素への変換割合の向上と吸熱量の増加、および改質器から持ち去る熱量の増加の二重の効果をもって、改質器の過度な温度上昇を抑制することができる。   In other words, an increase in S / C suppresses excessive temperature rise in the reformer, with the dual effect of increasing the conversion rate of raw fuel to hydrogen, increasing the amount of heat absorbed, and increasing the amount of heat removed from the reformer. can do.

前記請求項1の発明の実施態様としては、下記請求項ないしの発明が好ましい。即ち、前記請求項1に記載の燃料電池発電装置の運転方法において、前記水素精製装置は、圧力スイング吸着(PSA)装置とする(請求項)。また、請求項1に記載の燃料電池発電装置の運転方法において、前記S/Cを増加する際のS/Cの値は、3.25以上とする(請求項)。さらに、請求項1に記載の燃料電池発電装置の運転方法において、前記改質用の水蒸気は、前記燃料電池の発電反応によって生成された水を回収し、この回収水を燃料電池の反応熱によって蒸発させたものとするとする(請求項)。詳細は後述する。
As an embodiment of the invention of claim 1, the inventions of claims 2 to 4 below are preferable. That is, in the operation method of the fuel cell power generator according to claim 1, the hydrogen purifier is a pressure swing adsorption (PSA) device (claim 2 ). Further, in the operation method of the fuel cell power generator according to claim 1, the value of S / C when increasing the S / C is set to 3.25 or more (claim 3 ). Furthermore, in the operation method of the fuel cell power generation device according to claim 1, the reforming steam recovers water generated by a power generation reaction of the fuel cell, and the recovered water is generated by reaction heat of the fuel cell. It is assumed that it has been evaporated (claim 4 ). Details will be described later.

なお、改質ガスを燃料電池の改質ガス供給配管から分岐して水素精製装置に供給するに際して、改質器と水素精製装置の運転圧力によっては、その間に圧縮機を設置する必要がある。   When the reformed gas is branched from the reformed gas supply pipe of the fuel cell and supplied to the hydrogen purifier, it is necessary to install a compressor between them depending on the operating pressure of the reformer and the hydrogen purifier.

この発明によれば、水素精製装置(PSA)での残余ガスの一部を系外へ無駄に放出することなく、改質器温度を適正な温度に維持し、かつ要請に応じた量の高純度水素を供給することが可能な、水素製造供給手段を備えた燃料電池発電装置の運転方法を提供することができる。   According to this invention, the reformer temperature is maintained at an appropriate temperature without wastefully releasing a part of the residual gas in the hydrogen purifier (PSA) to the outside of the system, and a high amount according to the request is provided. It is possible to provide a method for operating a fuel cell power generation apparatus including hydrogen production and supply means capable of supplying pure hydrogen.

図1〜図4および実施例に基づき、本発明の実施の形態について以下に述べる。   An embodiment of the present invention will be described below based on FIGS.

図1は、本発明の実施の形態に係る燃料電池発電装置の基本系統図であり、図1において図5に示した部材と同一機能部材には同一番号を付して示す。なお、図1においては図5における生成水回収装置3や弁6,7等の図示を省略している。一方、図1においては、図5に対して追加された部材もあり、これらについては、以下の図1の構成や動作に関する説明の中で述べる。   FIG. 1 is a basic system diagram of a fuel cell power generator according to an embodiment of the present invention. In FIG. 1, members having the same functions as those shown in FIG. In FIG. 1, illustration of the generated water recovery device 3, valves 6, and 7 in FIG. 5 is omitted. On the other hand, in FIG. 1, there are members added to FIG. 5, which will be described in the following description of the configuration and operation of FIG.

図1において、1は模式的に表示した燃料電池であり、空気極1aと燃料極1bを備えた多数の単セルを積層し、燃料電池1を所定の温度に保持するための冷却板1cを適宜挿入して構成され、冷却板1cには、電池冷却水を水蒸気分離器8の下方から冷却水循環ポンプ9を介して通流される。燃料電池1の発電に利用する燃料ガスには、都市ガス,LPGおよびメタノール等の炭化水素系化合物の原燃料と水蒸気とを混合して改質器2に導入し、改質触媒層2bにおける改質反応で得られた水素に富む改質ガスが用いられる。   In FIG. 1, reference numeral 1 denotes a fuel cell schematically shown. A plurality of single cells each having an air electrode 1a and a fuel electrode 1b are stacked, and a cooling plate 1c for keeping the fuel cell 1 at a predetermined temperature is provided. The battery cooling water is passed through the cooling plate 1c from the lower side of the water vapor separator 8 through the cooling water circulation pump 9. The fuel gas used for power generation of the fuel cell 1 is mixed with a raw material fuel of a hydrocarbon compound such as city gas, LPG and methanol and water vapor and introduced into the reformer 2 to improve the reforming catalyst layer 2b. A reformed gas rich in hydrogen obtained by a quality reaction is used.

図1において、改質用の水蒸気としては、燃料電池1の冷却によって得た熱により水蒸気分離器8で発生させた水蒸気を使用している。りん酸形燃料電池ではその反応温度が180〜200℃であり、冷却によって得た熱で直接に水蒸気を発生させて使用することができる。固体高分子形燃料電池では、その反応温度が約80℃程度であるため、冷却によって得られた温水をさらに加熱して水蒸気を得る。また、溶融炭酸塩形(反応温度:約600℃)や固体酸化物形(反応温度:約1000℃)の高温形燃料電池では、電池の冷却を水ではなく、空気等のガス流体を用いて冷却するが、冷却に供したガスと水を熱交換することで水蒸気を発生させ、改質反応に使用することが一般に行われており、電池の冷却によって得られた熱で水蒸気を発生させることは同じである。なお、水蒸気分離器8には、通常、図5に示した生成水回収装置3から回収水が供給され、この回収水を蒸発させることにより改質用の水蒸気を得る。   In FIG. 1, the steam generated by the steam separator 8 by the heat obtained by cooling the fuel cell 1 is used as the reforming steam. In the phosphoric acid fuel cell, the reaction temperature is 180 to 200 ° C., and steam can be directly generated by the heat obtained by cooling. In the polymer electrolyte fuel cell, the reaction temperature is about 80 ° C., so the hot water obtained by cooling is further heated to obtain water vapor. Also, in molten carbonate type (reaction temperature: about 600 ° C) and solid oxide type (reaction temperature: about 1000 ° C) high-temperature fuel cells, use a gas fluid such as air instead of water to cool the cells. Although it is cooled, water vapor is generated by exchanging heat between the gas used for cooling and water, and it is generally used for the reforming reaction, and water vapor is generated by the heat obtained by cooling the battery. Are the same. The steam separator 8 is usually supplied with recovered water from the generated water recovery device 3 shown in FIG. 5, and the recovered water is evaporated to obtain reforming steam.

さらに、本発明の運転方法が実施される燃料電池発電装置は、改質器2で得られた改質ガスを燃料電池1の燃料極1bへ供給する配管に分岐配管を有し、圧縮機4と水素精製装置5とを備えた水素精製系へ改質ガスを導入する。水素精製装置5は、複数の容器に活性炭,ゼオライト等の吸着剤を充填し、圧力を変動させることによって特定のガス種を吸着分離する圧力スイング吸着(PSA)装置や、選択的透過性を有する膜分離装置等を使用する。水素精製装置5で分離された高純度の水素ガスは半導体製造,金属精錬,油脂製造,製油・化学工業等における原料,雰囲気ガス等のほか、加圧して自動車の駆動用電力もしくは動力を得るための燃料としても使用できる。   Furthermore, the fuel cell power generator in which the operation method of the present invention is implemented has a branch pipe in the pipe for supplying the reformed gas obtained by the reformer 2 to the fuel electrode 1b of the fuel cell 1, and the compressor 4 The reformed gas is introduced into a hydrogen purification system equipped with a hydrogen purifier 5. The hydrogen purifier 5 is a pressure swing adsorption (PSA) device that selectively adsorbs and separates specific gas species by filling a plurality of containers with adsorbents such as activated carbon and zeolite and changing the pressure, and has selective permeability. Use a membrane separator or the like. The high-purity hydrogen gas separated by the hydrogen purifier 5 is used for raw materials, atmospheric gases, etc. in semiconductor manufacturing, metal refining, oil and fat manufacturing, oil refinery / chemical industry, etc., and pressurization to obtain driving power or power for automobiles. It can also be used as a fuel.

次に、原燃料、水蒸気および各ガスの流れや流量制御等について述べる。図1において、流量計F1で計測される原燃料流量は燃料電池1の負荷と水素精製系に供給される改質ガス流量に従って、流量制御弁FV−1により制御する。流量計F2で計測される改質用蒸気は、F1で計測される原燃料流量に対して一定の定数をかけることで流量設定値を決め、流量制御弁FV−2で制御する。S/Cは改質触媒層2bに投入される原燃料および水蒸気に対し、原燃料である炭化水素系化合物中の炭素原子1モルに対する水蒸気のモル数比であり、水蒸気量の制御においては、原燃料流量の計測値F1に原燃料組成で決まる炭素原子数およびS/Cの設定値(例えば3.0)をかけて水蒸気流量の設定値を決定する。   Next, the flow of raw fuel, water vapor and each gas, flow rate control, etc. will be described. In FIG. 1, the raw fuel flow rate measured by the flow meter F1 is controlled by the flow control valve FV-1 according to the load of the fuel cell 1 and the reformed gas flow rate supplied to the hydrogen purification system. The reforming steam measured by the flow meter F2 determines a flow set value by applying a constant to the raw fuel flow measured by F1, and is controlled by the flow control valve FV-2. S / C is the mole ratio of water vapor to 1 mole of carbon atoms in the hydrocarbon-based compound, which is the raw fuel, with respect to the raw fuel and water vapor input to the reforming catalyst layer 2b. The measured value F1 of the raw fuel flow rate is multiplied by the number of carbon atoms determined by the raw fuel composition and the set value of S / C (for example, 3.0) to determine the set value of the water vapor flow rate.

改質器バーナ2aによって加熱された改質触媒層2bにおける水蒸気改質反応により、炭化水素系化合物は水素,二酸化炭素,一酸化炭素を主成分とする改質ガスに変換される。このうち一酸化炭素は燃料電池の電極の触媒に用いられる白金を被毒し、性能を低下させるので、改質ガスは図示しない一酸化炭素変成器によって、一酸化炭素と水蒸気とから水素と二酸化炭素へと変成させた後、水素濃度が約60%(水蒸気を除くと70%以上)、二酸化炭素が約20%(残余は水蒸気,メタン,および若干量の一酸化炭素)のガスとして燃料電池1の燃料極1bへ送られる。   By the steam reforming reaction in the reforming catalyst layer 2b heated by the reformer burner 2a, the hydrocarbon-based compound is converted into a reformed gas mainly composed of hydrogen, carbon dioxide, and carbon monoxide. Of these, carbon monoxide poisons platinum used as a catalyst for fuel cell electrodes and degrades performance, so the reformed gas is converted from hydrogen monoxide and water vapor from carbon monoxide and water vapor by a carbon monoxide converter (not shown). After conversion to carbon, the fuel cell as a gas with a hydrogen concentration of about 60% (more than 70% excluding water vapor) and carbon dioxide of about 20% (the remainder is water vapor, methane, and some amount of carbon monoxide) 1 to the fuel electrode 1b.

上記のごとく水素に富む燃料ガスを燃料極1bへ送り、燃料電池1において反応させると、反応に伴って所定の利用率に見あった水素が消費される。燃料極1bより排出される燃料オフガスは、なお一定量の水素を含有しており、これを改質器2の改質器バーナ2aへ導入して、別途供給される燃焼空気と混合,燃焼させ、改質触媒層2bの加熱に利用される。燃料電池1の空気極1aには、空気が図示しないブロワあるいはコンプレッサー等によって供給されて反応に供される。   As described above, when the fuel gas rich in hydrogen is sent to the fuel electrode 1b and allowed to react in the fuel cell 1, hydrogen that is found in a predetermined utilization rate is consumed with the reaction. The fuel off-gas discharged from the fuel electrode 1b still contains a certain amount of hydrogen, which is introduced into the reformer burner 2a of the reformer 2 and mixed and burned with separately supplied combustion air. This is used for heating the reforming catalyst layer 2b. Air is supplied to the air electrode 1a of the fuel cell 1 by a blower or a compressor (not shown) and used for the reaction.

一方、水素精製装置5に供給された改質ガスから水素を分離した後の残余ガスは、水素,メタン,一酸化炭素の可燃性成分と二酸化炭素,水蒸気の混合物であるが、燃料電池1の燃料極1bの燃料オフガスと同様に改質器バーナ2aに導入して燃焼させ、改質反応の熱源として利用する。   On the other hand, the residual gas after separating hydrogen from the reformed gas supplied to the hydrogen purifier 5 is a mixture of hydrogen, methane, carbon monoxide flammable components, carbon dioxide, and water vapor. The fuel is introduced into the reformer burner 2a and burned in the same manner as the fuel off-gas of the fuel electrode 1b, and used as a heat source for the reforming reaction.

改質器2における改質反応は吸熱反応であり、反応に必要な熱量を連続的かつ安定的に供給しなければならない。改質器2では改質触媒層2bの温度を温度計Tで計測し、温度制御を行う。改質触媒層2bの設定温度(一例として、都市ガスの場合では700〜800℃)に対して、温度が低い場合は原燃料の投入量を増加させ、燃料極1bで未反応の可燃性ガス成分を増加させて改質器バーナ2aに戻るガスの流量および発熱量を増加させることにより賄う。   The reforming reaction in the reformer 2 is an endothermic reaction, and the amount of heat necessary for the reaction must be continuously and stably supplied. In the reformer 2, the temperature of the reforming catalyst layer 2b is measured with a thermometer T and temperature control is performed. When the temperature is lower than the set temperature of the reforming catalyst layer 2b (for example, 700 to 800 ° C. in the case of city gas), the input amount of raw fuel is increased, and unreacted combustible gas at the fuel electrode 1b. This is provided by increasing the flow rate and heating value of the gas that increases the components and returns to the reformer burner 2a.

なお、温度計測位置は前記改質触媒層、特に触媒層の改質ガス出口が好ましいが、設計上、予め各部温度の相関がわかるので、例えば改質触媒層が充填される容器壁の温度など、改質器の温度を代表する位置とすることができる。   The temperature measurement position is preferably the reforming catalyst layer, particularly the reformed gas outlet of the catalyst layer. However, since the correlation between the temperatures of the respective parts is known in advance by design, for example, the temperature of the container wall filled with the reforming catalyst layer, etc. The position of the reformer can be a representative position.

一方、設定に対して温度が高い場合は、燃焼空気流量を増加させることで対応するが、改質器バーナ2aや配管等の圧力損失、図1には記載していない空気ブロワの能力から、燃焼空気流量には上限値が存在する。燃焼空気流量が上限に達しても改質器の触媒層温度が設定値まで低減しない場合はS/Cを増加させ、改質器バーナ2aに戻るガスの発熱量を減少させるとともに、改質反応の吸熱量の増加と反応に寄与しない水蒸気の顕熱上昇により持ち去る熱量の増加により、改質器の触媒層温度を低減させ、燃焼空気流量を制御可能な範囲に収める。あるいは、改質器の温度が上昇して予め定めた所定温度に到達した場合、改質器に供給する原燃料ガスのS/Cを増加することにより改質器の温度を低下させる。   On the other hand, when the temperature is higher than the setting, it can be dealt with by increasing the combustion air flow rate. However, from the pressure loss of the reformer burner 2a and piping, the capability of the air blower not shown in FIG. There is an upper limit for the combustion air flow rate. If the catalyst layer temperature of the reformer does not decrease to the set value even when the combustion air flow rate reaches the upper limit, the S / C is increased, the calorific value of the gas returning to the reformer burner 2a is decreased, and the reforming reaction is performed. As a result, the temperature of the catalyst layer of the reformer is reduced and the combustion air flow rate falls within a controllable range. Alternatively, when the temperature of the reformer increases and reaches a predetermined temperature, the temperature of the reformer is decreased by increasing the S / C of the raw fuel gas supplied to the reformer.

次に、S/Cを増加する制御に関し、りん酸形燃料電池に本発明を適用した場合の実施例に基づいてさらに詳述する。   Next, control for increasing S / C will be described in more detail based on an embodiment in the case where the present invention is applied to a phosphoric acid fuel cell.

従来、燃料電池発電装置で一般的に採用されることの多かったS/Cの設定値は3.0である。これを3.25,3.5とした場合の燃料電池入口(PSA入口も同じ組成)における改質ガス組成(dry%)を表1に示す。   Conventionally, the setting value of S / C, which has been generally adopted in fuel cell power generators, is 3.0. Table 1 shows the reformed gas composition (dry%) at the fuel cell inlet (PSA inlet has the same composition) when this is 3.25, 3.5.

Figure 0004938299
Figure 0004938299

改質器2における改質反応は、例えばメタン等の炭化水素系化合物と水蒸気との反応により、水素,二酸化炭素,一酸化炭素に改質するものであるが、反応系における水蒸気量を増加させることで反応がより進み、生成系におけるメタン濃度が低下し、水素濃度が増加する。従って、改質ガスが燃料電池1において水素を消費された後の燃料オフガス、およびPSAで水素を分離精製した後の残余ガスは、S/Cの増加に伴い単位量あたりの発熱量が低下する。図2はその結果を示し、S/Cを変化させた場合の、燃料電池で発電に供した後の出口燃料(即ち、燃料オフガス)、およびPSAで水素を精製分離した後の戻りガス(即ち、残余ガス)の単位量当たりの発熱量の変化を示す。なお、図2においては、燃料電池は水素利用率80%で水素を消費するものとし、PSAでは水素の収率を72%としてそれぞれの出口ガスの発熱量を算出している。 The reforming reaction in the reformer 2 is, for example, reforming into hydrogen, carbon dioxide, or carbon monoxide by the reaction of a hydrocarbon compound such as methane with steam, but the amount of steam in the reaction system is increased. As a result, the reaction proceeds further, the methane concentration in the production system decreases, and the hydrogen concentration increases. Accordingly, the fuel off-gas after the reformed gas has consumed hydrogen in the fuel cell 1 and the residual gas after the hydrogen is separated and purified by PSA, the calorific value per unit amount decreases as the S / C increases. . FIG. 2 shows the result. When the S / C is changed, the outlet fuel after being subjected to power generation by the fuel cell (ie, fuel off-gas) and the return gas after purifying and separating hydrogen by PSA (ie, , The amount of heat generated per unit amount of residual gas). In FIG. 2, it is assumed that the fuel cell consumes hydrogen at a hydrogen utilization rate of 80%, and PSA calculates the heating value of each outlet gas with a hydrogen yield of 72%.

前記表1における組成の変化に較べ、図2のガスの発熱量の変化は大きいが、これはS/Cの変化により水素濃度が高くなるため、必要な水素量に対する投入改質ガス量が少なくなることにより、水素以外の可燃性成分のメタン,一酸化炭素の量が減ることによる。   Compared with the change in the composition in Table 1, the change in the calorific value of the gas in FIG. 2 is large, but this is because the hydrogen concentration becomes higher due to the change in S / C, so the amount of reformed gas to be supplied is less than the required amount of hydrogen. As a result, the amount of combustible components other than hydrogen, methane and carbon monoxide, is reduced.

次に、図3について述べる。図3は、S/Cの変化に対して、改質器バーナの燃焼で必要な燃焼空気流量を示す図である。図3に示す燃焼空気流量は、以下の場合の燃焼空気流量を示す。100kWの発電容量を有する燃料電池とPSAを組み合わせた、水素製造機能を備えた燃料電池発電装置を想定し、発電出力を75%(=75kW)、水素精製のためにPSAへ投入する改質ガス流量を30Nm3/hとした時に、燃料電池の反応で水素が消費された後の燃料オフガス、およびPSAで水素を分離精製した後の残余ガスの全量を、改質器バーナに戻して燃焼させ、改質反応の熱源とする場合を考え、この場合の燃焼空気流量を図3に示す。燃焼空気流量としては、改質器の加熱に供した後の燃焼排ガス温度が改質器の構造部材によって決まる最適な運用温度を維持できる量として算出した。 Next, FIG. 3 will be described. FIG. 3 is a diagram showing a combustion air flow rate necessary for combustion of the reformer burner with respect to a change in S / C. The combustion air flow rate shown in FIG. 3 indicates the combustion air flow rate in the following case. Assuming a fuel cell power generation device with a hydrogen production function that combines a fuel cell with a power generation capacity of 100 kW and PSA, the reformed gas to be supplied to the PSA for 75% (= 75 kW) power generation output and hydrogen purification When the flow rate is 30 Nm 3 / h, the fuel off-gas after the consumption of hydrogen by the reaction of the fuel cell and the total amount of residual gas after separation and purification of hydrogen by PSA are returned to the reformer burner for combustion. Considering the case of using as a heat source for the reforming reaction, the combustion air flow rate in this case is shown in FIG. The combustion air flow rate was calculated as an amount capable of maintaining the optimum operation temperature determined by the structural members of the reformer, after the combustion exhaust gas temperature after being used for heating the reformer.

なお、図3において燃焼空気流量110Nm3/hで点線を付しているが、これは例えば100kW燃料電池を設計するうえでの燃焼空気流量の最大値である。この流量を上回る場合には、燃焼系の機器,配管における圧力損失の過度な増加,空気ブロワの能力不足等を惹き起こし、燃料電池の設計変更が必要となる。一方、S/Cを3.0から3.25,3.5へ増加させると、バーナへ戻るガスの発熱量が減少するために、燃焼に必要な空気量も少なくてすみ、図3に示すように燃焼空気流量は当初計画の範囲内となり、機器の設計変更を必要としない。 In FIG. 3, a dotted line is attached at a combustion air flow rate of 110 Nm 3 / h. This is the maximum value of the combustion air flow rate when designing a 100 kW fuel cell, for example. If this flow rate is exceeded, excessive increase in pressure loss in combustion system equipment and piping, lack of air blower capacity, etc. will be caused, and the design of the fuel cell needs to be changed. On the other hand, if the S / C is increased from 3.0 to 3.25, 3.5, the amount of heat generated by the gas returning to the burner decreases, so the amount of air required for combustion can be reduced, and as shown in FIG. It is within the scope of the original plan, and no equipment design changes are required.

本発明によれば、改質器の運転パラメータの一つであるS/Cの設定値を変えるだけで、高い水素利用率で最適化した燃料電池と、相対的に水素の分離能力(水素収率)の低い水素精製装置を組み合わせて、水素製造供給機能を備えた燃料電池発電装置とした場合においても、燃料電池の構成機器を変えることなく、運用することが可能となる。   According to the present invention, a fuel cell optimized with a high hydrogen utilization rate and a relative hydrogen separation capacity (hydrogen yield) can be obtained by simply changing the set value of S / C, which is one of the operation parameters of the reformer. Even in the case where a fuel cell power generation device having a hydrogen production and supply function is combined by combining a hydrogen purification device with a low rate), it can be operated without changing the constituent devices of the fuel cell.

S/Cの上昇によって改質反応に必要な水蒸気量は増加するが、S/Cを3.0から3.25もしくは3.5まで増加させても、燃料電池の反応熱によって生成する水蒸気量によって賄うことが可能であり、装置外から別途の蒸気発生用熱源を供給する必要はなく、装置全系の発電効率および水素製造効率に影響しない。即ち、S/Cを増加する際のS/Cの値は3.5以上とすることにより、燃料電池の燃焼空気量の設計値を下回り、機器の設計変更の必要がない効果がある。   The amount of water vapor required for the reforming reaction increases with the increase in S / C, but even if S / C is increased from 3.0 to 3.25 or 3.5, it can be covered by the amount of water vapor generated by the reaction heat of the fuel cell. Yes, it is not necessary to supply a separate heat source for generating steam from outside the apparatus, and it does not affect the power generation efficiency and hydrogen production efficiency of the entire system. That is, by setting the S / C value when increasing the S / C to be 3.5 or more, there is an effect that the design value of the combustion air amount of the fuel cell is below the design value and there is no need to change the device design.

次に、図4について述べる。図4は、発電装置としての負荷と本発明に係わる各部の流量の関係を模式的に示す図である。改質ガスの一部を取り出し、改質ガス圧縮機と水素精製装置を直列に備えた水素精製系に投入する場合に、燃料電池の発電負荷は変化させず、燃料電池に投入する改質ガス流量も一定とする。ただし、改質ガスを取り出し水素精製系へ投入する場合の図燃料電池の発電負荷は定格の100%負荷より低い。その値は取り出す改質ガス流量によって変わるが、65%〜80%負荷程度である。なぜならば、発電負荷を100%(即ち、この場合改質ガス製造量も100%)とすると、燃料電池外へ改質ガスを取り出す余地がなくなるからである。   Next, FIG. 4 will be described. FIG. 4 is a diagram schematically showing the relationship between the load as the power generation device and the flow rate of each part according to the present invention. When a part of the reformed gas is taken out and put into a hydrogen purification system equipped with a reformed gas compressor and a hydrogen purifier in series, the power generation load of the fuel cell is not changed, and the reformed gas that is thrown into the fuel cell The flow rate is also constant. However, when the reformed gas is taken out and charged into the hydrogen purification system, the power generation load of the fuel cell is lower than the rated 100% load. The value varies depending on the reformed gas flow rate to be taken out, but is about 65% to 80% load. This is because if the power generation load is 100% (that is, the reformed gas production amount is also 100% in this case), there is no room for taking out the reformed gas outside the fuel cell.

また、図4に示すように、水素精製装置へ投入する改質ガス流量に従って原燃料流量を増加させ、燃料電池へ投入する改質ガス流量を変化させないようにする。同図には改質用水蒸気流量は図示していないが、原燃料流量に合わせて水蒸気流量も増減させる。原燃料流量も設計上の上限値が存在するので、燃料電池および水素精製系へ投入する改質ガス流量の合計値が原燃料の上限値に見あった改質ガス流量の合計値を上回らないよう、水素精製系へ投入する改質ガス流量を制御する。   Further, as shown in FIG. 4, the raw fuel flow rate is increased in accordance with the reformed gas flow rate input to the hydrogen purifier so that the reformed gas flow rate input to the fuel cell is not changed. Although the reforming steam flow rate is not shown in the figure, the steam flow rate is also increased or decreased in accordance with the raw fuel flow rate. Since the raw fuel flow rate also has a design upper limit value, the total reformed gas flow rate that is input to the fuel cell and the hydrogen purification system does not exceed the total reformed gas flow rate that was found in the upper limit value of the raw fuel. Thus, the flow rate of the reformed gas introduced into the hydrogen purification system is controlled.

本発明の実施の形態に係る燃料電池発電装置の基本系統図。1 is a basic system diagram of a fuel cell power generator according to an embodiment of the present invention. S/Cを変化させた場合の、燃料電池出口燃料とPSA戻りガスの発熱量の変化を示す図。The figure which shows the change of the emitted-heat amount of a fuel cell exit fuel and PSA return gas when S / C is changed. S/Cの変化に対して、改質器バーナの燃焼で必要な燃焼空気流量を示す図。The figure which shows the combustion air flow rate required by combustion of a reformer burner with respect to the change of S / C. 発電装置としての負荷と本発明に係わる各部の流量の関係を模式的に示す図。The figure which shows typically the relationship between the load as an electric power generating apparatus, and the flow volume of each part concerning this invention. 特許文献1に開示された燃料電池発電装置の基本系統図。1 is a basic system diagram of a fuel cell power generator disclosed in Patent Document 1. FIG.

符号の説明Explanation of symbols

1:燃料電池、1a:空気極、1b:燃料極、1c:冷却板、2:改質器、2a:改質器バーナ、2b:改質触媒層、3:生成水回収装置、4:圧縮機、5:水素精製装置、8:水蒸気分離器、9:冷却水循環ポンプ   1: fuel cell, 1a: air electrode, 1b: fuel electrode, 1c: cooling plate, 2: reformer, 2a: reformer burner, 2b: reforming catalyst layer, 3: generated water recovery device, 4: compression 5: Hydrogen purifier, 8: Steam separator, 9: Cooling water circulation pump

Claims (4)

炭化水素系化合物からなる原燃料と水蒸気とを含む原燃料ガスを、反応熱供給用のバーナーを有する改質器によって改質し、得られた水素に富む改質ガスを燃料電池の燃料ガスとして用いる燃料電池と、前記改質ガスを燃料電池への改質ガス供給配管から分岐し、水素精製装置に供給して高純度水素を生成し、燃料電池外へ供給可能とした水素製造供給手段とを備えた燃料電池発電装置であって、前記水素精製装置における水素収率が、前記燃料電池における水素利用率に比べて低い燃料電池発電装置の運転方法において、
前記燃料電池における発電反応後の燃料オフガスと、前記水素精製装置における水素精製後の残余ガスとを、前記改質器のバーナーに供給して燃焼させ、改質器の温度が上昇した場合には、改質器温度によって制御される燃焼空気流量を調節して改質器の温度を低下させ、この燃焼空気流量が所定の上限値に到達した際には、S/C(原燃料ガス中の炭素原子1モルに対するスチームのモル数比)を増加することにより改質器の温度を低下させることを特徴とする燃料電池発電装置の運転方法。
A raw fuel gas comprising a hydrocarbon-based raw fuel and steam is reformed by a reformer having a burner for supplying reaction heat, and the resulting hydrogen-rich reformed gas is used as a fuel gas for a fuel cell. A fuel cell to be used; and a hydrogen production and supply means for branching the reformed gas from a reformed gas supply pipe to the fuel cell and supplying the reformed gas to a hydrogen purifier to generate high-purity hydrogen, which can be supplied outside the fuel cell. In the operating method of the fuel cell power generator, the hydrogen yield in the hydrogen purifier is lower than the hydrogen utilization rate in the fuel cell.
When the fuel off gas after the power generation reaction in the fuel cell and the residual gas after the hydrogen purification in the hydrogen purifier are supplied to the burner of the reformer and burned, and the temperature of the reformer rises The combustion air flow rate controlled by the reformer temperature is adjusted to lower the reformer temperature, and when this combustion air flow rate reaches a predetermined upper limit value, S / C (in the raw fuel gas A method of operating a fuel cell power generator, wherein the temperature of the reformer is lowered by increasing the mole ratio of steam to 1 mole of carbon atoms) .
請求項1に記載の燃料電池発電装置の運転方法において、前記水素精製装置は、圧力スイング吸着(PSA)装置とすることを特徴とする燃料電池発電装置の運転方法。 2. The operation method of a fuel cell power generation device according to claim 1 , wherein the hydrogen purification device is a pressure swing adsorption (PSA) device. 請求項1に記載の燃料電池発電装置の運転方法において、前記S/Cを増加する際のS/Cの値は、3.25以上とすることを特徴とする燃料電池発電装置の運転方法。 2. The method of operating a fuel cell power generator according to claim 1 , wherein the value of S / C when increasing the S / C is 3.25 or more. 請求項1に記載の燃料電池発電装置の運転方法において、前記改質用の水蒸気は、前記燃料電池の発電反応によって生成された水を回収し、この回収水を燃料電池の反応熱によって蒸発させたものとすることを特徴とする燃料電池発電装置の運転方法。 2. The operation method of a fuel cell power generation device according to claim 1 , wherein the reforming steam recovers water generated by a power generation reaction of the fuel cell, and evaporates the recovered water by reaction heat of the fuel cell. A method for operating a fuel cell power generation device.
JP2005341841A 2005-11-28 2005-11-28 Operation method of fuel cell power generator Active JP4938299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005341841A JP4938299B2 (en) 2005-11-28 2005-11-28 Operation method of fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005341841A JP4938299B2 (en) 2005-11-28 2005-11-28 Operation method of fuel cell power generator

Publications (2)

Publication Number Publication Date
JP2007149489A JP2007149489A (en) 2007-06-14
JP4938299B2 true JP4938299B2 (en) 2012-05-23

Family

ID=38210654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005341841A Active JP4938299B2 (en) 2005-11-28 2005-11-28 Operation method of fuel cell power generator

Country Status (1)

Country Link
JP (1) JP4938299B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5198019B2 (en) * 2007-09-20 2013-05-15 株式会社東芝 Fuel cell power generation system and control method thereof
JP2010212141A (en) * 2009-03-11 2010-09-24 Fuji Electric Systems Co Ltd Fuel cell generator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339829A (en) * 1998-05-22 1999-12-10 Mitsubishi Electric Corp Phosphoric acid fuel cell power generating device
JP4259674B2 (en) * 1999-06-07 2009-04-30 富士電機ホールディングス株式会社 Fuel cell power generator
JP4967185B2 (en) * 2000-10-24 2012-07-04 トヨタ自動車株式会社 Removal of precipitated carbon in the reformer
JP2005100798A (en) * 2003-09-25 2005-04-14 Toshiba Fuel Cell Power Systems Corp Polymer electrolyte fuel cell power generation system

Also Published As

Publication number Publication date
JP2007149489A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP5331819B2 (en) MCFC power generation system
CA2259396C (en) Fuel-cell power generating system
US8663859B2 (en) Method of optimizing operating efficiency of fuel cells
JP4515253B2 (en) Fuel cell system
JP2010212141A (en) Fuel cell generator
JP6723292B2 (en) Energy storage using REP with engine
TWI385845B (en) Solid oxide fuel cell (sofc) system and its operation method
JP5000412B2 (en) Operating temperature control method for solid oxide fuel cell system
CN102177086A (en) Hydrogen generator, fuel cell system, and method of operating hydrogen generator
JP6943406B2 (en) How to operate a fuel cell system and a fuel cell system
WO2001019727A1 (en) Apparatus for producing hydrogen gas and fuel cell system using the same
JP4938299B2 (en) Operation method of fuel cell power generator
JPH11176462A (en) Peak cut type fuel cell system
JP2004196611A (en) Fuel reforming apparatus and fuel cell system
JP2007165130A (en) Fuel cell system and control method of fuel cell system
JP6218591B2 (en) Fuel cell system
JP5557260B2 (en) Operating temperature control method for solid oxide fuel cell system
JP2003183008A (en) Hydrogen generating apparatus
JP2004210609A (en) Fuel reforming apparatus and fuel cell system
JP2001080905A (en) Operation of fuel reformer
CA3223785A1 (en) Method of operating a fuel cell system in fuel cell mode
JP2012160467A (en) Operation temperature control method of solid oxide fuel cell system
JP2004168626A (en) Fuel reforming apparatus and fuel cell system
JPH04322063A (en) Fuel cell power generation plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080919

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4938299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250