JP4466049B2 - Water flow control method for reforming steam - Google Patents

Water flow control method for reforming steam Download PDF

Info

Publication number
JP4466049B2
JP4466049B2 JP2003389925A JP2003389925A JP4466049B2 JP 4466049 B2 JP4466049 B2 JP 4466049B2 JP 2003389925 A JP2003389925 A JP 2003389925A JP 2003389925 A JP2003389925 A JP 2003389925A JP 4466049 B2 JP4466049 B2 JP 4466049B2
Authority
JP
Japan
Prior art keywords
steam
reforming
fuel cell
water
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003389925A
Other languages
Japanese (ja)
Other versions
JP2005150044A (en
Inventor
俊輔 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003389925A priority Critical patent/JP4466049B2/en
Publication of JP2005150044A publication Critical patent/JP2005150044A/en
Application granted granted Critical
Publication of JP4466049B2 publication Critical patent/JP4466049B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、燃料電池発電装置の改質蒸気用水の流量を制御する改質蒸気用水流量制御方法に関し、特に、水素リッチな改質ガスを用いて発電する燃料電池と、原燃料から水素リッチな改質ガスを生成して該燃料電池へ供給する改質部と、混合された原燃料と改質蒸気用水とから水蒸気を発生させて該改質部へ供給する蒸気発生部とを備えた燃料電池発電装置の改質蒸気用水の流量を制御する改質蒸気用水流量制御方法に関する。   The present invention relates to a reformed steam water flow rate control method for controlling the flow rate of reformed steam water in a fuel cell power generator, and in particular, a fuel cell that generates power using hydrogen-rich reformed gas and a hydrogen-rich fuel from raw fuel. A fuel comprising a reforming section that generates reformed gas and supplies it to the fuel cell, and a steam generating section that generates steam from the mixed raw fuel and reformed steam water and supplies the steam to the reforming section The present invention relates to a reforming steam water flow rate control method for controlling the flow rate of reforming steam water in a battery power generation device.

燃料電池は、燃料の有する化学エネルギーを機械エネルギーまたは熱エネルギーを経由することなく直接的に電気エネルギーへ変換する装置であって、高いエネルギー効率を実現することができる装置である。一般的に良く知られた燃料電池の形態として電解質を挟んで一対の電極を配置する形態がある。この形態において、一対の電極の内の一方の電極(アノード:anode)側に水素を有する燃料ガスを供給すると共に、他方の電極(カソード:cathode)側に酸素を有する酸化ガスを供給し、両極間で起きる電気化学反応を利用して起電力を得ることができる。以下に、燃料電池で起きる電気化学反応式を示す。   A fuel cell is a device that converts chemical energy of fuel directly into electrical energy without passing through mechanical energy or thermal energy, and is a device that can achieve high energy efficiency. As a generally well-known form of a fuel cell, there is a form in which a pair of electrodes are arranged with an electrolyte interposed therebetween. In this embodiment, a fuel gas having hydrogen is supplied to one electrode (anode) side of a pair of electrodes, and an oxidizing gas having oxygen is supplied to the other electrode (cathode: cathode) side. An electromotive force can be obtained by using an electrochemical reaction occurring between the two. The electrochemical reaction formula that occurs in the fuel cell is shown below.

→ 2H + 2e (1)
(1/2)O + 2H + 2e → HO (2)
+ (1/2)O → HO (3)
H 2 → 2H + + 2e (1)
(1/2) O 2 + 2H + + 2e → H 2 O (2)
H 2 + (1/2) O 2 → H 2 O (3)

式(1)はアノード側における反応を示す反応式であり、式(2)はカソード側における反応を示す反応式であり、式(3)は燃料電池全体の全反応を示す反応式である。   Equation (1) is a reaction equation showing the reaction on the anode side, Equation (2) is a reaction equation showing the reaction on the cathode side, and Equation (3) is a reaction equation showing the entire reaction of the entire fuel cell.

燃料電池(燃料電池発電装置)は使用する電解質の種類により分類されている。燃料電池の中で、高分子電解質膜を使用する固体高分子型燃料電池または固体高分子電解質形燃料電池(Polymer Electrolyte Fuel Cell : PEFC)、リン酸を電解質として使用するリン酸型燃料電池(Phosphoric Acid Fuel Cell : PAFC)、炭酸イオンを電荷担体とする電解質を使用する溶融炭酸塩型燃料電池(Molten Carbonate Fuel Cell : MCFC)等では、使用する電解質の性質から、二酸化炭素を含む酸化ガスまたは炭酸ガスを使用することが可能である。そこで、通常これらの燃料電池では、空気を酸化ガスとして用い、天然ガス等の炭化水素系の原燃料を水蒸気改質して生成した水素を含むガスを燃料ガスとして用いている。   Fuel cells (fuel cell power generators) are classified according to the type of electrolyte used. Among fuel cells, polymer electrolyte fuel cell or polymer electrolyte fuel cell (PEFC) using polymer electrolyte membrane, phosphoric acid fuel cell using phosphoric acid as electrolyte (Phosphoric) Acid Fuel Cell (PAFC), Molten Carbonate Fuel Cell (MCFC) that uses an electrolyte with carbonate ions as a charge carrier, etc., due to the nature of the electrolyte used, oxidizing gas or carbon dioxide containing carbon dioxide. It is possible to use gas. Therefore, in these fuel cells, normally, air is used as an oxidizing gas, and a gas containing hydrogen generated by steam reforming a hydrocarbon-based raw fuel such as natural gas is used as a fuel gas.

このため、上述のような燃料電池を備えた燃料電池発電装置(燃料電池システム)、例えば特許文献1または2に示されるような燃料電池発電装置には、改質器と水蒸気改質反応に伴って残存する一酸化炭素の濃度を下げるための一酸化炭素変性器とが設けられている。この改質器および一酸化炭素変性器において原燃料の改質を行ない、燃料ガスを生成している。式(4)は、燃料としてメタンを用いた場合の改質器におけるメタンの改質反応(水蒸気改質反応)を示す反応式である。   For this reason, in a fuel cell power generation device (fuel cell system) provided with the fuel cell as described above, for example, a fuel cell power generation device as disclosed in Patent Document 1 or 2, a reformer and a steam reforming reaction are accompanied. And a carbon monoxide modifier for reducing the concentration of the remaining carbon monoxide. In this reformer and carbon monoxide modifier, the raw fuel is reformed to produce fuel gas. Formula (4) is a reaction formula showing the reforming reaction of methane (steam reforming reaction) in the reformer when methane is used as the fuel.

CH + HO → CO + 3H (+206.14 KJ/mol:吸熱反応) (4) CH 4 + H 2 O → CO + 3H 2 (+206.14 KJ / mol: endothermic reaction) (4)

式(4)に示されるように、メタンの改質反応は気化熱および改質熱に等しい吸熱を要する吸熱反応である。この吸熱をまかなうために、メタンに水蒸気を添加した上で、燃料電池からの燃料オフガスを燃焼させた燃焼排ガスを利用して、粒状改質触媒を600〜700℃に保つことにより、水素に富む(水素リッチな)改質ガスを生成している。   As shown in Equation (4), the reforming reaction of methane is an endothermic reaction that requires an endotherm equal to the heat of vaporization and the heat of reforming. In order to cover this endotherm, water is added to methane, and then the granular reforming catalyst is kept at 600 to 700 ° C. using combustion exhaust gas obtained by burning fuel off-gas from the fuel cell. It produces reformed gas (hydrogen-rich).

改質器を出た改質ガスは、改質ガス中の一酸化炭素濃度を低減させるために一酸化炭素変性器へ供給される。この一酸化炭素変性器で一酸化炭素濃度は1%以下に低減されるため、白金触媒の劣化を防ぐために一酸化炭素濃度を1%以下にする必要のあるリン酸型燃料電池(PAFC)であれば、このガスをPAFC本体へと導入して発電を行なうことができる。   The reformed gas exiting the reformer is supplied to the carbon monoxide modifier in order to reduce the carbon monoxide concentration in the reformed gas. With this carbon monoxide modifier, the carbon monoxide concentration is reduced to 1% or less, so in a phosphoric acid fuel cell (PAFC) that needs to have a carbon monoxide concentration of 1% or less to prevent deterioration of the platinum catalyst. If there is, this gas can be introduced into the PAFC body to generate electricity.

一方、固体高分子型燃料電池(PEFC)は、高分子電解質膜の抵抗が小さいため動作温度は60〜80℃と低い。このため、両極の反応が迅速に進むように電極触媒として白金が使用されている。しかし改質ガス中に一酸化炭素が存在すると、この一酸化炭素による触媒被毒により活性が低下するため、一酸化炭素濃度をさらに低減させる必要がある。そこで改質ガスは一酸化炭素変性器に供給され、ここで一酸化炭素濃度を10ppm以下に低減させている。   On the other hand, the polymer electrolyte fuel cell (PEFC) has a low operating temperature of 60 to 80 ° C. because the resistance of the polymer electrolyte membrane is small. For this reason, platinum is used as an electrode catalyst so that the reaction of both electrodes proceeds rapidly. However, if carbon monoxide is present in the reformed gas, the activity is lowered due to catalyst poisoning by the carbon monoxide, so that it is necessary to further reduce the carbon monoxide concentration. Therefore, the reformed gas is supplied to a carbon monoxide modifier, where the carbon monoxide concentration is reduced to 10 ppm or less.

上述のように、固体高分子型燃料電池(PEFC)は動作温度(反応温度)が低いため、反応温度が約180℃のリン酸型燃料電池(PAFC)と異なり、その発熱量で改質用の水蒸気を発生させることができない。このため改質系機器の中で水蒸気を発生させる必要がある。この水蒸気発生のための熱量(気化熱)は、改質器内部の余熱または改質器を出た後の燃焼排ガスとの熱交換により得ている。すなわち改質用蒸気は、改質蒸気用水を改質蒸気用水供給ポンプにより改質器内部または外部の蒸気発生部へ供給し蒸気化することによって得られている。   As described above, since the polymer electrolyte fuel cell (PEFC) has a low operating temperature (reaction temperature), it differs from a phosphoric acid fuel cell (PAFC) with a reaction temperature of about 180 ° C., and its calorific value is used for reforming. Of water vapor cannot be generated. For this reason, it is necessary to generate water vapor in the reforming equipment. The amount of heat (vaporization heat) for generating water vapor is obtained by heat exchange with the residual heat inside the reformer or the combustion exhaust gas after leaving the reformer. In other words, the reforming steam is obtained by supplying the reforming steam water to the steam generating section inside or outside the reformer by the reforming steam water supply pump and vaporizing it.

図4は、従来の燃料電池発電装置80の構成の概略を示す。図4において、符号3は改質器、4は改質器から出た改質ガス中の一酸化炭素濃度を低減させる一酸化炭素(CO)変性器、5はCO変性器4から出た改質ガスに含まれる一酸化炭素を二酸化炭素へ変換することにより除去する一酸化炭素(CO)除去器、6は燃料電池であり図面の都合上アノード16、カソード17およびカソード側流路CW18のみ示す。符号11は空気30を改質器3のバーナ20へ供給する燃焼空気ブロワ、10は原燃料32を脱硫器1へ供給する原燃料ガスブロワ、1は原燃料ガスブロワ10により供給された原燃料32に含まれる硫黄分の脱硫を行なう脱硫器、7は改質蒸気用水を蓄えた改質蒸気用水タンク、8は改質蒸気用水タンク7に蓄えられた改質蒸気用水を蒸気発生器2へ供給する改質蒸気用水供給ポンプ、2は脱硫器1で脱硫された原燃料32に混合された、改質蒸気用水供給ポンプ8により供給された改質蒸気用水から水蒸気を発生させる蒸気発生器、25は改質蒸気用水供給ポンプ8により蒸気発生器2へ供給される改質蒸気用水の流量を測定する改質蒸気用水流量計、13は改質蒸気用水流量計25により測定された改質蒸気用水の流量に基づき改質蒸気用水供給ポンプ8を制御する制御装置である。制御装置13、改質蒸気用水流量計25および改質蒸気用水供給ポンプ8間の制御信号等は点線で示す。   FIG. 4 shows a schematic configuration of a conventional fuel cell power generator 80. In FIG. 4, reference numeral 3 is a reformer, 4 is a carbon monoxide (CO) modifier that reduces the concentration of carbon monoxide in the reformed gas exiting from the reformer, and 5 is a reformer that exits from the CO modifier 4. A carbon monoxide (CO) remover for removing carbon monoxide contained in the gaseous gas by converting it into carbon dioxide, 6 is a fuel cell, and for the sake of convenience of the drawing, only the anode 16, the cathode 17 and the cathode side flow path CW18 are shown. . Reference numeral 11 is a combustion air blower for supplying air 30 to the burner 20 of the reformer 3, 10 is a raw fuel gas blower for supplying raw fuel 32 to the desulfurizer 1, and 1 is a raw fuel 32 supplied by the raw fuel gas blower 10. A desulfurizer for desulfurizing contained sulfur, 7 is a reformed steam water tank storing reformed steam water, and 8 is supplied with reformed steam water stored in the reformed steam water tank 7 to the steam generator 2. A reforming steam water supply pump 2 is a steam generator for generating steam from the reforming steam water supplied by the reforming steam water supply pump 8 mixed with the raw fuel 32 desulfurized by the desulfurizer 1, and 25 is A reforming steam water flow meter that measures the flow rate of the reforming steam water supplied to the steam generator 2 by the reforming steam water supply pump 8, and 13 is the reforming steam water measured by the reforming steam water flow meter 25. Modified steam based on flow rate A control device for controlling the water supply pump 8. Control signals and the like between the control device 13, the reforming steam water flow meter 25, and the reforming steam water supply pump 8 are indicated by dotted lines.

次に、従来の燃料電池発電装置80の動作を説明する。脱硫器1において硫黄分を取り除かれた原燃料32は、改質蒸気用水供給ポンプ8により供給された改質蒸気用水と混合された後、蒸気発生器2へ供給されて気化され、改質器3へ供給される。改質器3では式(4)で示される水蒸気改質反応によって水素リッチな改質ガスが生成される。上述のように吸熱反応をまかなうため、燃料電池6からの燃料オフガス33がバーナ20へ供給されて炉内22で燃焼され、触媒層21の温度を上げる。燃焼排ガス9は改質器3外へ排出される。   Next, the operation of the conventional fuel cell power generator 80 will be described. The raw fuel 32 from which the sulfur content has been removed in the desulfurizer 1 is mixed with the reforming steam water supplied by the reforming steam water supply pump 8 and then supplied to the steam generator 2 to be vaporized. 3 is supplied. In the reformer 3, a hydrogen-rich reformed gas is generated by the steam reforming reaction represented by the formula (4). In order to carry out the endothermic reaction as described above, the fuel off gas 33 from the fuel cell 6 is supplied to the burner 20 and burned in the furnace 22 to raise the temperature of the catalyst layer 21. The combustion exhaust gas 9 is discharged out of the reformer 3.

改質器3から出た改質ガスはCO変性器4へ供給されて一酸化炭素反応により水素濃度が高められる。その後、一定量の空気(不図示)と共にCO除去器5へ供給されて二酸化炭素へ変換する一酸化炭素選択酸化反応により、一酸化炭素濃度が10ppm以下に低減される。以上のように一酸化炭素濃度が低濃度になった改質ガスが燃料電池6もアノード16へ供給される。
特開2003−86210 特開平6−176787
The reformed gas exiting from the reformer 3 is supplied to the CO reformer 4 and the hydrogen concentration is increased by the carbon monoxide reaction. Thereafter, the carbon monoxide concentration is reduced to 10 ppm or less by a carbon monoxide selective oxidation reaction that is supplied to the CO remover 5 together with a certain amount of air (not shown) and converted to carbon dioxide. As described above, the reformed gas having a low carbon monoxide concentration is also supplied to the anode 16 of the fuel cell 6.
JP 2003-86210 A JP-A-6-176787

上述した従来の燃料電池発電装置80では、改質蒸気用水は原燃料32の流量に対して正確な比率で供給される必要がある。改質蒸気用水が少なすぎる比率で供給された場合、水蒸気改質反応が正常に行なわれないため、改質器3の触媒層21にカーボンが析出する等の不具合が起きてしまう。一方、改質蒸気用水が多すぎる比率で供給された場合、蒸発のためのエネルギーが余分に消費されるため、熱効率が低下するという問題があった。さらに、改質蒸気用水供給ポンプ8は、それ自体への入力電圧を一定にしても下流側の圧力変化または経時的な性能変化によって流量が変化するため、常時、流量を監視して制御する必要上、改質蒸気用水流量計25が不可欠である。しかし、一般的に改質蒸気用水流量計25は高価であり、改質蒸気用水流量計25自体の誤動作により制御不良が生じることもあるという問題があった。   In the conventional fuel cell power generator 80 described above, the reformed steam water needs to be supplied at an accurate ratio to the flow rate of the raw fuel 32. If the reforming steam water is supplied at a ratio that is too small, the steam reforming reaction will not be performed normally, and problems such as carbon deposition on the catalyst layer 21 of the reformer 3 will occur. On the other hand, when the water for reforming steam is supplied at an excessively large ratio, there is a problem in that the heat efficiency is reduced because extra energy is consumed for evaporation. Furthermore, since the flow rate of the reforming steam water supply pump 8 changes due to a pressure change on the downstream side or a change in performance over time even if the input voltage to the reforming steam is constant, it is necessary to always monitor and control the flow rate. In addition, the reforming steam water flow meter 25 is indispensable. However, the reformed steam water flow meter 25 is generally expensive, and there is a problem that a malfunction may occur due to malfunction of the reformed steam water flow meter 25 itself.

そこで、本発明の目的は、上記問題を解決するためになされたものであり、高価でかつ誤動作を生じることがある改質蒸気用水流量計を用いることなく、改質蒸気用水供給ポンプの下流側の圧力変化または経時的な性能変化に左右されることなく、改質蒸気用水の流量を制御することができる燃料電池の改質蒸気用水流量の制御方法を提供することにある。   Accordingly, an object of the present invention has been made to solve the above-described problem, and without using a reforming steam water flow meter that is expensive and may cause a malfunction, on the downstream side of the reforming steam water supply pump. It is an object of the present invention to provide a method for controlling the flow rate of reforming steam water in a fuel cell, which can control the flow rate of reforming steam water without being affected by the pressure change or performance change over time.

この発明の改質蒸気用水流量制御方法は、水素リッチな改質ガスを用いて発電する燃料電池と、原燃料から水素リッチな改質ガスを生成して該燃料電池へ供給する改質部と、混合された原燃料と改質蒸気用水供給ポンプにより供給された改質蒸気用水とから水蒸気を発生させて該改質部へ供給する蒸気発生部とを備えた燃料電池発電装置の改質蒸気用水の流量を制御する改質蒸気用水流量制御方法であって、前記改質蒸気用水供給ポンプの電圧の増減により該蒸気発生部へ供給される改質蒸気用水の流量を制御して、該蒸気発生部の内部で測定された温度を所定の負荷率により定めた一定の温度に保たせることを特徴とする。 The method for controlling the flow rate of water for reforming steam according to the present invention includes a fuel cell that generates power using hydrogen-rich reformed gas, and a reformer that generates hydrogen-rich reformed gas from raw fuel and supplies the reformed gas to the fuel cell. The reformed steam of the fuel cell power generation apparatus comprising: a steam generating unit that generates steam from the mixed raw fuel and the reformed steam water supplied by the reformed steam water supply pump and supplies the steam to the reformed unit a reforming steam water flow control method for controlling the flow rate of the water, by controlling the flow rate of the reforming steam water supplied to the steam generator by increasing or decreasing the voltage of the reforming steam water supply pump, the vapor The temperature measured inside the generator is maintained at a constant temperature determined by a predetermined load factor .

ここで、この発明の改質蒸気用水流量制御方法において、前記蒸気発生部は前記改質器の内部に設置されたものとすることができる。   Here, in the method for controlling the flow rate of water for reforming steam according to the present invention, the steam generating section may be installed inside the reformer.

この発明の改質蒸気用水流量制御方法は、水素リッチな改質ガスを用いて発電する燃料電池と、原燃料から水素リッチな改質ガスを生成して該燃料電池へ供給する改質部と、混合された原燃料と改質蒸気用水供給ポンプにより供給された改質蒸気用水とから水蒸気を発生させて該改質部へ供給する該改質部内部に設置された蒸気発生部とを備えた燃料電池発電装置の改質蒸気用水の流量を制御する改質蒸気用水流量制御方法であって、前記改質蒸気用水供給ポンプの電圧の増減により該蒸気発生部へ供給される改質蒸気用水の流量を制御して、前記改質部の入口で測定された温度を所定の負荷率により定めた一定の温度に保たせることを特徴とする。 The method for controlling the flow rate of water for reforming steam according to the present invention includes a fuel cell that generates power using hydrogen-rich reformed gas, and a reformer that generates hydrogen-rich reformed gas from raw fuel and supplies the reformed gas to the fuel cell. A steam generation unit installed in the reforming unit for generating steam from the mixed raw fuel and the reforming steam water supplied by the reforming steam water supply pump and supplying the steam to the reforming unit. A reformed steam water flow rate control method for controlling the flow rate of reformed steam water in a fuel cell power generator, wherein the reformed steam water is supplied to the steam generator by increasing or decreasing the voltage of the reformed steam water supply pump. The temperature measured at the inlet of the reforming section is maintained at a constant temperature determined by a predetermined load factor .

この発明の改質蒸気用水流量制御方法は、水素リッチな改質ガスを用いて発電する燃料電池と、原燃料から水素リッチな改質ガスを生成して該燃料電池へ供給する改質部と、混合された原燃料と改質蒸気用水供給ポンプにより供給された改質蒸気用水とから水蒸気を発生させて該改質部へ供給する蒸気発生部とを備えた燃料電池発電装置の改質蒸気用水の流量を制御する改質蒸気用水流量制御方法であって、前記改質蒸気用水供給ポンプの電圧を所定の負荷率に基づいて設定しておき、前記蒸気発生部の内部で測定された温度又は該蒸気発生部が前記改質部内部に設置された場合であって該改質部の入口で測定された温度に基づき該改質蒸気用水供給ポンプの電圧を補正することを特徴とする。The method for controlling the flow rate of water for reforming steam according to the present invention includes a fuel cell that generates power using hydrogen-rich reformed gas, and a reformer that generates hydrogen-rich reformed gas from raw fuel and supplies the reformed gas to the fuel cell. The reformed steam of the fuel cell power generation apparatus comprising: a steam generating unit that generates steam from the mixed raw fuel and the reformed steam water supplied by the reformed steam water supply pump and supplies the steam to the reformed unit A reformed steam water flow rate control method for controlling the flow rate of water for use, wherein the voltage of the reformed steam water supply pump is set based on a predetermined load factor, and the temperature measured inside the steam generating unit Alternatively, the steam generation unit is installed inside the reforming unit, and the voltage of the reforming steam water supply pump is corrected based on the temperature measured at the inlet of the reforming unit.

従来の燃料電池発電装置80における改質蒸気用水流量計25を取り去った上で、蒸気発生器2内に温度制御点を設ける。制御装置13は温度制御点の温度を温度測定器により測定し、当該温度が所定の負荷率により定めた一定の温度となるように、改質蒸気用水供給ポンプ8の電圧を増減させる。この結果、高価でかつ誤動作を生じることがある改質蒸気用水流量計25を用いることなく、改質蒸気用水供給ポンプ8の下流側の圧力変化または経時的な性能変化に左右されることなく、改質蒸気用水の流量を制御できる燃料電池6の改質蒸気用水流量の制御方法を提供することができる。   After removing the reformed steam water flow meter 25 in the conventional fuel cell power generator 80, a temperature control point is provided in the steam generator 2. The control device 13 measures the temperature of the temperature control point with a temperature measuring device, and increases or decreases the voltage of the reforming steam water supply pump 8 so that the temperature becomes a constant temperature determined by a predetermined load factor. As a result, without using the reforming steam water flow meter 25 that is expensive and may cause a malfunction, it is not affected by the pressure change on the downstream side of the reforming steam water supply pump 8 or the performance change over time, A method for controlling the flow rate of water for reforming steam of the fuel cell 6 that can control the flow rate of water for reforming steam can be provided.

以下、各実施例について図面を参照して詳細に説明する。   Hereinafter, each embodiment will be described in detail with reference to the drawings.

図1は、本発明の実施例1における燃料電池発電装置50の構成の概要を示す。図1において、図4の従来の燃料電池発電装置80と同じ符号を付した箇所は同じ要素を示すため説明は省略する。本実施例1における燃料電池発電装置50が従来の燃料電池発電装置80と異なる点は、図1に示されるように改質蒸気用水流量計25を取り去った上で、蒸気発生器(蒸気発生部)2内に温度制御点14を設けた点にある。制御装置13は、温度制御点14の温度を温度測定器19により測定し、当該温度が所定の負荷率により定めた一定の温度となるように、改質蒸気用水供給ポンプ(供給部)8の電圧(制御入力)を増減させる。燃料電池発電装置50の改質器(改質部)3周りの温度は常に負荷に応じた温度に制御されている。このため、上述のように改質蒸気用水供給ポンプ88の電圧を増減させることにより蒸気発生器2の温度を一定に保つようにすれば、改質蒸気用水供給ポンプ8の下流側の圧力変化または経時的な性能変化に左右されることなく、改質蒸気用水の流量を制御することができる。   FIG. 1 shows an outline of the configuration of a fuel cell power generator 50 according to Embodiment 1 of the present invention. In FIG. 1, the portions denoted by the same reference numerals as those of the conventional fuel cell power generation device 80 of FIG. The difference between the fuel cell power generation device 50 of the first embodiment and the conventional fuel cell power generation device 80 is that the reformer steam water flow meter 25 is removed as shown in FIG. 2) The temperature control point 14 is provided in 2. The control device 13 measures the temperature of the temperature control point 14 with the temperature measuring device 19, and the reforming steam water supply pump (supply unit) 8 is configured so that the temperature becomes a constant temperature determined by a predetermined load factor. Increase or decrease the voltage (control input). The temperature around the reformer (reformer) 3 of the fuel cell power generator 50 is always controlled to a temperature corresponding to the load. Therefore, if the temperature of the steam generator 2 is kept constant by increasing / decreasing the voltage of the reforming steam water supply pump 88 as described above, the pressure change downstream of the reforming steam water supply pump 8 or The flow rate of the water for reforming steam can be controlled without being affected by the change in performance over time.

以上より、本発明の実施例1によれば、従来の燃料電池発電装置80における改質蒸気用水流量計25を取り去った上で、蒸気発生器2内に温度制御点14を設ける。制御装置13は温度制御点14の温度を温度測定器19により測定し、当該温度が所定の負荷率により定めた一定の温度となるように、改質蒸気用水供給ポンプ8の電圧を増減させることができる。この結果、高価でかつ誤動作を生じることがある改質蒸気用水流量計25を用いることなく、改質蒸気用水供給ポンプ8の下流側の圧力変化または経時的な性能変化に左右されることなく、改質蒸気用水の流量を制御できる燃料電池6の改質蒸気用水流量の制御方法を提供することができる。   As described above, according to the first embodiment of the present invention, the temperature control point 14 is provided in the steam generator 2 after removing the reformed steam water flow meter 25 in the conventional fuel cell power generator 80. The control device 13 measures the temperature of the temperature control point 14 by the temperature measuring device 19 and increases or decreases the voltage of the reforming steam water supply pump 8 so that the temperature becomes a constant temperature determined by a predetermined load factor. Can do. As a result, without using the reforming steam water flow meter 25 that is expensive and may cause a malfunction, it is not affected by the pressure change on the downstream side of the reforming steam water supply pump 8 or the performance change over time, A method for controlling the flow rate of water for reforming steam of the fuel cell 6 that can control the flow rate of water for reforming steam can be provided.

図2は、本発明の実施例2における燃料電池発電装置60の構成の概要を示す。図2において、図1の燃料電池発電装置50と同じ符号を付した箇所は同じ要素を示すため説明は省略する。本実施例1における燃料電池発電装置60が燃料電池発電装置50と異なる点は、図2に示されるように蒸気発生器2を改質器3の内部に設置した点にある。実施例1と同様に、制御装置13が改質器3の内部にある温度制御点14の温度を温度測定器19により測定し、当該温度が所定の負荷率により定めた一定の温度となるように、改質蒸気用水供給ポンプ8の電圧を増減させることができる。このため、実施例1と同様に改質蒸気用水供給ポンプ8の下流側の圧力変化または経時的な性能変化に左右されることなく、改質蒸気用水の流量を制御することができる。   FIG. 2 shows an outline of the configuration of the fuel cell power generator 60 according to Embodiment 2 of the present invention. In FIG. 2, portions denoted by the same reference numerals as those of the fuel cell power generation device 50 of FIG. The difference between the fuel cell power generation device 60 in the first embodiment and the fuel cell power generation device 50 is that the steam generator 2 is installed inside the reformer 3 as shown in FIG. As in the first embodiment, the control device 13 measures the temperature of the temperature control point 14 inside the reformer 3 with the temperature measuring device 19 so that the temperature becomes a constant temperature determined by a predetermined load factor. Furthermore, the voltage of the reforming steam water supply pump 8 can be increased or decreased. For this reason, the flow rate of the reforming steam water can be controlled without being influenced by the pressure change or the performance change with time on the downstream side of the reforming steam water supply pump 8 as in the first embodiment.

以上より、本発明の実施例2によれば、蒸気発生器2を改質器3の内部に設置し、制御装置13が改質器3の内部にある温度制御点14の温度を温度測定器19により測定し、当該温度が所定の負荷率により定めた一定の温度となるように、改質蒸気用水供給ポンプ8の電圧を増減させることができる。この結果、蒸気発生器2を改質器3の内部に設置した場合であっても実施例1と同様に、高価でかつ誤動作を生じることがある改質蒸気用水流量計25を用いることなく、改質蒸気用水供給ポンプ8の下流側の圧力変化または経時的な性能変化に左右されることなく、改質蒸気用水の流量を制御できる燃料電池6の改質蒸気用水流量の制御方法を提供することができる。   As described above, according to the second embodiment of the present invention, the steam generator 2 is installed inside the reformer 3, and the control device 13 determines the temperature at the temperature control point 14 inside the reformer 3 as a temperature measuring device. The voltage of the reforming steam water supply pump 8 can be increased or decreased so that the temperature measured at 19 becomes a constant temperature determined by a predetermined load factor. As a result, even when the steam generator 2 is installed inside the reformer 3, as in the first embodiment, without using the reformed steam water flow meter 25 which may be expensive and cause malfunction, Provided is a method for controlling the flow rate of water for reforming steam of a fuel cell 6 that can control the flow rate of water for reforming steam without being affected by the pressure change or the change in performance over time of the water supply pump for reforming steam 8. be able to.

図3は、本発明の実施例3における燃料電池発電装置70の構成の概要を示す。図3において、図2の燃料電池発電装置60と同じ符号を付した箇所は同じ要素を示すため説明は省略する。本実施例3における燃料電池発電装置70が燃料電池発電装置60と異なる点は、図3に示されるように温度制御点14を、蒸気発生器2の内部ではなく、改質器3の触媒層21の入り口(改質部の入口)に設置した点にある。実施例2と同様に、制御装置13が改質器3の触媒層21の入口にある温度制御点14の温度を温度測定器19により測定し、当該温度が所定の負荷率により定めた一定の温度となるように、改質蒸気用水供給ポンプ8の電圧を増減させることができる。このため、実施例2と同様に改質蒸気用水供給ポンプ8の下流側の圧力変化または経時的な性能変化に左右されることなく、改質蒸気用水の流量を制御することができる。   FIG. 3 shows an outline of the configuration of the fuel cell power generator 70 according to Embodiment 3 of the present invention. In FIG. 3, the portions denoted by the same reference numerals as those of the fuel cell power generation device 60 of FIG. The difference between the fuel cell power generation device 70 and the fuel cell power generation device 60 in the third embodiment is that the temperature control point 14 is not the inside of the steam generator 2 but the catalyst layer of the reformer 3 as shown in FIG. It is in the point installed in 21 entrances (reformer entrance). As in the second embodiment, the control device 13 measures the temperature of the temperature control point 14 at the inlet of the catalyst layer 21 of the reformer 3 with the temperature measuring device 19, and the temperature is a constant determined by a predetermined load factor. The voltage of the reforming steam water supply pump 8 can be increased or decreased to reach the temperature. For this reason, similarly to the second embodiment, the flow rate of the reforming steam water can be controlled without being influenced by the pressure change on the downstream side of the reforming steam water supply pump 8 or the performance change with time.

以上より、本発明の実施例3によれば、温度制御点14を改質器3の触媒層21の入口に設置し、制御装置13が触媒層21の入口にある温度制御点14の温度を温度測定器19により測定し、当該温度が所定の負荷率により定めた一定の温度となるように、改質蒸気用水供給ポンプ8の電圧を増減させることができる。この結果、温度制御点14を改質器3の触媒層21の入口に設置した場合であっても実施例2と同様に、高価でかつ誤動作を生じることがある改質蒸気用水流量計25を用いることなく、改質蒸気用水供給ポンプ8の下流側の圧力変化または経時的な性能変化に左右されることなく、改質蒸気用水の流量を制御できる燃料電池6の改質蒸気用水流量の制御方法を提供することができる。   As described above, according to the third embodiment of the present invention, the temperature control point 14 is installed at the inlet of the catalyst layer 21 of the reformer 3, and the control device 13 sets the temperature of the temperature control point 14 at the inlet of the catalyst layer 21. The voltage of the reforming steam water supply pump 8 can be increased or decreased so that the temperature is measured by the temperature measuring device 19 and the temperature becomes a constant temperature determined by a predetermined load factor. As a result, even when the temperature control point 14 is installed at the inlet of the catalyst layer 21 of the reformer 3, the reformed steam water flow meter 25, which is expensive and may cause malfunction, as in the second embodiment. Control of the flow rate of water for reforming steam of the fuel cell 6 that can control the flow rate of water for reforming steam without using it and without being influenced by the pressure change on the downstream side of the water supply pump for reforming steam 8 or the change in performance over time. A method can be provided.

上述の実施例1ないし3では、蒸気発生器2の内部の温度または改質器3の触媒層21の入口の温度を、所定の負荷率により定めた一定の値となるように改質蒸気用水供給ポンプ8の電圧を増減させる方法について説明した。その他の方法として、まず改質蒸気用水供給ポンプ8の電圧を所定の負荷率により定めておく。すなわち改質蒸気用水供給ポンプ8の供給能力を所定の負荷率により定めておく。その上で、蒸気発生器2の内部の温度または改質器3の触媒層21の入口の温度を温度測定器19により測定しながら、当該電圧を補正する方法を用いることもできる。   In the above-described Examples 1 to 3, the water for reforming steam is set so that the temperature inside the steam generator 2 or the temperature of the inlet of the catalyst layer 21 of the reformer 3 becomes a constant value determined by a predetermined load factor. The method for increasing or decreasing the voltage of the supply pump 8 has been described. As another method, first, the voltage of the reforming steam water supply pump 8 is determined by a predetermined load factor. That is, the supply capacity of the reforming steam water supply pump 8 is determined by a predetermined load factor. In addition, a method of correcting the voltage while measuring the temperature inside the steam generator 2 or the temperature of the inlet of the catalyst layer 21 of the reformer 3 with the temperature measuring device 19 can also be used.

本発明の活用例として、特に固体高分子型燃料電池(PEFC)による燃料電池発電装置への適用が挙げられる。   As an application example of the present invention, application to a fuel cell power generator using a polymer electrolyte fuel cell (PEFC) is particularly mentioned.

本発明の実施例1における燃料電池発電装置50の構成の概要を示す図である。It is a figure which shows the outline | summary of a structure of the fuel cell electric power generating apparatus 50 in Example 1 of this invention. 本発明の実施例2における燃料電池発電装置60の構成の概要を示す図である。It is a figure which shows the outline | summary of a structure of the fuel cell electric power generating apparatus 60 in Example 2 of this invention. 本発明の実施例3における燃料電池発電装置70の構成の概要を示す図である。It is a figure which shows the outline | summary of a structure of the fuel cell electric power generating apparatus 70 in Example 3 of this invention. 従来の燃料電池発電装置80の構成の概略を示す図である。It is a figure which shows the outline of a structure of the conventional fuel cell power generator 80. FIG.

符号の説明Explanation of symbols

1 脱硫器、 2 蒸気発生器、 3 改質器、 4 CO変性器、 5 CO除去器、 6 燃料電池、 7 改質蒸気用水タンク、 8 改質蒸気用水供給ポンプ、 9 燃焼排ガス、 10 原燃料ガスブロワ、 11 燃焼空気ブロワ、 13 制御装置、 14 温度制御点、 16 アノード、 17 カソード、 18 CW(クーリングウォーター)、 19 温度測定器、 20 バーナ、 21 触媒層、 22 炉内、 25 改質蒸気用水流量計、 30 空気、 33 燃料オフガス、 50,60,70 燃料電池発電装置、 80 従来の燃料電池発電装置。
DESCRIPTION OF SYMBOLS 1 Desulfurizer, 2 Steam generator, 3 Reformer, 4 CO modifier, 5 CO remover, 6 Fuel cell, 7 Water tank for reformed steam, 8 Water supply pump for reformed steam, 9 Combustion exhaust gas, 10 Raw fuel Gas blower, 11 Combustion air blower, 13 Control device, 14 Temperature control point, 16 Anode, 17 Cathode, 18 CW (cooling water), 19 Temperature measuring device, 20 Burner, 21 Catalyst layer, 22 In-furnace, 25 Water for reforming steam Flow meter, 30 air, 33 fuel off-gas, 50, 60, 70 fuel cell power generator, 80 conventional fuel cell power generator.

Claims (4)

水素リッチな改質ガスを用いて発電する燃料電池と、原燃料から水素リッチな改質ガスを生成して該燃料電池へ供給する改質部と、混合された原燃料と改質蒸気用水供給ポンプにより供給された改質蒸気用水とから水蒸気を発生させて該改質部へ供給する蒸気発生部とを備えた燃料電池発電装置の改質蒸気用水の流量を制御する改質蒸気用水流量制御方法であって、
前記改質蒸気用水供給ポンプの電圧の増減により該蒸気発生部へ供給される改質蒸気用水の流量を制御して、該蒸気発生部の内部で測定された温度を所定の負荷率により定めた一定の温度に保たせることを特徴とする改質蒸気用水流量制御方法。
A fuel cell that generates power using hydrogen-rich reformed gas, a reforming unit that generates hydrogen-rich reformed gas from raw fuel and supplies the reformed gas to the fuel cell, and a mixed raw fuel and water supply for reformed steam Water flow control for reforming steam for controlling the flow rate of reforming steam water of a fuel cell power generation device comprising steam for generating steam from reforming steam water supplied by a pump and supplying the steam to the reforming unit A method,
The flow rate of the reforming steam water supplied to the steam generating unit is controlled by increasing or decreasing the voltage of the reforming steam water supply pump, and the temperature measured inside the steam generating unit is determined by a predetermined load factor. A method for controlling the flow rate of water for reforming steam, characterized by maintaining a constant temperature .
請求項1記載の改質蒸気用水流量制御方法において、前記蒸気発生部は前記改質器の内部に設置されたことを特徴とする改質蒸気用水流量制御方法。   The method for controlling the flow rate of water for reforming steam according to claim 1, wherein the steam generator is installed inside the reformer. 水素リッチな改質ガスを用いて発電する燃料電池と、原燃料から水素リッチな改質ガスを生成して該燃料電池へ供給する改質部と、混合された原燃料と改質蒸気用水供給ポンプにより供給された改質蒸気用水とから水蒸気を発生させて該改質部へ供給する該改質部内部に設置された蒸気発生部とを備えた燃料電池発電装置の改質蒸気用水の流量を制御する改質蒸気用水流量制御方法であって、
前記改質蒸気用水供給ポンプの電圧の増減により該蒸気発生部へ供給される改質蒸気用水の流量を制御して、前記改質部の入口で測定された温度を所定の負荷率により定めた一定の温度に保たせることを特徴とする改質蒸気用水流量制御方法。
A fuel cell that generates power using hydrogen-rich reformed gas, a reforming unit that generates hydrogen-rich reformed gas from raw fuel and supplies the reformed gas to the fuel cell, and a mixed raw fuel and water supply for reformed steam A flow rate of water for reforming steam of a fuel cell power generator comprising steam for generating steam from reformed steam water supplied by a pump and supplying the steam to the reforming unit. A water flow rate control method for reforming steam for controlling
The flow rate of the reforming steam water supplied to the steam generating unit is controlled by increasing or decreasing the voltage of the reforming steam water supply pump, and the temperature measured at the inlet of the reforming unit is determined by a predetermined load factor. A method for controlling the flow rate of water for reforming steam, characterized by maintaining a constant temperature .
水素リッチな改質ガスを用いて発電する燃料電池と、原燃料から水素リッチな改質ガスを生成して該燃料電池へ供給する改質部と、混合された原燃料と改質蒸気用水供給ポンプにより供給された改質蒸気用水とから水蒸気を発生させて該改質部へ供給する蒸気発生部とを備えた燃料電池発電装置の改質蒸気用水の流量を制御する改質蒸気用水流量制御方法であって、A fuel cell that generates power using hydrogen-rich reformed gas, a reforming unit that generates hydrogen-rich reformed gas from raw fuel and supplies the reformed gas to the fuel cell, and a mixed raw fuel and water supply for reformed steam Water flow control for reforming steam for controlling the flow rate of reforming steam water of a fuel cell power generation device comprising steam for generating steam from reforming steam water supplied by a pump and supplying the steam to the reforming unit A method,
前記改質蒸気用水供給ポンプの電圧を所定の負荷率に基づいて設定しておき、  The voltage of the reforming steam water supply pump is set based on a predetermined load factor,
前記蒸気発生部の内部で測定された温度又は該蒸気発生部が前記改質部内部に設置された場合であって該改質部の入口で測定された温度に基づき該改質蒸気用水供給ポンプの電圧を補正することを特徴とする改質蒸気用水流量制御方法。The reformed steam water supply pump based on the temperature measured inside the steam generating section or the temperature measured at the inlet of the reforming section when the steam generating section is installed inside the reforming section A method for controlling the flow rate of water for reforming steam, which corrects the voltage of the steam.
JP2003389925A 2003-11-19 2003-11-19 Water flow control method for reforming steam Expired - Fee Related JP4466049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003389925A JP4466049B2 (en) 2003-11-19 2003-11-19 Water flow control method for reforming steam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003389925A JP4466049B2 (en) 2003-11-19 2003-11-19 Water flow control method for reforming steam

Publications (2)

Publication Number Publication Date
JP2005150044A JP2005150044A (en) 2005-06-09
JP4466049B2 true JP4466049B2 (en) 2010-05-26

Family

ID=34696504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003389925A Expired - Fee Related JP4466049B2 (en) 2003-11-19 2003-11-19 Water flow control method for reforming steam

Country Status (1)

Country Link
JP (1) JP4466049B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5044135B2 (en) * 2006-03-31 2012-10-10 大阪瓦斯株式会社 Fuel cell power generator
JP2010153062A (en) * 2008-12-24 2010-07-08 Kyocera Corp Fuel battery device
JP5285790B2 (en) * 2012-03-02 2013-09-11 大阪瓦斯株式会社 Fuel cell power generator
JP7323439B2 (en) * 2019-12-16 2023-08-08 東京瓦斯株式会社 Reforming device, hydrogen production device, fuel cell system, and method for determining vaporization in reforming catalyst

Also Published As

Publication number Publication date
JP2005150044A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP4619753B2 (en) Fuel cell operation control method and system therefor
JP4870909B2 (en) Fuel cell power generator
JP2007137719A (en) Fuel reforming apparatus, and fuel cell power generation apparatus using it and its operation method
JPH08306369A (en) Hybrid fuel cell generating apparatus
JP4727642B2 (en) Operation method of hydrogen production power generation system
JP4466049B2 (en) Water flow control method for reforming steam
JP2007194098A (en) Fuel cell power generation system
JP2007200771A (en) Reforming catalyst temperature control system and control method of fuel cell power generator
JP2008226602A (en) Temperature control system of reformer in fuel cell device
JP4620399B2 (en) Control method of fuel cell power generation system
JP4929565B2 (en) Fuel cell power generator
JP2009117170A (en) Hydrogen and power generating system, and load following power generation method therein
JP4476581B2 (en) FUEL CELL POWER GENERATION SYSTEM, CONTROL METHOD FOR THE FUEL CELL POWER GENERATION SYSTEM, CONTROL PROGRAM FOR IMPLEMENTING THE CONTROL METHOD, AND RECORDING MEDIUM CONTAINING THE CONTROL PROGRAM
JP2005108509A (en) Fuel cell power generating system
JP3872006B2 (en) Fuel cell power generation system
JP4246053B2 (en) Starting method of fuel cell power generation system
JP2005285593A (en) Method for operating fuel cell generator
JP2015191692A (en) Method of stopping fuel battery system and fuel battery system
JP4442204B2 (en) Fuel cell power generation system
JP4467924B2 (en) Fuel cell power generation system
JP4467929B2 (en) Fuel cell power generation system
JP5592760B2 (en) Fuel cell power generation system
KR101295237B1 (en) Fuel cell system
JP3886887B2 (en) Fuel cell power generation system
JP2002241108A (en) Fuel reforming apparatus and fuel cell power generation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees