JP2007137719A - Fuel reforming apparatus, and fuel cell power generation apparatus using it and its operation method - Google Patents

Fuel reforming apparatus, and fuel cell power generation apparatus using it and its operation method Download PDF

Info

Publication number
JP2007137719A
JP2007137719A JP2005334360A JP2005334360A JP2007137719A JP 2007137719 A JP2007137719 A JP 2007137719A JP 2005334360 A JP2005334360 A JP 2005334360A JP 2005334360 A JP2005334360 A JP 2005334360A JP 2007137719 A JP2007137719 A JP 2007137719A
Authority
JP
Japan
Prior art keywords
fuel
carbon monoxide
fuel cell
cell power
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005334360A
Other languages
Japanese (ja)
Inventor
Takahiro Nakanori
孝博 中野利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2005334360A priority Critical patent/JP2007137719A/en
Publication of JP2007137719A publication Critical patent/JP2007137719A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel reforming apparatus capable of continuing or stopping its running by detecting an abnormality of the fuel reforming apparatus without imposing a load on a fuel cell and the fuel reforming apparatus and performing a stable running, and a fuel cell power generation apparatus using the fuel reforming apparatus and its operation method. <P>SOLUTION: In an apparatus for supplying a reformed gas to an apparatus for utilizing hydrogen such as a fuel cell, which is equipped with a reformer for reforming a hydrocarbon fuel and a carbon monoxide transformer and/or a carbon monoxide remover for reducing the carbon monoxide concentration in the reformed gas, a hygrometer to measure the humidity of the reformed gas is installed at a position downstream from the carbon monoxide transformer or the carbon monoxide remover and upstream from the apparatus for utilizing hydrogen. When a dew point indicated on the hygrometer exceeds a threshold value specified in advance, it is judged that an abnormality occurs to the fuel reforming apparatus. When the abnormality occurs to the fuel reforming apparatus, the running of the fuel cell power generation apparatus is stopped or continued by reducing the load or increasing the amount of flowing water for reforming. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、原燃料である炭化水素ガスを水蒸気改質する燃料改質装置もしくは改質された水素を用いて発電する燃料電池を組み合わせた燃料電池発電装置とその運転方法に関し、特に、燃料改質装置の異常検知方法と異常検知に基づく対応方法に関する。   The present invention relates to a fuel reformer for steam reforming a hydrocarbon gas as a raw fuel or a fuel cell power generator combined with a fuel cell that generates power using reformed hydrogen and a method for operating the same, and more particularly to a fuel reformer. The present invention relates to an abnormality detection method for a quality device and a response method based on the abnormality detection.

燃料電池は、燃料の有する化学エネルギーを機械エネルギーや熱エネルギーを経由することなく直接電気エネルギーに変換する装置であり、高いエネルギー効率が実現可能である。良く知られた燃料電池の形態としては、電解質層を挟んで一対の電極を配置し、一方の電極(アノード側)に水素を含有する燃料ガスを供給するとともに他方の電極(カソード側)に酸素を含有する酸化ガスを供給するものであり、両極間で起きる電気化学反応を利用して起電力を得る。以下に、燃料電池で起きる電気化学反応を表す式を示す。(1)はアノード側に於ける反応、(2)はカソード側に於ける反応を表し、燃料電池全体では(3)式に表す反応が進行する。   A fuel cell is a device that directly converts chemical energy of fuel into electrical energy without passing through mechanical energy or thermal energy, and can achieve high energy efficiency. As a well-known form of a fuel cell, a pair of electrodes are arranged with an electrolyte layer in between, a fuel gas containing hydrogen is supplied to one electrode (anode side), and oxygen is supplied to the other electrode (cathode side). The electromotive force is obtained by utilizing an electrochemical reaction that occurs between the two electrodes. Below, an equation representing an electrochemical reaction occurring in the fuel cell is shown. (1) represents the reaction on the anode side, (2) represents the reaction on the cathode side, and the reaction represented by the formula (3) proceeds in the entire fuel cell.

2→2H++2e- ………(1)
1/2O2+2H++2e-→H2O ………(2)
2+1/2O2→H2O ………(3)
燃料電池発電装置は、使用する電解質の種類により分類されるが、これらの燃料電池の中で、固体高分子型燃料電池、リン酸型燃料電池、溶融炭酸塩型燃料電池等では、その電解質の性質から、二酸化炭素を含んだ酸化ガスや炭酸ガスを使用することが可能である。そこで通常これらの燃料電池では、空気を酸化ガスとして用い、天然ガス等の炭化水素系の原燃料を燃料改質装置により水蒸気改質して生成した水素を含むガスを燃料ガスとして用いている。
H 2 → 2H + + 2e (1)
1 / 2O 2 + 2H + + 2e → H 2 O (2)
H 2 + 1 / 2O 2 → H 2 O (3)
Fuel cell power generators are classified according to the type of electrolyte used. Among these fuel cells, solid polymer fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, etc. Due to the nature, it is possible to use oxidizing gas or carbon dioxide containing carbon dioxide. Therefore, in these fuel cells, normally, air is used as an oxidizing gas, and a gas containing hydrogen generated by steam reforming a hydrocarbon-based raw fuel such as natural gas by a fuel reformer is used as a fuel gas.

そのため、この様な燃料電池を備える燃料電池システムには改質器および一酸化炭素変成器が設けられており、この改質器および一酸化炭素変成器において原燃料の改質を行ない燃料ガスを生成している。   For this reason, a fuel cell system including such a fuel cell is provided with a reformer and a carbon monoxide converter, and the reformer and the carbon monoxide converter reform the raw fuel to supply fuel gas. Is generated.

式(4)は、改質器におけるメタンの改質反応について示したものである。   Equation (4) shows the reforming reaction of methane in the reformer.

CH4 + H2O → CO + 3H2 +206.14 KJ/mol ………(4)
式(4)に示される通り、メタンの改質反応は吸熱反応であるため、メタンに水蒸気を添加したうえで、燃料電池からの燃料オフガスを燃焼させた燃焼排ガスにて粒状改質触媒を600〜700℃に保つことにより、水素に富む改質ガスを生成する。
CH 4 + H 2 O → CO + 3H 2 +206.14 KJ / mol ……… (4)
As shown in Formula (4), the reforming reaction of methane is an endothermic reaction, and therefore, after adding water vapor to methane, the granular reforming catalyst is converted to 600 by the combustion exhaust gas obtained by burning the fuel off-gas from the fuel cell. By maintaining at ~ 700 ° C, reformed gas rich in hydrogen is produced.

改質器を出たこの改質ガスは、改質ガス中の一酸化炭素を低減するために一酸化炭素変成器に供給され、ここで一酸化炭素は1%以下に低減され、リン酸形燃料電池(PAFC)であれば、このガスを燃料電池へと導入して発電を行なうことが出来る。   This reformed gas leaving the reformer is fed to a carbon monoxide converter to reduce carbon monoxide in the reformed gas, where the carbon monoxide is reduced to less than 1% and phosphoric acid form. In the case of a fuel cell (PAFC), this gas can be introduced into the fuel cell to generate power.

一方、固体高分子形燃料電池(PEFC)は、その動作温度が60〜80℃と低いために、改質ガス中に一酸化炭素が存在すると、これが触媒毒となって性能が劣化することから、一酸化炭素をさらに低減するために改質ガスは所定の温度に制御された一酸化炭素除去器に供給され、ここで一酸化炭素を10ppm以下に低減させる。   On the other hand, the polymer electrolyte fuel cell (PEFC) has a low operating temperature of 60 to 80 ° C, so if carbon monoxide is present in the reformed gas, it becomes a catalyst poison that degrades performance. In order to further reduce carbon monoxide, the reformed gas is supplied to a carbon monoxide remover controlled at a predetermined temperature, where the carbon monoxide is reduced to 10 ppm or less.

ところで上記燃料改質装置は、燃料電池以外に水素を用いる種々の工業用装置に、水素製造装置として使用される。この種の燃料改質装置の異常検知方法としては、従来、特許文献1に記載されたように、触媒を所定の温度に保つようにガスの流量や改質水量を調整する制御を行うと共に、温度の上下限を検知することにより異常を検知している。この場合、下記のような問題点があった。この問題点について図4に基づき説明する。   By the way, the fuel reforming apparatus is used as a hydrogen production apparatus in various industrial apparatuses using hydrogen in addition to the fuel cell. As an abnormality detection method for this type of fuel reformer, conventionally, as described in Patent Document 1, control for adjusting the flow rate of gas and the amount of reforming water so as to keep the catalyst at a predetermined temperature is performed. Abnormalities are detected by detecting the upper and lower temperature limits. In this case, there were the following problems. This problem will be described with reference to FIG.

図4は、燃料改質装置を使用する従来の燃料電池発電装置の概略構成図である。図4において、脱硫器1にて硫黄分を取りかれた原燃料は、水蒸気改質用水供給ポンプ8で供給された水蒸気改質用水と混合した後、蒸発部2に供給され、水蒸気改質用水が気化された後に改質器3に供給されて、式(4)に示した水蒸気改質反応によって水素リッチな改質ガスに改質される。その後、一酸化炭素変成器4に供給されて一酸化炭素変成反応によって水素濃度が高められ、さらに、図示しない一定量の空気とともに一酸化炭素除去器5に供給されて、一酸化炭素選択酸化反応によって一酸化炭素が10ppm以下に低減された後、燃料ガス加湿器9によって加湿された後、燃料電池6へ供給される。   FIG. 4 is a schematic configuration diagram of a conventional fuel cell power generator using a fuel reformer. In FIG. 4, the raw fuel from which the sulfur content has been removed by the desulfurizer 1 is mixed with the steam reforming water supplied by the steam reforming water supply pump 8, and then supplied to the evaporation unit 2, where the steam reforming water is supplied. After being vaporized, it is supplied to the reformer 3 and reformed into a hydrogen-rich reformed gas by the steam reforming reaction shown in the equation (4). Thereafter, the carbon concentration is supplied to the carbon monoxide converter 4 to increase the hydrogen concentration by the carbon monoxide conversion reaction, and is further supplied to the carbon monoxide remover 5 together with a certain amount of air (not shown) to selectively oxidize the carbon monoxide. Thus, after the carbon monoxide is reduced to 10 ppm or less, it is humidified by the fuel gas humidifier 9 and then supplied to the fuel cell 6.

なお、部番10は燃料ガス加湿用水ポンプ、11は酸化ガス加湿器、12は酸化ガス加湿用水ポンプである。また、13は制御装置であり、必要な情報を入力して諸指令を出力する。図4においては、一例として、一酸化炭素変成器温度測定点14aからの温度計測情報の信号ラインや種々の制御ラインが破線で示されている。部番13と6とを結ぶ破線は、通常の電池制御ライン、例えば停止指令を含む負荷制御、異常監視、温度制御等の制御ラインを示す。さらに、部番13と8とを結ぶ破線は、水蒸気改質用水の供給量の制御ラインを示す。   In addition, the part number 10 is a fuel gas humidification water pump, 11 is an oxidizing gas humidifier, and 12 is an oxidizing gas humidification water pump. A control device 13 inputs necessary information and outputs various commands. In FIG. 4, as an example, a signal line for temperature measurement information from the carbon monoxide transformer temperature measurement point 14a and various control lines are indicated by broken lines. A broken line connecting part numbers 13 and 6 indicates a normal battery control line, for example, a control line for load control including a stop command, abnormality monitoring, temperature control, and the like. Furthermore, a broken line connecting the part numbers 13 and 8 indicates a control line for the supply amount of water for steam reforming.

ところで、式(4)に示した水蒸気改質反応によって生成した水素リッチな改質ガスは、一酸化炭素変成器4に供給されて一酸化炭素変成反応によって水素濃度が高められ、さらにその後、図示しない一定量の空気とともに一酸化炭素除去器5に供給されて、一酸化炭素選択酸化反応によって一酸化炭素が10ppm以下に低減される際に、改質ガス中の一酸化炭素もしくは二酸化炭素と水素とが反応しメタンガスが生成されることがある。   By the way, the hydrogen-rich reformed gas generated by the steam reforming reaction shown in the formula (4) is supplied to the carbon monoxide converter 4 and the hydrogen concentration is increased by the carbon monoxide conversion reaction. When carbon monoxide is supplied to the carbon monoxide remover 5 together with a certain amount of air and is reduced to 10 ppm or less by the carbon monoxide selective oxidation reaction, carbon monoxide or carbon dioxide and hydrogen in the reformed gas May react to produce methane gas.

式(5)および(6)は、一酸化炭素変成器あるいは一酸化炭素除去器におけるメタン化反応を示した式である。   Expressions (5) and (6) are expressions showing the methanation reaction in the carbon monoxide converter or the carbon monoxide remover.

CO + 3H2 → CH4 + H2O ……………(5)
CO2 + 4H2 → CH4 + 2H2O ……………(6)
式(5)および(6)のメタン化反応がおきた場合、生成された水素が消費され、電池に供給する水素量が減少する。また、反応により水が生成され、かつ水素と一酸化炭素あるいは二酸化炭素が消費されガスの体積が減少するため、必要以上に高い露点のガスを電池に供給することになり、燃料電池の内部および電極表面で液体の水となりガスの拡散を阻害することがある。
CO + 3H 2 → CH 4 + H 2 O (5)
CO 2 + 4H 2 → CH 4 + 2H 2 O (6)
When the methanation reaction of Formulas (5) and (6) occurs, the generated hydrogen is consumed, and the amount of hydrogen supplied to the battery decreases. In addition, water is generated by the reaction, and hydrogen and carbon monoxide or carbon dioxide are consumed to reduce the volume of the gas, so that a gas having a dew point higher than necessary is supplied to the battery, and the inside of the fuel cell and It may become liquid water on the electrode surface and inhibit gas diffusion.

この反応は一酸化炭素変成器において、温度が400℃付近またはそれ以上になった場合に発生しやすく、また反応は発熱反応のため反応に伴い触媒の温度が上昇するため、さらに温度が上昇し、温度の制御が不能となり、温度を下げるため改質装置を停止することがある。   This reaction is likely to occur when the temperature is around 400 ° C or higher in a carbon monoxide converter, and since the reaction is exothermic, the temperature of the catalyst increases with the reaction, so the temperature further increases. In some cases, the temperature cannot be controlled and the reformer is stopped to lower the temperature.

従来は、前記特許文献1に開示されたように、一酸化炭素変成器内の温度を検知し、改質用水あるいは変成用水の供給量を増やすことにより温度を下げる操作をしている。このような温度検知による異常検知の場合、ある程度反応が進み、センサーが検知できる程度に触媒の温度が上昇するまで反応が進むため、検知が遅れ、電池への水素供給量が少ないまま運転を続け電池特性を低下させてしまうことや、反応が進んでしまうために温度低下操作をした後も、温度を下げられず、改質装置への温度負荷を与えることがあり、メタン化反応を止めるため改質装置を緊急停止させる必要があった。
特開2003−30726号公報
Conventionally, as disclosed in Patent Document 1, the temperature in the carbon monoxide converter is detected, and the temperature is lowered by increasing the supply amount of the reforming water or the water for conversion. In the case of such anomaly detection by temperature detection, the reaction proceeds to some extent and the reaction proceeds until the temperature of the catalyst rises to a level that can be detected by the sensor. In order to stop the methanation reaction, the temperature cannot be lowered even after the temperature lowering operation because the battery characteristics are deteriorated or the reaction proceeds, and the temperature load is applied to the reformer. It was necessary to stop the reformer urgently.
JP 2003-30726 A

この発明は、上記のような従来技術の問題点に鑑みてなされたもので、本発明の課題は、燃料電池や燃料改質装置に負担をかけることなく燃料改質装置の異常を検知して運転の継続あるいは停止することができ、安定運転を可能とする燃料改質装置および同装置を使用する燃料電池発電装置とその運転方法を提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to detect an abnormality of the fuel reformer without imposing a burden on the fuel cell or the fuel reformer. An object of the present invention is to provide a fuel reforming apparatus that can continue or stop operation and enable stable operation, a fuel cell power generation apparatus that uses the fuel reforming apparatus, and an operation method thereof.

上記課題は、以下により達成される。即ち、炭化水素系燃料を水素に富む改質ガスに改質する改質器と、前記改質ガス中の一酸化炭素濃度を低減する一酸化炭素変成器および/または一酸化炭素除去器とを備え、得られた改質ガスを水素利用設備に供給する燃料改質装置において、前記一酸化炭素変成器または一酸化炭素除去器の下流であって、かつ前記水素利用設備の上流に、改質ガスの湿度を測定する湿度計を設け、この湿度計の露点指示値が予め定めた閾値を超えた際に燃料改質装置に異常が発生したと判断することを特徴とする(請求項1)。   The above-mentioned subject is achieved by the following. That is, a reformer that reforms a hydrocarbon-based fuel into a reformed gas rich in hydrogen, and a carbon monoxide converter and / or a carbon monoxide remover that reduces the concentration of carbon monoxide in the reformed gas. In the fuel reformer for supplying the obtained reformed gas to the hydrogen utilization facility, reforming is performed downstream of the carbon monoxide converter or carbon monoxide remover and upstream of the hydrogen utilization facility. A hygrometer for measuring the humidity of the gas is provided, and when the dew point indication value of the hygrometer exceeds a predetermined threshold value, it is determined that an abnormality has occurred in the fuel reformer (claim 1). .

燃料改質装置に異常が発生した場合、詳細は後述するが、触媒層温度の上昇よりも改質ガス湿度の方が早いタイミングで上昇するので、燃料改質装置に負担をかけることなく異常への対応が可能となる。   When an abnormality occurs in the fuel reformer, the details will be described later, but the reformed gas humidity rises at an earlier timing than the rise in the catalyst layer temperature. Can be supported.

また、前記請求項1に記載の燃料改質装置において、前記一酸化炭素変成器および/または一酸化炭素除去器において用いる触媒は、一酸化炭素または二酸化炭素と水素とが反応してメタンを生成するメタン化反応を起こす触媒とすることを特徴とする(請求項2)。メタン化反応を起こす触媒としては、貴金属触媒であって、例えば一酸化炭素変成触媒としてはPt系触媒、一酸化炭素除去触媒としてはRu系触媒がある。Cu-Zn系触媒やFe系触媒はメタン化反応を起こさないので対象外となる。   2. The fuel reformer according to claim 1, wherein the catalyst used in the carbon monoxide converter and / or the carbon monoxide remover generates methane by reacting carbon monoxide or carbon dioxide with hydrogen. It is characterized by using a catalyst that causes methanation reaction to occur (claim 2). The catalyst that causes the methanation reaction is a noble metal catalyst. For example, there is a Pt catalyst as a carbon monoxide shift catalyst and a Ru catalyst as a carbon monoxide removal catalyst. Cu-Zn catalysts and Fe catalysts are excluded because they do not cause methanation.

さらに、前記請求項1または2に記載の燃料改質装置で改質された改質ガスを用いて発電する燃料電池発電装置において、燃料改質装置から改質ガスを燃料電池発電装置に通流するライン上に湿度計を設け、この湿度計の露点指示値が予め定めた閾値を超えた際に燃料改質装置に異常が発生したと判断することを特徴とする(請求項3)。   Furthermore, in the fuel cell power generation apparatus that generates power using the reformed gas reformed by the fuel reformer according to claim 1 or 2, the reformed gas is passed from the fuel reformer to the fuel cell power generation apparatus. A hygrometer is provided on the line to be operated, and it is determined that an abnormality has occurred in the fuel reformer when the dew point indication value of the hygrometer exceeds a predetermined threshold (claim 3).

また、燃料改質装置に異常が発生したと判断した際の燃料電池発電装置の運転方法に関する発明としては、下記請求項4ないし6の発明のいずれかの発明が好ましい。即ち、前記請求項3に記載の燃料電池発電装置を運転する方法において、燃料改質装置に異常が発生したと判断した際に、燃料電池発電装置を停止することを特徴とする(請求項4)。   In addition, as an invention relating to a method of operating a fuel cell power generator when it is determined that an abnormality has occurred in the fuel reformer, any one of the inventions according to claims 4 to 6 is preferable. That is, in the method of operating the fuel cell power generator according to claim 3, the fuel cell power generator is stopped when it is determined that an abnormality has occurred in the fuel reformer (claim 4). ).

さらに、前記請求項3に記載の燃料電池発電装置を運転する方法において、燃料改質装置に異常が発生したと判断した際に、燃料電池発電装置の負荷を下げることにより運転を継続することを特徴とする(請求項5)。負荷を下げることにより、燃料改質装置におけるメタン化反応を低減できるので運転を継続することができ、異常が回復した場合には定格運転に戻すことにより、安定した連続運転が可能となる。   Further, in the method of operating the fuel cell power generator according to claim 3, when it is determined that an abnormality has occurred in the fuel reformer, the operation is continued by reducing the load of the fuel cell power generator. It is characterized (claim 5). By reducing the load, the methanation reaction in the fuel reformer can be reduced, so that the operation can be continued. When the abnormality is recovered, the operation is continued to the stable operation by returning to the rated operation.

さらにまた、前記請求項3に記載の燃料電池発電装置を運転する方法において、燃料改質装置に異常が発生したと判断した際に、燃料改質装置に投入する改質用水の流量を増大し、一酸化炭素変成器および/または一酸化炭素除去器の温度を下げることにより運転を継続ことを特徴とする(請求項6)。前記温度を下げることにより燃料改質装置におけるメタン化反応を低減できるので、運転を継続することができる。   Furthermore, in the method of operating the fuel cell power generator according to claim 3, when it is determined that an abnormality has occurred in the fuel reformer, the flow rate of reforming water to be input to the fuel reformer is increased. The operation is continued by lowering the temperature of the carbon monoxide transformer and / or the carbon monoxide remover (Claim 6). Since the methanation reaction in the fuel reformer can be reduced by lowering the temperature, the operation can be continued.

この発明によれば、湿度計の露点指示値で温度検知の場合よりも早く異常を検知し、燃料電池発電装置の場合には、水蒸気改質用水の流量を制御あるいは燃料電池の停止または負荷を調整することにより、反応が進む前に異常への対応をすることが可能になり、燃料電池や改質装置に負担をかけることなく運転の継続、あるいは停止することができる。   According to this invention, the abnormality is detected earlier than the temperature detection by the dew point indication value of the hygrometer, and in the case of the fuel cell power generation device, the flow rate of water for steam reforming is controlled, or the fuel cell is stopped or loaded. By adjusting, it becomes possible to cope with the abnormality before the reaction proceeds, and the operation can be continued or stopped without imposing a burden on the fuel cell or the reformer.

次に、この発明の実施形態に関して、図1ないし図3に示す実施例に基いて説明する。図1は、本発明の実施例を示す燃料改質装置の模式的概略構成図である。図1において、図4に示す部材と類似または同一機能部材には同一番号を付して詳細説明を省略する。図1と図4との基本的な相違点は、図1においては、湿度計15と、この湿度計と制御装置13とを結ぶ制御ライン等を設けた点である。   Next, an embodiment of the present invention will be described based on the examples shown in FIGS. FIG. 1 is a schematic configuration diagram of a fuel reforming apparatus showing an embodiment of the present invention. In FIG. 1, members that are similar or have the same functions as those shown in FIG. The basic difference between FIG. 1 and FIG. 4 is that in FIG. 1, a hygrometer 15 and a control line for connecting the hygrometer and the control device 13 are provided.

なお、図1においては、図4に示した燃料ガス加湿器9や燃料ガス加湿用水ポンプ10ならびに破線で示した一部の制御線を省略しているが、湿度計15は、図示しない燃料ガス加湿器9の前段に設けられる。   In FIG. 1, the fuel gas humidifier 9 and the fuel gas humidifying water pump 10 shown in FIG. 4 and some control lines shown by broken lines are omitted, but the hygrometer 15 is a fuel gas (not shown). It is provided in front of the humidifier 9.

図1に示す実施例においては、燃料改質装置と燃料電池6との間に湿度計15を設け、制御装置13にて、改質ガスの露点が、燃料電池出力および燃料ガス流量によって定めた一定の範囲の露点であることを監視し、露点が所定の閾値を超えたときには、異常が発生したとして、燃料電池6の運転と2,3,4,5を備える燃料改質装置の運転を止めることにより燃料電池や改質装置に負担をかけることなく停止することができる。   In the embodiment shown in FIG. 1, a hygrometer 15 is provided between the fuel reformer and the fuel cell 6, and the dew point of the reformed gas is determined by the control device 13 based on the fuel cell output and the fuel gas flow rate. The dew point is monitored within a certain range, and when the dew point exceeds a predetermined threshold, it is determined that an abnormality has occurred and the operation of the fuel cell 6 and the operation of the fuel reformer including 2, 3, 4, 5 are performed. By stopping, the fuel cell and the reformer can be stopped without imposing a burden.

上記改質ガスの露点および閾値については後に詳述することとし、先に図2について述べる。図2は、本発明の燃料電池発電装置の異なる実施例を示す概略構成図である。図1と図2との相違点は、図2においては、一酸化炭素変成器温度測定点14aと、これと制御装置13とを結ぶ制御ライン等を設けた点である。   The dew point and threshold of the reformed gas will be described in detail later, and FIG. 2 will be described first. FIG. 2 is a schematic configuration diagram showing a different embodiment of the fuel cell power generator of the present invention. The difference between FIG. 1 and FIG. 2 is that, in FIG. 2, a carbon monoxide transformer temperature measurement point 14a and a control line connecting this to the control device 13 are provided.

図2に示す実施例においては、湿度計15の露点指示値に基づき制御装置13によって異常と判断したときに、水蒸気改質用水供給ポンプ8の電圧を増大させ水蒸気改質用水の流量を増やすことによって、一酸化炭素変成器温度測定点14aの温度検知に基づいて、一酸化炭素変成器4の温度を適切な温度に保つように制御し、燃料電池や燃料改質装置に負担をかけることなく運転を継続することができる。あるいは、制御装置13によって燃料電池6の電流値を下げ、それに伴い改質原料ガスの量を減らすことで、反応ガス量を減らし、メタン化反応を減少させながら運転を継続することができる。湿度計15の指示値が安定した後に所定の運転出力に戻すことで、安定した運転を継続することができる。   In the embodiment shown in FIG. 2, when the controller 13 determines that an abnormality has occurred based on the dew point indication value of the hygrometer 15, the voltage of the steam reforming water supply pump 8 is increased to increase the flow rate of the steam reforming water. Thus, based on the temperature detection at the carbon monoxide transformer temperature measurement point 14a, the temperature of the carbon monoxide transformer 4 is controlled to be kept at an appropriate temperature, without burdening the fuel cell or the fuel reformer. Driving can be continued. Alternatively, by reducing the current value of the fuel cell 6 by the control device 13 and reducing the amount of the reforming raw material gas accordingly, the operation can be continued while reducing the amount of reaction gas and decreasing the methanation reaction. By returning to a predetermined operation output after the indicated value of the hygrometer 15 is stabilized, stable operation can be continued.

次に、改質ガスの露点とその閾値の決め方について述べる。改質ガスの理論上の露点は、原料ガス量、S/C(水量)、改質率(改質温度)、変成部温度、選択酸化空気量等に基づいて計算できる。前述の燃料電池出力および燃料ガス流量によって定めた一定の範囲の露点とは、必要な燃料電池出力に相当する原料ガス量、S/Cの基礎的な規定量を意味し、実際の燃料電池システムでは温度等の制御のために若干の量の増減があるものの、露点はほぼ一定の範囲にある。   Next, how to determine the dew point of the reformed gas and its threshold value will be described. The theoretical dew point of the reformed gas can be calculated based on the amount of raw material gas, S / C (water amount), reforming rate (reforming temperature), shift temperature, selective oxidized air amount, and the like. The dew point in a certain range determined by the fuel cell output and the fuel gas flow rate mentioned above means the amount of raw material gas corresponding to the required fuel cell output, the basic prescribed amount of S / C, and the actual fuel cell system In this case, the dew point is in a substantially constant range, although there is a slight increase / decrease for controlling the temperature and the like.

ただし、現状の燃料電池システムでは、定格と低負荷とでは燃料電池の水素利用率が異なる為、燃料改質装置で燃焼される熱量の割合が異なり、改質温度が変化することや、ガス量の差による反応性の違いから、燃料電池出力の変化(ガス量、燃焼量、改質温度が変化)により同じS/Cでも、露点には若干の違いがある。   However, in the current fuel cell system, because the hydrogen utilization rate of the fuel cell differs between the rated and low load, the rate of heat burned by the fuel reformer varies, the reforming temperature changes, and the gas amount Due to the difference in reactivity due to the difference in dew point, even with the same S / C due to changes in fuel cell output (gas amount, combustion amount, reforming temperature change), there is a slight difference in dew point.

しかしながら一方、燃料改質装置の異常時の湿度変化は、図3に示すように急激で大きく変化する為、システム上のS/C変化量に伴う湿度変化域を超える。図3は、燃料改質装置の異常が起きた際の触媒層温度と改質ガス湿度の経時変化を示す図である。図3によれば、温度上昇T点に対して湿度上昇S点は約5分程度早く検知でき、異常の場合、触媒層温度の上昇よりも改質ガス湿度は早いタイミングで上昇し、かつ湿度上昇S点以降の湿度変化は比較的急激で大きい。   On the other hand, however, the humidity change at the time of abnormality of the fuel reformer changes suddenly and greatly as shown in FIG. 3, and thus exceeds the humidity change region associated with the S / C change amount on the system. FIG. 3 is a graph showing changes with time in the catalyst layer temperature and reformed gas humidity when an abnormality occurs in the fuel reformer. According to FIG. 3, the humidity increase S point can be detected about 5 minutes earlier than the temperature increase T point, and in the case of abnormality, the reformed gas humidity increases at an earlier timing than the catalyst layer temperature increase, and the humidity The change in humidity after the rising S point is relatively rapid and large.

従って、改質ガスの露点の閾値は、システムで運転条件から計算される露点の上限値に対して若干温度をプラスした値を閾値とすることにより設定することができる。実際には、燃料電池の各負荷の場合の閾値をあらかじめ数値設定しておき、運転時の「燃料電池出力および燃料ガス流量」から閾値を決めて監視すればよい。   Therefore, the dew point threshold value of the reformed gas can be set by setting a value obtained by slightly adding temperature to the upper limit value of the dew point calculated from the operating conditions in the system. Actually, a threshold value for each load of the fuel cell may be set in advance, and the threshold value may be determined and monitored from “fuel cell output and fuel gas flow rate” during operation.

次に、異常判断のための閾値の決め方の具体例について、一般的水素利用設備の場合と燃料電池発電装置の場合とに別けて以下に述べる。
1)水素利用設備の場合
触媒として貴金属系(Pt系、またはRu系)を用い、S/Cを一定(例えば3)で運転し、正常時の露点が、改質触媒層温度により幅があるが60〜65℃の範囲で一定となるようにした露点の上限値に10℃プラスした露点に相当する改質ガスの湿度を閾値とする。
2)燃料電池発電装置の場合
(1)触媒として上記貴金属系を用い、S/Cを一定(例えば3)で運転し、燃料電池出力に相応する燃料ガス流量等の定格運転条件から、改質ガスの正常時の露点を演算により求め、この演算値にプラスα(例えば10℃)した露点に相当する改質ガスの湿度を閾値とする。
(2)燃料電池出力やその他の運転条件が変化した場合には、運転条件の変化に応じた露点の演算テーブルを準備しておき、各演算値にプラスαした露点に相当する改質ガスの湿度を閾値とする。
(3)燃料改質装置の異常検知後、S/Cを一時的に増加させる制御を行う場合には、増加させたスチーム分により露点が増加するので、一時的に増加させるS/Cに応じて閾値の設定を変更する。
Next, specific examples of how to determine the threshold value for abnormality determination will be described below for a case of a general hydrogen utilization facility and a case of a fuel cell power generator.
1) In the case of hydrogen-utilizing facilities Use a precious metal system (Pt system or Ru system) as the catalyst, operate at a constant S / C (for example, 3), and the dew point at normal times varies depending on the reforming catalyst layer temperature. Is the humidity of the reformed gas corresponding to a dew point that is 10 ° C. plus the upper limit value of the dew point that is constant in the range of 60 to 65 ° C.
2) In the case of a fuel cell power generator (1) The above-mentioned noble metal system is used as a catalyst, the S / C is operated at a constant (for example, 3), and reforming is performed from the rated operating conditions such as the fuel gas flow rate corresponding to the fuel cell output. The normal dew point of the gas is determined by calculation, and the humidity of the reformed gas corresponding to the dew point plus α (for example, 10 ° C.) is used as the threshold value.
(2) When the fuel cell output and other operating conditions change, prepare a calculation table for the dew point according to the change in the operating conditions, and add the reformed gas corresponding to the dew point plus α to each calculated value. Humidity is a threshold value.
(3) When performing control to temporarily increase the S / C after detecting the abnormality of the fuel reformer, the dew point increases due to the increased steam, so according to the S / C to be temporarily increased To change the threshold setting.

本発明の燃料電池発電装置の実施例を示す概略構成図。The schematic block diagram which shows the Example of the fuel cell electric power generating apparatus of this invention. 本発明の燃料電池発電装置の異なる実施例を示す概略構成図。The schematic block diagram which shows the Example from which the fuel cell electric power generating apparatus of this invention differs. 燃料改質装置の異常が起きた際の触媒層温度と改質ガス湿度の経時変化を示す図。The figure which shows the time-dependent change of the catalyst layer temperature at the time of abnormality of a fuel reformer, and reformed gas humidity. 燃料改質装置を使用する従来の燃料電池発電装置の概略構成図。The schematic block diagram of the conventional fuel cell power generator which uses a fuel reformer.

符号の説明Explanation of symbols

1:脱硫器、2:水蒸気発生器、3:改質器、4:一酸化炭素変成器、5:一酸化炭素除去器、6:燃料電池、8:水蒸気改質用水供給ポンプ、11:酸化ガス加湿器、12:酸化ガス加湿用水ポンプ、13:制御装置、14a:一酸化炭素変成器温度測定点、15:湿度計。   1: desulfurizer, 2: steam generator, 3: reformer, 4: carbon monoxide converter, 5: carbon monoxide remover, 6: fuel cell, 8: water supply pump for steam reforming, 11: oxidation Gas humidifier, 12: oxidizing gas humidifying water pump, 13: controller, 14a: carbon monoxide transformer temperature measurement point, 15: hygrometer.

Claims (6)

炭化水素系燃料を水素に富む改質ガスに改質する改質器と、前記改質ガス中の一酸化炭素濃度を低減する一酸化炭素変成器および/または一酸化炭素除去器とを備え、得られた改質ガスを水素利用設備に供給する燃料改質装置において、
前記一酸化炭素変成器または一酸化炭素除去器の下流であって、かつ前記水素利用設備の上流に、改質ガスの湿度を測定する湿度計を設け、この湿度計の露点指示値が予め定めた閾値を超えた際に燃料改質装置に異常が発生したと判断することを特徴とする燃料改質装置。
A reformer that reforms a hydrocarbon-based fuel into a reformed gas rich in hydrogen, and a carbon monoxide converter and / or a carbon monoxide remover that reduces the concentration of carbon monoxide in the reformed gas, In a fuel reformer that supplies the resulting reformed gas to a hydrogen utilization facility,
A hygrometer that measures the humidity of the reformed gas is provided downstream of the carbon monoxide converter or carbon monoxide remover and upstream of the hydrogen utilization facility, and a dew point indication value of the hygrometer is predetermined. A fuel reformer that determines that an abnormality has occurred in the fuel reformer when the threshold value is exceeded.
請求項1に記載の燃料改質装置において、前記一酸化炭素変成器および/または一酸化炭素除去器において用いる触媒は、一酸化炭素または二酸化炭素と水素とが反応してメタンを生成するメタン化反応を起こす触媒とすることを特徴とする燃料改質装置。   2. The fuel reformer according to claim 1, wherein the catalyst used in the carbon monoxide converter and / or the carbon monoxide remover is a methanation in which carbon monoxide or carbon dioxide reacts with hydrogen to produce methane. A fuel reformer characterized by being a catalyst that causes a reaction. 請求項1または2に記載の燃料改質装置で改質された改質ガスを用いて発電する燃料電池発電装置において、燃料改質装置から改質ガスを燃料電池発電装置に通流するライン上に湿度計を設け、この湿度計の露点指示値が予め定めた閾値を超えた際に燃料改質装置に異常が発生したと判断することを特徴とする燃料電池発電装置。   3. A fuel cell power generator that generates electric power using the reformed gas reformed by the fuel reformer according to claim 1 or 2 on a line through which the reformed gas flows from the fuel reformer to the fuel cell power generator. A fuel cell power generator comprising: a hygrometer, and determining that an abnormality has occurred in the fuel reformer when a dew point indication value of the hygrometer exceeds a predetermined threshold value. 請求項3に記載の燃料電池発電装置を運転する方法において、燃料改質装置に異常が発生したと判断した際に、燃料電池発電装置を停止することを特徴とする燃料電池発電装置の運転方法。   4. The method of operating a fuel cell power generator according to claim 3, wherein the fuel cell power generator is stopped when it is determined that an abnormality has occurred in the fuel reformer. . 請求項3に記載の燃料電池発電装置を運転する方法において、燃料改質装置に異常が発生したと判断した際に、燃料電池発電装置の負荷を下げることにより運転を継続することを特徴とする燃料電池発電装置の運転方法。   4. The method of operating the fuel cell power generator according to claim 3, wherein when it is determined that an abnormality has occurred in the fuel reformer, the operation is continued by reducing the load of the fuel cell power generator. Operation method of fuel cell power generator. 請求項3に記載の燃料電池発電装置を運転する方法において、燃料改質装置に異常が発生したと判断した際に、燃料改質装置に投入する改質用水の流量を増大し、一酸化炭素変成器および/または一酸化炭素除去器の温度を下げることにより運転を継続することを特徴とする燃料電池発電装置の運転方法。   4. The method of operating a fuel cell power generator according to claim 3, wherein when it is determined that an abnormality has occurred in the fuel reformer, the flow rate of reforming water input to the fuel reformer is increased and carbon monoxide is increased. An operation method for a fuel cell power generator, wherein the operation is continued by lowering the temperature of the transformer and / or the carbon monoxide remover.
JP2005334360A 2005-11-18 2005-11-18 Fuel reforming apparatus, and fuel cell power generation apparatus using it and its operation method Pending JP2007137719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005334360A JP2007137719A (en) 2005-11-18 2005-11-18 Fuel reforming apparatus, and fuel cell power generation apparatus using it and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005334360A JP2007137719A (en) 2005-11-18 2005-11-18 Fuel reforming apparatus, and fuel cell power generation apparatus using it and its operation method

Publications (1)

Publication Number Publication Date
JP2007137719A true JP2007137719A (en) 2007-06-07

Family

ID=38201043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005334360A Pending JP2007137719A (en) 2005-11-18 2005-11-18 Fuel reforming apparatus, and fuel cell power generation apparatus using it and its operation method

Country Status (1)

Country Link
JP (1) JP2007137719A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2929452A3 (en) * 2008-03-26 2009-10-02 Renault Sas Power module for motor vehicle, has electronic control unit with estimation unit estimating hydrogen quantity produced by reforming reactor, from values measured by humidity sensor and constituted by static estimator or dynamic estimator
JP2010202446A (en) * 2009-03-03 2010-09-16 Jx Nippon Oil & Energy Corp Hydrogen production apparatus and fuel cell system
WO2012017642A1 (en) * 2010-08-03 2012-02-09 パナソニック株式会社 Hydrogen generation device and fuel cell system
JP2012038608A (en) * 2010-08-09 2012-02-23 Jx Nippon Oil & Energy Corp Fuel cell system and control method of reforming water supply amount in fuel cell system
JP2013105735A (en) * 2011-11-17 2013-05-30 Panasonic Corp Fuel cell system
JP2017043506A (en) * 2015-08-25 2017-03-02 大阪瓦斯株式会社 Hydrogen-containing gas generative system and operating method thereof and fuel cell system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135794A (en) * 1991-11-11 1993-06-01 Chubu Electric Power Co Inc Fuel cell power generating device
JP2003132927A (en) * 2001-10-26 2003-05-09 Mitsubishi Electric Corp Carbon monoxide removing device for fuel cell generator and its operating method
JP2003327409A (en) * 2002-05-10 2003-11-19 Mitsubishi Electric Corp Fuel treatment system and operation method thereof
JP2004292290A (en) * 2003-03-28 2004-10-21 Osaka Gas Co Ltd Carbon monoxide removing method, operation method of carbon monoxide remover and operation control system of carbon monoxide remover using them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135794A (en) * 1991-11-11 1993-06-01 Chubu Electric Power Co Inc Fuel cell power generating device
JP2003132927A (en) * 2001-10-26 2003-05-09 Mitsubishi Electric Corp Carbon monoxide removing device for fuel cell generator and its operating method
JP2003327409A (en) * 2002-05-10 2003-11-19 Mitsubishi Electric Corp Fuel treatment system and operation method thereof
JP2004292290A (en) * 2003-03-28 2004-10-21 Osaka Gas Co Ltd Carbon monoxide removing method, operation method of carbon monoxide remover and operation control system of carbon monoxide remover using them

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2929452A3 (en) * 2008-03-26 2009-10-02 Renault Sas Power module for motor vehicle, has electronic control unit with estimation unit estimating hydrogen quantity produced by reforming reactor, from values measured by humidity sensor and constituted by static estimator or dynamic estimator
JP2010202446A (en) * 2009-03-03 2010-09-16 Jx Nippon Oil & Energy Corp Hydrogen production apparatus and fuel cell system
WO2012017642A1 (en) * 2010-08-03 2012-02-09 パナソニック株式会社 Hydrogen generation device and fuel cell system
JPWO2012017642A1 (en) * 2010-08-03 2013-10-03 パナソニック株式会社 Hydrogen generator and fuel cell system
US8709668B2 (en) 2010-08-03 2014-04-29 Panasonic Corporation Hydrogen generation device and fuel cell system
JP5870269B2 (en) * 2010-08-03 2016-02-24 パナソニックIpマネジメント株式会社 Hydrogen generator and fuel cell system
JP2012038608A (en) * 2010-08-09 2012-02-23 Jx Nippon Oil & Energy Corp Fuel cell system and control method of reforming water supply amount in fuel cell system
JP2013105735A (en) * 2011-11-17 2013-05-30 Panasonic Corp Fuel cell system
JP2017043506A (en) * 2015-08-25 2017-03-02 大阪瓦斯株式会社 Hydrogen-containing gas generative system and operating method thereof and fuel cell system

Similar Documents

Publication Publication Date Title
US6881508B2 (en) Apparatus and method for controlling a fuel cell system
JP4331125B2 (en) Operation control method and system for solid oxide fuel cell
JP2007137719A (en) Fuel reforming apparatus, and fuel cell power generation apparatus using it and its operation method
JP6857846B2 (en) Fuel cell system and how to operate it
JP4870909B2 (en) Fuel cell power generator
JPWO2005018035A1 (en) FUEL CELL POWER GENERATION SYSTEM, METHOD FOR DETECTING DEGRADATION OF THE REFORMER, AND FUEL CELL POWER GENERATION METHOD
JP5379353B2 (en) Temperature control system of reformer in fuel cell device
JP2007200771A (en) Reforming catalyst temperature control system and control method of fuel cell power generator
JP2002175826A (en) Fuel cell power generation system
JP5389520B2 (en) Fuel cell reformer
JP4466049B2 (en) Water flow control method for reforming steam
JP4476581B2 (en) FUEL CELL POWER GENERATION SYSTEM, CONTROL METHOD FOR THE FUEL CELL POWER GENERATION SYSTEM, CONTROL PROGRAM FOR IMPLEMENTING THE CONTROL METHOD, AND RECORDING MEDIUM CONTAINING THE CONTROL PROGRAM
JP5592760B2 (en) Fuel cell power generation system
JP5353214B2 (en) Hydrogen generator and fuel cell power generation system including the same
JP4929565B2 (en) Fuel cell power generator
JPH097620A (en) Solid high polymer type fuel cell power generator
US20070148504A1 (en) Maintaining a fluid level in a heat exchanger of a fuel cell system
US20080154390A1 (en) Predicting reactant production in a fuel cell system
JP6197171B2 (en) Fuel cell system
JP4446672B2 (en) Operation control system for carbon monoxide remover and operation control system for fuel cell system
JP5262638B2 (en) Fuel cell power generation system
JP2009080944A (en) Device for generating fuel cell power
KR101295237B1 (en) Fuel cell system
JP2004002120A (en) Carbon monoxide stripping-off device
JP2011210637A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120321