JP2002356309A - Operation control method for generation apparatus for gas containing hydrogen - Google Patents

Operation control method for generation apparatus for gas containing hydrogen

Info

Publication number
JP2002356309A
JP2002356309A JP2002078141A JP2002078141A JP2002356309A JP 2002356309 A JP2002356309 A JP 2002356309A JP 2002078141 A JP2002078141 A JP 2002078141A JP 2002078141 A JP2002078141 A JP 2002078141A JP 2002356309 A JP2002356309 A JP 2002356309A
Authority
JP
Japan
Prior art keywords
section
unit
reforming
gas
shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002078141A
Other languages
Japanese (ja)
Other versions
JP4531320B2 (en
Inventor
Hisatomo Asazu
久興 浅津
Yukio Yasuda
征雄 安田
Norihisa Kamiya
規寿 神家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002078141A priority Critical patent/JP4531320B2/en
Publication of JP2002356309A publication Critical patent/JP2002356309A/en
Application granted granted Critical
Publication of JP4531320B2 publication Critical patent/JP4531320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide an operation control method for a generation apparatus for gas containing hydrogen capable of operating a reforming section, a modifying section and a selective oxidation section by easy controls while maintaining to respectively proper temperatures. SOLUTION: A cooling means 10 of a selective oxidation section which cools a selective oxidation section 6 is provided. A reforming section 3, a modifying section 5 and the selective oxidation section 6 are provided so that adjacent sections can conduct heat to each other, and the modifying section 5 is located between the reforming section 3 and the selective oxidation section 6. A heating capacity of the heating means 4 of the reforming section is controlled so that a proper temperature for a reformation treatment of the reforming section 3 is maintained and further, a cooling capacity of the cooling means 10 of the selective oxidation section is controlled so that the proper temperature for a selective oxidation treatment of the selective oxidation section 6 is maintained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、改質部加熱手段に
て加熱されて、炭化水素系の原燃料ガスを水蒸気にて水
素ガスと一酸化炭素ガスを含むガスに改質処理する改質
部と、前記改質部から供給される改質処理ガスをその改
質処理ガス中の一酸化炭素ガスを二酸化炭素ガスに変成
させることにより変成処理する変成部と、その変成部か
ら供給される変成処理ガスをその変成処理ガス中の一酸
化炭素を選択酸化することにより選択酸化処理する選択
酸化部が設けられた水素含有ガス生成装置の運転制御方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reforming method in which a hydrocarbon-based raw fuel gas is reformed into a gas containing hydrogen gas and carbon monoxide gas with steam by being heated by a reforming section heating means. Unit, a conversion unit that performs a conversion process by converting the reforming gas supplied from the reforming unit into a carbon monoxide gas in the reforming gas, and a conversion unit that is supplied from the conversion unit. The present invention relates to a method for controlling the operation of a hydrogen-containing gas generator provided with a selective oxidation unit for selectively oxidizing a shift gas by selectively oxidizing carbon monoxide in the shift gas.

【0002】[0002]

【従来の技術】かかる水素含有ガス生成装置は、炭化水
素系の原燃料ガスを改質部にて水蒸気により水素ガスと
一酸化炭素ガスを含むガスに改質処理し、その改質処理
ガスを変成部にて改質処理ガス中の一酸化炭素ガスを二
酸化炭素ガスに変成させることにより変成処理し、その
変成処理ガスを選択酸化部にて変成処理ガス中の一酸化
炭素を選択酸化することにより選択酸化処理して、一酸
化炭素濃度の低い(例えば10ppm以下)水素リッチ
な水素含有ガスを生成するものであり、生成水素含有ガ
スは、例えば、燃料電池における発電反応用の燃料ガス
として用いる。
2. Description of the Related Art Such a hydrogen-containing gas generating apparatus reforms a hydrocarbon-based raw fuel gas into a gas containing a hydrogen gas and a carbon monoxide gas with steam in a reforming section, and converts the reformed gas. A shift treatment is carried out by converting carbon monoxide gas in the reformed gas into carbon dioxide gas in the shift conversion section, and the shift processing gas is selectively oxidized in the selective oxidation section to carbon monoxide in the shift processing gas. To generate a hydrogen-rich hydrogen-containing gas having a low carbon monoxide concentration (for example, 10 ppm or less). The generated hydrogen-containing gas is used, for example, as a fuel gas for a power generation reaction in a fuel cell. .

【0003】そして、かかる水素含有ガス生成装置の運
転中は、改質部と変成部と選択酸化部をそれぞれ、改質
処理に適正な温度(以下、改質処理温度と記載する場合
がある)、変成処理に適正な温度(以下、変成処理温度
と記載する場合がある)、選択酸化処理に適正な温度
(以下、選択酸化処理温度と記載する場合がある)に維
持する必要がある。ちなみに、改質処理温度は例えば6
00〜700°Cの範囲、変成処理温度は例えば150
〜250°Cの範囲、選択酸化処理温度は80〜100
°Cの範囲である。
[0003] During the operation of the hydrogen-containing gas generator, the reforming section, the shift section, and the selective oxidizing section each have a proper temperature for the reforming process (hereinafter sometimes referred to as a reforming process temperature). It is necessary to maintain a temperature appropriate for the shift treatment (hereinafter sometimes referred to as a shift temperature) and a temperature appropriate for the selective oxidation process (hereinafter sometimes referred to as a selective oxidation temperature). Incidentally, the reforming treatment temperature is, for example, 6
In the range of 00 to 700 ° C., the conversion temperature is 150
~ 250 ° C, selective oxidation treatment temperature is 80 ~ 100
° C.

【0004】そこで、従来は、改質部と変成部と選択酸
化部を、それぞれ改質処理温度、変成処理温度、選択酸
化処理温度に維持するように運転するための運転制御方
法においては、変成部を加熱する変成部加熱手段及び変
成部を冷却する変成部冷却手段、並びに、選択酸化部を
加熱する選択酸化部加熱手段及び選択酸化部を冷却する
選択酸化部冷却手段を設けて、改質部を改質処理温度に
維持するように、改質部加熱手段の加熱能力を調節し、
変成部を変成処理温度に維持するように変成部加熱手段
の加熱能力及び変成部冷却手段の冷却能力を調節し、並
びに、選択酸化部を選択酸化処理温度に維持するよう
に、選択酸化部加熱手段の加熱能力及び選択酸化部冷却
手段の冷却能力を調節していた。
Therefore, conventionally, in an operation control method for operating the reforming section, the shift section, and the selective oxidation section to maintain the reforming temperature, the shift temperature, and the selective oxidation temperature, respectively, a shift control method is employed. A reforming section heating means for heating the section and a transformation section cooling means for cooling the transformation section; and a selective oxidizing section heating means for heating the selective oxidizing section and a selective oxidizing section cooling means for cooling the selective oxidizing section. Adjusting the heating capacity of the reforming section heating means so as to maintain the section at the reforming treatment temperature,
The heating capacity of the metamorphic section heating means and the cooling capacity of the metamorphic section cooling means are adjusted so as to maintain the metamorphic section at the metamorphic processing temperature, and the selective oxidizing section is heated so as to maintain the selective oxidizing section at the selective oxidizing temperature. The heating capacity of the means and the cooling capacity of the cooling means for the selective oxidation section were adjusted.

【0005】[0005]

【発明が解決しようとする課題】従って、従来の運転制
御方法においては、改質部と変成部と選択酸化部をそれ
ぞれ改質処理温度、変成処理温度、選択酸化処理温度に
維持するために、改質部、変成部及び選択酸化部それぞ
れの温度を各別に制御するというように、複雑な制御を
必要とし、改善が望まれていた。
Therefore, in the conventional operation control method, in order to maintain the reforming section, the shift section, and the selective oxidation section at the reforming temperature, the shift temperature, and the selective oxidation temperature, respectively, Complicated control is required, such as individually controlling the temperatures of the reforming section, the shift section, and the selective oxidation section, and improvements have been desired.

【0006】本発明は、かかる実情に鑑みてなされたも
のであり、その目的は、簡単な制御にて改質部と変成部
と選択酸化部をそれぞれに適正な温度に維持して運転す
ることができる水素含有ガス生成装置の運転制御方法を
提供することにある。
The present invention has been made in view of such circumstances, and has as its object to operate the reforming unit, the shift unit, and the selective oxidizing unit at appropriate temperatures by simple control. It is an object of the present invention to provide a method for controlling the operation of a hydrogen-containing gas generator capable of reducing the pressure.

【0007】[0007]

【課題を解決するための手段】〔請求項1記載の発明〕
請求項1に記載の水素含有ガス生成装置の運転制御方法
の特徴は、前記選択酸化部を冷却する選択酸化部冷却手
段を設け、前記改質部、前記変成部及び前記選択酸化部
を、前記改質部と前記選択酸化部との間に前記変成部が
位置し、且つ、隣接するもの同士で熱伝導可能なように
設け、前記改質部を改質処理に適正な温度に維持するよ
うに、前記改質部加熱手段の加熱能力を調節し、且つ、
前記選択酸化部を選択酸化処理に適正な温度に維持する
ように、前記選択酸化部冷却手段の冷却能力を調節する
ことにある。即ち、本発明の発明者らは、改質処理温
度、変成処理温度及び選択酸化処理温度においては、改
質処理温度が最も高く、選択酸化処理温度が最も低く、
変成処理温度は、改質処理温度と選択酸化処理温度との
間にあるということに鑑みて、運転制御方法を簡略化す
べく鋭意研究した。そして、改質部、変成部及び選択酸
化部を、最も高温に維持する必要のある改質部と、最も
低温に維持する必要のある選択酸化部との間に、それら
改質部の温度と選択酸化部の温度との間の温度に維持す
る必要のある変成部が位置し、且つ、隣接するもの同士
で伝熱可能なように設け、そのように改質部、変成部及
び選択酸化部を設けた状態で、隣接するもの同士の伝熱
状態を適宜に設定することにより、改質部と選択酸化部
をそれぞれ適正な温度に制御するだけで、変成部は、温
度を制御することなくそれぞれに適正な温度に維持する
ことができるということを見出した。つまり、図10に
示すように、最も高温に維持する必要のある改質部3
と、最も低温に維持する必要のある選択酸化部6との間
に、それら改質部3の温度と選択酸化部6の温度との間
の温度に維持する必要のある変成部5が位置し、且つ、
隣接するもの同士で伝熱可能なように設けると、図10
において矢印にて示すように、改質部3から選択酸化部
6に向かって伝熱して、選択酸化部6から放熱される。
尚、図10において、4は、改質部3を加熱する燃焼式
の改質部加熱手段としての燃焼部であり、10は、選択
酸化部6を冷却する選択酸化部冷却手段としての冷却用
ファンである。そして、隣接するもの同士、図10で
は、改質部3と変成部5との間、及び、変成部5と選択
酸化部6との間のそれぞれの伝熱状態を適宜に設定する
ことにより、改質部3を改質処理温度に維持するように
燃焼部4の加熱能力を調節し、且つ、選択酸化部6を選
択酸化処理温度に維持するように選択酸化部冷却手段と
しての冷却用ファン10の風量調節により冷却能力を調
節するだけで、それら改質部3と選択酸化部6との間に
位置する変成部5を、温度を制御しなくても成り行きに
て、変成処理温度になるようにすることができるのであ
る。要するに、改質部の温度と選択酸化部の温度を制御
するだけの簡単な制御にて、改質部と変成部と選択酸化
部をそれぞれ改質処理温度、変成処理温度、選択酸化処
理温度に維持することができるようになった。従って、
簡単な制御にて改質部と変成部と選択酸化部をそれぞれ
に適正な温度に維持して運転することができる水素含有
ガス生成装置の運転制御方法を提供することができるよ
うになった。
Means for Solving the Problems [Invention according to claim 1]
The feature of the operation control method of the hydrogen-containing gas generating device according to claim 1 is that a selective oxidizing unit cooling unit that cools the selective oxidizing unit is provided, and the reforming unit, the shift unit, and the selective oxidizing unit are provided. The shift unit is located between the reforming unit and the selective oxidizing unit, and is provided so as to be able to conduct heat between adjacent ones, so that the reforming unit is maintained at a temperature appropriate for the reforming process. To adjust the heating capacity of the reforming section heating means, and
The cooling capacity of the selective oxidation unit cooling means is adjusted so that the selective oxidation unit is maintained at a temperature appropriate for the selective oxidation treatment. That is, the inventors of the present invention, the reforming temperature, the shift temperature and the selective oxidation temperature, the reforming temperature is the highest, the selective oxidation temperature is the lowest,
In view of the fact that the temperature of the shift treatment is between the temperature of the reforming treatment and the temperature of the selective oxidation treatment, intensive research was conducted to simplify the operation control method. Then, between the reforming unit, the shift unit and the selective oxidation unit, the reforming unit that needs to be maintained at the highest temperature and the selective oxidation unit that needs to be maintained at the lowest temperature, A metamorphic section that needs to be maintained at a temperature between the temperature of the selective oxidizing section is located and provided so as to be able to conduct heat between adjacent ones, so that the reforming section, the metamorphic section, and the selective oxidizing section are provided. In the state where is provided, by appropriately setting the heat transfer state between adjacent ones, only the reforming unit and the selective oxidation unit are each controlled to an appropriate temperature, and the shift unit does not control the temperature. It has been found that each can be maintained at an appropriate temperature. That is, as shown in FIG. 10, the reforming section 3 which needs to be maintained at the highest temperature
And the selective oxidizing unit 6 that needs to be maintained at the lowest temperature, the shift unit 5 that needs to be maintained at a temperature between the temperature of the reforming unit 3 and the temperature of the selective oxidizing unit 6 is located. ,and,
When provided so that heat can be transferred between adjacent members, FIG.
As shown by an arrow in FIG. 5, heat is transferred from the reforming section 3 to the selective oxidizing section 6 and is radiated from the selective oxidizing section 6.
In FIG. 10, reference numeral 4 denotes a combustion unit as a combustion-type reforming unit heating unit for heating the reforming unit 3, and 10 denotes a cooling unit as a selective oxidation unit cooling unit for cooling the selective oxidation unit 6. I'm a fan. Then, by appropriately setting the heat transfer state between adjacent ones, in FIG. 10, between the reforming unit 3 and the shift unit 5, and between the shift unit 5 and the selective oxidation unit 6 as appropriate, A cooling fan as a selective oxidizing unit cooling means so as to adjust the heating capacity of the combustion unit 4 so as to maintain the reforming unit 3 at the reforming temperature and to maintain the selective oxidizing unit 6 at the selective oxidizing temperature. By simply adjusting the cooling capacity by adjusting the air volume of 10, the shift section 5 located between the reforming section 3 and the selective oxidizing section 6 becomes the shift processing temperature without controlling the temperature. You can do it. In short, with a simple control that only controls the temperature of the reforming section and the temperature of the selective oxidizing section, the reforming section, the shift section, and the selective oxidizing section are set to the reforming process temperature, the shift process temperature, and the selective oxidation process temperature, respectively. Can now be maintained. Therefore,
It has become possible to provide an operation control method for a hydrogen-containing gas generator capable of operating the reforming section, the shift section, and the selective oxidation section at appropriate temperatures with simple control.

【0008】〔請求項2記載の発明〕請求項2に記載の
水素含有ガス生成装置の運転制御方法の特徴は、前記改
質部加熱手段をガス燃料を燃焼させる燃焼式に構成し、
前記改質部における前記変成部が設けられている側とは
反対側に、供給される水を前記燃焼式の改質部加熱手段
から排出される燃焼ガスにて加熱して、前記改質部にお
ける改質処理用の水蒸気を生成する水蒸気生成部を設け
ることにある。請求項2に記載の運転制御方法によれ
ば、改質部加熱手段をガス燃料を燃焼させる燃焼式に構
成し、水蒸気生成部にて、供給される水を燃焼式の改質
部加熱手段から排出される燃焼ガスにて加熱して、改質
部における改質処理用の水蒸気を生成するので、余分な
エネルギを消費することなく、改質処理用の水蒸気を生
成することができる。しかも、水蒸気生成部は、改質部
における変成部が設けられている側とは反対側に設ける
ことから、改質部からの放熱を抑制することができるの
で、改質部加熱手段におけるエネルギの消費量を低減す
ることができる。従って、エネルギ効率を向上して水素
含有ガスを生成できるように運転できるようにする上で
好ましい具体構成を提供することができる。
The invention of claim 2 is characterized in that the operation control method of the hydrogen-containing gas generator according to claim 2 is characterized in that the reforming section heating means is configured to be a combustion type for burning gaseous fuel,
On the side of the reforming section opposite to the side where the shift section is provided, supplied water is heated by combustion gas discharged from the combustion-type reforming section heating means, and the reforming section is heated. In providing a steam generating section for generating steam for the reforming process in the above. According to the operation control method of the second aspect, the reforming section heating means is configured to be a combustion type that burns gaseous fuel, and water supplied from the combustion type reforming section heating means in the steam generation section. Since the steam is heated by the discharged combustion gas to generate the steam for the reforming process in the reforming section, the steam for the reforming process can be generated without consuming extra energy. In addition, since the steam generation section is provided on the side of the reforming section opposite to the side on which the shift section is provided, heat radiation from the reforming section can be suppressed. The consumption can be reduced. Therefore, it is possible to provide a specific configuration that is preferable in that the operation can be performed to improve the energy efficiency and generate the hydrogen-containing gas.

【0009】〔請求項3記載の発明〕請求項3に記載の
水素含有ガス生成装置の運転制御方法の特徴は、前記改
質部、前記変成部及び前記選択酸化部を、外形形状が偏
平な板状になるように構成し、それら板状の前記改質
部、前記変成部及び前記選択酸化部を厚さ方向に並設す
ることにある。請求項3に記載の運転制御方法によれ
ば、外形形状が偏平な板状の改質部、変成部及び選択酸
化部を、改質部と選択酸化部との間に変成部が位置し、
且つ、隣接するもの同士で熱伝導可能なように、厚さ方
向に並設するので、改質部、変成部及び選択酸化部の各
部を厚さ方向に伝熱する状態で、改質部から選択酸化部
に向かって伝熱する。つまり、改質部、変成部及び選択
酸化部を、改質部と選択酸化部との間に変成部が位置
し、且つ、隣接するもの同士で熱伝導可能な並設し、隣
接するもの同士の伝熱状態を適宜に設定することによ
り、改質部と選択酸化部をそれぞれに適正な温度に制御
するだけで、変成部をそれぞれに適正な温度に維持する
ことができるようにするに当たって、上述のように、改
質部、変成部及び選択酸化部をそれぞれ偏平な板状に構
成して、厚さ方向に並設することにより、改質部、変成
部及び選択酸化部の各部における伝熱経路を短くして、
伝熱経路に沿った温度勾配を小さくすることができ、も
って、各部の温度分布を小さくすることができる。従っ
て、改質部と変成部と選択酸化部を、温度分布を小さく
しながらそれぞれに適正な温度に維持して運転すること
ができるので、本発明の運転制御方法を実施するのに好
ましい具体構成を提供することができる。
The invention of claim 3 is characterized in that the operation control method of the hydrogen-containing gas generator according to claim 3 is characterized in that the reforming section, the shift section and the selective oxidizing section have a flat outer shape. It is configured to be plate-shaped, and the plate-shaped modified portion, the metamorphic portion, and the selective oxidation portion are arranged side by side in the thickness direction. According to the operation control method according to claim 3, the outer shape is a flat plate-shaped reforming section, the metamorphic section, and the selective oxidation section, and the metamorphic section is located between the reforming section and the selective oxidation section,
And, since it is arranged in parallel in the thickness direction so that adjacent ones can conduct heat, the reforming section, the metamorphic section, and the selective oxidation section are transferred from the reforming section in a state where heat is transferred in the thickness direction. Heat is transferred toward the selective oxidation section. In other words, the reforming section, the shift section, and the selective oxidation section are arranged in parallel so that the shift section is located between the reforming section and the selective oxidation section, and adjacent ones can conduct heat, and adjacent ones By appropriately setting the heat transfer state of the reforming section and the selective oxidizing section, only by controlling each to an appropriate temperature, the shift section can be maintained at an appropriate temperature. As described above, the reforming section, the metamorphic section, and the selective oxidation section are each configured in a flat plate shape, and are arranged side by side in the thickness direction, so that the transmission in each section of the reforming section, the metamorphic section, and the selective oxidation section is performed. Shorten the heat path,
The temperature gradient along the heat transfer path can be reduced, and the temperature distribution in each section can be reduced. Therefore, since the reforming unit, the shift unit, and the selective oxidation unit can be operated while maintaining the respective temperatures at appropriate temperatures while reducing the temperature distribution, a specific configuration preferable for implementing the operation control method of the present invention. Can be provided.

【0010】〔請求項4記載の発明〕請求項4に記載の
水素含有ガス生成装置の運転制御方法の特徴は、炭化水
素系の原燃料ガスを脱硫処理する脱硫部にて脱硫処理し
た脱硫原燃料ガスを、前記改質部で改質処理する炭化水
素系の原燃料ガスとして供給し、前記改質部と前記選択
酸化部との間に、前記脱硫部及び前記変成部を並べて、
且つ、隣接するもの同士で熱伝導可能なように設けるこ
とにある。即ち、本発明の発明者らは、炭化水素系の原
燃料ガスを脱硫処理する脱硫部にて脱硫処理した脱硫原
燃料ガスを、改質部で改質処理する炭化水素系の原燃料
ガスとして供給する場合に、改質処理温度、脱硫処理に
適正な温度(以下、脱硫処理温度と記載する場合があ
る)、変成処理温度及び選択酸化処理温度においては、
改質処理温度が最も高く、選択酸化処理温度が最も低
く、脱硫処理温度と変成処理温度は、改質処理温度と選
択酸化処理温度との間にあるということに鑑みて、運転
制御方法を簡略化すべく鋭意研究した。ちなみに、脱硫
処理温度は例えば150〜270°Cの範囲である。そ
して、改質部、脱硫部、変成部及び選択酸化部を、最も
高温に維持する必要のある改質部と、最も低温に維持す
る必要のある選択酸化部との間に、それら改質部の温度
と選択酸化部の温度との間の温度に維持する必要のある
脱硫部及び変成部が位置し、且つ、隣接するもの同士で
伝熱可能なように設け、そのように改質部、脱硫部、変
成部及び選択酸化部を設けた状態で、隣接するもの同士
の伝熱状態を適宜に設定することにより、改質部と選択
酸化部をそれぞれ適正な温度に制御するだけで、脱硫部
及び変成部は、温度を制御することなくそれぞれに適正
な温度に維持することができるということを見出した。
つまり、図9に示すように、最も高温に維持する必要の
ある改質部3と、最も低温に維持する必要のある選択酸
化部6との間に、それら改質部3の温度と選択酸化部6
の温度との間の温度に維持する必要のある脱硫部1及び
変成部5が位置し、且つ、隣接するもの同士で伝熱可能
なように設けると、図9において矢印にて示すように、
改質部3から選択酸化部6に向かって伝熱して、選択酸
化部6から放熱される。尚、図9において、4は、改質
部3を加熱する燃焼式の改質部加熱手段としての燃焼部
であり、10は、選択酸化部6を冷却する選択酸化部冷
却手段としての冷却用ファンである。そして、隣接する
もの同士、図9では、改質部3と脱硫部1との間、脱硫
部1と変成部5との間、及び、変成部5と選択酸化部6
との間のそれぞれの伝熱状態を適宜に設定することによ
り、改質部3を改質処理温度に維持するように燃焼部4
の加熱能力を調節し、且つ、選択酸化部6を選択酸化処
理温度に維持するように選択酸化部冷却手段としての冷
却用ファン10の風量調節により冷却能力を調節するだ
けで、それら改質部3と選択酸化部6との間に位置する
脱硫部1と変成部5を、温度を制御しなくても成り行き
にて、それぞれ脱硫処理温度、変成処理温度になるよう
にすることができるのである。要するに、改質部の温度
と選択酸化部の温度を制御するだけの簡単な制御にて、
脱硫部と改質部と変成部と選択酸化部をそれぞれ脱硫処
理温度、改質処理温度、変成処理温度、選択酸化処理温
度に維持することができるようになった。従って、簡単
な制御にて脱硫部と改質部と変成部と選択酸化部をそれ
ぞれに適正な温度に維持して運転することができる水素
含有ガス生成装置の運転制御方法を提供することができ
るようになった。
[0010] The feature of the operation control method of the hydrogen-containing gas generator according to claim 4 is that the desulfurization source desulfurized by the desulfurization unit for desulfurizing a hydrocarbon-based raw fuel gas. Fuel gas is supplied as a hydrocarbon-based raw fuel gas to be reformed in the reforming section, and the desulfurizing section and the shift section are arranged between the reforming section and the selective oxidation section,
Another object of the present invention is to provide heat transfer between adjacent components. That is, the inventors of the present invention convert the desulfurized raw fuel gas desulfurized in the desulfurizing section for desulfurizing the hydrocarbon raw fuel gas into a hydrocarbon-based raw fuel gas reformed in the reforming section. When supplying, at the reforming treatment temperature, the temperature suitable for desulfurization treatment (hereinafter sometimes referred to as desulfurization treatment temperature), the shift treatment temperature and the selective oxidation treatment temperature,
The operation control method is simplified in view of the fact that the reforming treatment temperature is the highest, the selective oxidation treatment temperature is the lowest, and the desulfurization treatment temperature and the shift treatment temperature are between the reforming treatment temperature and the selective oxidation treatment temperature. I researched hard to make it. Incidentally, the desulfurization treatment temperature is, for example, in a range of 150 to 270 ° C. Then, the reforming section, the desulfurization section, the shift section, and the selective oxidation section are placed between the reforming section that needs to be maintained at the highest temperature and the selective oxidation section that needs to be maintained at the lowest temperature. The desulfurization unit and the shift unit which need to be maintained at a temperature between the temperature of the selective oxidation unit and the temperature of the selective oxidation unit are located, and provided so as to be able to transfer heat between adjacent ones, so that the reforming unit, With the desulfurization unit, shift unit, and selective oxidation unit provided, the heat transfer state between adjacent units is appropriately set, so that only the reforming unit and the selective oxidation unit are controlled to appropriate temperatures, respectively. It has been found that the section and the metamorphic section can each be maintained at an appropriate temperature without controlling the temperature.
That is, as shown in FIG. 9, between the reforming section 3 which needs to be maintained at the highest temperature and the selective oxidation section 6 which needs to be maintained at the lowest temperature, the temperature of these reforming sections 3 and the selective oxidation Part 6
When the desulfurization unit 1 and the shift unit 5 that need to be maintained at a temperature between the above and the temperature are located and provided so as to be able to conduct heat between adjacent ones, as shown by arrows in FIG.
The heat is transferred from the reforming section 3 to the selective oxidation section 6, and is radiated from the selective oxidation section 6. In FIG. 9, reference numeral 4 denotes a combustion unit as a combustion-type reforming unit heating unit that heats the reforming unit 3, and 10 denotes a cooling unit as a selective oxidation unit cooling unit that cools the selective oxidation unit 6. I'm a fan. Then, adjacent ones, in FIG. 9, between the reforming unit 3 and the desulfurization unit 1, between the desulfurization unit 1 and the shift unit 5, and between the shift unit 5 and the selective oxidation unit 6.
By appropriately setting the respective heat transfer states between the combustion section 4 and the combustion section 4 so that the reforming section 3 is maintained at the reforming processing temperature.
By simply adjusting the cooling capacity by adjusting the airflow of a cooling fan 10 as a selective oxidizing section cooling means so as to maintain the selective oxidizing section 6 at a selective oxidizing treatment temperature by adjusting the heating capacity of the reforming sections, The desulfurization unit 1 and the shift unit 5 located between the unit 3 and the selective oxidation unit 6 can be controlled to the desulfurization temperature and the shift temperature, respectively, without controlling the temperature. . In short, with simple control just controlling the temperature of the reforming section and the temperature of the selective oxidation section,
The desulfurization section, reforming section, shift section, and selective oxidation section can be maintained at the desulfurization temperature, reforming temperature, shift temperature, and selective oxidation temperature, respectively. Therefore, it is possible to provide an operation control method of the hydrogen-containing gas generator capable of operating the desulfurization unit, the reforming unit, the shift unit, and the selective oxidation unit at appropriate temperatures with simple control. It became so.

【0011】〔請求項5記載の発明〕請求項5に記載の
水素含有ガス生成装置の運転制御方法の特徴は、前記脱
硫部及び前記変成部としてそれぞれ複数ずつを、前記脱
硫部と前記変成部とが交互に並ぶように、且つ、隣接す
るもの同士で熱伝導可能なように設けることにある。請
求項5に記載の運転制御方法によれば、脱硫部及び変成
部としてそれぞれ複数ずつを、脱硫部と変成部とが交互
に並ぶように、且つ、隣接するもの同士で熱伝導可能な
ように設け、複数の脱硫部にて、炭化水素系の原燃料ガ
スを脱硫処理し、複数の変成部にて、改質処理ガスを変
成処理する。つまり、脱硫処理温度と変成処理温度とは
同様の温度範囲にあるので、脱硫部及び変成部としてそ
れぞれ複数ずつを、脱硫部と変成部とが交互に並ぶよう
に、且つ、隣接するもの同士で熱伝導可能なように設け
ることにより、改質部と選択酸化部をそれぞれ適正な温
度を制御するだけで、複数の脱硫部及び複数の変成部の
それぞれを、温度を制御することなくそれぞれに適正な
温度に維持することができ、それら複数の脱硫部にて炭
化水素系の原燃料ガスを脱硫処理することにより、脱硫
処理能力を向上し、複数の変成部にて改質処理ガスを変
成処理することにより、変成処理能力を向上することが
できる。しかも、複数の脱硫部及び複数の変成部を、脱
硫部と変成部とが交互に並ぶように設けることにより、
複数の脱硫部を処理対象ガスが順次流れるように、それ
らを管路にて接続し、又、複数の変成部を処理対象ガス
が順次流れるように、それらを管路にて接続するに当た
って、通流経路の順に並ぶもの同士を接続する管路の長
さを長くすることが可能となるので、管路接続作業が容
易となり、低廉化を図ることが可能となる。ちなみに、
複数の脱硫部及び複数の変成部を、脱硫部同士をまとめ
て隣接させて設け、変成部同士をまとめて隣接させて設
けると、隣接するもの同士を管路にて接続する必要があ
るので、接続する管路の長さが短くなって、管路接続作
業がし難くなる。従って、簡単な制御にて脱硫処理能力
及び変成処理能力を向上するように運転することができ
る水素含有ガス生成装置の運転制御方法を、低廉化を図
りながら提供することができるようになった。
The invention according to claim 5 is characterized in that the operation control method for the hydrogen-containing gas generator according to claim 5 is characterized in that a plurality of the desulfurization units and the shift units are respectively provided, and the desulfurization unit and the shift unit Are arranged so as to be alternately arranged and so that adjacent ones can conduct heat. According to the operation control method according to claim 5, a plurality of desulfurization units and a plurality of shift units are respectively provided so that the desulfurization unit and the shift unit are alternately arranged, and the adjacent units can conduct heat. A plurality of desulfurization units perform a desulfurization process on a hydrocarbon-based raw fuel gas, and a plurality of shift units perform a shift process on a reformed gas. In other words, since the desulfurization treatment temperature and the shift treatment temperature are in the same temperature range, a plurality of desulfurization units and shift units are respectively provided, so that the desulfurization unit and the shift unit are alternately arranged, and between adjacent units. By providing heat conduction, only the appropriate temperature of the reforming section and the selective oxidizing section is controlled, and each of the plurality of desulfurizing sections and the plurality of shift sections is appropriately controlled without controlling the temperature. Temperature, and the desulfurization processing of hydrocarbon-based raw fuel gas in these multiple desulfurization sections improves desulfurization processing capacity, and the reforming processing gas is reformed in multiple shift sections. By doing so, the metamorphic treatment capacity can be improved. Moreover, by providing a plurality of desulfurization units and a plurality of shift units, such that the desulfurization unit and the shift unit are alternately arranged,
A plurality of desulfurization units are connected by pipes so that the gas to be treated flows sequentially, and a plurality of conversion units are connected by pipes so that the gas to be processed flows sequentially. Since it is possible to increase the length of the pipeline connecting the components arranged in the order of the flow paths, the pipeline connection work is facilitated and the cost can be reduced. By the way,
When a plurality of desulfurization units and a plurality of shift units are provided so that the desulfurization units are collectively adjacent to each other, and the shift units are collectively adjacent to each other, it is necessary to connect the adjacent ones by a pipeline, The length of the pipeline to be connected is shortened, and the pipeline connection work becomes difficult. Therefore, it has become possible to provide an operation control method of the hydrogen-containing gas generation device that can be operated with a simple control so as to improve the desulfurization processing capacity and the shift processing capacity while reducing the cost.

【0012】〔請求項6記載の発明〕請求項6に記載の
水素含有ガス生成装置の運転制御方法の特徴は、前記脱
硫部からの脱硫原燃料ガスと前記改質部からの改質処理
ガスとを熱交換させる熱交換部を、前記改質部と前記脱
硫部又は前記変成部との間に設けることにある。請求項
6に記載の運転制御方法によれば、改質部と脱硫部又は
変成部との間に設けた熱交換部にて、脱硫部からの脱硫
原燃料ガスと改質部からの改質処理ガスとを熱交換させ
て、脱硫原燃料ガスを予熱して改質部に供給すると共
に、改質処理ガスを冷却して変成部に供給する。つま
り、脱硫部から排出された状態の脱硫原燃料ガスは、脱
硫部の温度に近い温度であり、その脱流原燃料ガスが供
給される改質部の温度との差が大きく、一方、改質部か
ら排出された状態の改質処理ガスは、改質部の温度に近
い温度であり、その改質処理ガスが供給される変成部と
の温度差が大きい。そこで、脱硫部から排出された脱硫
原燃料ガスと改質部から排出された改質処理ガスとを熱
交換部にて熱交換させることにより、脱硫原燃料ガスを
予熱するために余分なエネルギを消費することなく、且
つ、改質処理ガスを冷却するために熱を捨てることな
く、脱硫原燃料ガスを予熱して、改質部との温度差を小
さくした状態で改質部に供給することができると共に、
改質処理ガスを冷却して、変成部との温度差を小さくし
た状態で変成部に供給することができるようになる。し
かも、熱交換部に流入及び流出する各流体の温度は、改
質部の温度と脱硫部又は変成部の温度との間の範囲内
か、あるいはその範囲に近い温度であるので、熱交換部
を、改質部と脱硫部又は変成部との間に設けることによ
り、改質部の温度、脱硫部又は変成部の温度をそれぞれ
に適正な温度に維持し易く、延いては、水素含有ガス生
成装置の各部の温度をそれぞれに適正な温度に維持し易
くなる。従って、エネルギ効率を向上して水素含有ガス
を生成することができながら、脱硫部、改質部、変成部
及び選択酸化部それぞれの温度を一層的確に維持して運
転することができるようにする上で好ましい具体構成を
提供することができる。
The invention according to claim 6 is characterized in that the operation control method of the hydrogen-containing gas generator according to claim 6 is characterized in that the desulfurization raw fuel gas from the desulfurization section and the reforming processing gas from the reforming section. And a heat exchange unit for exchanging heat between the reforming unit and the desulfurization unit or the shift unit. According to the operation control method of the sixth aspect, the desulfurization raw fuel gas from the desulfurization section and the reforming from the reforming section are provided in the heat exchange section provided between the reforming section and the desulfurization section or the shift section. Heat exchange with the processing gas is performed to preheat the desulfurization raw fuel gas and supply it to the reforming section, and also cool the reforming processing gas and supply it to the shift section. In other words, the temperature of the desulfurized raw fuel gas discharged from the desulfurization unit is close to the temperature of the desulfurization unit, and the difference from the temperature of the reforming unit to which the desulfurized raw fuel gas is supplied is large. The reforming gas discharged from the reforming section has a temperature close to the temperature of the reforming section, and has a large temperature difference from the shift section to which the reforming gas is supplied. Therefore, by performing heat exchange between the desulfurization raw fuel gas discharged from the desulfurization unit and the reforming process gas discharged from the reforming unit in the heat exchange unit, extra energy is required to preheat the desulfurization raw fuel gas. Preheating the desulfurization raw fuel gas without consuming it and without wasting heat to cool the reforming gas, and supplying it to the reforming unit with a small temperature difference from the reforming unit Can be done,
The reforming process gas can be cooled and supplied to the shift unit in a state where the temperature difference with the shift unit is reduced. In addition, the temperature of each fluid flowing into and out of the heat exchange section is within or close to the range between the temperature of the reforming section and the temperature of the desulfurization section or the shift section. Is provided between the reforming section and the desulfurization section or the shift section, so that the temperature of the reforming section, the temperature of the desulfurization section or the shift section can be easily maintained at an appropriate temperature, respectively. It is easy to maintain the temperature of each part of the generator at an appropriate temperature. Therefore, it is possible to operate while maintaining the temperatures of the desulfurization unit, the reforming unit, the shift unit, and the selective oxidation unit more accurately while improving the energy efficiency and generating the hydrogen-containing gas. The above preferred embodiment can be provided.

【0013】〔請求項7記載の発明〕請求項7に記載の
水素含有ガス生成装置の運転制御方法の特徴は、前記改
質部、前記脱硫部、前記変成部及び前記選択酸化部を、
外形形状が偏平な板状になるように構成し、それら板状
の前記改質部、前記脱硫部、前記変成部及び前記選択酸
化部を厚さ方向に並設することにある。請求項7に記載
の運転制御方法によれば、外形形状が偏平な板状の改質
部、脱硫部、変成部及び選択酸化部を、改質部と選択酸
化部との間に脱硫部及び変成部が位置し、且つ、隣接す
るもの同士で熱伝導可能なように、厚さ方向に並設する
ので、改質部、脱硫部、変成部及び選択酸化部の各部を
厚さ方向に伝熱する状態で、改質部から選択酸化部に向
かって伝熱する。つまり、改質部、脱硫部、変成部及び
選択酸化部を、改質部と選択酸化部との間に脱硫部及び
変成部が位置し、且つ、隣接するもの同士で熱伝導可能
な並設し、隣接するもの同士の伝熱状態を適宜に設定す
ることにより、改質部と選択酸化部をそれぞれに適正な
温度に制御するだけで、脱硫部及び変成部をそれぞれに
適正な温度に維持することができるようにするに当たっ
て、上述のように、改質部、脱硫部、変成部及び選択酸
化部をそれぞれ偏平な板状に構成して、厚さ方向に並設
することにより、改質部、脱硫部、変成部及び選択酸化
部の各部における伝熱経路を短くして、伝熱経路に沿っ
た温度勾配を小さくすることができ、もって、各部の温
度分布を小さくすることができる。従って、脱硫部と改
質部と変成部と選択酸化部を、温度分布を小さくしなが
らそれぞれに適正な温度に維持して運転することができ
るので、本発明の運転制御方法を実施するのに好ましい
具体構成を提供することができる。
The invention of claim 7 is characterized in that the operation control method of the hydrogen-containing gas generator according to claim 7 is characterized in that the reforming section, the desulfurization section, the shift section, and the selective oxidation section include:
The outer shape is configured to be a flat plate, and the plate-shaped reforming section, the desulfurization section, the metamorphic section, and the selective oxidation section are arranged side by side in the thickness direction. According to the operation control method described in claim 7, the outer shape of the flat plate-shaped reforming section, desulfurizing section, metamorphic section and selective oxidation section, the desulfurization section and the selective oxidation section between the reforming section and the selective oxidation section. Since the metamorphic section is located and juxtaposed in the thickness direction so that adjacent parts can conduct heat to each other, each section of the reforming section, desulfurization section, metamorphic section, and selective oxidation section is transmitted in the thickness direction. In the heated state, heat is transferred from the reforming section to the selective oxidation section. In other words, the reforming unit, the desulfurization unit, the shift unit, and the selective oxidation unit are arranged in parallel, where the desulfurization unit and the shift unit are located between the reforming unit and the selective oxidation unit, and the adjacent units can conduct heat. Then, by appropriately setting the heat transfer state between the adjacent ones, simply controlling the reforming unit and the selective oxidizing unit to appropriate temperatures, respectively, maintains the desulfurizing unit and the shift unit at the appropriate temperatures. As described above, the reforming section, the desulfurization section, the metamorphic section, and the selective oxidation section are each configured as a flat plate, and are arranged side by side in the thickness direction, as described above. The heat transfer path in each section of the section, the desulfurization section, the shift section, and the selective oxidation section can be shortened to reduce the temperature gradient along the heat transfer path, thereby reducing the temperature distribution in each section. Therefore, the desulfurization unit, the reforming unit, the shift unit, and the selective oxidation unit can be operated while maintaining the respective temperatures at appropriate temperatures while reducing the temperature distribution, so that the operation control method of the present invention can be implemented. Preferred embodiments can be provided.

【0014】[0014]

【発明の実施の形態】〔第1実施形態〕以下、図面に基
づいて、本発明を燃料電池用の水素含有ガス生成装置に
適用した場合の第1実施形態を説明する。図1に示すよ
うに、水素含有ガス生成装置Pは、供給される天然ガス
等の炭化水素系の原燃料ガスを脱硫処理する脱硫部1
と、供給される原料水を加熱して水蒸気を生成する水蒸
気生成部Sと、燃焼式の改質部加熱手段としての燃焼部
4にて加熱されて、脱硫部1から供給される脱硫原燃料
ガスを水蒸気生成部Sで生成された水蒸気を用いて水素
ガスと一酸化炭素ガスを含むガスに改質処理する改質部
3と、改質部3から供給される改質処理ガス中の一酸化
炭素ガスを水蒸気を用いて二酸化炭素ガスに変成させる
ことにより変成処理する変成部5と、その変成部5から
供給される変成処理ガス中の一酸化炭素ガスを選択酸化
することにより選択酸化処理する選択酸化部6と、水素
含有ガス生成装置の運転を制御する制御部Cを備えて構
成して、一酸化炭素ガス濃度の低い(例えば10ppm
以下)水素リッチな水素含有ガスを生成するように構成
してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment A first embodiment in which the present invention is applied to a hydrogen-containing gas generator for a fuel cell will be described below with reference to the drawings. As shown in FIG. 1, a hydrogen-containing gas generator P includes a desulfurization unit 1 for desulfurizing a hydrocarbon-based raw fuel gas such as a supplied natural gas.
And a steam generation unit S for heating the supplied raw water to generate steam, and a desulfurization raw fuel supplied from the desulfurization unit 1 by being heated by the combustion unit 4 serving as a combustion-type reforming unit heating unit. A reforming section 3 for reforming the gas into a gas containing hydrogen gas and carbon monoxide gas using steam generated by the steam generating section S; A shift section 5 for shift conversion by converting a carbon oxide gas into a carbon dioxide gas using water vapor, and a selective oxidation treatment by selectively oxidizing a carbon monoxide gas in the shift processing gas supplied from the shift section 5. And a control unit C for controlling the operation of the hydrogen-containing gas generating apparatus so that the concentration of carbon monoxide gas is low (for example, 10 ppm).
The following is configured to generate a hydrogen-rich hydrogen-containing gas.

【0015】脱硫部1においては、例えば150〜27
0°Cの範囲の脱硫処理温度で、脱硫触媒にて原燃料ガ
ス中の硫黄化合物が水素化され、その水素化物が酸化亜
鉛に吸着されて脱硫される。ちなみに、脱硫部1におけ
る脱硫反応は発熱反応である。
In the desulfurization section 1, for example, 150 to 27
At a desulfurization treatment temperature in the range of 0 ° C., a sulfur compound in the raw fuel gas is hydrogenated by a desulfurization catalyst, and the hydride is adsorbed by zinc oxide to be desulfurized. Incidentally, the desulfurization reaction in the desulfurization unit 1 is an exothermic reaction.

【0016】改質部3においては、メタンガスを主成分
とする天然ガスが原燃料ガスである場合は、改質触媒の
触媒作用により、例えば600〜700°Cの範囲の改
質処理温度の下で、メタンガスと水蒸気とが下記の反応
式にて改質反応して、水素ガスと一酸化炭素ガスを含む
ガスに改質処理される。ちなみに、改質部3における改
質反応は吸熱反応である。
In the reforming section 3, when natural gas mainly composed of methane gas is the raw fuel gas, the reforming catalyst is catalyzed by a reforming catalyst and has a reforming temperature of, for example, 600 to 700 ° C. Then, the methane gas and the steam undergo a reforming reaction according to the following reaction formula, and are reformed into a gas containing hydrogen gas and carbon monoxide gas. Incidentally, the reforming reaction in the reforming section 3 is an endothermic reaction.

【0017】[0017]

【化1】CH4 +H2O→CO+3H2 Embedded image CH 4 + H 2 O → CO + 3H 2

【0018】変成部5においては、改質処理ガス中の一
酸化炭素ガスと水蒸気とが、変成触媒の触媒作用によ
り、例えば150〜250°Cの範囲の変成処理温度の
下で、下記の反応式にて変成反応して、一酸化炭素ガス
が二酸化炭素ガスに変成処理される。ちなみに、変成部
5における変成反応は発熱反応である。
In the shift unit 5, the carbon monoxide gas and the steam in the reforming gas are reacted by the catalytic action of the shift catalyst at the shift reaction temperature of, for example, 150 to 250 ° C. The carbon monoxide gas is converted into carbon dioxide gas by a conversion reaction according to the formula. Incidentally, the metamorphic reaction in the metamorphic section 5 is an exothermic reaction.

【0019】[0019]

【化2】CO+H2O→CO2 +H2 ## STR2 ## CO + H 2 O → CO 2 + H 2

【0020】選択酸化部6においては、白金、ルテニウ
ム、ロジウム等の貴金属系の変成触媒の触媒作用によっ
て、例えば80〜100°Cの範囲の選択酸化処理温度
の下で、変成処理ガス中に残っている一酸化炭素ガスが
選択酸化される。ちなみに、選択酸化部6における酸化
反応は発熱反応である。
In the selective oxidation section 6, the catalytic conversion of a noble metal-based conversion catalyst such as platinum, ruthenium, rhodium or the like causes the catalyst remaining in the conversion processing gas at a selective oxidation processing temperature in the range of 80 to 100 ° C., for example. Carbon monoxide gas is selectively oxidized. Incidentally, the oxidation reaction in the selective oxidation section 6 is an exothermic reaction.

【0021】そして、水素含有ガス生成装置にて生成さ
れた水素含有ガスは燃料ガスとして、燃料ガス路23を
通じて燃料電池Gに供給される。燃料電池Gは、詳細な
説明は省略するが、高分子膜を電解質とする固体高分子
型であり、水素含有ガス生成装置Pから供給される燃料
ガス中の水素と、ブロア(図示せず)から供給される反
応用空気中の酸素との電気化学反応により発電するよう
に構成してある。
The hydrogen-containing gas generated by the hydrogen-containing gas generator is supplied to the fuel cell G through the fuel gas passage 23 as a fuel gas. Although the detailed description is omitted, the fuel cell G is a solid polymer type using a polymer membrane as an electrolyte. The fuel cell G includes hydrogen in the fuel gas supplied from the hydrogen-containing gas generator P and a blower (not shown). Is generated by an electrochemical reaction with oxygen in the reaction air supplied from the reactor.

【0022】燃焼部4は、燃料電池Gから排出されて、
オフガス路24を通じて供給されるる燃料ガスであるオ
フガスをガス燃料として燃焼させると共に、改質部3を
改質処理可能なように加熱するに当たって、オフガスだ
けでは不足する分をガス燃料供給路37を通じて供給さ
れる都市ガス(13A等)をガス燃料として燃焼させ
る。
The combustion section 4 is discharged from the fuel cell G,
In burning off-gas, which is a fuel gas supplied through the off-gas passage 24, as gas fuel, and heating the reforming unit 3 so that the reforming process can be performed, the shortage of the off-gas alone is supplied through the gas fuel supply passage 37. City gas (13A or the like) to be burned as gas fuel.

【0023】水蒸気生成部Sは、燃焼部4から排出され
た燃焼ガスを通流させる水蒸気生成用加熱通流部11
と、供給される原料水を水蒸気生成用加熱通流部11に
よる加熱にて蒸発させる蒸発処理部2とから構成してあ
る。
The steam generating section S is provided with a steam generating heating flow section 11 through which the combustion gas discharged from the combustion section 4 flows.
And an evaporating section 2 for evaporating the supplied raw water by heating by the heating flow section 11 for steam generation.

【0024】更に、水素含有ガス生成装置Pには、改質
部3から排出された高温の改質処理ガスを通流させて、
改質部3を保温する保温用通流部7と、脱硫部1からの
脱硫原燃料ガスと改質部3からの高温の改質処理ガスと
を熱交換させて、改質部3に供給される脱硫原燃料ガス
を予熱する脱硫原燃料ガス用熱交換器Ep(熱交換部に
相当する)と、改質部3からの高温の改質処理ガスと脱
硫部1に供給される原燃料ガスを熱交換させて原燃料ガ
スを予熱する原燃料ガス用熱交換器Eaと、変成部5を
冷却するために冷却用流体を通流させる変成部冷却用通
流部8と、同じく、変成部5を冷却するために冷却用流
体を通流させる変成部冷却用通流部9と、選択酸化部6
を冷却する選択酸化部冷却手段としての冷却用ファン1
0とを設けてある。又、変成部5から排出された変成処
理ガスと、水蒸気生成部Sへ供給する原料水とを熱交換
させて、原料水を予熱する原料水予熱用熱交換器17を
設けてある。
Further, the high-temperature reforming gas discharged from the reforming section 3 is passed through the hydrogen-containing gas generator P,
Heat exchange passage 7 for keeping the temperature of the reforming section 3, and heat exchange between the desulfurized raw fuel gas from the desulfurizing section 1 and the high-temperature reforming processing gas from the reforming section 3, and supply to the reforming section 3. Desulfurization raw fuel gas heat exchanger Ep (corresponding to a heat exchange section) for preheating the desulfurization raw fuel gas to be heated, the high-temperature reforming processing gas from the reforming section 3 and the raw fuel supplied to the desulfurization section 1 A heat exchanger Ea for raw fuel gas for preheating the raw fuel gas by exchanging heat with the gas, and a flow passage for cooling 8 for a cooling unit for cooling the cooling unit 5 to cool the shift unit 5 A cooling section flow passage 9 through which a cooling fluid flows to cool the section 5;
Cooling fan 1 as cooling means for selective oxidation unit for cooling
0 is provided. Further, a heat exchanger 17 for preheating a raw water is provided for preheating the raw water by exchanging heat between the metamorphic processing gas discharged from the metamorphic section 5 and the raw water supplied to the steam generating section S.

【0025】脱硫原燃料ガス用熱交換器Epは、保温用
通流部7から排出された改質処理ガスを通流させる上流
側改質処理ガス通流部12と、改質部3に供給する脱硫
原燃料ガスを通流させる脱硫原燃料ガス通流部13とを
熱交換自在に設けて構成し、原燃料ガス用熱交換器Ea
は、上流側改質処理ガス通流部12から排出された改質
処理ガスを通流させる下流側改質処理ガス通流部15
と、脱硫部1に供給する原燃料ガスを通流させる原燃料
ガス通流部16とを熱交換自在に設けて構成してある。
The desulfurization raw gas heat exchanger Ep is supplied to the upstream reforming gas passage 12 through which the reforming gas discharged from the heat retaining passage 7 flows, and to the reforming section 3. And a desulfurization raw fuel gas flow portion 13 through which the heat of the desulfurization raw fuel gas to flow is provided so as to freely exchange heat.
Is a downstream reforming gas passage 15 through which the reforming gas discharged from the upstream reforming gas passage 12 flows.
And a raw fuel gas flow section 16 through which the raw fuel gas supplied to the desulfurization section 1 flows is provided so as to freely exchange heat.

【0026】起動時に、脱硫部1を脱硫処理可能なよう
に加熱する脱硫部用ヒータ32、変成部を変成処理可能
なように加熱する2個の変成部用ヒータ33を設けてあ
り、それらヒータ32,33は電気ヒータから成る。
At the time of start-up, a desulfurization section heater 32 for heating the desulfurization section 1 so as to be capable of desulfurization and two shift section heaters 33 for heating the shift section so as to be capable of shift processing are provided. Reference numerals 32 and 33 comprise electric heaters.

【0027】第1実施形態においては、改質部3、脱硫
部1、変成部5及び選択酸化部6を、改質部3と選択酸
化部6との間に脱硫部1及び変成部5が位置し、且つ、
隣接するもの同士で熱伝導可能なように設け、改質部3
を改質処理に適正な温度に維持するように、燃焼部4の
加熱能力を調節し、且つ、選択酸化部6を選択酸化処理
に適正な温度に維持するように、冷却用ファン10の通
風量を調節して冷却能力を調節することにより、脱硫部
1及び変成部5がそれぞれの処理に適正な温度になるよ
うに、隣接するもの同士の伝熱状態を予め設定してあ
る。
In the first embodiment, the reforming unit 3, the desulfurization unit 1, the shift unit 5, and the selective oxidation unit 6 are provided, and the desulfurization unit 1 and the shift unit 5 are provided between the reforming unit 3 and the selective oxidation unit 6. Located and
Provided so as to be able to conduct heat between adjacent ones,
The heating capacity of the combustion unit 4 is adjusted so as to maintain the temperature at a temperature appropriate for the reforming process, and the ventilation of the cooling fan 10 is controlled so as to maintain the selective oxidation unit 6 at a temperature appropriate for the selective oxidation process. By adjusting the cooling capacity by adjusting the amount, the heat transfer state between the adjacent ones is set in advance so that the desulfurization unit 1 and the shift unit 5 have an appropriate temperature for each treatment.

【0028】説明を加えると、図1に示すように、水素
含有ガス生成装置Pは、矩形板状の偏平な容器Bの複数
を板状形状の厚さ方向に並べて設けて、各容器Bを用い
て、脱硫部1、改質部3、燃焼部4、変成部5、選択酸
化部6、水蒸気生成部S、各通流部等を夫々構成してあ
る。複数の容器Bのうちの一部は、一つの室を備えるよ
うに形成した単室具備容器Bmにて構成し、残りは、区
画された二つの室を備えるように形成した双室具備容器
Bdにて構成してある。
In addition, as shown in FIG. 1, the hydrogen-containing gas generator P is provided with a plurality of rectangular flat plates B arranged side by side in the thickness direction of the flat plate. Using them, a desulfurization unit 1, a reforming unit 3, a combustion unit 4, a shift unit 5, a selective oxidizing unit 6, a steam generation unit S, and respective flow units are respectively configured. Part of the plurality of containers B is constituted by a single-chamber-equipped container Bm formed to have one chamber, and the rest is a twin-chamber-equipped container Bd formed to have two partitioned chambers. It consists of.

【0029】図2に示すように、双室具備容器Bdは、
一対の皿形状容器形成部材41の間に平板状の仕切り部
材43を位置させた状態で、周辺部を溶接接続して、二
つの偏平な室を区画形成し、図3に示すように、単室具
備容器Bmは、皿形状容器形成部材41と平板状容器形
成部材42とを周辺部を溶接接続して、一つの偏平な室
を区画形成してある。各単室具備容器Bmや、各双室具
備容器Bdには、必要に応じて、流体供給用や流体排出
用の接続ノズル44を内部の室と連通する状態で取り付
けてある。又、図示を省略するが、必要に応じて、容器
Bの室内を蛇行状流路になるように構成して、流体の通
流経路を長くしている。
As shown in FIG. 2, the double-chambered container Bd comprises:
With the flat partition member 43 positioned between the pair of dish-shaped container forming members 41, the peripheral portions are welded and connected to form two flat chambers, and as shown in FIG. In the chamber-equipped container Bm, a dish-shaped container forming member 41 and a flat-plate-shaped container forming member 42 are welded and connected at their peripheral portions to form one flat chamber. A connection nozzle 44 for fluid supply or fluid discharge is attached to each of the single-chamber-equipped containers Bm and each of the double-chamber-equipped containers Bd so as to communicate with the internal chambers as necessary. Although not shown, if necessary, the chamber of the container B is configured to have a meandering flow path, and the flow path of the fluid is lengthened.

【0030】図1に示すように、本第1実施形態におい
ては、8個の双室具備容器Bdと、1個の単室具備容器
Bmを、側面視において左端から3個目に単室具備容器
Bmを位置させた状態で、横方向に厚さ方向に並べて設
けて、コンパクトに形成してある。8個の双室具備容器
Bdの区別が明確になるように、便宜上、双室具備容器
を示す符号Bdの後に、左からの並び順を示す符号1,
2,3……………8を付す。
As shown in FIG. 1, in the first embodiment, eight double-chambered containers Bd and one single-chambered container Bm are provided in a third single-chamber from the left end in a side view. In a state where the container Bm is positioned, the container Bm is provided side by side in the thickness direction to be compact. In order to clarify the distinction between the eight twin-chamber-equipped containers Bd, for the sake of convenience, the code Bd indicating the twin-chamber-equipped container is followed by the reference numeral 1 indicating the arrangement order from the left.
2, 3 ... 8

【0031】左端の双室具備容器Bd1にて水蒸気生成
部Sを構成してあり、その双室具備容器Bd1の左側の
室を備えた部分を用いて、水蒸気生成用加熱通流部11
を構成し、右側の室を備えた部分を用いて蒸発処理部2
を構成し、両室内にステンレスウール等からなる伝熱促
進材を通気可能な状態で充填してある。左から2個目の
双室具備容器Bd2の左側の室を備えた部分を用いて燃
焼部4を構成し、右側の室を備えた部分を用いて改質部
3を構成してある。燃焼部4を構成する左側の室を、燃
焼室に構成すると共に、その燃焼室内でガス燃料を燃焼
させるように改質用バーナ4bを設け、改質部3を構成
する右側の室には、ルテニウム、ニッケル、白金等の改
質用触媒を保持したセラミック製の多孔質粒状体の多数
を通気可能な状態で充填してある。単室具備容器Bmを
用いて、保温用通流部7を構成してある。
The steam generating section S is constituted by the double-chambered container Bd1 at the left end, and the portion of the double-chambered container Bd1 provided with the left chamber is used as the heating flow section 11 for steam generation.
And the evaporating section 2 is formed by using the portion provided with the chamber on the right side.
In both chambers, a heat transfer promoting material made of stainless steel wool or the like is filled in a permeable state. The combustion unit 4 is configured using a portion including the left chamber of the second double chamber-equipped container Bd2 from the left, and the reforming unit 3 is configured using a portion including the right chamber. The left chamber constituting the combustion section 4 is configured as a combustion chamber, and a reforming burner 4b is provided so as to burn gas fuel in the combustion chamber. A large number of porous ceramic particles holding reforming catalysts such as ruthenium, nickel and platinum are filled in a gas-permeable state. Using the single-chamber-provided container Bm, the heat-passing flow passage 7 is formed.

【0032】左から3個目の双室具備容器Bd3の左側
の室を備えた部分を用いて、上流側改質処理ガス通流部
12を構成し、右側の室を備えた部分を用いて、脱硫原
燃料ガス通流部13を構成してある。両室内には、ステ
ンレスウール等からなる伝熱促進材を通気可能な状態で
充填してある。
The upstream reforming gas flow section 12 is formed by using the left chamber of the third double chamber-equipped container Bd3 from the left, and is formed by using the section having the right chamber. , A desulfurization raw fuel gas flow section 13. Both chambers are filled with a heat transfer promoting material made of stainless steel wool or the like in a permeable state.

【0033】左から4個目の双室具備容器Bd4の左側
の室を備えた部分を用いて、脱硫部1を構成し、右側の
室を備えた部分を用いて、原燃料ガス通流部16を構成
してある。脱硫部1を構成する左側の室内には、脱硫用
触媒を保持したセラミック製の多孔質粒状体の多数を通
気可能な状態で充填してある。
The desulfurization unit 1 is constituted by using the portion provided with the left chamber of the fourth double-chamber container Bd4 from the left, and the raw fuel gas passage is formed by using the portion provided with the right chamber. 16 are constituted. A large number of ceramic porous granules holding a desulfurization catalyst are filled in the left chamber constituting the desulfurization unit 1 in a gas-permeable state.

【0034】左から5個目の双室具備容器Bd5の左側
の室を備えた部分を用いて、下流側改質処理ガス通流部
15を構成し、右側の室を備えた部分を用いて、変成部
5を構成してある。左から6個目の双室具備容器Bd6
の左側の室を備えた部分を用いて、変成部5を構成し、
右側の室を備えた部分を用いて、変成部冷却用通流部8
を構成してある。左から7個目の双室具備容器Bd7を
用いて、変成部5を構成してある。変成部を構成する各
室内には、酸化鉄又は銅亜鉛の変成反応用触媒を保持し
たセラミック製の多孔質粒状体の多数を通気可能な状態
で充填してある。つまり、変成部5は、左から5個目の
双室具備容器Bd5、左から6個目の双室具備容器Bd
6及び左から7個目の双室具備容器Bd7を用いて構成
して、変成部5は3台設けてある。
A portion of the fifth double chamber-equipped container Bd5 from the left having the left chamber is used to form the downstream reforming gas flow section 15, and a portion having the right chamber is used. , A shift unit 5. Sixth double-chambered container Bd6 from the left
The metamorphic unit 5 is constituted by using the portion provided with the left chamber of
Using the portion provided with the right side chamber, the flow passage 8 for cooling the metamorphic section
Is configured. The metamorphic unit 5 is configured using the seventh double-chambered container Bd7 from the left. Each of the chambers constituting the metamorphic section is filled with a large number of porous ceramic particles holding a metamorphic reaction catalyst of iron oxide or copper zinc in a gas-permeable state. In other words, the metamorphic unit 5 includes the fifth twin-chamber container Bd5 from the left and the sixth twin-chamber container Bd from the left.
6 and the seventh twin chamber-equipped container Bd7 from the left, and three transformation units 5 are provided.

【0035】左から8個目(右端)の双室具備容器Bd
8の左側の室を備えた部分を用いて、変成部冷却用通流
部9を構成し、右側の室を備えた部分を用いて選択酸化
部6を構成してある。選択酸化部6を構成する室内に
は、ルテニウムの選択酸化用触媒を保持したセラミック
製の多孔質粒状体の多数を通気可能な状態で充填してあ
る。
The eighth (right end) double-chambered container Bd from the left
The portion provided with the left chamber of FIG. 8 constitutes the flow passage 9 for cooling the metamorphic section, and the portion provided with the right chamber constitutes the selective oxidation section 6. The interior of the chamber constituting the selective oxidation section 6 is filled with a large number of porous ceramic particles holding a ruthenium selective oxidation catalyst in a gas-permeable state.

【0036】つまり、燃焼部4及び改質部3を構成する
双室具備容器Bd2の一方側に、その双室具備容器Bd
2の側から、保温用通流部7を構成する単室具備容器B
m、断熱材19、上流側改質処理ガス通流部12及び脱
硫原燃料ガス通流部13、即ち脱硫原燃料ガス用熱交換
器Epを構成する双室具備容器Bd3、断熱材19、脱
硫部1及び原燃料ガス通流部16を構成する双室具備容
器Bd4、下流側改質処理ガス通流部15及び変成部5
を構成する双室具備容器Bd5、変成部5及び変成部冷
却用通流部8を構成する双室具備容器Bd6、変成部5
を構成する双室具備容器Bd7、変成部冷却用通流部9
及び選択酸化部6を構成する双室具備容器Bd8を記載
順に並ぶように互いに密接配置して設け、双室具備容器
Bd2の他方側に、その双室具備容器Bd2の側から、
断熱材19、水蒸気生成部Sを構成する双室具備容器B
d1を記載順に並ぶように密接配置して設けてある。
That is, one side of the double-chamber container Bd2 constituting the combustion section 4 and the reforming section 3 is provided with the double-chamber container Bd
From the side 2, a single-chamber container B constituting the heat retaining flow passage 7
m, a heat insulator 19, an upstream reforming gas flow portion 12, and a desulfurization raw fuel gas flow portion 13, that is, a double-chambered container Bd3 constituting a desulfurization raw fuel gas heat exchanger Ep, a heat insulating material 19, and desulfurization. Twin chamber-equipped container Bd4 constituting the section 1 and the raw fuel gas flow section 16, the downstream reforming gas flow section 15 and the shift section 5
The twin chamber-equipped container Bd5, the metamorphic unit 5, the metamorphic unit 5, and the metamorphic unit cooling passage 8
Bd7 with a double chamber, flow passage 9 for cooling the metamorphic section
And the twin chamber-equipped container Bd8 constituting the selective oxidizing section 6 is provided so as to be closely arranged to be arranged in the stated order, and on the other side of the twin chamber-equipped container Bd2,
Insulating material 19, twin-chamber-equipped container B constituting steam generating section S
d1 are arranged closely in order to be described.

【0037】脱硫部用ヒータ32は、脱硫部1を構成す
る左から4個目の双室具備容器Bd4とそれに隣接する
断熱材19との間に設け、一方の変成部用ヒータ33
は、1段目の変成部5を構成する左から5個目の双室具
備容器Bd5と、2段目の変成部5を構成する左から6
個目の双室具備容器Bd6との間に設け、他方の変成部
用ヒータ33は、3段目の変成部5を構成する左から7
個目の双室具備容器Bd7と変成部冷却用通流部9及び
選択酸化部6を構成する左から8個目(右端)の双室具
備容器Bd8との間に設けてある。
The desulfurization section heater 32 is provided between the fourth double chamber-equipped container Bd4 from the left constituting the desulfurization section 1 and the heat insulating material 19 adjacent thereto.
Are the fifth double chamber-equipped container Bd5 from the left that constitutes the first stage transformation unit 5 and the sixth from the left that constitutes the second stage transformation unit 5
It is provided between the second twin-chamber-equipped container Bd6 and the other transformation unit heater 33, which is the seventh stage transformation unit 5 from the left.
It is provided between the eighth twin chamber-equipped container Bd8 and the eighth (right end) twin chamber-equipped container Bd8 from the left, which constitutes the cooling section cooling passage 9 and the selective oxidation section 6.

【0038】図4及び図5に示すように、水素含有ガス
生成装置Pは、複数の容器B及び断熱材19等を、上述
のように並べて配置位置して、並び方向両端の容器Bに
一対の保持板49を各別に当て付けた状態で、それら一
対の保持板49を6組のネジ式連結手段にて連結するこ
とにより、一体的に組み付けて構成してある。ネジ式連
結手段は、ボルト45、一対のナット46及び一対のス
プリングワッシャ47から成る。各保持板49は、L字
状に形成すると共に、各保持板49は、2本の補強用リ
ブ48にて補強してある。そして、ボルト45の両端夫
々を、保持板49に挿通した状態で、両側からスプリン
グワッシャ47を介してナット46にて締め付けること
により、複数の容器Bを並び方向に直交する方向での相
対移動を許容する状態で並び方向両側から押し付けるよ
うにしてある。又、スプリングワッシャ47の伸縮作用
により、各容器Bの並び方向での膨張収縮も許容するよ
うにしてある。尚、一対の保持板49を立設して、その
一対の保持板49にて支持する状態で、水素含有ガス生
成装置Pを設置する。
As shown in FIGS. 4 and 5, the hydrogen-containing gas generating apparatus P includes a plurality of containers B and a heat insulating material 19 arranged side by side as described above. The holding plates 49 are separately attached to each other, and the pair of holding plates 49 are connected to each other by six sets of screw-type connecting means to be integrally assembled. The screw type connecting means includes a bolt 45, a pair of nuts 46, and a pair of spring washers 47. Each holding plate 49 is formed in an L shape, and each holding plate 49 is reinforced by two reinforcing ribs 48. Then, in a state in which both ends of the bolt 45 are inserted into the holding plate 49, by tightening the nuts 46 from both sides via the spring washers 47, the relative movement in the direction orthogonal to the direction in which the plurality of containers B are arranged. Pressing from both sides in the arrangement direction is allowed. Further, the expansion and contraction of the containers B in the arrangement direction is allowed by the expansion and contraction of the spring washer 47. Note that the hydrogen-containing gas generator P is installed with the pair of holding plates 49 standing upright and supported by the pair of holding plates 49.

【0039】図1において、白抜き線矢印にて示すよう
に、原燃料ガス供給路21を原燃料ガス用熱交換器Ea
の原燃料ガス通流部16に接続し、並びに、原燃料ガス
通流部16、脱硫部1、脱硫原燃料ガス用熱交換器Ep
の脱硫原燃料ガス通流部13、改質部3、保温用通流部
7、脱硫原燃料ガス用熱交換器Epの上流側改質処理ガ
ス通流部12、原燃料ガス用熱交換器Eaの下流側改質
処理ガス通流部15、3段の各変成部5、選択酸化部6
の順に流れるガス処理経路を形成するように、それらを
ガス処理用流路22にて接続してある。
In FIG. 1, the raw fuel gas supply passage 21 is connected to the raw fuel gas heat exchanger Ea as indicated by the white arrow.
And the raw fuel gas flow section 16, the desulfurization section 1, and the desulfurized raw fuel gas heat exchanger Ep.
Of the desulfurization raw fuel gas, the reforming section 3, the heat retaining flow section 7, the upstream reforming gas flow section 12 of the desulfurization raw fuel gas heat exchanger Ep, the raw fuel gas heat exchanger Ea downstream reforming gas flow section 15, three-stage conversion section 5, selective oxidation section 6
These are connected by a gas processing channel 22 so as to form a gas processing path flowing in the order of.

【0040】原燃料ガス供給路21には、水素含有ガス
生成装置への原燃料ガスの供給を断続する原燃料ガス断
続弁20を設けてある。最後段の変成部5と選択酸化部
6とを接続するガス処理用流路22に、後述する原料水
供給路25を流れる原料水を変成処理ガスにて予熱する
原料水予熱用熱交換器17を設けると共に、変成処理ガ
スから凝縮水を除去するドレントラップ34を、その原
料水予熱用熱交換器17よりも下流側の箇所に設けてあ
る。
The raw fuel gas supply passage 21 is provided with a raw fuel gas interrupting valve 20 for interrupting the supply of the raw fuel gas to the hydrogen-containing gas generator. A raw water preheating heat exchanger 17 for preheating raw water flowing through a raw water supply passage 25 to be described later with a metamorphic processing gas is provided in a gas processing flow path 22 connecting the last stage shift section 5 and the selective oxidation section 6. And a drain trap 34 for removing condensed water from the shift gas is provided downstream of the raw water preheating heat exchanger 17.

【0041】選択酸化部6から排出された選択酸化処理
ガスを燃料ガスとして燃料電池Gに供給するように、選
択酸化部6と燃料電池Gとを燃料ガス路23にて接続
し、燃料電池Gから排出された排燃料ガスを燃焼部4に
供給すべく、燃料電池Gと燃焼部4とをオフガス路24
にて接続してある。オフガス路24には、ガスの逆流を
防止する逆止弁39を設け、ガス燃料供給路37を、オ
フガス路24における逆止弁39よりも下流側の箇所に
接続すると共に、そのガス燃料供給路37に、ガス燃料
の供給量を調節するガス燃料供給量調整弁38を設けて
ある。
The selective oxidizing unit 6 and the fuel cell G are connected via a fuel gas passage 23 so that the selective oxidizing gas discharged from the selective oxidizing unit 6 is supplied to the fuel cell G as a fuel gas. The fuel cell G and the combustion unit 4 are connected to the off-gas passage 24 in order to supply the exhaust gas discharged from the
Connected. A check valve 39 for preventing a backflow of gas is provided in the off-gas passage 24, and a gas fuel supply passage 37 is connected to a portion of the off-gas passage 24 downstream of the check valve 39, and the gas fuel supply passage 37 is provided with a gas fuel supply amount adjusting valve 38 for adjusting the gas fuel supply amount.

【0042】図1において、実線矢印にて示すように、
原料水ポンプ14から水蒸気生成用の原料水が送られる
原料水供給路25を水蒸気生成部Sの蒸発処理部2に接
続し、蒸発処理部2にて生成された水蒸気を送出する水
蒸気路26を、脱硫部1と被改質ガス通流部13とを接
続するガス処理用流路22に接続して、ガス処理用流路
22を通流する脱硫原燃料ガスに改質用の水蒸気を混合
させるように構成してある。
In FIG. 1, as indicated by solid arrows,
A raw water supply passage 25 through which raw water for generating steam is sent from the raw water pump 14 is connected to the evaporating section 2 of the steam generating section S, and a steam path 26 for sending out the steam generated by the evaporating section 2 is connected. Is connected to a gas processing flow path 22 connecting the desulfurization unit 1 and the reformed gas flow part 13, and the reforming steam is mixed with the desulfurization raw fuel gas flowing through the gas processing flow path 22. It is configured so that

【0043】原料水供給路25の途中に、原料水予熱用
熱交換器17を設け、更に、原料水供給路25における
原料水予熱用熱交換器17よりも下流側の箇所に、原料
水を蛇行状に流す蛇行状通流部18を設け、その蛇行状
通流部18を、水素含有ガス生成装置Pの外壁部のうち
の、燃焼部4を覆う箇所に熱伝導可能に当て付けて設け
て、水素含有ガス生成装置Pの外壁部からの伝導熱及び
輻射熱により、蛇行状通流部18を通流する原料水を予
熱するように構成してある。
A heat exchanger 17 for preheating the raw water is provided in the middle of the raw water supply passage 25, and further, the raw water is supplied to a portion of the raw water supply passage 25 downstream of the heat exchanger 17 for preheating the raw water. A meandering flow portion 18 that flows in a meandering shape is provided, and the meandering flow portion 18 is provided so as to be able to conduct heat to a portion of the outer wall of the hydrogen-containing gas generator P that covers the combustion portion 4. Thus, the feed water flowing through the meandering flow portion 18 is preheated by conduction heat and radiant heat from the outer wall of the hydrogen-containing gas generator P.

【0044】図1において、破線矢印にて示すように、
燃焼部4から排出された燃焼ガスを、水蒸気生成用加熱
通流部11、変成部冷却用通流部8の順に流すように、
それら燃焼部4、水蒸気生成用加熱通流部11、変成部
冷却用通流部8を燃焼ガス路27にて接続して、水蒸気
生成用加熱通流部11においては、燃焼ガスによって蒸
発処理部2を加熱し、変成部冷却用通流部8において
は、燃焼ガスによって、発熱反応である変成反応が行わ
れる変成部5を冷却するように構成してある。
In FIG. 1, as indicated by the dashed arrows,
The combustion gas discharged from the combustion unit 4 is caused to flow in the order of the heating flow unit 11 for steam generation and the flow unit 8 for cooling the metamorphic unit.
The combustion section 4, the heating flow section 11 for steam generation, and the flow section 8 for cooling the metamorphic section are connected by a combustion gas passage 27. In the heating flow section 11 for steam generation, the evaporating section The fuel cell 2 is configured to be heated, and the metamorphic section cooling flow section 8 is configured to cool the metamorphic section 5 where the metamorphic reaction, which is an exothermic reaction, is performed by the combustion gas.

【0045】図1において、一点鎖線矢印にて示すよう
に、ブロア28からの空気を燃焼用空気として、変成部
冷却用通流部9を通流させてから、燃焼部4に供給する
ように、ブロア28、変成部冷却用通流部9、燃焼部4
を燃焼用空気路29にて接続すると共に、燃焼用空気を
変成部冷却用通流部9を迂回させて通流させるように、
燃焼用空気路29に燃焼用空気バイパス路30を接続
し、ブロア28からの空気を酸化用空気として選択酸化
部6に供給するように、ブロア28に接続した酸化用空
気供給路31を、最後段の変成部5と選択酸化部6とを
接続するガス処理用流路22に接続してある。
In FIG. 1, the air from the blower 28 is passed as the combustion air through the flow passage 9 for cooling the metamorphic section and then supplied to the combustion section 4 as indicated by the dashed-dotted arrow in FIG. , Blower 28, metamorphic section cooling passage 9, combustion section 4
Are connected by a combustion air passage 29, and the combustion air is passed around the metamorphic section cooling passage 9 so as to flow therethrough.
A combustion air bypass passage 30 is connected to the combustion air passage 29, and an oxidation air supply passage 31 connected to the blower 28 is finally connected so that air from the blower 28 is supplied to the selective oxidation unit 6 as oxidation air. It is connected to a gas processing channel 22 that connects the shift unit 5 and the selective oxidation unit 6 of the stage.

【0046】燃焼部4に対して、燃焼用空気を変成部冷
却用通流部9を通流させて供給する冷却用供給状態と、
変成部冷却用通流部9を迂回させて燃焼用空気バイパス
路30を通じて供給するバイパス供給状態とに切り換え
るために、空気経路切り換え用開閉弁35,36を設
け、更に、燃焼用空気路29において燃焼用空気バイパ
ス路30による迂回部分よりも下流側の箇所に、燃焼部
4への燃焼用空気の供給を調節する燃焼用空気供給量調
整弁40を設けてある。尚、空気経路切り換え用開閉弁
35,36は、通常、バイパス供給状態に切り換える
が、変成部5の冷却能力が不足するとき、例えば、夏期
の高気温時には、冷却用供給状態に切り換えて、燃焼用
空気にて変成部5を冷却する。
A cooling supply state in which combustion air is supplied to the combustion section 4 by flowing through the metamorphic section cooling passage 9;
In order to bypass the metamorphic cooling passage 9 and switch to the bypass supply state in which the gas is supplied through the combustion air bypass passage 30, air passage switching valves 35 and 36 are provided. A combustion air supply amount adjustment valve 40 that regulates the supply of combustion air to the combustion section 4 is provided at a location downstream of the bypass portion of the combustion air bypass passage 30. The air path switching on-off valves 35 and 36 are normally switched to the bypass supply state. However, when the cooling capacity of the shift unit 5 is insufficient, for example, at a high temperature in summer, the air supply switching valves 35 and 36 are switched to the cooling supply state to perform combustion. The metamorphic section 5 is cooled with the working air.

【0047】更に、改質部3の温度を検出する改質部温
度センサT1、及び、選択酸化部6の温度を検出する選
択酸化部温度センサT2を設けてある。改質部温度セン
サT1は、改質部3における改質処理ガスの出口部付近
の温度を検出するように設け、選択酸化部温度センサT
2は、偏平形状の選択酸化部6における面方向の中央部
付近の温度を検出するように設けてある。
Further, a reforming section temperature sensor T1 for detecting the temperature of the reforming section 3 and a selective oxidizing section temperature sensor T2 for detecting the temperature of the selective oxidizing section 6 are provided. The reforming unit temperature sensor T1 is provided so as to detect the temperature near the outlet of the reforming gas in the reforming unit 3, and the selective oxidation unit temperature sensor T1 is provided.
Numeral 2 is provided so as to detect the temperature near the center in the plane direction in the flat selective oxidation section 6.

【0048】要するに、脱硫部1、改質部3、変成部5
及び選択酸化部6を、それらのうちで最も高温に維持す
る必要のある改質部3と、最も低温に維持する必要のあ
る選択酸化部6との間に、それら改質部3の温度と選択
酸化部6の温度との間の温度に維持する必要のある脱硫
部1と変成部5が記載順に改質部3の側から並んで位置
し、且つ、隣接するもの同士で熱伝導可能なように設
け、改質部3における脱硫部1が設けられている側とは
反対側に、燃焼部3と、それよりも低い温度に維持する
必要のある水蒸気生成部Sを、記載順に改質部3の側か
ら並び、且つ、隣接するもの同士で伝熱可能なように設
けてある。
In short, the desulfurization unit 1, the reforming unit 3, the shift unit 5
And the selective oxidizing section 6 between the reforming section 3 which needs to be maintained at the highest temperature and the selective oxidizing section 6 which needs to be maintained at the lowest temperature. The desulfurization unit 1 and the shift unit 5 which need to be maintained at a temperature between the temperature of the selective oxidation unit 6 and the shift unit 5 are arranged side by side from the side of the reforming unit 3 in the stated order, and the adjacent ones can conduct heat. The combustion unit 3 and the steam generation unit S that needs to be maintained at a lower temperature than the combustion unit 3 on the side opposite to the side where the desulfurization unit 1 is provided in the reforming unit 3 are reformed in the order described. It is arranged from the side of the part 3 and provided so that heat can be transferred between adjacent parts.

【0049】すると、図9において矢印にて示すよう
に、燃焼部4にて加熱される改質部3から選択酸化部6
に向かって、脱硫部1、変成部5を順次伝熱して、選択
酸化部6から放熱されると共に、燃焼部4から水蒸気生
成部Sに向かって伝熱する。
Then, as indicated by arrows in FIG. 9, the reforming section 3 heated in the combustion section 4
, The heat is sequentially transmitted through the desulfurization unit 1 and the shift unit 5, heat is radiated from the selective oxidation unit 6, and heat is transmitted from the combustion unit 4 to the steam generation unit S.

【0050】一方、原燃料ガス供給路21から供給され
る原燃料ガスは、原燃料ガス用熱交換器Eaにて改質処
理ガスとの熱交換により予熱した後、脱硫部1に供給し
て脱硫処理し、その脱硫原燃料ガスを水蒸気路26から
の水蒸気と混合し、続いて、脱硫原燃料ガス用熱交換器
Epにて改質処理ガスとの熱交換により予熱した後、改
質部3に供給して燃焼部3にて加熱して改質処理し、そ
の改質処理ガスを、脱硫原燃料ガス用熱交換器Epにて
脱硫原燃料ガスとの熱交換により冷却し、更に、原燃料
ガス用熱交換器Eaにて原燃料ガスとの熱交換により熱
交換した後、3段の変成部5に順次供給して、一酸化炭
素ガスを二酸化炭素ガスに変成させて変成処理し、その
変成処理ガスを原料水予熱用熱交換器17にて原料水と
の熱交換により冷却した後、選択酸化部6に供給して一
酸化炭素ガスを選択酸化させて選択酸化処理する。
On the other hand, the raw fuel gas supplied from the raw fuel gas supply passage 21 is preheated by heat exchange with the reforming gas in the raw fuel gas heat exchanger Ea, and then supplied to the desulfurization unit 1. After the desulfurization treatment, the desulfurization raw fuel gas is mixed with the steam from the steam passage 26, and then preheated by heat exchange with the reforming treatment gas in the desulfurization raw fuel gas heat exchanger Ep. 3 and heated in the combustion unit 3 to reform the gas. The reformed gas is cooled by heat exchange with the desulfurized raw fuel gas in the desulfurized raw fuel gas heat exchanger Ep. After performing heat exchange by heat exchange with the raw fuel gas in the raw fuel gas heat exchanger Ea, the raw fuel gas is supplied to the three-stage conversion unit 5 in order to convert the carbon monoxide gas into carbon dioxide gas and perform a conversion process. Then, the metamorphic processing gas is cooled by heat exchange with the raw water in the heat exchanger 17 for preheating the raw water. After, to selective oxidation treatment of carbon monoxide gas is selectively oxidized is supplied to the selective oxidation unit 6.

【0051】ちなみに、変成部5における変成反応は、
発熱反応であるので、変成部5に供給する改質処理ガス
は、脱硫原燃料ガス用熱交換器Ep及び原燃料ガス用熱
交換器Eaにて、変成部5における変成処理温度よりも
低い温度に、例えば、変成処理温度が250°Cのとき
は200°C程度に冷却する。同様に、選択酸化部6に
おける酸化反応も発熱反応であるので、選択酸化部6に
供給する変成処理ガスは、原料水予熱用熱交換器17に
て、選択酸化部6における選択酸化処理温度よりも低い
温度にまで冷却する。
By the way, the metamorphic reaction in the metamorphic section 5 is as follows:
Since the reaction is an exothermic reaction, the reforming process gas supplied to the shift unit 5 has a temperature lower than the shift process temperature in the shift unit 5 in the desulfurization raw fuel gas heat exchanger Ep and the raw fuel gas heat exchanger Ea. In addition, for example, when the metamorphic treatment temperature is 250 ° C., it is cooled to about 200 ° C. Similarly, since the oxidation reaction in the selective oxidizing section 6 is also an exothermic reaction, the conversion gas supplied to the selective oxidizing section 6 is supplied to the raw water preheating heat exchanger 17 at a temperature lower than the selective oxidizing temperature in the selective oxidizing section 6. Cool down to even lower temperatures.

【0052】又、燃焼部4から排出された燃焼ガスは、
水蒸気生成用加熱通流部11を通流させて水蒸気生成の
ために授熱させた後、変成部冷却用通流部8を通流させ
て、変成部5を冷却する。
The combustion gas discharged from the combustion section 4 is
After the heat is passed through the steam-generating heating passage 11 to generate steam, the metamorphic section cooling passage 8 is cooled to cool the metamorphic section 5.

【0053】そこで、脱硫部1、改質部3、変成部5及
び選択酸化部6を上述のように配置した状態で、上述の
如き流体の流れを考慮して、隣接するもの同士、即ち、
改質部3と脱硫部1との間、脱硫部1と変成部5との
間、変成部5と選択酸化部6との間、及び、燃焼部4と
水蒸気生成部Sとの間のそれぞれの伝熱状態(伝熱量)
を適宜に設定することにより、改質部3を改質処理温度
に維持するように燃焼部4の加熱能力を調節し、且つ、
選択酸化部6を選択酸化処理温度に維持するように冷却
用ファン10の通風量を調節することにより、改質部3
と選択酸化部6との間に位置する脱硫部1と変成部5
を、温度を制御しなくても成り行きにて、それぞれ脱硫
処理温度、変成処理温度に維持することができ、並び
に、水蒸気生成部Sを成り行きにて水蒸気生成に適正な
温度に維持することができるのである。
Therefore, in the state where the desulfurization unit 1, the reforming unit 3, the shift unit 5, and the selective oxidation unit 6 are arranged as described above, adjacent ones, that is, considering the flow of the fluid as described above, that is,
Between the reforming unit 3 and the desulfurization unit 1, between the desulfurization unit 1 and the shift unit 5, between the shift unit 5 and the selective oxidation unit 6, and between the combustion unit 4 and the steam generation unit S, respectively. Heat transfer state (heat transfer amount)
Is appropriately set, the heating capacity of the combustion unit 4 is adjusted so as to maintain the reforming unit 3 at the reforming processing temperature, and
By adjusting the air flow rate of the cooling fan 10 so that the selective oxidizing section 6 is maintained at the selective oxidizing treatment temperature, the reforming section 3 is controlled.
Desulfurization section 1 and shift section 5 located between
Can be maintained at the desulfurization treatment temperature and the shift treatment temperature, respectively, without controlling the temperature, and the steam generation unit S can be maintained at the appropriate temperature for the steam generation by reaction. It is.

【0054】つまり、改質部3と脱硫部1との間は、改
質部3の側から順に並ぶ断熱材19、脱硫原燃料ガス用
熱交換器Ep及び断熱材19にて伝熱量を設定し、脱硫
部1と変成部5との間は、原燃料ガス用熱交換器Eaに
て伝熱量を設定し、変成部5と選択酸化部6との間は、
変成部冷却用通流部9にて伝熱量を設定し、燃焼部4と
水蒸気生成部Sとの間は、断熱材19にて伝熱量を設定
してある。
That is, between the reforming section 3 and the desulfurizing section 1, the heat transfer amount is set by the heat insulating material 19, the heat exchanger Ep for desulfurized raw fuel gas and the heat insulating material 19 arranged in order from the reforming section 3 side. The amount of heat transfer is set between the desulfurization unit 1 and the shift unit 5 by the raw fuel gas heat exchanger Ea, and between the shift unit 5 and the selective oxidation unit 6
The heat transfer amount is set in the metamorphic section cooling flow section 9, and the heat transfer amount is set between the combustion section 4 and the steam generation section S by the heat insulating material 19.

【0055】次に、上述のように構成した水素含有ガス
生成装置Pの運転制御方法について説明する。水素含有
ガス生成装置Pを起動するときは、燃料電池Gからはオ
フガスが供給されないので、ガス燃料供給量調整弁38
を開弁して、ガス燃料供給路37を通じて供給される都
市ガスにて燃焼部4を燃焼させて、改質部3を加熱し、
脱硫部用ヒータ32を加熱作動させて、脱硫部1を加熱
し、変成部用ヒータ33を加熱作動させて変成部5を加
熱する起動運転制御を行い、その起動運転制御は、改質
部温度センサT1の検出温度が予め設定した設定改質処
理温度になるまで継続する。
Next, an operation control method for the hydrogen-containing gas generator P configured as described above will be described. When the hydrogen-containing gas generator P is started, since the off-gas is not supplied from the fuel cell G, the gas fuel supply amount adjusting valve 38
Is opened, the combustion unit 4 is burned with city gas supplied through the gas fuel supply path 37, and the reforming unit 3 is heated.
The heating operation of the desulfurization section heater 32 is performed to heat the desulfurization section 1, and the heating operation of the shift section heater 33 is performed to heat the shift section 5. The process is continued until the temperature detected by the sensor T1 reaches the preset reforming processing temperature.

【0056】起動運転制御が終了すると、脱硫部用ヒー
タ32及び変成部用ヒータ33を停止させ、一方、燃焼
部4の燃焼は継続して、原燃料ガス断続弁20を開弁し
て原燃料ガスの供給を開始すると共に、原料水ポンプ1
4を作動させて原料水の供給を開始して、水素含有ガス
を生成するガス生成運転を開始し、以降、ガス生成運転
中は、脱硫部用ヒータ32及び変成部用ヒータ33を停
止させた状態で、燃料電池Gから排出されるオフガスを
燃焼部4にて燃焼させ、改質部3を改質処理温度に維持
するに当たって、オフガスだけでは不足する分をガス燃
料供給路37を通じて都市ガスを燃焼部3に供給して燃
焼させる。
When the start-up operation control is completed, the heater 32 for the desulfurization section and the heater 33 for the shift section are stopped, while the combustion in the combustion section 4 is continued, and the raw fuel gas interrupting valve 20 is opened to open the raw fuel gas. The gas supply is started and the raw water pump 1
4 to start supplying the raw water and start the gas generation operation for generating the hydrogen-containing gas. Thereafter, during the gas generation operation, the heater 32 for the desulfurization unit and the heater 33 for the shift unit were stopped. In this state, the off-gas discharged from the fuel cell G is burned in the combustion unit 4 to maintain the reforming unit 3 at the reforming processing temperature. It is supplied to the combustion section 3 and burned.

【0057】次に、ガス生成運転における運転制御方法
について説明する。本発明においては、改質部3を設定
改質処理温度に維持するように、燃焼部4の加熱能力を
調節し、且つ、選択酸化部6を設定選択酸化処理温度に
維持するように、冷却用ファン10の通風量を調節す
る。すると、上述のように、改質部3と脱硫部1との
間、脱硫部1と変成部5との間、変成部5と選択酸化部
6との間、及び、燃焼部4と水蒸気生成部Sとの間のそ
れぞれの伝熱量を設定してあるので、脱硫部1と変成部
5を、温度を制御しなくても成り行きにて、それぞれ脱
硫処理温度、変成処理温度に維持することができ、並び
に、水蒸気生成部Sを成り行きにて水蒸気生成に適正な
温度に維持することができる。
Next, an operation control method in the gas generation operation will be described. In the present invention, the heating capacity of the combustion unit 4 is adjusted so as to maintain the reforming unit 3 at the set reforming temperature, and the cooling is performed so as to maintain the selective oxidizing unit 6 at the set selective oxidizing temperature. The ventilation amount of the fan 10 is adjusted. Then, as described above, between the reforming unit 3 and the desulfurization unit 1, between the desulfurization unit 1 and the shift unit 5, between the shift unit 5 and the selective oxidation unit 6, and between the combustion unit 4 and the steam generation unit. Since the respective heat transfer amounts with the section S are set, the desulfurization section 1 and the shift section 5 can be maintained at the desulfurization processing temperature and the shift conversion temperature, respectively, without controlling the temperature. In addition, the temperature of the steam generation section S can be maintained at a temperature suitable for steam generation.

【0058】本発明においては、制御部Cを用いて、上
述の如き起動運転における運転制御、及び、ガス生成運
転における運転制御を自動的に行わせるように構成して
ある。以下、制御部Cがガス生成運転における運転制御
を実行するときの制御動作について説明する。制御部C
は、改質部温度センサT1の検出温度が予め設定した設
定改質処理温度になるように、ガス燃料供給量調整弁3
8及び燃焼用空気供給量調整弁40それぞれを制御し
て、燃焼部4の加熱能力を調節し、並びに、選択酸化部
温度センサT2の検出温度が予め設定した設定選択酸化
処理温度になるように、冷却用ファン10の作動を制御
して冷却用の通風量、即ち、冷却能力を調節する。
In the present invention, the operation control in the start-up operation and the operation control in the gas generation operation as described above are automatically performed by using the control unit C. Hereinafter, the control operation when the control unit C executes the operation control in the gas generation operation will be described. Control unit C
The gas fuel supply amount adjusting valve 3 is controlled so that the temperature detected by the reforming section temperature sensor T1 becomes a preset reforming processing temperature.
8 and the combustion air supply amount adjustment valve 40 are controlled to adjust the heating capacity of the combustion unit 4 and to make the detection temperature of the selective oxidation unit temperature sensor T2 equal to a preset selective oxidation treatment temperature. The operation of the cooling fan 10 is controlled to adjust the amount of cooling air, that is, the cooling capacity.

【0059】燃焼部4の加熱能力の調節について説明を
加えると、加熱能力を増大するときは、例えば、都市ガ
スの供給量を増大するようにガス燃料供給量調整弁38
を制御し、加熱能力を減少するときは、都市ガスの供給
量を減少するようにガス燃料供給量調整弁38を制御す
る制御、及び、燃焼用空気供給量を増大するように燃焼
用空気供給量調整弁40を制御する制御を、予め設定し
た条件にて実行する。
To further explain the adjustment of the heating capacity of the combustion section 4, when the heating capacity is increased, for example, the gas fuel supply amount adjusting valve 38 is increased so as to increase the supply amount of city gas.
When the heating capacity is reduced, control is performed to control the gas fuel supply adjusting valve 38 so as to reduce the supply amount of the city gas, and to supply the combustion air so as to increase the combustion air supply amount. The control for controlling the amount adjusting valve 40 is executed under preset conditions.

【0060】以下、上記の運転制御方法にて運転して、
水素含有ガス生成装置の性能を検証した結果を説明す
る。
Hereinafter, the operation is performed according to the operation control method described above.
The result of verifying the performance of the hydrogen-containing gas generator will be described.

【0061】水素含有ガス生成装置の運転条件は以下の
通りである。 原燃料ガス(13A)流量:4.0L(標準状態)/m
in オフガス流量:10.1L(標準状態)/min 水蒸気生成用原料水(純水):12.0cc/min 選択酸化処理用空気流量:0.8L(標準状態)/mi
The operating conditions of the hydrogen-containing gas generator are as follows. Raw fuel gas (13A) flow rate: 4.0 L (standard condition) / m
in Off-gas flow rate: 10.1 L (standard state) / min Raw water for steam generation (pure water): 12.0 cc / min Air flow rate for selective oxidation treatment: 0.8 L (standard state) / mi
n

【0062】そして、図6に示すように、改質部3の温
度に応じて、改質部3を設定改質処理温度に維持するた
めの都市ガス(13A)の供給量、及び、燃焼用空気供
給量を設定して、改質部温度制御情報として制御部Cに
記憶させてある。制御部Cは、改質部温度センサT1の
検出温度及び記憶している改質部温度制御情報に基づい
て、検出温度に応じた都市ガス供給量及び燃焼用空気供
給量になるように、ガス燃料供給量調整弁38及び燃焼
用空気供給量調整弁40それぞれを制御する、所謂フィ
ードフォワード制御を実行する。又、選択酸化部温度セ
ンサT2の検出温度が設定選択酸化処理温度になるよう
に、冷却用ファン10をオンオフさせる。
As shown in FIG. 6, the supply amount of the city gas (13A) for maintaining the reforming unit 3 at the set reforming temperature in accordance with the temperature of the reforming unit 3 and the combustion gas The air supply amount is set and stored in the control unit C as reforming unit temperature control information. Based on the detected temperature of the reforming unit temperature sensor T1 and the stored reforming unit temperature control information, the control unit C controls the gas supply so that the city gas supply amount and the combustion air supply amount according to the detected temperatures are obtained. A so-called feed-forward control for controlling the fuel supply amount adjustment valve 38 and the combustion air supply amount adjustment valve 40 is executed. In addition, the cooling fan 10 is turned on and off so that the temperature detected by the selective oxidation unit temperature sensor T2 becomes the set selective oxidation processing temperature.

【0063】そして、設定改質処理温度を例えば64
2.9°Cに、並びに、設定選択酸化処理温度を例えば
95.0°Cに設定して、上述のように制御したとき
の、脱硫部1、変成部5、及び、水蒸気生成部Sの蒸発
処理部2の温度は、以下の通りに熱平衡し、それぞれ適
正な温度に維持できていることが分かる。又、そのとき
の燃焼部4の温度は以下の通りであり、この燃焼部4の
温度は、改質部3の温度と相関があるので、上述のよう
に、改質部3を設定改質処理温度になるように燃焼部4
の加熱能力を調節するための制御情報として、改質部温
度センサT1の代わりに、燃焼部4の温度を検出する燃
焼部温度センサを設けて、その燃焼部温度センサの検出
温度に基づいて、改質部3を設定改質処理温度になるよ
うに燃焼部4の加熱能力を調節するように制御すること
も可能である。
The set reforming temperature is set to, for example, 64.
When the temperature is set to 2.9 ° C. and the set selective oxidation treatment temperature is set to 95.0 ° C., for example, and controlled as described above, the desulfurization unit 1, the shift unit 5, and the steam generation unit S It can be seen that the temperature of the evaporating section 2 is in thermal equilibrium as described below and can be maintained at an appropriate temperature. The temperature of the combustion section 4 at that time is as follows. Since the temperature of the combustion section 4 is correlated with the temperature of the reforming section 3, the reforming section 3 is set and reformed as described above. Combustion unit 4 to reach processing temperature
As control information for adjusting the heating capacity of the combustion section, a combustion section temperature sensor that detects the temperature of the combustion section 4 is provided instead of the reforming section temperature sensor T1, and based on the temperature detected by the combustion section temperature sensor, It is also possible to control so that the heating capacity of the combustion unit 4 is adjusted so that the reforming unit 3 reaches the set reforming processing temperature.

【0064】脱硫部1の温度:261.8°C 変成部5の温度:238.9°C 水蒸気生成部Sの蒸発処理部2の温度:136.9°C 燃焼部4の温度:838.7°CTemperature of desulfurization section 1: 261.8 ° C. Temperature of shift section 5: 238.9 ° C. Temperature of evaporation section 2 of steam generating section S: 136.9 ° C. Temperature of combustion section 4: 838. 7 ° C

【0065】以下、本発明の第2及び第3の各実施形態
を説明するが、各実施形態においては、第1実施形態と
同じ構成要素や同じ作用を有する構成要素については、
重複説明を避けるために、同じ符号を付すことにより説
明を省略し、主として、第1実施形態と異なる構成を説
明する。
Hereinafter, each of the second and third embodiments of the present invention will be described. In each embodiment, the same components and components having the same functions as those of the first embodiment will be described.
In order to avoid repetition, the description will be omitted by assigning the same reference numerals, and a configuration different from the first embodiment will be mainly described.

【0066】〔第2実施形態〕以下、図面に基づいて、
本発明を燃料電池用の水素含有ガス生成装置に適用した
場合の第2実施形態を説明する。上記の第1実施形態に
おいては、水素含有ガス生成装置Pは、脱硫部1を一体
的に組み付けて構成する場合について例示したが、図7
に示すように、第2実施形態においては、脱硫部1は水
素含有ガス生成装置Pに一体的に組み付けずに、外置き
としてある。それに伴って、第1実施形態において設け
た脱硫部用ヒータ32及び原燃料ガス用熱交換器Eaを
省略してある。
[Second Embodiment] Hereinafter, based on the drawings,
A second embodiment in which the present invention is applied to a hydrogen-containing gas generator for a fuel cell will be described. In the above-described first embodiment, the case where the hydrogen-containing gas generator P is configured by integrally assembling the desulfurization unit 1 has been described.
As shown in (2), in the second embodiment, the desulfurization unit 1 is not installed integrally with the hydrogen-containing gas generator P but is placed outside. Accordingly, the desulfurization section heater 32 and the raw fuel gas heat exchanger Ea provided in the first embodiment are omitted.

【0067】第2実施形態においては、改質部3、変成
部5及び選択酸化部6を、改質部3と選択酸化部6との
間に変成部5が位置し、且つ、隣接するもの同士で熱伝
導可能なように設け、改質部3を改質処理に適正な温度
に維持するように、燃焼部4の加熱能力を調節し、且
つ、選択酸化部6を選択酸化処理に適正な温度に維持す
るように、冷却用ファン10の通風量を調節して冷却能
力を調節することにより、変成部5が変成処理に適正な
温度になるように、隣接するもの同士の伝熱状態を予め
設定してある。
In the second embodiment, the reforming section 3, the shift section 5, and the selective oxidation section 6 are the same as those in which the shift section 5 is located between the reforming section 3 and the selective oxidation section 6 and is adjacent to the reforming section 3. The heating capacity of the combustion unit 4 is adjusted so that the reforming unit 3 is maintained at a temperature appropriate for the reforming process, and the selective oxidizing unit 6 is adapted for the selective oxidizing process. The cooling capacity is adjusted by adjusting the air flow rate of the cooling fan 10 so as to maintain the temperature at an appropriate level, so that the heat transfer state between the adjacent ones is adjusted so that the metamorphic unit 5 has an appropriate temperature for the metamorphic treatment. Is set in advance.

【0068】説明を加えると、図7に示すように、水素
含有ガス生成装置Pは、矩形板状の偏平な容器Bの複数
を板状形状の厚さ方向に並べて設けて、各容器Bを用い
て、改質部3、燃焼部4、変成部5、選択酸化部6、水
蒸気生成部S、各通流部等を夫々構成してある。第1実
施形態と同様に、複数の容器Bのうちの一部は単室具備
容器Bmにて構成し、残りは双室具備容器Bdにて構成
してある。第2実施形態においては、7個の双室具備容
器Bdと、1個の単室具備容器Bmを、側面視において
左端から3個目に単室具備容器Bmを位置させた状態
で、横方向に厚さ方向に並べて設けて、コンパクトに形
成してある。7個の双室具備容器Bdの区別が明確にな
るように、便宜上、双室具備容器を示す符号Bdの後
に、左からの並び順を示す符号1,2,3……………7
を付す。
In addition, as shown in FIG. 7, the hydrogen-containing gas generating apparatus P is provided with a plurality of rectangular plate-shaped flat containers B arranged in the thickness direction of the plate shape. The reforming section 3, the combustion section 4, the shift section 5, the selective oxidizing section 6, the steam generating section S, the respective flow sections, and the like are respectively constituted by using them. As in the first embodiment, a part of the plurality of containers B is constituted by a single-chamber-equipped container Bm, and the rest is constituted by a twin-chamber-equipped container Bd. In the second embodiment, the seven double-chambered containers Bd and the single single-chambered container Bm are arranged in the horizontal direction with the single-chambered container Bm positioned third from the left end in a side view. Are arranged side by side in the thickness direction and are formed compactly. In order to clarify the distinction between the seven twin-chamber-equipped containers Bd, for the sake of convenience, the reference numerals 1, 2, 3,...
Is attached.

【0069】第1実施形態と同様に、左端の双室具備容
器Bd1にて水蒸気生成部Sを構成し、左から2個目の
双室具備容器Bd2を用いて燃焼部4及び改質部3を構
成し、単室具備容器Bmを用いて、保温用通流部7を構
成し、左から3個目の双室具備容器Bd3を用いて、脱
硫原燃料ガス用熱交換器Epを構成してある。
As in the first embodiment, the steam generating section S is constituted by the double-chamber container Bd1 on the left end, and the combustion section 4 and the reforming section 3 are formed by using the second twin-chamber container Bd2 from the left. The single-chamber-equipped container Bm is used to constitute the heat-retaining flow part 7, and the third dual-chamber-equipped container Bd3 from the left is used to constitute the desulfurized raw fuel gas heat exchanger Ep. It is.

【0070】左から4個目の双室具備容器Bd4の左側
の室を備えた部分を用いて、下流側改質処理ガス通流部
15を構成し、右側の室を備えた部分を用いて、変成部
5を構成してある。左から5個目の双室具備容器Bd5
の左側の室を備えた部分を用いて、変成部5を構成し、
右側の室を備えた部分を用いて、変成部冷却用通流部8
を構成してある。左から6個目の双室具備容器Bd6を
用いて、変成部5を構成し、左から7個目(右端)の双
室具備容器Bd7の左側の室を備えた部分を用いて、変
成部冷却用通流部9を構成し、右側の室を備えた部分を
用いて選択酸化部6を構成してある。つまり、変成部5
は、左から4個目の双室具備容器Bd4、左から5個目
の双室具備容器Bd5及び左から6個目の双室具備容器
Bd6を用いて構成して、変成部5は3台設けてある。
The downstream reforming gas flow section 15 is formed by using the left chamber of the fourth double chamber-equipped container Bd4 from the left, and the section having the right chamber is formed by using the right chamber. , A shift unit 5. The fifth twin-chamber container Bd5 from the left
The metamorphic unit 5 is constituted by using the portion provided with the left chamber of
Using the portion provided with the right side chamber, the flow passage 8 for cooling the metamorphic section
Is configured. The metamorphic unit 5 is configured by using the sixth double-chambered container Bd6 from the left, and the metamorphic unit using the left side chamber of the seventh (right end) double-compartmented container Bd7 from the left. The cooling passage 9 is formed, and the selective oxidizing section 6 is formed by using a portion provided with the right chamber. That is, the metamorphic unit 5
Is constituted by using the fourth double-chambered container Bd4 from the left, the fifth double-chambered container Bd5 from the left, and the sixth double-chambered container Bd6 from the left. It is provided.

【0071】つまり、燃焼部4及び改質部3を構成する
双室具備容器Bd2の一方側に、その双室具備容器Bd
2の側から、保温用通流部7を構成する単室具備容器B
m、断熱材19、脱硫原燃料ガス用熱交換器Epを構成
する双室具備容器Bd3、断熱材19、下流側改質処理
ガス通流部15及び変成部5を構成する双室具備容器B
d4、変成部5及び変成部冷却用通流部8を構成する双
室具備容器Bd5、変成部5を構成する双室具備容器B
d6、変成部冷却用通流部9及び選択酸化部6を構成す
る双室具備容器Bd7を記載順に並ぶように互いに密接
配置して設け、双室具備容器Bd2の他方側に、その双
室具備容器Bd2の側から、断熱材19、水蒸気生成部
Sを構成する双室具備容器Bd1を記載順に並ぶように
密接配置して設けてある。
That is, one side of the double-chamber container Bd2 constituting the combustion section 4 and the reforming section 3 is provided with the double-chamber container Bd
From the side 2, a single-chamber container B constituting the heat retaining flow passage 7
m, a heat insulating material 19, a twin chamber-equipped container Bd3 forming the desulfurization raw fuel gas heat exchanger Ep, a heat insulating material 19, a twin chamber-equipped container B forming the downstream reforming gas flow section 15 and the shift section 5
d4, a dual-chamber container Bd5 constituting the metamorphic section 5 and the cooling section flow-through section 8, and a twin-chamber vessel B constituting the metamorphic section 5
d6, the flow passage 9 for cooling the metamorphic section, and the twin chamber-equipped containers Bd7 constituting the selective oxidizing section 6 are arranged closely to each other so as to be arranged in the stated order, and the twin chamber-equipped container Bd2 is provided From the side of the container Bd2, the heat insulating material 19 and the double-chambered container Bd1 constituting the water vapor generation unit S are closely arranged and arranged in the stated order.

【0072】外置きの脱硫部1にて脱硫処理した脱硫原
燃料ガスを、改質部3で改質処理する炭化水素系の原燃
料ガスとして供給するように、原燃料ガス供給路21
は、脱硫原燃料ガス通流部13に接続してある。
The raw fuel gas supply passage 21 is provided so that the desulfurized raw fuel gas desulfurized in the external desulfurizing section 1 is supplied as the hydrocarbon-based raw fuel gas to be reformed in the reforming section 3.
Is connected to the desulfurization raw fuel gas passage 13.

【0073】図10において矢印にて示すように、燃焼
部4にて加熱される改質部3から選択酸化部6に向かっ
て、変成部5を伝熱して、選択酸化部6から放熱される
と共に、燃焼部4から水蒸気生成部Sに向かって伝熱す
る。一方、原燃料ガス供給路21から供給される原燃料
ガスは、水蒸気路26からの水蒸気と混合し、続いて、
脱硫原燃料ガス用熱交換器Epにて改質処理ガスとの熱
交換により予熱した後、改質部3に供給して燃焼部3に
て加熱して改質処理し、その改質処理ガスを、脱硫原燃
料ガス用熱交換器Epにて脱硫原燃料ガスとの熱交換に
より冷却した後、3段の変成部5に順次供給して、一酸
化炭素ガスを二酸化炭素ガスに変成させて変成処理し、
その変成処理ガスを原料水予熱用熱交換器17にて原料
水との熱交換により冷却した後、選択酸化部6に供給し
て一酸化炭素ガスを選択酸化させて選択酸化処理する。
As shown by arrows in FIG. 10, heat is transmitted from the reforming section 5 to the selective oxidizing section 6 from the reforming section 3 heated in the combustion section 4 and is radiated from the selective oxidizing section 6. At the same time, heat is transferred from the combustion section 4 to the steam generation section S. On the other hand, the raw fuel gas supplied from the raw fuel gas supply passage 21 is mixed with the steam from the steam passage 26, and subsequently,
After being preheated by heat exchange with the reforming gas in the desulfurization raw fuel gas heat exchanger Ep, it is supplied to the reforming section 3 and heated in the combustion section 3 for reforming. Is cooled by heat exchange with the desulfurization raw fuel gas in the desulfurization raw fuel gas heat exchanger Ep, and is sequentially supplied to the three-stage shift section 5 to convert the carbon monoxide gas into carbon dioxide gas. Metamorphosis processing,
After the metamorphic processing gas is cooled by heat exchange with the raw water in the raw water preheating heat exchanger 17, it is supplied to the selective oxidizing section 6 to selectively oxidize the carbon monoxide gas to perform a selective oxidation treatment.

【0074】そこで、改質部3、変成部5及び選択酸化
部6を上述のように配置した状態で、上述の如き流体の
流れを考慮して、隣接するもの同士、即ち、改質部3と
変成部5との間、変成部5と選択酸化部6との間、及
び、燃焼部4と水蒸気生成部Sとの間のそれぞれの伝熱
状態(伝熱量)を適宜に設定することにより、改質部3
を改質処理温度に維持するように燃焼部4の加熱能力を
調節し、且つ、選択酸化部6を選択酸化処理温度に維持
するように冷却用ファン10の通風量を調節することに
より、改質部3と選択酸化部6との間に位置する変成部
5を、温度を制御しなくても成り行きにて、変成処理温
度に維持することができ、並びに、水蒸気生成部Sを成
り行きにて水蒸気生成に適正な温度に維持することがで
きるのである。つまり、改質部3と変成部5との間は、
改質部3の側から順に並ぶ断熱材19、脱硫原燃料ガス
用熱交換器Ep、断熱材19及び下流側改質処理ガス通
流部15にて伝熱量を設定し、変成部5と選択酸化部6
との間は、変成部冷却用通流部9にて伝熱量を設定し、
燃焼部4と水蒸気生成部Sとの間は、断熱材19にて伝
熱量を設定してある。
Therefore, in the state where the reforming section 3, the shift section 5, and the selective oxidizing section 6 are arranged as described above, adjacent ones, that is, the reforming section 3 are considered in consideration of the flow of the fluid as described above. By appropriately setting the respective heat transfer states (heat transfer amounts) between the shift unit 5 and the shift unit 5, between the shift unit 5 and the selective oxidation unit 6, and between the combustion unit 4 and the steam generation unit S. , Reforming unit 3
By adjusting the heating capacity of the combustion unit 4 so as to maintain the temperature at the reforming treatment temperature and adjusting the ventilation amount of the cooling fan 10 so as to maintain the selective oxidation unit 6 at the selective oxidation treatment temperature. The metamorphic section 5 located between the reforming section 3 and the selective oxidation section 6 can be maintained at the metamorphic treatment temperature without controlling the temperature, and the steam generating section S can be maintained. It is possible to maintain a temperature suitable for generating steam. That is, between the reforming unit 3 and the shift unit 5,
The heat transfer amount is set in the heat insulating material 19, the heat exchanger Ep for desulfurization raw fuel gas, the heat insulating material 19, and the downstream reforming gas flow part 15 arranged in order from the reforming part 3 side, and is selected as the shift part 5. Oxidation part 6
In between, the heat transfer amount is set in the metamorphic section cooling flow section 9,
A heat transfer amount is set between the combustion unit 4 and the steam generation unit S by the heat insulating material 19.

【0075】制御部Cがガス生成運転における運転制御
を実行するときの制御動作は、上記の第1実施形態と同
様であるので、説明を省略する。
The control operation when the control unit C executes the operation control in the gas generation operation is the same as that in the first embodiment, and the description is omitted.

【0076】〔第3実施形態〕以下、図面に基づいて、
本発明を燃料電池用の水素含有ガス生成装置に適用した
場合の第3実施形態を説明する。図8に示すように、第
3実施形態においては、改質部3と選択酸化部6との間
に、脱硫部1及び変成部5としてそれぞれ複数(本第3
実施形態では3台)ずつを、脱硫部1と変成部5とが交
互に並ぶように、且つ、隣接するもの同士で熱伝導可能
なように設けてある。そして、改質部3を改質処理に適
正な温度に維持するように、燃焼部4の加熱能力を調節
し、且つ、選択酸化部6を選択酸化処理に適正な温度に
維持するように、冷却用ファン10の通風量を調節して
冷却能力を調節することにより、複数の脱硫部1がそれ
ぞれ脱硫処理に適正な温度になり、複数の変成部5がそ
れぞれ変成処理に適正な温度になるように、隣接するも
の同士の伝熱状態を予め設定してある。
[Third Embodiment] Hereinafter, based on the drawings,
A third embodiment in which the present invention is applied to a hydrogen-containing gas generator for a fuel cell will be described. As shown in FIG. 8, in the third embodiment, between the reforming section 3 and the selective oxidation section 6, a plurality of desulfurization sections 1 and shift sections 5 are respectively provided.
In this embodiment, three units are provided so that the desulfurization unit 1 and the shift unit 5 are alternately arranged, and that adjacent units can conduct heat. Then, the heating capacity of the combustion unit 4 is adjusted so that the reforming unit 3 is maintained at a temperature appropriate for the reforming process, and the selective oxidation unit 6 is maintained at a temperature appropriate for the selective oxidation process. By adjusting the ventilation capacity of the cooling fan 10 to adjust the cooling capacity, each of the plurality of desulfurization units 1 has an appropriate temperature for the desulfurization process, and each of the plurality of shift units 5 has an appropriate temperature for the shift process. As described above, the heat transfer state between adjacent ones is set in advance.

【0077】説明を加えると、図8に示すように、水素
含有ガス生成装置Pは、矩形板状の偏平な容器Bの複数
を板状形状の厚さ方向に並べて設けて、各容器Bを用い
て、脱硫部1、改質部3、燃焼部4、変成部5、選択酸
化部6、水蒸気生成部S、各通流部等を夫々構成してあ
る。第1実施形態と同様に、複数の容器Bのうちの一部
は単室具備容器Bmにて構成し、残りは双室具備容器B
dにて構成してある。第3実施形態においては、10個
の双室具備容器Bdと、1個の単室具備容器Bmを、側
面視において左端から3個目に単室具備容器Bmを位置
させた状態で、横方向に厚さ方向に並べて設けて、コン
パクトに形成してある。10個の双室具備容器Bdの区
別が明確になるように、便宜上、双室具備容器を示す符
号Bdの後に、左からの並び順を示す符号1,2,3…
…………10を付す。
In addition, as shown in FIG. 8, the hydrogen-containing gas generating device P is provided with a plurality of rectangular flat plates B arranged side by side in the thickness direction of the flat plate. Using them, a desulfurization unit 1, a reforming unit 3, a combustion unit 4, a shift unit 5, a selective oxidizing unit 6, a steam generation unit S, and respective flow units are respectively configured. As in the first embodiment, a part of the plurality of containers B is constituted by a single-chamber-equipped container Bm, and the rest is a twin-chamber-equipped container B
d. In the third embodiment, ten double-chambered containers Bd and one single-chambered container Bm are laterally arranged with the single-chambered container Bm positioned third from the left end in a side view. Are arranged side by side in the thickness direction and are formed compactly. In order to make the distinction between the 10 double-chamber-equipped containers Bd clear, for convenience, the reference numerals 1, 2, 3,...
………… 10 is added.

【0078】第1実施形態と同様に、左端の双室具備容
器Bd1にて水蒸気生成部Sを構成し、左から2個目の
双室具備容器Bd2を用いて燃焼部4及び改質部3を構
成し、単室具備容器Bmを用いて、保温用通流部7を構
成し、左から3個目の双室具備容器Bd3を用いて、脱
硫原燃料ガス用熱交換器Epを構成してある。
As in the first embodiment, the steam generating section S is constituted by the double-chamber container Bd1 at the left end, and the combustion section 4 and the reforming section 3 are formed by using the second twin-chamber container Bd2 from the left. The single-chamber-equipped container Bm is used to constitute the heat-retaining flow part 7, and the third dual-chamber-equipped container Bd3 from the left is used to constitute the desulfurized raw fuel gas heat exchanger Ep. It is.

【0079】左から4個目の双室具備容器Bd4を用い
て、脱硫部1を構成し、左から5個目の双室具備容器B
d5の左側の室を備えた部分を用いて、脱硫部1を構成
し、右側の室を備えた部分を用いて、原燃料ガス通流部
16を構成してある。左から6個目の双室具備容器Bd
6の左側の室を備えた部分を用いて、下流側改質処理ガ
ス通流部15を構成し、右側の室を備えた部分を用い
て、変成部5を構成してある。左から7個目の双室具備
容器Bd7を用いて、脱硫部1を構成し、左から8個目
の双室具備容器Bd8の左側の室を備えた部分を用い
て、変成部5を構成し、右側の室を備えた部分を用いて
変成部冷却用通流部8を構成してある。左から9個目の
双室具備容器Bd9を用いて、変成部5を構成し、左か
ら10個目(右端)の双室具備容器Bd10の左側の室
を備えた部分を用いて、変成部冷却用通流部9を構成
し、右側の室を備えた部分を用いて選択酸化部6を構成
してある。つまり、脱硫部1は、左から4個目の双室具
備容器Bd4、左から5個目の双室具備容器Bd5及び
左から7個目の双室具備容器Bd7を用いて構成して、
脱硫部1は3台設けてある。又、変成部5は、左から6
個目の双室具備容器Bd6、左から8個目の双室具備容
器Bd8及び左から9個目の双室具備容器Bd9を用い
て構成して、変成部5は3台設けてある。そして、3台
の脱硫部1及び3台の変成部5を、脱硫部1と変成部5
とが交互に並ぶように設けてある。
The desulfurization unit 1 is constituted by using the fourth twin-chamber container Bd4 from the left, and the fifth double-chamber container B from the left.
The desulfurization unit 1 is constituted by using the part provided with the left chamber of d5, and the raw fuel gas flow part 16 is constituted by using the part provided with the right chamber. Sixth double-chambered container Bd from the left
The downstream reforming gas flow section 15 is constituted by using the section provided with the left chamber 6 and the shift section 5 is constituted by using the section provided with the right chamber. The desulfurization unit 1 is configured by using the seventh twin-chamber container Bd7 from the left, and the metamorphic unit 5 is configured by using the left chamber of the eighth double-chamber container Bd8 from the left. The flow passage 8 for cooling the metamorphic section is constituted by using the portion provided with the right chamber. Using the ninth double-chambered container Bd9 from the left, the metamorphic unit 5 is configured, and the metamorphic unit using the portion of the tenth (right end) double-chambered container Bd10 from the left that includes the left chamber. The cooling passage 9 is formed, and the selective oxidizing section 6 is formed by using a portion provided with the right chamber. That is, the desulfurization unit 1 is configured by using the fourth twin-chamber container Bd4 from the left, the fifth twin-chamber container Bd5 from the left, and the seventh twin-chamber container Bd7 from the left,
Three desulfurization units 1 are provided. The metamorphic section 5 is 6
It is configured by using the sixth twin-chamber container Bd6, the eighth twin-chamber container Bd8 from the left, and the ninth double-chamber container Bd9 from the left, and three transformation units 5 are provided. Then, the three desulfurization units 1 and the three shift units 5 are combined with the desulfurization unit 1 and the shift unit 5.
Are alternately arranged.

【0080】つまり、燃焼部4及び改質部3を構成する
双室具備容器Bd2の一方側に、その双室具備容器Bd
2の側から、保温用通流部7を構成する単室具備容器B
m、断熱材19、脱硫原燃料ガス用熱交換器Epを構成
する双室具備容器Bd3、断熱材19、脱硫部1を構成
する双室具備容器Bd4、脱硫部1及び原燃料ガス通流
部16を構成する双室具備容器Bd5、下流側改質処理
ガス通流部15及び変成部5を構成する双室具備容器B
d6、脱硫部1を構成する双室具備容器Bd7、変成部
5及び変成部冷却用通流部8を構成する双室具備容器B
d8、変成部5を構成する双室具備容器Bd9、変成部
冷却用通流部9及び選択酸化部6を構成する双室具備容
器Bd10を記載順に並ぶように互いに密接配置して設
け、双室具備容器Bd2の他方側に、その双室具備容器
Bd2の側から、断熱材19、水蒸気生成部Sを構成す
る双室具備容器Bd1を記載順に並ぶように密接配置し
て設けてある。
That is, one side of the double-chambered container Bd2 constituting the combustion section 4 and the reforming section 3 is provided with the double-chambered container Bd
From the side 2, a single-chamber container B constituting the heat retaining flow passage 7
m, a heat insulating material 19, a twin chamber-equipped container Bd3 forming the desulfurized raw fuel gas heat exchanger Ep, a heat insulating material 19, a twin chamber container Bd4 forming the desulfurizing section 1, the desulfurizing section 1, and the raw fuel gas flow section , The downstream-side reforming gas flow section 15 and the twin-chamber container B forming the shift section 5.
d6, a twin-chamber container Bd7 constituting the desulfurization unit 1, a twin-chamber container B constituting the shift unit 5 and the flow passage 8 for cooling the shift unit
d8, a twin-chamber-equipped container Bd9 constituting the shift part 5, a twin-chamber-equipped container Bd10 constituting the shift part cooling passage part 9 and the selective oxidizing part 6 are closely arranged and arranged in the stated order, On the other side of the equipped container Bd2, a heat insulating material 19 and a twin-compartment equipped container Bd1 constituting the steam generating section S are arranged in close contact with each other from the side of the double-compartment equipped container Bd2 in the stated order.

【0081】第3実施形態においては、燃焼部4及び改
質部3を構成する双室具備容器Bd2の仕切り部材43
と、その双室具備容器Bdの燃焼部4の側に隣接する断
熱材19とにわたって、複数の補強部材63を架け渡し
てある。そして、それら複数の補強部材63により、熱
膨張による双室具備容器Bdの変形を抑制するように構
成してある。
In the third embodiment, the partition member 43 of the double-chambered container Bd2 forming the combustion section 4 and the reforming section 3
A plurality of reinforcing members 63 are bridged between the double-chamber-equipped container Bd and the heat insulating material 19 adjacent to the combustion section 4 side. The plurality of reinforcing members 63 are configured to suppress deformation of the double-chamber-equipped container Bd due to thermal expansion.

【0082】脱硫部用ヒータ32は、左から4個目の双
室具備容器Bd4と左から5個目の双室具備容器Bd5
との間に設け、一方の変成部用ヒータ33は、左から6
個目の双室具備容器Bd6と左から7個目の双室具備容
器Bd7との間に設け、他方の変成部用ヒータ33は、
左から9個目の双室具備容器Bd9と左から10個目の
双室具備容器Bd10との間に設けてある。更に、第3
実施形態においては、起動時に、水蒸気生成用加熱通流
部11を加熱する水蒸気生成用ヒータ60、脱硫原燃料
ガス通流部13を加熱する原燃料ガス用ヒータ61を設
けてある。
The desulfurization section heater 32 includes a fourth double-chambered container Bd4 from the left and a fifth double-chambered container Bd5 from the left.
And one of the metamorphic section heaters 33 is 6 mm from the left.
It is provided between the sixth twin-chamber container Bd6 and the seventh twin-chamber container Bd7 from the left, and the other transformation unit heater 33 is
It is provided between the ninth twin-compartment container Bd9 from the left and the tenth double-compartment container Bd10 from the left. Furthermore, the third
In the embodiment, a steam generation heater 60 for heating the steam generation heating passage 11 and a raw fuel gas heater 61 for heating the desulfurization raw fuel gas passage 13 are provided at the time of startup.

【0083】原燃料ガス供給路21を原燃料ガス用熱交
換器Eaの原燃料ガス通流部16に接続し、並びに、原
燃料ガス通流部16、3段の脱硫部1、脱硫原燃料ガス
用熱交換器Epの脱硫原燃料ガス通流部13、改質部
3、保温用通流部7、脱硫原燃料ガス用熱交換器Epの
上流側改質処理ガス通流部12、原燃料ガス用熱交換器
Eaの下流側改質処理ガス通流部15、3段の変成部
5、選択酸化部6の順に流れるガス処理経路を形成する
ように、それらをガス処理用流路22にて接続してあ
る。3台の脱硫部1及び3台の変成部5を、脱硫部1と
変成部5とが交互に並ぶように設けることにより、複数
の脱硫部1を処理対象ガスが順次流れるようにそれらを
ガス処理用流路22にて接続し、又、複数の変成部5を
処理対象ガスが順次流れるようにそれらをガス処理用流
路22にて接続するに当たって、通流経路の順に並ぶも
の同士を接続するガス処理用流路22の長さを長くする
ことが可能となるので、接続作業が容易となる。
The raw fuel gas supply path 21 is connected to the raw fuel gas flow section 16 of the raw fuel gas heat exchanger Ea, and the raw fuel gas flow section 16, the three-stage desulfurization section 1, the desulfurized raw fuel The desulfurization raw fuel gas flow section 13, the reforming section 3, the heat retaining flow section 7, and the upstream reforming processing gas flow section 12 of the desulfurization raw fuel gas heat exchanger Ep of the gas heat exchanger Ep, The gas processing passage 22 is formed so as to form a gas processing path that flows in the order of the downstream reforming gas flow section 15, the three-stage shift section 5, and the selective oxidation section 6 of the fuel gas heat exchanger Ea. Connected. By providing the three desulfurization units 1 and the three shift units 5 so that the desulfurization unit 1 and the shift unit 5 are alternately arranged, the gas is passed through the plurality of desulfurization units 1 so that the gas to be treated flows sequentially. In order to connect them in the processing flow path 22 and to connect them in the gas processing flow path 22 so that the gas to be processed flows sequentially through the plurality of metamorphic sections 5, they are connected in the order of the flow paths. Since the length of the gas processing flow path 22 can be increased, the connection operation is facilitated.

【0084】第3実施形態においては、変成部冷却用通
流部8から燃焼ガス路27を通じて排出された燃焼ガス
と、燃焼用空気路29を通じて燃焼部4に供給する燃焼
用空気及びオフガス路24を通じて燃焼部4に供給する
オフガスとを熱交換させて、燃焼用空気及びオフガスを
予熱する排熱回収用熱交換器62を設けてある。尚、図
示は省略するが、第1実施形態と同様に、燃焼用空気バ
イパス路30、及び、空気経路切り換え用開閉弁35,
36を設けてある。
In the third embodiment, the combustion gas discharged from the cooling passage 8 through the combustion gas passage 27, the combustion air supplied to the combustion unit 4 through the combustion air passage 29, and the off-gas passage 24 An exhaust heat recovery heat exchanger 62 is provided for preheating the combustion air and the off-gas by exchanging heat with the off-gas supplied to the combustion unit 4 through the heat exchanger. Although not shown, as in the first embodiment, the combustion air bypass 30 and the air path switching on-off valve 35,
36 are provided.

【0085】燃焼部4にて加熱される改質部3から選択
酸化部6に向かって、脱硫部1、変成部5、脱硫部1、
変成部5を順次伝熱して、選択酸化部6から放熱される
と共に、燃焼部4から水蒸気生成部Sに向かって伝熱す
る。一方、原燃料ガス供給路21から供給される原燃料
ガスは、原燃料ガス用熱交換器Eaにて改質処理ガスと
の熱交換により予熱した後、3段の脱硫部1に順次供給
して脱硫処理し、その脱硫原燃料ガスを水蒸気路26か
らの水蒸気と混合し、続いて、脱硫原燃料ガス用熱交換
器Epにて改質処理ガスとの熱交換により予熱した後、
改質部3に供給して燃焼部3にて加熱して改質処理し、
その改質処理ガスを、脱硫原燃料ガス用熱交換器Epに
て脱硫原燃料ガスとの熱交換により冷却し、更に、原燃
料ガス用熱交換器Eaにて原燃料ガスとの熱交換により
熱交換した後、3段の変成部5に順次供給して、一酸化
炭素ガスを二酸化炭素ガスに変成させて変成処理し、そ
の変成処理ガスを原料水予熱用熱交換器17にて原料水
との熱交換により冷却した後、選択酸化部6に供給して
一酸化炭素ガスを選択酸化させて選択酸化処理する。
From the reforming section 3 heated in the combustion section 4 to the selective oxidation section 6, the desulfurization section 1, the shift section 5, the desulfurization section 1,
The heat is sequentially transmitted to the metamorphic section 5, the heat is radiated from the selective oxidation section 6, and the heat is transmitted from the combustion section 4 to the steam generation section S. On the other hand, the raw fuel gas supplied from the raw fuel gas supply path 21 is preheated by heat exchange with the reforming gas in the raw fuel gas heat exchanger Ea, and then supplied to the three-stage desulfurization unit 1 sequentially. After desulfurization treatment, the desulfurization raw fuel gas is mixed with steam from the steam passage 26, and then preheated by heat exchange with the reforming treatment gas in the desulfurization raw fuel gas heat exchanger Ep.
It is supplied to the reforming section 3 and is heated and reformed in the combustion section 3.
The reformed gas is cooled by heat exchange with the desulfurized raw fuel gas in the desulfurized raw fuel gas heat exchanger Ep, and further cooled by heat exchange with the raw fuel gas in the raw fuel gas heat exchanger Ea. After the heat exchange, the gas is sequentially supplied to the three-stage shift section 5 to convert the carbon monoxide gas into carbon dioxide gas for shift processing, and the shift processing gas is fed to the feed water pre-heating heat exchanger 17 for feed water. After cooling by heat exchange with the gas, the gas is supplied to the selective oxidizing unit 6 to selectively oxidize the carbon monoxide gas to perform a selective oxidation treatment.

【0086】そこで、3台の脱硫部1、改質部3、3台
の変成部5及び選択酸化部6を上述のように配置した状
態で、上述の如き流体の流れを考慮して、隣接するもの
同士間のそれぞれの伝熱状態(伝熱量)を適宜に設定す
ることにより、改質部3を改質処理温度に維持するよう
に燃焼部4の加熱能力を調節し、且つ、選択酸化部6を
選択酸化処理温度に維持するように冷却用ファン10の
通風量を調節することにより、改質部3と選択酸化部6
との間に位置する3台の脱硫部1と3台の変成部5を、
温度を制御しなくても成り行きにて、それぞれ脱硫処理
温度、変成処理温度に維持することができ、並びに、水
蒸気生成部Sを成り行きにて水蒸気生成に適正な温度に
維持することができるのである。
Therefore, in the state where the three desulfurization units 1, the reforming unit 3, the three shift units 5 and the selective oxidation unit 6 are arranged as described above, adjacent units are taken into consideration in consideration of the flow of the fluid as described above. The heating capacity of the combustion unit 4 is adjusted so that the reforming unit 3 is maintained at the reforming processing temperature by appropriately setting the respective heat transfer states (heat transfer amounts) between the heat exchangers and the selective oxidation. The reforming unit 3 and the selective oxidizing unit 6 are controlled by adjusting the ventilation amount of the cooling fan 10 so that the unit 6 is maintained at the selective oxidizing treatment temperature.
And three desulfurization units 1 and three metamorphic units 5 located between
Even if the temperature is not controlled, the temperature can be maintained at the desulfurization treatment temperature and the shift treatment temperature, respectively, and the steam generation unit S can be maintained at a temperature appropriate for the steam generation. .

【0087】制御部Cがガス生成運転における運転制御
を実行するときの制御動作は、上記の第1実施形態と同
様であるので、説明を省略する。
The control operation when the control unit C executes the operation control in the gas generation operation is the same as that in the first embodiment, and the description is omitted.

【0088】〔別実施形態〕次に別実施形態を説明す
る。 (イ) 脱硫部1、改質部3、燃焼部4、変成部5、選
択酸化部6、水蒸気生成部S等、水素含有ガス生成装置
Pを構成する各部の形状や配置形態は、上記の実施形態
において例示したものに限定されるものではない。例え
ば、図11に示すように、複数の円筒体51を同軸状に
設けて、中心の円筒体51の内部、及び、隣接する円筒
体51同士の間を用いて、脱硫部1、改質部3、燃焼部
4、変成部5、選択酸化部6等、水素含有ガス生成装置
Pを構成する各部をそれぞれ構成しても良い。
[Another Embodiment] Next, another embodiment will be described. (A) The shapes and arrangements of the respective components constituting the hydrogen-containing gas generator P, such as the desulfurization unit 1, the reforming unit 3, the combustion unit 4, the shift unit 5, the selective oxidation unit 6, and the steam generation unit S, are as described above. The invention is not limited to those exemplified in the embodiment. For example, as shown in FIG. 11, a plurality of cylinders 51 are provided coaxially, and the desulfurization unit 1 and the reforming unit are formed by using the inside of the center cylinder 51 and between adjacent cylinders 51. 3, the combustion unit 4, the shift unit 5, the selective oxidizing unit 6, etc., each unit constituting the hydrogen-containing gas generator P may be configured.

【0089】図11に示す例では、中心の円筒体51の
内部を用いて燃焼部4を構成し、中心の円筒体51とそ
れに隣接する円筒体51との間を用いて改質部3を構成
し、最も外側の円筒体51とそれに隣接する円筒体51
との間を用いて選択酸化部6を構成し、それら改質部3
と選択酸化部6との間に、水蒸気生成部S,脱硫部1、
変成部5を、内側から記載順に並ぶように、それぞれ、
隣接する円筒体51同士の間を用いて構成してある。
又、選択酸化部6を冷却する冷却手段として、通流する
冷却水により選択酸化部6を冷却する冷却水ジャケット
52を設け、その冷却水ジャケット52に冷却水を供給
する冷却水供給路53に、冷却水の通流量を調節する冷
却水ポンプ54を設けてある。
In the example shown in FIG. 11, the combustion section 4 is formed by using the inside of the center cylinder 51, and the reforming section 3 is formed by using the space between the center cylinder 51 and the cylinder 51 adjacent thereto. The outermost cylindrical body 51 and the adjacent cylindrical body 51
And the selective oxidizing unit 6 is formed by using the
Between the steam generator S and the desulfurizer 1,
The metamorphic parts 5 are arranged in order from the inside,
It is configured using a space between adjacent cylindrical bodies 51.
As a cooling means for cooling the selective oxidizing section 6, a cooling water jacket 52 for cooling the selective oxidizing section 6 with flowing cooling water is provided, and a cooling water supply path 53 for supplying cooling water to the cooling water jacket 52 is provided. A cooling water pump 54 for adjusting the flow rate of the cooling water is provided.

【0090】そして、制御部Cは、改質部温度センサT
1の検出温度及び記憶している改質部温度制御情報に基
づいて、検出温度に応じた都市ガス供給量及び燃焼用空
気供給量になるように、ガス燃料供給量調整弁38及び
燃焼用空気供給量調整弁40それぞれを制御する。又、
選択酸化部温度センサT2の検出温度が選択酸化処理温
度になるように、冷却水ポンプ54の作動を制御する。
Then, the control unit C controls the reforming unit temperature sensor T
1 based on the detected temperature and the stored reforming unit temperature control information so that the city gas supply amount and the combustion air supply amount according to the detected temperature become the gas fuel supply amount adjustment valve 38 and the combustion air Each of the supply amount adjustment valves 40 is controlled. or,
The operation of the cooling water pump 54 is controlled such that the temperature detected by the selective oxidation section temperature sensor T2 becomes the selective oxidation processing temperature.

【0091】(ロ) 脱硫部1、改質部3、変成部5及
び選択酸化部6を、改質部3と選択酸化部6との間に脱
硫部1及び変成部5が位置し、且つ、隣接するもの同士
で熱伝導可能なように設けるに当たって、脱硫部1と変
成部5の配置順序は、上記の実施形態や図11に示す別
実施形態における配置順序に限定されるものではなく、
改質部3の側から変成部5、脱硫部1と記載順に並ぶ配
置順序でも良い。
(B) The desulfurization unit 1, the reforming unit 3, the shift unit 5, and the selective oxidizing unit 6 are located between the reforming unit 3 and the selective oxidizing unit 6. In order to provide heat conduction between adjacent components, the arrangement order of the desulfurization unit 1 and the shift unit 5 is not limited to the arrangement order in the above embodiment or another embodiment shown in FIG.
The arrangement order may be such that the alteration section 5 and the desulfurization section 1 are arranged in the stated order from the reforming section 3 side.

【0092】(ハ) 上記の実施形態においては、改質
部3と脱硫部1との間に、脱硫原燃料ガス用熱交換器E
pを設け、脱硫部1と変成部5との間に、原燃料ガス用
熱交換器Eaを設け、並びに、変成部5と選択酸化部6
との間に変成部冷却用通流部9を設ける場合について例
示した。これに代えて、改質部3と脱硫部1との間に、
脱硫原燃料ガス用熱交換器Epを設けずに、断熱材19
のみを設けて、その断熱材19にて改質部3と脱硫部1
との間の伝熱量を設定したり、脱硫部1と変成部5との
間に原燃料ガス用熱交換器Eaを設けずに、例えば断熱
材19を設けて、その断熱材19により脱硫部1と変成
部5との間の伝熱量を設定したり、変成部5と選択酸化
部6との間に変成部冷却用通流部9を設けずに、例えば
断熱材19を設けて、その断熱材19により変成部5と
選択酸化部6との間の伝熱量を設定するようにしても良
い。
(C) In the above embodiment, the heat exchanger E for desulfurized raw fuel gas is provided between the reforming section 3 and the desulfurizing section 1.
p, a raw fuel gas heat exchanger Ea is provided between the desulfurization unit 1 and the shift unit 5, and the shift unit 5 and the selective oxidation unit 6
The case where the flow passage 9 for cooling the metamorphic portion is provided between the first and second embodiments is illustrated. Instead, between the reforming section 3 and the desulfurization section 1,
Without providing the heat exchanger Ep for desulfurization raw fuel gas, the heat insulating material 19
Only, and the heat insulating material 19 is used for the reforming section 3 and the desulfurizing section 1.
For example, a heat insulating material 19 is provided without setting the amount of heat transfer between the desulfurizing unit 1 and the heat exchanger Ea for raw fuel gas between the desulfurizing unit 1 and the shift unit 5, and the desulfurizing unit 19 uses the heat insulating material 19. Without setting the heat transfer amount between 1 and the shift unit 5 and without providing the shift unit cooling passage 9 between the shift unit 5 and the selective oxidation unit 6, for example, a heat insulating material 19 is provided. The heat transfer amount between the shift unit 5 and the selective oxidation unit 6 may be set by the heat insulating material 19.

【0093】(ニ) 燃焼部4の加熱能力を調節するた
めの制御として、上記の実施形態においては、都市ガス
の供給量を減少するようにガス燃料供給量調整弁38を
制御する制御、及び、燃焼用空気供給量を増大するよう
に燃焼用空気供給量調整弁40を制御する制御を併用す
る場合について例示したが、都市ガスの供給量を減少す
るようにガス燃料供給量調整弁38を制御のみを行うよ
うに構成しても良い。あるいは、燃焼部4に対するオフ
ガスの供給量を調節するオフガス供給量調整弁を設け
て、そのオフガス供給量調整弁の制御によるオフガス供
給量の調節により、燃焼部4の加熱能力を調節するよう
に構成しても良い。
(D) As the control for adjusting the heating capacity of the combustion section 4, in the above embodiment, the control for controlling the gas fuel supply adjusting valve 38 so as to reduce the supply of city gas, and Although the case where the control for controlling the combustion air supply amount adjusting valve 40 is used together to increase the combustion air supply amount has been exemplified, the gas fuel supply amount adjustment valve 38 is set so as to reduce the city gas supply amount. You may comprise so that only control may be performed. Alternatively, an off-gas supply amount adjusting valve for adjusting the amount of off-gas supplied to the combustion unit 4 is provided, and the heating capacity of the combustion unit 4 is adjusted by adjusting the off-gas supply amount by controlling the off-gas supply amount adjustment valve. You may.

【0094】(ホ) 改質部3を改質処理温度に維持す
べく燃焼部4の加熱能力を調節するための制御形態は、
上記の実施形態において例示した如きフィードフォワー
ド制御に限定されるものではなく、改質部温度センサT
1の検出温度と改質処理温度とを比較して、検出温度が
改質処理温度よりも高いときは加熱能力を減少し、検出
温度が改質処理温度よりも低いときは加熱能力を増大す
るようにガス燃料供給量調整弁38及び燃焼用空気供給
量調整弁40を制御するフィードバック制御を行うよう
にしたり、あるいは、フィードフォワード制御及びフィ
ードバック制御の両方を行うようにしても良い。
(E) The control mode for adjusting the heating capacity of the combustion unit 4 in order to maintain the reforming unit 3 at the reforming processing temperature is as follows:
The present invention is not limited to the feedforward control as exemplified in the above-described embodiment.
Comparing the detected temperature with the reforming temperature, the heating capacity is decreased when the detected temperature is higher than the reforming temperature, and the heating capacity is increased when the detected temperature is lower than the reforming temperature. As described above, the feedback control for controlling the gas fuel supply amount adjustment valve 38 and the combustion air supply amount adjustment valve 40 may be performed, or both the feedforward control and the feedback control may be performed.

【0095】(ヘ) 改質部温度センサT1及び選択酸
化部温度センサT2それぞれの温度検出位置は、上記の
実施形態において例示した位置に限定されるものではな
く、適宜変更可能である。
(F) The temperature detection positions of the reforming section temperature sensor T1 and the selective oxidation section temperature sensor T2 are not limited to the positions exemplified in the above embodiment, but can be changed as appropriate.

【0096】(ト) 上記の第1実施形態においては、
変成部5を3段に設ける場合について例示したが、変成
部5を複数段に設ける場合の段数は適宜変更可能であ
り、あるいは、変成部5を1段に設けても良い。又、上
記の第3実施形態においては、脱硫部1及び変成部5を
それぞれ3台設ける場合について例示したが、脱硫部1
及び変成部5を複数台設ける場合の台数は適宜変更可能
であり、脱硫部1と変成部5の台数を異ならせても良
い。又、脱硫部1と変成部5とを交互に並べるに当たっ
て、その形態は上記の第3実施形態において例示した形
態に限定されるものではなく、1台ずつ交互に並べても
良い。
(G) In the first embodiment,
Although the case where the metamorphic unit 5 is provided in three stages has been illustrated, the number of stages in the case where the metamorphic unit 5 is provided in a plurality of stages can be changed as appropriate, or the metamorphic unit 5 may be provided in one stage. Further, in the third embodiment, the case where three desulfurization units 1 and three shift units 5 are provided is illustrated.
The number of the shift units 5 and the number of the shift units 5 can be changed as appropriate, and the number of the desulfurization unit 1 and the shift unit 5 may be different. In alternately arranging the desulfurization unit 1 and the shift unit 5, the form is not limited to the example illustrated in the third embodiment, and the units may be alternately arranged one by one.

【0097】(チ) 改質部加熱手段の具体構成は、上
記の実施形態にて例示した如き燃焼式の改質部加熱手段
である燃焼部4に限定されるものではなく、例えば、電
気ヒータにて構成しても良い。
(H) The specific structure of the reforming section heating means is not limited to the combustion section 4 which is a combustion-type reforming section heating means as exemplified in the above embodiment. May be configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態に係る水素含有ガス生成装置の縦
断側面図
FIG. 1 is a longitudinal sectional side view of a hydrogen-containing gas generator according to a first embodiment.

【図2】水素含有ガス生成装置を構成する双室具備容器
の斜視図
FIG. 2 is a perspective view of a container provided with a double chamber constituting the hydrogen-containing gas generator.

【図3】水素含有ガス生成装置を構成する単室具備容器
の斜視図
FIG. 3 is a perspective view of a single-chamber container that constitutes the hydrogen-containing gas generator.

【図4】第1実施形態に係る水素含有ガス生成装置の側
面図
FIG. 4 is a side view of the hydrogen-containing gas generator according to the first embodiment.

【図5】第1実施形態に係る水素含有ガス生成装置の正
面図
FIG. 5 is a front view of the hydrogen-containing gas generator according to the first embodiment.

【図6】改質部の温度と都市ガス供給量及び燃焼用空気
供給量それぞれとの関係を示す図
FIG. 6 is a diagram showing the relationship between the temperature of the reforming unit, the supply amount of city gas, and the supply amount of combustion air.

【図7】第2実施形態に係る水素含有ガス生成装置の縦
断側面図
FIG. 7 is a longitudinal side view of a hydrogen-containing gas generator according to a second embodiment.

【図8】第3実施形態に係る水素含有ガス生成装置の縦
断側面図
FIG. 8 is a longitudinal side view of a hydrogen-containing gas generator according to a third embodiment.

【図9】水素含有ガス生成装置における伝熱を説明する
FIG. 9 is a diagram illustrating heat transfer in the hydrogen-containing gas generator.

【図10】水素含有ガス生成装置における伝熱を説明す
る図
FIG. 10 is a diagram illustrating heat transfer in the hydrogen-containing gas generator.

【図11】別実施形態の水素含有ガス生成装置の概略斜
視図
FIG. 11 is a schematic perspective view of a hydrogen-containing gas generator of another embodiment.

【符号の説明】[Explanation of symbols]

1 脱硫部 3 改質部 4 改質部加熱手段 5 変成部 6 選択酸化部 10 選択酸化部冷却手段 Ep 熱交換部 S 水蒸気生成部 DESCRIPTION OF SYMBOLS 1 Desulfurization part 3 Reforming part 4 Reforming part heating means 5 Transformation part 6 Selective oxidation part 10 Selective oxidation part cooling means Ep Heat exchange part S Steam generation part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神家 規寿 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 Fターム(参考) 4G040 EA03 EA08 EB01 EB03 EB12 EB31 EB32 EB42 EB43 EB44 5H027 AA02 BA01 BA16 BA17  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Norihisa Kami 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka F-term in Osaka Gas Co., Ltd. (reference) 4G040 EA03 EA08 EB01 EB03 EB12 EB31 EB32 EB42 EB43 EB44 5H027 AA02 BA01 BA16 BA17

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 改質部加熱手段にて加熱されて、炭化水
素系の原燃料ガスを水蒸気にて水素ガスと一酸化炭素ガ
スを含むガスに改質処理する改質部と、前記改質部から
供給される改質処理ガスをその改質処理ガス中の一酸化
炭素ガスを二酸化炭素ガスに変成させることにより変成
処理する変成部と、その変成部から供給される変成処理
ガスをその変成処理ガス中の一酸化炭素を選択酸化する
ことにより選択酸化処理する選択酸化部が設けられた水
素含有ガス生成装置の運転制御方法であって、 前記選択酸化部を冷却する選択酸化部冷却手段を設け、 前記改質部、前記変成部及び前記選択酸化部を、前記改
質部と前記選択酸化部との間に前記変成部が位置し、且
つ、隣接するもの同士で熱伝導可能なように設け、 前記改質部を改質処理に適正な温度に維持するように、
前記改質部加熱手段の加熱能力を調節し、且つ、前記選
択酸化部を選択酸化処理に適正な温度に維持するよう
に、前記選択酸化部冷却手段の冷却能力を調節する水素
含有ガス生成装置の運転制御方法。
1. A reforming section which is heated by a reforming section heating means and reforms a hydrocarbon-based raw fuel gas into a gas containing hydrogen gas and carbon monoxide gas with water vapor; Conversion unit that converts the reforming gas supplied from the conversion unit by converting carbon monoxide gas in the reforming gas into carbon dioxide gas, and converts the conversion processing gas supplied from the conversion unit to the conversion unit. An operation control method for a hydrogen-containing gas generator provided with a selective oxidizing unit for performing selective oxidation treatment by selectively oxidizing carbon monoxide in a processing gas, comprising: a selective oxidizing unit cooling unit that cools the selective oxidizing unit. The reforming section, the shift section, and the selective oxidation section are arranged such that the shift section is located between the reforming section and the selective oxidation section, and that adjacent ones can conduct heat. Provision of the reforming section suitable for the reforming process To maintain the temperature,
A hydrogen-containing gas generator that adjusts the heating capacity of the reforming section heating means and adjusts the cooling capacity of the selective oxidizing section cooling means so as to maintain the selective oxidizing section at a temperature appropriate for the selective oxidizing treatment. Operation control method.
【請求項2】 前記改質部加熱手段をガス燃料を燃焼さ
せる燃焼式に構成し、 前記改質部における前記変成部が設けられている側とは
反対側に、供給される水を前記燃焼式の改質部加熱手段
から排出される燃焼ガスにて加熱して、前記改質部にお
ける改質処理用の水蒸気を生成する水蒸気生成部を設け
る請求項1記載の水素含有ガス生成装置の運転制御方
法。
2. The reforming section heating means is configured to be of a combustion type for burning gaseous fuel, and water supplied to the side of the reforming section opposite to the side on which the shift section is provided is subjected to the combustion. 2. The operation of the hydrogen-containing gas generator according to claim 1, further comprising a steam generation unit configured to generate steam for the reforming process in the reforming unit by heating with the combustion gas discharged from the reforming unit heating unit. Control method.
【請求項3】 前記改質部、前記変成部及び前記選択酸
化部を、外形形状が偏平な板状になるように構成し、そ
れら板状の前記改質部、前記変成部及び前記選択酸化部
を厚さ方向に並設する請求項1又は2記載の水素含有ガ
ス生成装置の運転制御方法。
3. The reforming section, the shift section, and the selective oxidation section are configured such that their outer shapes are flat and plate-shaped, and the plate-shaped reforming section, the shift section, and the selective oxidation section are formed. The operation control method for a hydrogen-containing gas generator according to claim 1, wherein the portions are arranged in parallel in the thickness direction.
【請求項4】 炭化水素系の原燃料ガスを脱硫処理する
脱硫部にて脱硫処理した脱硫原燃料ガスを、前記改質部
で改質処理する炭化水素系の原燃料ガスとして供給し、 前記改質部と前記選択酸化部との間に、前記脱硫部及び
前記変成部を並べて、且つ、隣接するもの同士で熱伝導
可能なように設ける請求項1〜3のいずれか1項に記載
の水素含有ガス生成装置の運転制御方法。
4. A desulfurizing raw fuel gas desulfurized in a desulfurizing section for desulfurizing a hydrocarbon raw fuel gas is supplied as a hydrocarbon raw fuel gas to be reformed in the reforming section. The method according to any one of claims 1 to 3, wherein the desulfurizing unit and the shift unit are arranged between the reforming unit and the selective oxidation unit, and are provided so as to be able to conduct heat between adjacent units. An operation control method for the hydrogen-containing gas generator.
【請求項5】 前記脱硫部及び前記変成部としてそれぞ
れ複数ずつを、前記脱硫部と前記変成部とが交互に並ぶ
ように、且つ、隣接するもの同士で熱伝導可能なように
設ける請求項4記載の水素含有ガス生成装置の運転制御
方法。
5. A plurality of said desulfurization units and said plurality of shift units are provided such that said desulfurization unit and said shift unit are alternately arranged and that adjacent units can conduct heat. An operation control method for the hydrogen-containing gas generator according to the above.
【請求項6】 前記脱硫部からの脱硫原燃料ガスと前記
改質部からの改質処理ガスとを熱交換させる熱交換部
を、前記改質部と前記脱硫部又は前記変成部との間に設
ける請求項4又は5記載の水素含有ガス生成装置の運転
制御方法。
6. A heat exchange section for exchanging heat between the desulfurization raw fuel gas from the desulfurization section and the reforming gas from the reforming section is provided between the reforming section and the desulfurization section or the shift section. The operation control method for a hydrogen-containing gas generator according to claim 4 or 5, wherein
【請求項7】 前記改質部、前記脱硫部、前記変成部及
び前記選択酸化部を、外形形状が偏平な板状になるよう
に構成し、それら板状の前記改質部、前記脱硫部、前記
変成部及び前記選択酸化部を厚さ方向に並設する請求項
4〜6のいずれか1項に記載の水素含有ガス生成装置の
運転制御方法。
7. The reforming unit, the desulfurizing unit, the shift unit, and the selective oxidizing unit are configured to have a flat plate-like outer shape, and the plate-shaped reforming unit and the desulfurizing unit are formed. The operation control method for a hydrogen-containing gas generator according to any one of claims 4 to 6, wherein the shift unit and the selective oxidation unit are arranged in parallel in a thickness direction.
JP2002078141A 2001-03-28 2002-03-20 Operation control method for hydrogen-containing gas generator Expired - Fee Related JP4531320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002078141A JP4531320B2 (en) 2001-03-28 2002-03-20 Operation control method for hydrogen-containing gas generator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001093343 2001-03-28
JP2001-93343 2001-03-28
JP2002078141A JP4531320B2 (en) 2001-03-28 2002-03-20 Operation control method for hydrogen-containing gas generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007187190A Division JP4624382B2 (en) 2001-03-28 2007-07-18 Operation control method for hydrogen-containing gas generator

Publications (2)

Publication Number Publication Date
JP2002356309A true JP2002356309A (en) 2002-12-13
JP4531320B2 JP4531320B2 (en) 2010-08-25

Family

ID=26612397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002078141A Expired - Fee Related JP4531320B2 (en) 2001-03-28 2002-03-20 Operation control method for hydrogen-containing gas generator

Country Status (1)

Country Link
JP (1) JP4531320B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006479A1 (en) * 2004-07-12 2006-01-19 Sumitomo Seika Chemicals Co., Ltd. Hydrogen production system and reforming apparatus
FR2875643A1 (en) * 2004-09-21 2006-03-24 Renault Sas FUEL CELL CATALYTIC REACTION DEVICE WITH TEMPERATURE AND CORRESPONDING METHOD
JP2008226602A (en) * 2007-03-12 2008-09-25 Osaka Gas Co Ltd Temperature control system of reformer in fuel cell device
JP2008247698A (en) * 2007-03-30 2008-10-16 Osaka Gas Co Ltd Hydrogen-containing gas producing apparatus
US8273489B2 (en) 2006-06-12 2012-09-25 Fuji Electric Co., Ltd. Hydrogen generator and fuel cell system including the same
WO2014002470A1 (en) 2012-06-25 2014-01-03 パナソニック株式会社 Fuel treatment device
JP2016137419A (en) * 2015-01-26 2016-08-04 本田技研工業株式会社 Desulfurizer and fuel cell system incorporating same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006479A1 (en) * 2004-07-12 2006-01-19 Sumitomo Seika Chemicals Co., Ltd. Hydrogen production system and reforming apparatus
AU2005261096B2 (en) * 2004-07-12 2010-01-21 Sumitomo Seika Chemicals Co., Ltd. Hydrogen production system and reforming apparatus
KR101162255B1 (en) 2004-07-12 2012-07-03 스미토모 세이카 가부시키가이샤 Hydrogen production system and reforming apparatus
US8690972B2 (en) 2004-07-12 2014-04-08 Sumitomo Seika Chemicals Co., Ltd. Hydrogen production system and reforming apparatus
FR2875643A1 (en) * 2004-09-21 2006-03-24 Renault Sas FUEL CELL CATALYTIC REACTION DEVICE WITH TEMPERATURE AND CORRESPONDING METHOD
WO2006032803A1 (en) * 2004-09-21 2006-03-30 Renault S.A.S. Temperature-regulated catalytic reaction device of a fuel cell and corresponding method
US8273489B2 (en) 2006-06-12 2012-09-25 Fuji Electric Co., Ltd. Hydrogen generator and fuel cell system including the same
JP2008226602A (en) * 2007-03-12 2008-09-25 Osaka Gas Co Ltd Temperature control system of reformer in fuel cell device
JP2008247698A (en) * 2007-03-30 2008-10-16 Osaka Gas Co Ltd Hydrogen-containing gas producing apparatus
WO2014002470A1 (en) 2012-06-25 2014-01-03 パナソニック株式会社 Fuel treatment device
JP2016137419A (en) * 2015-01-26 2016-08-04 本田技研工業株式会社 Desulfurizer and fuel cell system incorporating same

Also Published As

Publication number Publication date
JP4531320B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
JPH10330101A (en) Hydrogen-manufacturing apparatus and method therefor
JPH1167256A (en) Fuel cell system
JP4063430B2 (en) Fluid processing equipment
JP3942405B2 (en) Three-fluid heat exchanger
JP4090234B2 (en) Hydrogen-containing gas generator
KR20090079517A (en) Fuel Cell and Control Method Thereof
JP4531320B2 (en) Operation control method for hydrogen-containing gas generator
EP1883130B1 (en) Heat management of carbon monoxide remover and reformer for fuel cell
JP4624382B2 (en) Operation control method for hydrogen-containing gas generator
JP4429032B2 (en) Method for operating hydrogen-containing gas generator and hydrogen-containing gas generator
JP5324752B2 (en) Hydrogen-containing gas generator
JP3490877B2 (en) Starting method of reformer for fuel cell
JP2003187849A (en) Solid polymer fuel cell power generator
JP4210912B2 (en) Fuel reformer and fuel cell power generator
JP2001313053A (en) Fuel cell system
JP4502468B2 (en) Fuel cell power generator
JP2002080204A (en) Shutting-down and maintaining method for hydrogen- containing gas generator
JP3948885B2 (en) Hydrogen-containing gas generator for fuel cells
JPH0881202A (en) Methanol reformer for fuel cell
JP2005216615A (en) Fuel processing device and fuel cell power generation system
JP4484585B2 (en) Reformer
JP5643706B2 (en) Hydrogen-containing gas generator
JP2002063926A (en) Operating method of solid polymer fuel cell
KR20120074401A (en) Fuel processor of fuel cell
JP2003160305A (en) Reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4531320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees