JP4531320B2 - Operation control method for hydrogen-containing gas generator - Google Patents

Operation control method for hydrogen-containing gas generator Download PDF

Info

Publication number
JP4531320B2
JP4531320B2 JP2002078141A JP2002078141A JP4531320B2 JP 4531320 B2 JP4531320 B2 JP 4531320B2 JP 2002078141 A JP2002078141 A JP 2002078141A JP 2002078141 A JP2002078141 A JP 2002078141A JP 4531320 B2 JP4531320 B2 JP 4531320B2
Authority
JP
Japan
Prior art keywords
unit
reforming
section
gas
selective oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002078141A
Other languages
Japanese (ja)
Other versions
JP2002356309A (en
Inventor
久興 浅津
征雄 安田
規寿 神家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002078141A priority Critical patent/JP4531320B2/en
Publication of JP2002356309A publication Critical patent/JP2002356309A/en
Application granted granted Critical
Publication of JP4531320B2 publication Critical patent/JP4531320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、改質部加熱手段にて加熱されて、炭化水素系の原燃料ガスを水蒸気にて水素ガスと一酸化炭素ガスを含むガスに改質処理する改質部と、前記改質部から供給される改質処理ガスをその改質処理ガス中の一酸化炭素ガスを二酸化炭素ガスに変成させることにより変成処理する変成部と、その変成部から供給される変成処理ガスをその変成処理ガス中の一酸化炭素を選択酸化することにより選択酸化処理する選択酸化部が設けられた水素含有ガス生成装置の運転制御方法に関する。
【0002】
【従来の技術】
かかる水素含有ガス生成装置は、炭化水素系の原燃料ガスを改質部にて水蒸気により水素ガスと一酸化炭素ガスを含むガスに改質処理し、その改質処理ガスを変成部にて改質処理ガス中の一酸化炭素ガスを二酸化炭素ガスに変成させることにより変成処理し、その変成処理ガスを選択酸化部にて変成処理ガス中の一酸化炭素を選択酸化することにより選択酸化処理して、一酸化炭素濃度の低い(例えば10ppm以下)水素リッチな水素含有ガスを生成するものであり、生成水素含有ガスは、例えば、燃料電池における発電反応用の燃料ガスとして用いる。
【0003】
そして、かかる水素含有ガス生成装置の運転中は、改質部と変成部と選択酸化部をそれぞれ、改質処理に適正な温度(以下、改質処理温度と記載する場合がある)、変成処理に適正な温度(以下、変成処理温度と記載する場合がある)、選択酸化処理に適正な温度(以下、選択酸化処理温度と記載する場合がある)に維持する必要がある。ちなみに、改質処理温度は例えば600〜700°Cの範囲、変成処理温度は例えば150〜250°Cの範囲、選択酸化処理温度は80〜100°Cの範囲である。
【0004】
そこで、従来は、改質部と変成部と選択酸化部を、それぞれ改質処理温度、変成処理温度、選択酸化処理温度に維持するように運転するための運転制御方法においては、変成部を加熱する変成部加熱手段及び変成部を冷却する変成部冷却手段、並びに、選択酸化部を加熱する選択酸化部加熱手段及び選択酸化部を冷却する選択酸化部冷却手段を設けて、改質部を改質処理温度に維持するように、改質部加熱手段の加熱能力を調節し、変成部を変成処理温度に維持するように変成部加熱手段の加熱能力及び変成部冷却手段の冷却能力を調節し、並びに、選択酸化部を選択酸化処理温度に維持するように、選択酸化部加熱手段の加熱能力及び選択酸化部冷却手段の冷却能力を調節していた。
【0005】
【発明が解決しようとする課題】
従って、従来の運転制御方法においては、改質部と変成部と選択酸化部をそれぞれ改質処理温度、変成処理温度、選択酸化処理温度に維持するために、改質部、変成部及び選択酸化部それぞれの温度を各別に制御するというように、複雑な制御を必要とし、改善が望まれていた。
【0006】
本発明は、かかる実情に鑑みてなされたものであり、その目的は、簡単な制御にて改質部と変成部と選択酸化部をそれぞれに適正な温度に維持して運転することができる水素含有ガス生成装置の運転制御方法を提供することにある。
【0007】
【課題を解決するための手段】
〔請求項1記載の発明〕
請求項1に記載の水素含有ガス生成装置の運転制御方法の特徴は、前記選択酸化部を冷却する選択酸化部冷却手段を設け、
前記改質部、前記変成部及び前記選択酸化部を、前記改質部と前記選択酸化部との間に前記変成部が位置し、且つ、隣接するもの同士で熱伝導可能なように設け、
炭化水素系の原燃料ガスを脱硫処理する脱硫部にて脱硫処理した脱硫原燃料ガスを、前記改質部で改質処理する炭化水素系の原燃料ガスとして供給し、
前記改質部と前記選択酸化部との間に、前記脱硫部及び前記変成部を並べて、且つ、隣接するもの同士で熱伝導可能なように設け、
前記脱硫部からの脱硫原燃料ガスと前記改質部からの改質処理ガスとを熱交換させる熱交換部を、前記改質部と前記脱硫部との間に設け、
前記改質部と前記脱硫部との間は、前記改質部の側から順に並ぶ断熱材、前記熱交換部及び断熱材にて伝熱量を設定し、
前記改質部を改質処理に適正な温度に維持するように、前記改質部加熱手段の加熱能力を調節し、且つ、前記選択酸化部を選択酸化処理に適正な温度に維持するように、前記選択酸化部冷却手段の冷却能力を調節し、
前記選択酸化部冷却手段が、通風量の調節により冷却能力を調節する冷却用ファンであり、
前記改質部加熱手段をガス燃料を燃焼させる燃焼式に構成し、
前記変成部を冷却するための変成部冷却用通流部を前記変成部と前記選択酸化部との間に設け、
ブロアからの空気を前記変成部冷却用通流部を通流させてから前記改質部加熱手段に供給する燃焼用空気路に、前記変成部冷却用通流部を迂回させて前記ブロアからの空気を通流させる燃焼用空気バイパス路を接続し、
前記燃焼用空気路を通して前記ブロアからの空気を通流させる冷却用供給状態と、前記燃焼用空気バイパス路を通して前記ブロアからの燃焼用空気を通流させるバイパス供給状態とに切換える空気経路切り換え用開閉弁を設け、
前記バイパス供給状態では前記変成部の冷却能力が不足するときには、前記冷却用供給状態に切り換えることにある。
即ち、本発明の発明者らは、改質処理温度、変成処理温度及び選択酸化処理温度においては、改質処理温度が最も高く、選択酸化処理温度が最も低く、変成処理温度は、改質処理温度と選択酸化処理温度との間にあるということに鑑みて、運転制御方法を簡略化すべく鋭意研究した。
そして、改質部、変成部及び選択酸化部を、最も高温に維持する必要のある改質部と、最も低温に維持する必要のある選択酸化部との間に、それら改質部の温度と選択酸化部の温度との間の温度に維持する必要のある変成部が位置し、且つ、隣接するもの同士で伝熱可能なように設け、そのように改質部、変成部及び選択酸化部を設けた状態で、隣接するもの同士の伝熱状態を適宜に設定することにより、改質部と選択酸化部をそれぞれ適正な温度に制御するだけで、変成部は、温度を制御することなくそれぞれに適正な温度に維持することができるということを見出した。
つまり、図9に示すように、最も高温に維持する必要のある改質部3と、最も低温に維持する必要のある選択酸化部6との間に、それら改質部3の温度と選択酸化部6の温度との間の温度に維持する必要のある変成部5が位置し、且つ、隣接するもの同士で伝熱可能なように設けると、図9において矢印にて示すように、改質部3から選択酸化部6に向かって伝熱して、選択酸化部6から放熱される。尚、図9において、4は、改質部3を加熱する燃焼式の改質部加熱手段としての燃焼部であり、10は、選択酸化部6を冷却する選択酸化部冷却手段としての冷却用ファンである。
そして、隣接するもの同士、図9では、改質部3と変成部5との間、及び、変成部5と選択酸化部6との間のそれぞれの伝熱状態を適宜に設定することにより、改質部3を改質処理温度に維持するように燃焼部4の加熱能力を調節し、且つ、選択酸化部6を選択酸化処理温度に維持するように選択酸化部冷却手段としての冷却用ファン10の風量調節により冷却能力を調節するだけで、それら改質部3と選択酸化部6との間に位置する変成部5を、温度を制御しなくても成り行きにて、変成処理温度になるようにすることができるのである。
要するに、改質部の温度と選択酸化部の温度を制御するだけの簡単な制御にて、改質部と変成部と選択酸化部をそれぞれ改質処理温度、変成処理温度、選択酸化処理温度に維持することができるようになった。
従って、簡単な制御にて改質部と変成部と選択酸化部をそれぞれに適正な温度に維持して運転することができる水素含有ガス生成装置の運転制御方法を提供することができるようになった。
又、本発明の発明者らは、炭化水素系の原燃料ガスを脱硫処理する脱硫部にて脱硫処理した脱硫原燃料ガスを、改質部で改質処理する炭化水素系の原燃料ガスとして供給する場合に、改質処理温度、脱硫処理に適正な温度(以下、脱硫処理温度と記載する場合がある)、変成処理温度及び選択酸化処理温度においては、改質処理温度が最も高く、選択酸化処理温度が最も低く、脱硫処理温度と変成処理温度は、改質処理温度と選択酸化処理温度との間にあるということに鑑みて、運転制御方法を簡略化すべく鋭意研究した。ちなみに、脱硫処理温度は例えば150〜270°Cの範囲である。
そして、改質部、脱硫部、変成部及び選択酸化部を、最も高温に維持する必要のある改質部と、最も低温に維持する必要のある選択酸化部との間に、それら改質部の温度と選択酸化部の温度との間の温度に維持する必要のある脱硫部及び変成部が位置し、且つ、隣接するもの同士で伝熱可能なように設け、そのように改質部、脱硫部、変成部及び選択酸化部を設けた状態で、隣接するもの同士の伝熱状態を適宜に設定することにより、改質部と選択酸化部をそれぞれ適正な温度に制御するだけで、脱硫部及び変成部は、温度を制御することなくそれぞれに適正な温度に維持することができるということを見出した。
つまり、図8に示すように、最も高温に維持する必要のある改質部3と、最も低温に維持する必要のある選択酸化部6との間に、それら改質部3の温度と選択酸化部6の温度との間の温度に維持する必要のある脱硫部1及び変成部5が位置し、且つ、隣接するもの同士で伝熱可能なように設けると、図8において矢印にて示すように、改質部3から選択酸化部6に向かって伝熱して、選択酸化部6から放熱される。尚、図8において、4は、改質部3を加熱する燃焼式の改質部加熱手段としての燃焼部であり、10は、選択酸化部6を冷却する選択酸化部冷却手段としての冷却用ファンである。
そして、隣接するもの同士、図8では、改質部3と脱硫部1との間、脱硫部1と変成部5との間、及び、変成部5と選択酸化部6との間のそれぞれの伝熱状態を適宜に設定することにより、改質部3を改質処理温度に維持するように燃焼部4の加熱能力を調節し、且つ、選択酸化部6を選択酸化処理温度に維持するように選択酸化部冷却手段としての冷却用ファン10の風量調節により冷却能力を調節するだけで、それら改質部3と選択酸化部6との間に位置する脱硫部1と変成部5を、温度を制御しなくても成り行きにて、それぞれ脱硫処理温度、変成処理温度になるようにすることができるのである。
要するに、改質部の温度と選択酸化部の温度を制御するだけの簡単な制御にて、脱硫部と改質部と変成部と選択酸化部をそれぞれ脱硫処理温度、改質処理温度、変成処理温度、選択酸化処理温度に維持することができるようになった。
従って、簡単な制御にて脱硫部と改質部と変成部と選択酸化部をそれぞれに適正な温度に維持して運転することができる水素含有ガス生成装置の運転制御方法を提供することができるようになった。
又、改質部と脱硫部との間に設けた熱交換部にて、脱硫部からの脱硫原燃料ガスと改質部からの改質処理ガスとを熱交換させて、脱硫原燃料ガスを予熱して改質部に供給すると共に、改質処理ガスを冷却して変成部に供給する。
つまり、脱硫部から排出された状態の脱硫原燃料ガスは、脱硫部の温度に近い温度であり、その脱流原燃料ガスが供給される改質部の温度との差が大きく、一方、改質部から排出された状態の改質処理ガスは、改質部の温度に近い温度であり、その改質処理ガスが供給される変成部との温度差が大きい。そこで、脱硫部から排出された脱硫原燃料ガスと改質部から排出された改質処理ガスとを熱交換部にて熱交換させることにより、脱硫原燃料ガスを予熱するために余分なエネルギを消費することなく、且つ、改質処理ガスを冷却するために熱を捨てることなく、脱硫原燃料ガスを予熱して、改質部との温度差を小さくした状態で改質部に供給することができると共に、改質処理ガスを冷却して、変成部との温度差を小さくした状態で変成部に供給することができるようになる。
しかも、熱交換部に流入及び流出する各流体の温度は、改質部の温度と脱硫部の温度との間の範囲内か、あるいはその範囲に近い温度であるので、熱交換部を、改質部と脱硫部との間に設けることにより、改質部の温度、脱硫部の温度をそれぞれに適正な温度に維持し易く、延いては、水素含有ガス生成装置の各部の温度をそれぞれに適正な温度に維持し易くなる。
従って、エネルギー効率を向上して水素含有ガスを生成することができながら、脱硫部、改質部、変成部及び選択酸化部それぞれの温度を一層的確に維持して運転することができるようにする上で好ましい具体構成を提供することができる。
〔請求項2記載の発明〕
請求項2に記載の水素含有ガス生成装置の運転制御方法の特徴は、前記改質部、前記熱交換部、前記脱硫部、前記変成部及び前記選択酸化部を、外形形状が偏平な板状になるように構成し、それら板状の前記改質部、前記熱交換部、前記脱硫部、前記変成部及び前記選択酸化部を厚さ方向に並設することにある。
請求項2に記載の運転制御方法によれば、外形形状が偏平な板状の改質部、熱交換部、脱硫部、変成部及び選択酸化部を、改質部と選択酸化部との間に、熱交換部、脱硫部及び変成部が位置し、且つ、隣接するもの同士で熱伝導可能なように、厚さ方向に並設するので、改質部、熱交換部、脱硫部、変成部及び選択酸化部の各部を厚さ方向に伝熱する状態で、改質部から選択酸化部に向かって伝熱する。
つまり、改質部、熱交換部、脱硫部、変成部及び選択酸化部を、改質部と選択酸化部との間に、熱交換部、脱硫部及び変成部が位置し、且つ、隣接するもの同士で熱伝導可能な並設し、隣接するもの同士の伝熱状態を適宜に設定することにより、改質部と選択酸化部をそれぞれに適正な温度に制御するだけで、脱硫部及び変成部をそれぞれに適正な温度に維持することができるようにするに当たって、上述のように、改質部、熱交換部、脱硫部、変成部及び選択酸化部をそれぞれ偏平な板状に構成して、厚さ方向に並設することにより、改質部、熱交換部、脱硫部、変成部及び選択酸化部の各部における伝熱経路を短くして、伝熱経路に沿った温度勾配を小さくすることができ、もって、各部の温度分布を小さくすることができる。
従って、脱硫部と改質部と変成部と選択酸化部を、温度分布を小さくしながらそれぞれに適正な温度に維持して運転することができるので、本発明の運転制御方法を実施するのに好ましい具体構成を提供することができる。
【0008】
〔請求項3記載の発明〕
請求項3に記載の水素含有ガス生成装置の運転制御方法の特徴は、前記改質部における前記変成部が設けられている側とは反対側に、供給される水を前記燃焼式の改質部加熱手段から排出される燃焼ガスにて加熱して、前記改質部における改質処理用の水蒸気を生成する水蒸気生成部を設けることにある。
請求項3に記載の運転制御方法によれば、改質部加熱手段をガス燃料を燃焼させる燃焼式に構成し、水蒸気生成部にて、供給される水を燃焼式の改質部加熱手段から排出される燃焼ガスにて加熱して、改質部における改質処理用の水蒸気を生成するので、余分なエネルギーを消費することなく、改質処理用の水蒸気を生成することができる。しかも、水蒸気生成部は、改質部における変成部が設けられている側とは反対側に設けることから、改質部からの放熱を抑制することができるので、改質部加熱手段におけるエネルギーの消費量を低減することができる。
従って、エネルギー効率を向上して水素含有ガスを生成できるように運転できるようにする上で好ましい具体構成を提供することができる。
【0011】
〔請求項記載の発明〕
請求項に記載の水素含有ガス生成装置の運転制御方法の特徴は、前記脱硫部及び前記変成部としてそれぞれ複数ずつを、前記脱硫部と前記変成部とが交互に並ぶように、且つ、隣接するもの同士で熱伝導可能なように設けることにある。
請求項に記載の運転制御方法によれば、脱硫部及び変成部としてそれぞれ複数ずつを、脱硫部と変成部とが交互に並ぶように、且つ、隣接するもの同士で熱伝導可能なように設け、複数の脱硫部にて、炭化水素系の原燃料ガスを脱硫処理し、複数の変成部にて、改質処理ガスを変成処理する。
つまり、脱硫処理温度と変成処理温度とは同様の温度範囲にあるので、脱硫部及び変成部としてそれぞれ複数ずつを、脱硫部と変成部とが交互に並ぶように、且つ、隣接するもの同士で熱伝導可能なように設けることにより、改質部と選択酸化部をそれぞれ適正な温度を制御するだけで、複数の脱硫部及び複数の変成部のそれぞれを、温度を制御することなくそれぞれに適正な温度に維持することができ、それら複数の脱硫部にて炭化水素系の原燃料ガスを脱硫処理することにより、脱硫処理能力を向上し、複数の変成部にて改質処理ガスを変成処理することにより、変成処理能力を向上することができる。
しかも、複数の脱硫部及び複数の変成部を、脱硫部と変成部とが交互に並ぶように設けることにより、複数の脱硫部を処理対象ガスが順次流れるように、それらを管路にて接続し、又、複数の変成部を処理対象ガスが順次流れるように、それらを管路にて接続するに当たって、通流経路の順に並ぶもの同士を接続する管路の長さを長くすることが可能となるので、管路接続作業が容易となり、低廉化を図ることが可能となる。
ちなみに、複数の脱硫部及び複数の変成部を、脱硫部同士をまとめて隣接させて設け、変成部同士をまとめて隣接させて設けると、隣接するもの同士を管路にて接続する必要があるので、接続する管路の長さが短くなって、管路接続作業がし難くなる。
従って、簡単な制御にて脱硫処理能力及び変成処理能力を向上するように運転することができる水素含有ガス生成装置の運転制御方法を、低廉化を図りながら提供することができるようになった。
【0014】
【発明の実施の形態】
〔第1実施形態〕
以下、図面に基づいて、本発明を燃料電池用の水素含有ガス生成装置に適用した場合の第1実施形態を説明する。
図1に示すように、水素含有ガス生成装置Pは、供給される天然ガス等の炭化水素系の原燃料ガスを脱硫処理する脱硫部1と、供給される原料水を加熱して水蒸気を生成する水蒸気生成部Sと、燃焼式の改質部加熱手段としての燃焼部4にて加熱されて、脱硫部1から供給される脱硫原燃料ガスを水蒸気生成部Sで生成された水蒸気を用いて水素ガスと一酸化炭素ガスを含むガスに改質処理する改質部3と、改質部3から供給される改質処理ガス中の一酸化炭素ガスを水蒸気を用いて二酸化炭素ガスに変成させることにより変成処理する変成部5と、その変成部5から供給される変成処理ガス中の一酸化炭素ガスを選択酸化することにより選択酸化処理する選択酸化部6と、水素含有ガス生成装置の運転を制御する制御部Cを備えて構成して、一酸化炭素ガス濃度の低い(例えば10ppm以下)水素リッチな水素含有ガスを生成するように構成してある。
【0015】
脱硫部1においては、例えば150〜270°Cの範囲の脱硫処理温度で、脱硫触媒にて原燃料ガス中の硫黄化合物が水素化され、その水素化物が酸化亜鉛に吸着されて脱硫される。ちなみに、脱硫部1における脱硫反応は発熱反応である。
【0016】
改質部3においては、メタンガスを主成分とする天然ガスが原燃料ガスである場合は、改質触媒の触媒作用により、例えば600〜700°Cの範囲の改質処理温度の下で、メタンガスと水蒸気とが下記の反応式にて改質反応して、水素ガスと一酸化炭素ガスを含むガスに改質処理される。ちなみに、改質部3における改質反応は吸熱反応である。
【0017】
【化1】
CH4 +H2O→CO+3H2
【0018】
変成部5においては、改質処理ガス中の一酸化炭素ガスと水蒸気とが、変成触媒の触媒作用により、例えば150〜250°Cの範囲の変成処理温度の下で、下記の反応式にて変成反応して、一酸化炭素ガスが二酸化炭素ガスに変成処理される。ちなみに、変成部5における変成反応は発熱反応である。
【0019】
【化2】
CO+H2O→CO2 +H2
【0020】
選択酸化部6においては、白金、ルテニウム、ロジウム等の貴金属系の変成触媒の触媒作用によって、例えば80〜100°Cの範囲の選択酸化処理温度の下で、変成処理ガス中に残っている一酸化炭素ガスが選択酸化される。ちなみに、選択酸化部6における酸化反応は発熱反応である。
【0021】
そして、水素含有ガス生成装置にて生成された水素含有ガスは燃料ガスとして、燃料ガス路23を通じて燃料電池Gに供給される。燃料電池Gは、詳細な説明は省略するが、高分子膜を電解質とする固体高分子型であり、水素含有ガス生成装置Pから供給される燃料ガス中の水素と、ブロア(図示せず)から供給される反応用空気中の酸素との電気化学反応により発電するように構成してある。
【0022】
燃焼部4は、燃料電池Gから排出されて、オフガス路24を通じて供給されるる燃料ガスであるオフガスをガス燃料として燃焼させると共に、改質部3を改質処理可能なように加熱するに当たって、オフガスだけでは不足する分をガス燃料供給路37を通じて供給される都市ガス(13A等)をガス燃料として燃焼させる。
【0023】
水蒸気生成部Sは、燃焼部4から排出された燃焼ガスを通流させる水蒸気生成用加熱通流部11と、供給される原料水を水蒸気生成用加熱通流部11による加熱にて蒸発させる蒸発処理部2とから構成してある。
【0024】
更に、水素含有ガス生成装置Pには、改質部3から排出された高温の改質処理ガスを通流させて、改質部3を保温する保温用通流部7と、脱硫部1からの脱硫原燃料ガスと改質部3からの高温の改質処理ガスとを熱交換させて、改質部3に供給される脱硫原燃料ガスを予熱する脱硫原燃料ガス用熱交換器Ep(熱交換部に相当する)と、改質部3からの高温の改質処理ガスと脱硫部1に供給される原燃料ガスを熱交換させて原燃料ガスを予熱する原燃料ガス用熱交換器Eaと、変成部5を冷却するために冷却用流体を通流させる変成部冷却用通流部8と、同じく、変成部5を冷却するために冷却用流体を通流させる変成部冷却用通流部9と、選択酸化部6を冷却する選択酸化部冷却手段としての冷却用ファン10とを設けてある。
又、変成部5から排出された変成処理ガスと、水蒸気生成部Sへ供給する原料水とを熱交換させて、原料水を予熱する原料水予熱用熱交換器17を設けてある。
【0025】
脱硫原燃料ガス用熱交換器Epは、保温用通流部7から排出された改質処理ガスを通流させる上流側改質処理ガス通流部12と、改質部3に供給する脱硫原燃料ガスを通流させる脱硫原燃料ガス通流部13とを熱交換自在に設けて構成し、原燃料ガス用熱交換器Eaは、上流側改質処理ガス通流部12から排出された改質処理ガスを通流させる下流側改質処理ガス通流部15と、脱硫部1に供給する原燃料ガスを通流させる原燃料ガス通流部16とを熱交換自在に設けて構成してある。
【0026】
起動時に、脱硫部1を脱硫処理可能なように加熱する脱硫部用ヒータ32、変成部を変成処理可能なように加熱する2個の変成部用ヒータ33を設けてあり、それらヒータ32,33は電気ヒータから成る。
【0027】
第1実施形態においては、改質部3、脱硫部1、変成部5及び選択酸化部6を、改質部3と選択酸化部6との間に脱硫部1及び変成部5が位置し、且つ、隣接するもの同士で熱伝導可能なように設け、改質部3を改質処理に適正な温度に維持するように、燃焼部4の加熱能力を調節し、且つ、選択酸化部6を選択酸化処理に適正な温度に維持するように、冷却用ファン10の通風量を調節して冷却能力を調節することにより、脱硫部1及び変成部5がそれぞれの処理に適正な温度になるように、隣接するもの同士の伝熱状態を予め設定してある。
【0028】
説明を加えると、図1に示すように、水素含有ガス生成装置Pは、矩形板状の偏平な容器Bの複数を板状形状の厚さ方向に並べて設けて、各容器Bを用いて、脱硫部1、改質部3、燃焼部4、変成部5、選択酸化部6、水蒸気生成部S、各通流部等を夫々構成してある。
複数の容器Bのうちの一部は、一つの室を備えるように形成した単室具備容器Bmにて構成し、残りは、区画された二つの室を備えるように形成した双室具備容器Bdにて構成してある。
【0029】
図2に示すように、双室具備容器Bdは、一対の皿形状容器形成部材41の間に平板状の仕切り部材43を位置させた状態で、周辺部を溶接接続して、二つの偏平な室を区画形成し、図3に示すように、単室具備容器Bmは、皿形状容器形成部材41と平板状容器形成部材42とを周辺部を溶接接続して、一つの偏平な室を区画形成してある。
各単室具備容器Bmや、各双室具備容器Bdには、必要に応じて、流体供給用や流体排出用の接続ノズル44を内部の室と連通する状態で取り付けてある。
又、図示を省略するが、必要に応じて、容器Bの室内を蛇行状流路になるように構成して、流体の通流経路を長くしている。
【0030】
図1に示すように、本第1実施形態においては、8個の双室具備容器Bdと、1個の単室具備容器Bmを、側面視において左端から3個目に単室具備容器Bmを位置させた状態で、横方向に厚さ方向に並べて設けて、コンパクトに形成してある。
8個の双室具備容器Bdの区別が明確になるように、便宜上、双室具備容器を示す符号Bdの後に、左からの並び順を示す符号1,2,3……………8を付す。
【0031】
左端の双室具備容器Bd1にて水蒸気生成部Sを構成してあり、その双室具備容器Bd1の左側の室を備えた部分を用いて、水蒸気生成用加熱通流部11を構成し、右側の室を備えた部分を用いて蒸発処理部2を構成し、両室内にステンレスウール等からなる伝熱促進材を通気可能な状態で充填してある。
左から2個目の双室具備容器Bd2の左側の室を備えた部分を用いて燃焼部4を構成し、右側の室を備えた部分を用いて改質部3を構成してある。燃焼部4を構成する左側の室を、燃焼室に構成すると共に、その燃焼室内でガス燃料を燃焼させるように改質用バーナ4bを設け、改質部3を構成する右側の室には、ルテニウム、ニッケル、白金等の改質用触媒を保持したセラミック製の多孔質粒状体の多数を通気可能な状態で充填してある。
単室具備容器Bmを用いて、保温用通流部7を構成してある。
【0032】
左から3個目の双室具備容器Bd3の左側の室を備えた部分を用いて、上流側改質処理ガス通流部12を構成し、右側の室を備えた部分を用いて、脱硫原燃料ガス通流部13を構成してある。両室内には、ステンレスウール等からなる伝熱促進材を通気可能な状態で充填してある。
【0033】
左から4個目の双室具備容器Bd4の左側の室を備えた部分を用いて、脱硫部1を構成し、右側の室を備えた部分を用いて、原燃料ガス通流部16を構成してある。脱硫部1を構成する左側の室内には、脱硫用触媒を保持したセラミック製の多孔質粒状体の多数を通気可能な状態で充填してある。
【0034】
左から5個目の双室具備容器Bd5の左側の室を備えた部分を用いて、下流側改質処理ガス通流部15を構成し、右側の室を備えた部分を用いて、変成部5を構成してある。
左から6個目の双室具備容器Bd6の左側の室を備えた部分を用いて、変成部5を構成し、右側の室を備えた部分を用いて、変成部冷却用通流部8を構成してある。
左から7個目の双室具備容器Bd7を用いて、変成部5を構成してある。変成部を構成する各室内には、酸化鉄又は銅亜鉛の変成反応用触媒を保持したセラミック製の多孔質粒状体の多数を通気可能な状態で充填してある。
つまり、変成部5は、左から5個目の双室具備容器Bd5、左から6個目の双室具備容器Bd6及び左から7個目の双室具備容器Bd7を用いて構成して、変成部5は3台設けてある。
【0035】
左から8個目(右端)の双室具備容器Bd8の左側の室を備えた部分を用いて、変成部冷却用通流部9を構成し、右側の室を備えた部分を用いて選択酸化部6を構成してある。選択酸化部6を構成する室内には、ルテニウムの選択酸化用触媒を保持したセラミック製の多孔質粒状体の多数を通気可能な状態で充填してある。
【0036】
つまり、燃焼部4及び改質部3を構成する双室具備容器Bd2の一方側に、その双室具備容器Bd2の側から、保温用通流部7を構成する単室具備容器Bm、断熱材19、上流側改質処理ガス通流部12及び脱硫原燃料ガス通流部13、即ち脱硫原燃料ガス用熱交換器Epを構成する双室具備容器Bd3、断熱材19、脱硫部1及び原燃料ガス通流部16を構成する双室具備容器Bd4、下流側改質処理ガス通流部15及び変成部5を構成する双室具備容器Bd5、変成部5及び変成部冷却用通流部8を構成する双室具備容器Bd6、変成部5を構成する双室具備容器Bd7、変成部冷却用通流部9及び選択酸化部6を構成する双室具備容器Bd8を記載順に並ぶように互いに密接配置して設け、双室具備容器Bd2の他方側に、その双室具備容器Bd2の側から、断熱材19、水蒸気生成部Sを構成する双室具備容器Bd1を記載順に並ぶように密接配置して設けてある。
【0037】
脱硫部用ヒータ32は、脱硫部1を構成する左から4個目の双室具備容器Bd4とそれに隣接する断熱材19との間に設け、一方の変成部用ヒータ33は、1段目の変成部5を構成する左から5個目の双室具備容器Bd5と、2段目の変成部5を構成する左から6個目の双室具備容器Bd6との間に設け、他方の変成部用ヒータ33は、3段目の変成部5を構成する左から7個目の双室具備容器Bd7と変成部冷却用通流部9及び選択酸化部6を構成する左から8個目(右端)の双室具備容器Bd8との間に設けてある。
【0038】
図4及び図5に示すように、水素含有ガス生成装置Pは、複数の容器B及び断熱材19等を、上述のように並べて配置位置して、並び方向両端の容器Bに一対の保持板49を各別に当て付けた状態で、それら一対の保持板49を6組のネジ式連結手段にて連結することにより、一体的に組み付けて構成してある。
ネジ式連結手段は、ボルト45、一対のナット46及び一対のスプリングワッシャ47から成る。
各保持板49は、L字状に形成すると共に、各保持板49は、2本の補強用リブ48にて補強してある。
そして、ボルト45の両端夫々を、保持板49に挿通した状態で、両側からスプリングワッシャ47を介してナット46にて締め付けることにより、複数の容器Bを並び方向に直交する方向での相対移動を許容する状態で並び方向両側から押し付けるようにしてある。又、スプリングワッシャ47の伸縮作用により、各容器Bの並び方向での膨張収縮も許容するようにしてある。
尚、一対の保持板49を立設して、その一対の保持板49にて支持する状態で、水素含有ガス生成装置Pを設置する。
【0039】
図1において、白抜き線矢印にて示すように、原燃料ガス供給路21を原燃料ガス用熱交換器Eaの原燃料ガス通流部16に接続し、並びに、原燃料ガス通流部16、脱硫部1、脱硫原燃料ガス用熱交換器Epの脱硫原燃料ガス通流部13、改質部3、保温用通流部7、脱硫原燃料ガス用熱交換器Epの上流側改質処理ガス通流部12、原燃料ガス用熱交換器Eaの下流側改質処理ガス通流部15、3段の各変成部5、選択酸化部6の順に流れるガス処理経路を形成するように、それらをガス処理用流路22にて接続してある。
【0040】
原燃料ガス供給路21には、水素含有ガス生成装置への原燃料ガスの供給を断続する原燃料ガス断続弁20を設けてある。
最後段の変成部5と選択酸化部6とを接続するガス処理用流路22に、後述する原料水供給路25を流れる原料水を変成処理ガスにて予熱する原料水予熱用熱交換器17を設けると共に、変成処理ガスから凝縮水を除去するドレントラップ34を、その原料水予熱用熱交換器17よりも下流側の箇所に設けてある。
【0041】
選択酸化部6から排出された選択酸化処理ガスを燃料ガスとして燃料電池Gに供給するように、選択酸化部6と燃料電池Gとを燃料ガス路23にて接続し、燃料電池Gから排出された排燃料ガスを燃焼部4に供給すべく、燃料電池Gと燃焼部4とをオフガス路24にて接続してある。
オフガス路24には、ガスの逆流を防止する逆止弁39を設け、ガス燃料供給路37を、オフガス路24における逆止弁39よりも下流側の箇所に接続すると共に、そのガス燃料供給路37に、ガス燃料の供給量を調節するガス燃料供給量調整弁38を設けてある。
【0042】
図1において、実線矢印にて示すように、原料水ポンプ14から水蒸気生成用の原料水が送られる原料水供給路25を水蒸気生成部Sの蒸発処理部2に接続し、蒸発処理部2にて生成された水蒸気を送出する水蒸気路26を、脱硫部1と被改質ガス通流部13とを接続するガス処理用流路22に接続して、ガス処理用流路22を通流する脱硫原燃料ガスに改質用の水蒸気を混合させるように構成してある。
【0043】
原料水供給路25の途中に、原料水予熱用熱交換器17を設け、更に、原料水供給路25における原料水予熱用熱交換器17よりも下流側の箇所に、原料水を蛇行状に流す蛇行状通流部18を設け、その蛇行状通流部18を、水素含有ガス生成装置Pの外壁部のうちの、燃焼部4を覆う箇所に熱伝導可能に当て付けて設けて、水素含有ガス生成装置Pの外壁部からの伝導熱及び輻射熱により、蛇行状通流部18を通流する原料水を予熱するように構成してある。
【0044】
図1において、破線矢印にて示すように、燃焼部4から排出された燃焼ガスを、水蒸気生成用加熱通流部11、変成部冷却用通流部8の順に流すように、それら燃焼部4、水蒸気生成用加熱通流部11、変成部冷却用通流部8を燃焼ガス路27にて接続して、水蒸気生成用加熱通流部11においては、燃焼ガスによって蒸発処理部2を加熱し、変成部冷却用通流部8においては、燃焼ガスによって、発熱反応である変成反応が行われる変成部5を冷却するように構成してある。
【0045】
図1において、一点鎖線矢印にて示すように、ブロア28からの空気を燃焼用空気として、変成部冷却用通流部9を通流させてから、燃焼部4に供給するように、ブロア28、変成部冷却用通流部9、燃焼部4を燃焼用空気路29にて接続すると共に、燃焼用空気を変成部冷却用通流部9を迂回させて通流させるように、燃焼用空気路29に燃焼用空気バイパス路30を接続し、ブロア28からの空気を酸化用空気として選択酸化部6に供給するように、ブロア28に接続した酸化用空気供給路31を、最後段の変成部5と選択酸化部6とを接続するガス処理用流路22に接続してある。
【0046】
燃焼部4に対して、燃焼用空気を変成部冷却用通流部9を通流させて供給する冷却用供給状態と、変成部冷却用通流部9を迂回させて燃焼用空気バイパス路30を通じて供給するバイパス供給状態とに切り換えるために、空気経路切り換え用開閉弁35,36を設け、更に、燃焼用空気路29において燃焼用空気バイパス路30による迂回部分よりも下流側の箇所に、燃焼部4への燃焼用空気の供給を調節する燃焼用空気供給量調整弁40を設けてある。尚、空気経路切り換え用開閉弁35,36は、通常、バイパス供給状態に切り換えるが、変成部5の冷却能力が不足するとき、例えば、夏期の高気温時には、冷却用供給状態に切り換えて、燃焼用空気にて変成部5を冷却する。
【0047】
更に、改質部3の温度を検出する改質部温度センサT1、及び、選択酸化部6の温度を検出する選択酸化部温度センサT2を設けてある。
改質部温度センサT1は、改質部3における改質処理ガスの出口部付近の温度を検出するように設け、選択酸化部温度センサT2は、偏平形状の選択酸化部6における面方向の中央部付近の温度を検出するように設けてある。
【0048】
要するに、脱硫部1、改質部3、変成部5及び選択酸化部6を、それらのうちで最も高温に維持する必要のある改質部3と、最も低温に維持する必要のある選択酸化部6との間に、それら改質部3の温度と選択酸化部6の温度との間の温度に維持する必要のある脱硫部1と変成部5が記載順に改質部3の側から並んで位置し、且つ、隣接するもの同士で熱伝導可能なように設け、改質部3における脱硫部1が設けられている側とは反対側に、燃焼部3と、それよりも低い温度に維持する必要のある水蒸気生成部Sを、記載順に改質部3の側から並び、且つ、隣接するもの同士で伝熱可能なように設けてある。
【0049】
すると、図8において矢印にて示すように、燃焼部4にて加熱される改質部3から選択酸化部6に向かって、脱硫部1、変成部5を順次伝熱して、選択酸化部6から放熱されると共に、燃焼部4から水蒸気生成部Sに向かって伝熱する。
【0050】
一方、原燃料ガス供給路21から供給される原燃料ガスは、原燃料ガス用熱交換器Eaにて改質処理ガスとの熱交換により予熱した後、脱硫部1に供給して脱硫処理し、その脱硫原燃料ガスを水蒸気路26からの水蒸気と混合し、続いて、脱硫原燃料ガス用熱交換器Epにて改質処理ガスとの熱交換により予熱した後、改質部3に供給して燃焼部3にて加熱して改質処理し、その改質処理ガスを、脱硫原燃料ガス用熱交換器Epにて脱硫原燃料ガスとの熱交換により冷却し、更に、原燃料ガス用熱交換器Eaにて原燃料ガスとの熱交換により熱交換した後、3段の変成部5に順次供給して、一酸化炭素ガスを二酸化炭素ガスに変成させて変成処理し、その変成処理ガスを原料水予熱用熱交換器17にて原料水との熱交換により冷却した後、選択酸化部6に供給して一酸化炭素ガスを選択酸化させて選択酸化処理する。
【0051】
ちなみに、変成部5における変成反応は、発熱反応であるので、変成部5に供給する改質処理ガスは、脱硫原燃料ガス用熱交換器Ep及び原燃料ガス用熱交換器Eaにて、変成部5における変成処理温度よりも低い温度に、例えば、変成処理温度が250°Cのときは200°C程度に冷却する。同様に、選択酸化部6における酸化反応も発熱反応であるので、選択酸化部6に供給する変成処理ガスは、原料水予熱用熱交換器17にて、選択酸化部6における選択酸化処理温度よりも低い温度にまで冷却する。
【0052】
又、燃焼部4から排出された燃焼ガスは、水蒸気生成用加熱通流部11を通流させて水蒸気生成のために授熱させた後、変成部冷却用通流部8を通流させて、変成部5を冷却する。
【0053】
そこで、脱硫部1、改質部3、変成部5及び選択酸化部6を上述のように配置した状態で、上述の如き流体の流れを考慮して、隣接するもの同士、即ち、改質部3と脱硫部1との間、脱硫部1と変成部5との間、変成部5と選択酸化部6との間、及び、燃焼部4と水蒸気生成部Sとの間のそれぞれの伝熱状態(伝熱量)を適宜に設定することにより、改質部3を改質処理温度に維持するように燃焼部4の加熱能力を調節し、且つ、選択酸化部6を選択酸化処理温度に維持するように冷却用ファン10の通風量を調節することにより、改質部3と選択酸化部6との間に位置する脱硫部1と変成部5を、温度を制御しなくても成り行きにて、それぞれ脱硫処理温度、変成処理温度に維持することができ、並びに、水蒸気生成部Sを成り行きにて水蒸気生成に適正な温度に維持することができるのである。
【0054】
つまり、改質部3と脱硫部1との間は、改質部3の側から順に並ぶ断熱材19、脱硫原燃料ガス用熱交換器Ep及び断熱材19にて伝熱量を設定し、脱硫部1と変成部5との間は、原燃料ガス用熱交換器Eaにて伝熱量を設定し、変成部5と選択酸化部6との間は、変成部冷却用通流部9にて伝熱量を設定し、燃焼部4と水蒸気生成部Sとの間は、断熱材19にて伝熱量を設定してある。
【0055】
次に、上述のように構成した水素含有ガス生成装置Pの運転制御方法について説明する。
水素含有ガス生成装置Pを起動するときは、燃料電池Gからはオフガスが供給されないので、ガス燃料供給量調整弁38を開弁して、ガス燃料供給路37を通じて供給される都市ガスにて燃焼部4を燃焼させて、改質部3を加熱し、脱硫部用ヒータ32を加熱作動させて、脱硫部1を加熱し、変成部用ヒータ33を加熱作動させて変成部5を加熱する起動運転制御を行い、その起動運転制御は、改質部温度センサT1の検出温度が予め設定した設定改質処理温度になるまで継続する。
【0056】
起動運転制御が終了すると、脱硫部用ヒータ32及び変成部用ヒータ33を停止させ、一方、燃焼部4の燃焼は継続して、原燃料ガス断続弁20を開弁して原燃料ガスの供給を開始すると共に、原料水ポンプ14を作動させて原料水の供給を開始して、水素含有ガスを生成するガス生成運転を開始し、以降、ガス生成運転中は、脱硫部用ヒータ32及び変成部用ヒータ33を停止させた状態で、燃料電池Gから排出されるオフガスを燃焼部4にて燃焼させ、改質部3を改質処理温度に維持するに当たって、オフガスだけでは不足する分をガス燃料供給路37を通じて都市ガスを燃焼部3に供給して燃焼させる。
【0057】
次に、ガス生成運転における運転制御方法について説明する。
本発明においては、改質部3を設定改質処理温度に維持するように、燃焼部4の加熱能力を調節し、且つ、選択酸化部6を設定選択酸化処理温度に維持するように、冷却用ファン10の通風量を調節する。
すると、上述のように、改質部3と脱硫部1との間、脱硫部1と変成部5との間、変成部5と選択酸化部6との間、及び、燃焼部4と水蒸気生成部Sとの間のそれぞれの伝熱量を設定してあるので、脱硫部1と変成部5を、温度を制御しなくても成り行きにて、それぞれ脱硫処理温度、変成処理温度に維持することができ、並びに、水蒸気生成部Sを成り行きにて水蒸気生成に適正な温度に維持することができる。
【0058】
本発明においては、制御部Cを用いて、上述の如き起動運転における運転制御、及び、ガス生成運転における運転制御を自動的に行わせるように構成してある。
以下、制御部Cがガス生成運転における運転制御を実行するときの制御動作について説明する。
制御部Cは、改質部温度センサT1の検出温度が予め設定した設定改質処理温度になるように、ガス燃料供給量調整弁38及び燃焼用空気供給量調整弁40それぞれを制御して、燃焼部4の加熱能力を調節し、並びに、選択酸化部温度センサT2の検出温度が予め設定した設定選択酸化処理温度になるように、冷却用ファン10の作動を制御して冷却用の通風量、即ち、冷却能力を調節する。
【0059】
燃焼部4の加熱能力の調節について説明を加えると、加熱能力を増大するときは、例えば、都市ガスの供給量を増大するようにガス燃料供給量調整弁38を制御し、加熱能力を減少するときは、都市ガスの供給量を減少するようにガス燃料供給量調整弁38を制御する制御、及び、燃焼用空気供給量を増大するように燃焼用空気供給量調整弁40を制御する制御を、予め設定した条件にて実行する。
【0060】
以下、上記の運転制御方法にて運転して、水素含有ガス生成装置の性能を検証した結果を説明する。
【0061】
水素含有ガス生成装置の運転条件は以下の通りである。
原燃料ガス(13A)流量:4.0L(標準状態)/min
オフガス流量:10.1L(標準状態)/min
水蒸気生成用原料水(純水):12.0cc/min
選択酸化処理用空気流量:0.8L(標準状態)/min
【0062】
そして、図6に示すように、改質部3の温度に応じて、改質部3を設定改質処理温度に維持するための都市ガス(13A)の供給量、及び、燃焼用空気供給量を設定して、改質部温度制御情報として制御部Cに記憶させてある。
制御部Cは、改質部温度センサT1の検出温度及び記憶している改質部温度制御情報に基づいて、検出温度に応じた都市ガス供給量及び燃焼用空気供給量になるように、ガス燃料供給量調整弁38及び燃焼用空気供給量調整弁40それぞれを制御する、所謂フィードフォワード制御を実行する。
又、選択酸化部温度センサT2の検出温度が設定選択酸化処理温度になるように、冷却用ファン10をオンオフさせる。
【0063】
そして、設定改質処理温度を例えば642.9°Cに、並びに、設定選択酸化処理温度を例えば95.0°Cに設定して、上述のように制御したときの、脱硫部1、変成部5、及び、水蒸気生成部Sの蒸発処理部2の温度は、以下の通りに熱平衡し、それぞれ適正な温度に維持できていることが分かる。
又、そのときの燃焼部4の温度は以下の通りであり、この燃焼部4の温度は、改質部3の温度と相関があるので、上述のように、改質部3を設定改質処理温度になるように燃焼部4の加熱能力を調節するための制御情報として、改質部温度センサT1の代わりに、燃焼部4の温度を検出する燃焼部温度センサを設けて、その燃焼部温度センサの検出温度に基づいて、改質部3を設定改質処理温度になるように燃焼部4の加熱能力を調節するように制御することも可能である。
【0064】
脱硫部1の温度:261.8°C
変成部5の温度:238.9°C
水蒸気生成部Sの蒸発処理部2の温度:136.9°C
燃焼部4の温度:838.7°C
【0065】
以下、本発明の第2実施形態を説明するが、この実施形態においては、第1実施形態と同じ構成要素や同じ作用を有する構成要素については、重複説明を避けるために、同じ符号を付すことにより説明を省略し、主として、第1実施形態と異なる構成を説明する。
【0076】
〔第実施形態〕
以下、図面に基づいて、本発明を燃料電池用の水素含有ガス生成装置に適用した場合の第実施形態を説明する。
に示すように、第実施形態においては、改質部3と選択酸化部6との間に、脱硫部1及び変成部5としてそれぞれ複数(本第実施形態では3台)ずつを、脱硫部1と変成部5とが交互に並ぶように、且つ、隣接するもの同士で熱伝導可能なように設けてある。
そして、改質部3を改質処理に適正な温度に維持するように、燃焼部4の加熱能力を調節し、且つ、選択酸化部6を選択酸化処理に適正な温度に維持するように、冷却用ファン10の通風量を調節して冷却能力を調節することにより、複数の脱硫部1がそれぞれ脱硫処理に適正な温度になり、複数の変成部5がそれぞれ変成処理に適正な温度になるように、隣接するもの同士の伝熱状態を予め設定してある。
【0077】
説明を加えると、図に示すように、水素含有ガス生成装置Pは、矩形板状の偏平な容器Bの複数を板状形状の厚さ方向に並べて設けて、各容器Bを用いて、脱硫部1、改質部3、燃焼部4、変成部5、選択酸化部6、水蒸気生成部S、各通流部等を夫々構成してある。第1実施形態と同様に、複数の容器Bのうちの一部は単室具備容器Bmにて構成し、残りは双室具備容器Bdにて構成してある。
実施形態においては、10個の双室具備容器Bdと、1個の単室具備容器Bmを、側面視において左端から3個目に単室具備容器Bmを位置させた状態で、横方向に厚さ方向に並べて設けて、コンパクトに形成してある。
10個の双室具備容器Bdの区別が明確になるように、便宜上、双室具備容器を示す符号Bdの後に、左からの並び順を示す符号1,2,3……………10を付す。
【0078】
第1実施形態と同様に、左端の双室具備容器Bd1にて水蒸気生成部Sを構成し、左から2個目の双室具備容器Bd2を用いて燃焼部4及び改質部3を構成し、単室具備容器Bmを用いて、保温用通流部7を構成し、左から3個目の双室具備容器Bd3を用いて、脱硫原燃料ガス用熱交換器Epを構成してある。
【0079】
左から4個目の双室具備容器Bd4を用いて、脱硫部1を構成し、左から5個目の双室具備容器Bd5の左側の室を備えた部分を用いて、脱硫部1を構成し、右側の室を備えた部分を用いて、原燃料ガス通流部16を構成してある。
左から6個目の双室具備容器Bd6の左側の室を備えた部分を用いて、下流側改質処理ガス通流部15を構成し、右側の室を備えた部分を用いて、変成部5を構成してある。
左から7個目の双室具備容器Bd7を用いて、脱硫部1を構成し、左から8個目の双室具備容器Bd8の左側の室を備えた部分を用いて、変成部5を構成し、右側の室を備えた部分を用いて変成部冷却用通流部8を構成してある。
左から9個目の双室具備容器Bd9を用いて、変成部5を構成し、左から10個目(右端)の双室具備容器Bd10の左側の室を備えた部分を用いて、変成部冷却用通流部9を構成し、右側の室を備えた部分を用いて選択酸化部6を構成してある。
つまり、脱硫部1は、左から4個目の双室具備容器Bd4、左から5個目の双室具備容器Bd5及び左から7個目の双室具備容器Bd7を用いて構成して、脱硫部1は3台設けてある。
又、変成部5は、左から6個目の双室具備容器Bd6、左から8個目の双室具備容器Bd8及び左から9個目の双室具備容器Bd9を用いて構成して、変成部5は3台設けてある。
そして、3台の脱硫部1及び3台の変成部5を、脱硫部1と変成部5とが交互に並ぶように設けてある。
【0080】
つまり、燃焼部4及び改質部3を構成する双室具備容器Bd2の一方側に、その双室具備容器Bd2の側から、保温用通流部7を構成する単室具備容器Bm、断熱材19、脱硫原燃料ガス用熱交換器Epを構成する双室具備容器Bd3、断熱材19、脱硫部1を構成する双室具備容器Bd4、脱硫部1及び原燃料ガス通流部16を構成する双室具備容器Bd5、下流側改質処理ガス通流部15及び変成部5を構成する双室具備容器Bd6、脱硫部1を構成する双室具備容器Bd7、変成部5及び変成部冷却用通流部8を構成する双室具備容器Bd8、変成部5を構成する双室具備容器Bd9、変成部冷却用通流部9及び選択酸化部6を構成する双室具備容器Bd10を記載順に並ぶように互いに密接配置して設け、双室具備容器Bd2の他方側に、その双室具備容器Bd2の側から、断熱材19、水蒸気生成部Sを構成する双室具備容器Bd1を記載順に並ぶように密接配置して設けてある。
【0081】
実施形態においては、燃焼部4及び改質部3を構成する双室具備容器Bd2の仕切り部材43と、その双室具備容器Bdの燃焼部4の側に隣接する断熱材19とにわたって、複数の補強部材63を架け渡してある。そして、それら複数の補強部材63により、熱膨張による双室具備容器Bdの変形を抑制するように構成してある。
【0082】
脱硫部用ヒータ32は、左から4個目の双室具備容器Bd4と左から5個目の双室具備容器Bd5との間に設け、一方の変成部用ヒータ33は、左から6個目の双室具備容器Bd6と左から7個目の双室具備容器Bd7との間に設け、他方の変成部用ヒータ33は、左から9個目の双室具備容器Bd9と左から10個目の双室具備容器Bd10との間に設けてある。
更に、第実施形態においては、起動時に、水蒸気生成用加熱通流部11を加熱する水蒸気生成用ヒータ60、脱硫原燃料ガス通流部13を加熱する原燃料ガス用ヒータ61を設けてある。
【0083】
原燃料ガス供給路21を原燃料ガス用熱交換器Eaの原燃料ガス通流部16に接続し、並びに、原燃料ガス通流部16、3段の脱硫部1、脱硫原燃料ガス用熱交換器Epの脱硫原燃料ガス通流部13、改質部3、保温用通流部7、脱硫原燃料ガス用熱交換器Epの上流側改質処理ガス通流部12、原燃料ガス用熱交換器Eaの下流側改質処理ガス通流部15、3段の変成部5、選択酸化部6の順に流れるガス処理経路を形成するように、それらをガス処理用流路22にて接続してある。
3台の脱硫部1及び3台の変成部5を、脱硫部1と変成部5とが交互に並ぶように設けることにより、複数の脱硫部1を処理対象ガスが順次流れるようにそれらをガス処理用流路22にて接続し、又、複数の変成部5を処理対象ガスが順次流れるようにそれらをガス処理用流路22にて接続するに当たって、通流経路の順に並ぶもの同士を接続するガス処理用流路22の長さを長くすることが可能となるので、接続作業が容易となる。
【0084】
実施形態においては、変成部冷却用通流部8から燃焼ガス路27を通じて排出された燃焼ガスと、燃焼用空気路29を通じて燃焼部4に供給する燃焼用空気及びオフガス路24を通じて燃焼部4に供給するオフガスとを熱交換させて、燃焼用空気及びオフガスを予熱する排熱回収用熱交換器62を設けてある。
尚、図示は省略するが、第1実施形態と同様に、燃焼用空気バイパス路30、及び、空気経路切り換え用開閉弁35,36を設けてある。
【0085】
燃焼部4にて加熱される改質部3から選択酸化部6に向かって、脱硫部1、変成部5、脱硫部1、変成部5を順次伝熱して、選択酸化部6から放熱されると共に、燃焼部4から水蒸気生成部Sに向かって伝熱する。
一方、原燃料ガス供給路21から供給される原燃料ガスは、原燃料ガス用熱交換器Eaにて改質処理ガスとの熱交換により予熱した後、3段の脱硫部1に順次供給して脱硫処理し、その脱硫原燃料ガスを水蒸気路26からの水蒸気と混合し、続いて、脱硫原燃料ガス用熱交換器Epにて改質処理ガスとの熱交換により予熱した後、改質部3に供給して燃焼部3にて加熱して改質処理し、その改質処理ガスを、脱硫原燃料ガス用熱交換器Epにて脱硫原燃料ガスとの熱交換により冷却し、更に、原燃料ガス用熱交換器Eaにて原燃料ガスとの熱交換により熱交換した後、3段の変成部5に順次供給して、一酸化炭素ガスを二酸化炭素ガスに変成させて変成処理し、その変成処理ガスを原料水予熱用熱交換器17にて原料水との熱交換により冷却した後、選択酸化部6に供給して一酸化炭素ガスを選択酸化させて選択酸化処理する。
【0086】
そこで、3台の脱硫部1、改質部3、3台の変成部5及び選択酸化部6を上述のように配置した状態で、上述の如き流体の流れを考慮して、隣接するもの同士間のそれぞれの伝熱状態(伝熱量)を適宜に設定することにより、改質部3を改質処理温度に維持するように燃焼部4の加熱能力を調節し、且つ、選択酸化部6を選択酸化処理温度に維持するように冷却用ファン10の通風量を調節することにより、改質部3と選択酸化部6との間に位置する3台の脱硫部1と3台の変成部5を、温度を制御しなくても成り行きにて、それぞれ脱硫処理温度、変成処理温度に維持することができ、並びに、水蒸気生成部Sを成り行きにて水蒸気生成に適正な温度に維持することができるのである。
【0087】
制御部Cがガス生成運転における運転制御を実行するときの制御動作は、上記の第1実施形態と同様であるので、説明を省略する。
【0088】
〔別実施形態〕
次に別実施形態を説明する。
【0093】
) 燃焼部4の加熱能力を調節するための制御として、上記の実施形態においては、都市ガスの供給量を減少するようにガス燃料供給量調整弁38を制御する制御、及び、燃焼用空気供給量を増大するように燃焼用空気供給量調整弁40を制御する制御を併用する場合について例示したが、都市ガスの供給量を減少するようにガス燃料供給量調整弁38を制御のみを行うように構成しても良い。
あるいは、燃焼部4に対するオフガスの供給量を調節するオフガス供給量調整弁を設けて、そのオフガス供給量調整弁の制御によるオフガス供給量の調節により、燃焼部4の加熱能力を調節するように構成しても良い。
【0094】
) 改質部3を改質処理温度に維持すべく燃焼部4の加熱能力を調節するた
めの制御形態は、上記の実施形態において例示した如きフィードフォワード制御に限定されるものではなく、改質部温度センサT1の検出温度と改質処理温度とを比較して、検出温度が改質処理温度よりも高いときは加熱能力を減少し、検出温度が改質処理温度よりも低いときは加熱能力を増大するようにガス燃料供給量調整弁38及び燃焼用空気供給量調整弁40を制御するフィードバック制御を行うようにしたり、あるいは、フィードフォワード制御及びフィードバック制御の両方を行うようにしても良い。
【0095】
) 改質部温度センサT1及び選択酸化部温度センサT2それぞれの温度検出位置は、上記の実施形態において例示した位置に限定されるものではなく、適宜変更可能である。
【0096】
) 上記の第1実施形態においては、変成部5を3段に設ける場合について例示したが、変成部5を複数段に設ける場合の段数は適宜変更可能であり、あるいは、変成部5を1段に設けても良い。
又、上記の第2実施形態においては、脱硫部1及び変成部5をそれぞれ3台設ける場合について例示したが、脱硫部1及び変成部5を複数台設ける場合の台数は適宜変更可能であり、脱硫部1と変成部5の台数を異ならせても良い。又、脱硫部1と変成部5とを交互に並べるに当たって、その形態は上記の第実施形態において例示した形態に限定されるものではなく、1台ずつ交互に並べても良い。
【0097】
) 改質部加熱手段の具体構成は、上記の実施形態にて例示した如き燃焼式の改質部加熱手段である燃焼部4に限定されるものではなく、例えば、電気ヒータにて構成しても良い。
【図面の簡単な説明】
【図1】 第1実施形態に係る水素含有ガス生成装置の縦断側面図
【図2】 水素含有ガス生成装置を構成する双室具備容器の斜視図
【図3】 水素含有ガス生成装置を構成する単室具備容器の斜視図
【図4】 第1実施形態に係る水素含有ガス生成装置の側面図
【図5】 第1実施形態に係る水素含有ガス生成装置の正面図
【図6】 改質部の温度と都市ガス供給量及び燃焼用空気供給量それぞれとの関係を示す図
【図7】 第2実施形態に係る水素含有ガス生成装置の縦断側面図
【図8】 水素含有ガス生成装置における伝熱を説明する図
【図9】 水素含有ガス生成装置における伝熱を説明する
【符号の説明】
1 脱硫部
3 改質部
4 改質部加熱手段
5 変成部
6 選択酸化部
10 選択酸化部冷却手段
Ep 熱交換部
S 水蒸気生成部
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a reforming unit that is heated by a reforming unit heating means and reforms a hydrocarbon-based raw fuel gas into a gas containing hydrogen gas and carbon monoxide gas with steam, and the reforming unit The modification process gas is transformed by transforming the carbon monoxide gas in the modification process gas into carbon dioxide gas, and the modification process gas supplied from the modification part is transformed. The present invention relates to an operation control method for a hydrogen-containing gas generation apparatus provided with a selective oxidation unit that selectively oxidizes carbon monoxide in a gas.
[0002]
[Prior art]
Such a hydrogen-containing gas generating apparatus reforms a hydrocarbon-based raw fuel gas into a gas containing hydrogen gas and carbon monoxide gas by steam in a reforming unit, and modifies the reformed gas in a shift unit. The carbon monoxide gas in the quality treatment gas is transformed to carbon dioxide gas, and the modification treatment gas is selectively oxidized by selectively oxidizing the carbon monoxide in the modification treatment gas in the selective oxidation section. Thus, a hydrogen-containing hydrogen-containing gas having a low carbon monoxide concentration (for example, 10 ppm or less) is generated, and the generated hydrogen-containing gas is used as, for example, a fuel gas for a power generation reaction in a fuel cell.
[0003]
During the operation of the hydrogen-containing gas generating apparatus, the reforming unit, the shift unit, and the selective oxidation unit are each set to a temperature appropriate for the reforming process (hereinafter sometimes referred to as the reforming process temperature), the shift process. Therefore, it is necessary to maintain a temperature suitable for the selective oxidation treatment (hereinafter sometimes referred to as a shift treatment temperature) and a temperature suitable for the selective oxidation treatment (hereinafter referred to as a selective oxidation treatment temperature). Incidentally, the reforming treatment temperature is, for example, in the range of 600 to 700 ° C., the modification treatment temperature is in the range of, for example, 150 to 250 ° C., and the selective oxidation treatment temperature is in the range of 80 to 100 ° C.
[0004]
Therefore, conventionally, in the operation control method for operating the reforming unit, the shift unit, and the selective oxidation unit so as to maintain the reforming temperature, the shift processing temperature, and the selective oxidation processing temperature, respectively, the shift unit is heated. The reforming section is modified by providing a transformation section heating means for cooling, a transformation section cooling means for cooling the transformation section, a selective oxidation section heating means for heating the selective oxidation section, and a selective oxidation section cooling means for cooling the selective oxidation section. The heating capacity of the reforming section heating means is adjusted to maintain the quality treatment temperature, and the heating capacity of the transformation section heating means and the cooling capacity of the transformation section cooling means are adjusted to maintain the transformation section at the transformation processing temperature. In addition, the heating capacity of the selective oxidation section heating means and the cooling capacity of the selective oxidation section cooling means are adjusted so that the selective oxidation section is maintained at the selective oxidation treatment temperature.
[0005]
[Problems to be solved by the invention]
Therefore, in the conventional operation control method, in order to maintain the reforming section, the shift section, and the selective oxidation section at the reforming process temperature, the shift processing temperature, and the selective oxidation process temperature, respectively, As the temperature of each part is controlled separately, complicated control is required and improvement has been desired.
[0006]
The present invention has been made in view of such a situation, and an object thereof is hydrogen that can be operated while maintaining the reforming section, the shift section, and the selective oxidation section at appropriate temperatures with simple control. An object of the present invention is to provide an operation control method for a contained gas generator.
[0007]
[Means for Solving the Problems]
    [Invention of Claim 1]
  The feature of the operation control method of the hydrogen-containing gas generation device according to claim 1 is that a selective oxidation unit cooling means for cooling the selective oxidation unit is provided,
  The reforming unit, the shift unit and the selective oxidation unit are provided such that the shift unit is located between the reforming unit and the selective oxidation unit, and adjacent ones can conduct heat,
  Supplying a desulfurized raw fuel gas desulfurized in a desulfurization section for desulfurizing a hydrocarbon-based raw fuel gas as a hydrocarbon-based raw fuel gas reformed in the reforming section;
  Between the reforming part and the selective oxidation part, the desulfurization part and the metamorphic part are arranged side by side, and provided so as to be able to conduct heat between adjacent ones,
  A heat exchanging section for exchanging heat between the desulfurized raw fuel gas from the desulfurization section and the reforming treatment gas from the reforming section is provided between the reforming section and the desulfurization section;
  Between the reforming unit and the desulfurization unit, set the amount of heat transfer in the heat insulating material, the heat exchange unit and the heat insulating material arranged in order from the reforming unit side,
  Adjusting the heating capacity of the reforming unit heating means so as to maintain the reforming unit at an appropriate temperature for the reforming process, and maintaining the selective oxidation unit at an appropriate temperature for the selective oxidation process. Adjusting the cooling capacity of the selective oxidation unit cooling meansAnd
  The selective oxidation unit cooling means is a cooling fan that adjusts the cooling capacity by adjusting the air flow rate,
The reforming section heating means is configured as a combustion type that burns gas fuel,
  Providing a metamorphic part cooling flow passage for cooling the metamorphic part between the metamorphic part and the selective oxidation part;
  The combustion air passage for supplying air to the reforming unit heating means after flowing the air from the blower through the transformation unit cooling flow part bypasses the transformation part cooling flow part from the blower. Connect the combustion air bypass to allow air to flow,
  Air path switching opening / closing switching between a cooling supply state in which air from the blower flows through the combustion air passage and a bypass supply state in which combustion air from the blower flows through the combustion air bypass passage A valve,
  When the cooling capacity of the metamorphic part is insufficient in the bypass supply state, the state is switched to the cooling supply state.There is.
  That is, the inventors of the present invention have the highest reforming process temperature, the lowest selective oxidation process temperature, and the modification process temperature is the reforming process temperature, the reforming process temperature, and the selective oxidation process temperature. In view of the fact that it is between the temperature and the selective oxidation treatment temperature, intensive research was conducted to simplify the operation control method.
  And, between the reforming section that needs to maintain the reforming section, the transformation section, and the selective oxidation section at the highest temperature and the selective oxidation section that needs to be maintained at the lowest temperature, A modification part that needs to be maintained at a temperature between the temperature of the selective oxidation part is located, and is provided so that heat can be transferred between adjacent ones, so that the reforming part, the modification part, and the selective oxidation part By appropriately setting the heat transfer state between adjacent ones, the reforming unit does not control the temperature only by controlling the reforming unit and the selective oxidation unit at appropriate temperatures. It has been found that each can be maintained at a proper temperature.
  That is, as shown in FIG. 9, between the reforming unit 3 that needs to be maintained at the highest temperature and the selective oxidation unit 6 that needs to be maintained at the lowest temperature, the temperature of the reforming unit 3 and the selective oxidation. When the metamorphic part 5 that needs to be maintained at a temperature between the temperature of the part 6 is located and is provided so that heat can be transferred between the adjacent parts, as shown by the arrows in FIG. Heat is transferred from the unit 3 toward the selective oxidation unit 6 and is radiated from the selective oxidation unit 6. In FIG. 9, 4 is a combustion section as a combustion type reforming section heating means for heating the reforming section 3, and 10 is a cooling section as a selective oxidation section cooling means for cooling the selective oxidation section 6. I am a fan.
  And in the adjacent ones, in FIG. 9, by appropriately setting the respective heat transfer states between the reforming unit 3 and the shift unit 5 and between the shift unit 5 and the selective oxidation unit 6, A cooling fan as a selective oxidation unit cooling means for adjusting the heating capacity of the combustion unit 4 so as to maintain the reforming unit 3 at the reforming processing temperature and to maintain the selective oxidation unit 6 at the selective oxidation processing temperature. Only by adjusting the cooling capacity by adjusting the air volume of 10, the transformation section 5 located between the reforming section 3 and the selective oxidation section 6 becomes the transformation treatment temperature without any control of the temperature. It is possible to do so.
  In short, by simply controlling the temperature of the reforming section and the temperature of the selective oxidation section, the reforming section, the shift conversion section, and the selective oxidation section are set to the reforming treatment temperature, the shift treatment temperature, and the selective oxidation treatment temperature, respectively. Can be maintained.
  Therefore, it is possible to provide an operation control method for a hydrogen-containing gas generation device that can be operated while maintaining the reforming section, the shift section, and the selective oxidation section at appropriate temperatures with simple control. It was.
  In addition, the inventors of the present invention use the desulfurized raw fuel gas desulfurized in the desulfurization section for desulfurizing hydrocarbon-based raw fuel gas as the hydrocarbon-based raw fuel gas to be reformed in the reforming section. When supplying, the reforming treatment temperature, the temperature suitable for the desulfurization treatment (hereinafter sometimes referred to as the desulfurization treatment temperature), the transformation treatment temperature and the selective oxidation treatment temperature are the highest, and the reforming treatment temperature is the highest. In view of the fact that the oxidation treatment temperature is the lowest, and that the desulfurization treatment temperature and the modification treatment temperature are between the reforming treatment temperature and the selective oxidation treatment temperature, intensive research was conducted to simplify the operation control method. Incidentally, the desulfurization treatment temperature is in the range of 150 to 270 ° C., for example.
  The reforming unit, the desulfurization unit, the shift conversion unit, and the selective oxidation unit are disposed between the reforming unit that needs to be maintained at the highest temperature and the selective oxidation unit that needs to be maintained at the lowest temperature. The desulfurization part and the modification part that need to be maintained at a temperature between the temperature of the selective oxidation part and the temperature of the selective oxidation part are located, and provided so that heat can be transferred between adjacent ones, so that the reforming part, With the desulfurization section, the transformation section, and the selective oxidation section provided, the heat transfer state between adjacent ones is set appropriately, so that the reforming section and the selective oxidation section can be controlled at appropriate temperatures, respectively. It has been found that the section and the metamorphic section can be maintained at appropriate temperatures without controlling the temperature.
  That is, as shown in FIG. 8, between the reforming unit 3 that needs to be maintained at the highest temperature and the selective oxidation unit 6 that needs to be maintained at the lowest temperature, the temperature of the reforming unit 3 and the selective oxidation. When the desulfurization part 1 and the transformation part 5 that need to be maintained at a temperature between the temperature of the part 6 are located and are arranged so that heat can be transferred between adjacent parts, as shown by arrows in FIG. Then, heat is transferred from the reforming unit 3 toward the selective oxidation unit 6 and is radiated from the selective oxidation unit 6. In FIG. 8, 4 is a combustion section as a combustion type reforming section heating means for heating the reforming section 3, and 10 is for cooling as a selective oxidation section cooling means for cooling the selective oxidation section 6. I am a fan.
  And in the adjacent ones, in FIG. 8, between the reforming unit 3 and the desulfurization unit 1, between the desulfurization unit 1 and the shift unit 5, and between the shift unit 5 and the selective oxidation unit 6, respectively. By appropriately setting the heat transfer state, the heating capacity of the combustion unit 4 is adjusted so as to maintain the reforming unit 3 at the reforming treatment temperature, and the selective oxidation unit 6 is maintained at the selective oxidation processing temperature. The desulfurization unit 1 and the shift unit 5 positioned between the reforming unit 3 and the selective oxidation unit 6 can be heated by simply adjusting the cooling capacity by adjusting the air volume of the cooling fan 10 as the selective oxidation unit cooling means. Thus, the desulfurization treatment temperature and the modification treatment temperature can be achieved without any control.
  In short, the desulfurization section, reforming section, transformation section, and selective oxidation section are desulfurized, reformed, and modified by simple control that only controls the temperature of the reforming section and the temperature of the selective oxidation section. Temperature and selective oxidation treatment temperature can be maintained.
  Therefore, it is possible to provide an operation control method for a hydrogen-containing gas generation apparatus that can be operated with simple control while maintaining the desulfurization section, reforming section, shift section, and selective oxidation section at appropriate temperatures. It became so.
  Further, in the heat exchange section provided between the reforming section and the desulfurization section, the desulfurization raw fuel gas from the desulfurization section and the reformed gas from the reforming section are subjected to heat exchange, and the desulfurization raw fuel gas is supplied. While preheating and supplying to the reforming section, the reforming process gas is cooled and supplied to the shift section.
  In other words, the raw desulfurization fuel gas discharged from the desulfurization section has a temperature close to the temperature of the desulfurization section and has a large difference from the temperature of the reforming section to which the desulfurization raw fuel gas is supplied. The reforming process gas discharged from the mass part has a temperature close to the temperature of the reforming part, and has a large temperature difference from the transformation part to which the reforming process gas is supplied. Therefore, by exchanging heat between the desulfurized raw fuel gas discharged from the desulfurization unit and the reformed gas discharged from the reforming unit in the heat exchange unit, excess energy is used to preheat the desulfurized raw fuel gas. Preheating the desulfurized raw fuel gas and supplying it to the reforming unit in a state where the temperature difference from the reforming unit is reduced without consuming and throwing away heat to cool the reforming treatment gas In addition, the reforming gas can be cooled and supplied to the shift section in a state where the temperature difference from the shift section is reduced.
  Moreover, since the temperature of each fluid flowing into and out of the heat exchange section is within or close to the range between the temperature of the reforming section and the temperature of the desulfurization section, the heat exchange section is modified. By providing it between the mass part and the desulfurization part, the temperature of the reforming part and the temperature of the desulfurization part can be easily maintained at appropriate temperatures, respectively. It becomes easy to maintain at an appropriate temperature.
  Accordingly, the hydrogen-containing gas can be generated with improved energy efficiency, and the operation can be performed while maintaining the temperatures of the desulfurization unit, the reforming unit, the transformation unit, and the selective oxidation unit more accurately. A preferred specific configuration can be provided.
  [Invention of Claim 2]
  The feature of the operation control method of the hydrogen-containing gas generation device according to claim 2 is that the reforming unit, the heat exchange unit, the desulfurization unit, the transformation unit, and the selective oxidation unit are plate-shaped with a flat outer shape. The plate-like reforming part, the heat exchange part, the desulfurization part, the shift part and the selective oxidation part are arranged side by side in the thickness direction.
  According to the operation control method of claim 2, the plate-shaped reforming part, heat exchange part, desulfurization part, shift part and selective oxidation part having a flat outer shape are arranged between the reforming part and the selective oxidation part. The heat exchange section, desulfurization section, and transformation section are located in parallel in the thickness direction so that heat can be conducted between adjacent ones, so that the reforming section, heat exchange section, desulfurization section, transformation Heat is transferred from the reforming part toward the selective oxidation part in a state where the heat transfer is performed in the thickness direction in each part of the part and the selective oxidation part.
  That is, the reforming unit, the heat exchange unit, the desulfurization unit, the shift conversion unit, and the selective oxidation unit are located adjacent to each other between the reforming unit and the selective oxidation unit. By arranging the heat transfer state between adjacent objects and setting the heat transfer state between adjacent objects appropriately, the desulfurization part and the transformation part can be changed by controlling the reforming part and the selective oxidation part at appropriate temperatures. As described above, the reforming unit, the heat exchange unit, the desulfurization unit, the transformation unit, and the selective oxidation unit are each configured in a flat plate shape so that the parts can be maintained at appropriate temperatures. By arranging in parallel in the thickness direction, the heat transfer path in each part of the reforming section, heat exchange section, desulfurization section, transformation section and selective oxidation section is shortened, and the temperature gradient along the heat transfer path is reduced. Therefore, the temperature distribution of each part can be reduced.
  Therefore, the desulfurization section, the reforming section, the transformation section, and the selective oxidation section can be operated while maintaining the appropriate temperatures while reducing the temperature distribution, so that the operation control method of the present invention is implemented. A preferred specific configuration can be provided.
[0008]
  [Invention of Claim 3]
  The feature of the operation control method of the hydrogen-containing gas generator according to claim 3 is,in frontIn the reforming section, the supplied water is heated by the combustion gas discharged from the combustion-type reforming section heating means on the opposite side of the reforming section, and the reforming section is provided. Is to provide a steam generation section for generating steam for the reforming process.
  According to the operation control method of the third aspect, the reforming section heating means is configured as a combustion type that burns gas fuel, and the water supplied from the combustion type reforming section heating means is generated in the steam generation section. Heating with the exhausted combustion gas generates steam for reforming in the reforming section, so that steam for reforming can be generated without consuming excess energy. In addition, since the water vapor generation unit is provided on the side of the reforming unit opposite to the side where the transformation unit is provided, the heat generation from the reforming unit can be suppressed, so that the energy of the reforming unit heating means is reduced. Consumption can be reduced.
  Accordingly, it is possible to provide a specific configuration that is preferable for enabling the operation so as to improve the energy efficiency and generate the hydrogen-containing gas.
[0011]
  [Claims4Description of Invention]
  Claim4The feature of the operation control method of the hydrogen-containing gas generation device described in the above is that the desulfurization section and the shift section are plural, and the desulfurization sections and the shift sections are alternately arranged and adjacent to each other. It is to provide heat conduction.
  Claim4According to the operation control method described in the above, a plurality of desulfurization sections and shift sections are provided so that the desulfurization sections and the shift sections are alternately arranged so that adjacent ones can conduct heat, The hydrocarbon-based raw fuel gas is desulfurized in the desulfurization section, and the reforming process gas is subjected to modification treatment in the plurality of shift sections.
  That is, since the desulfurization treatment temperature and the shift treatment temperature are in the same temperature range, a plurality of desulfurization sections and shift sections are respectively arranged so that the desulfurization sections and the shift sections are alternately arranged and adjacent to each other. By providing heat conduction, the reforming section and the selective oxidation section are each controlled at appropriate temperatures, and each of the multiple desulfurization sections and multiple transformation sections is appropriate for each without controlling the temperature. The desulfurization treatment of hydrocarbon-based raw fuel gas at these multiple desulfurization sections improves the desulfurization treatment capacity, and the reforming treatment gas is transformed at multiple transformation sections. By doing so, the metamorphosis processing capacity can be improved.
  In addition, by providing a plurality of desulfurization sections and a plurality of transformation sections so that the desulfurization sections and the transformation sections are alternately arranged, the plurality of desulfurization sections are connected by pipes so that the gas to be treated flows sequentially. In addition, when connecting the gas to be processed through a plurality of metamorphic parts in order, the length of the pipe connecting the parts arranged in the order of the flow path can be increased. Therefore, the pipe connection work is facilitated, and the cost can be reduced.
  Incidentally, if a plurality of desulfurization parts and a plurality of metamorphic parts are provided adjacent to each other, and the metamorphic parts are provided adjacent to each other, it is necessary to connect the adjacent ones by pipes. Therefore, the length of the pipe line to be connected becomes short, and the pipe line connection work becomes difficult.
  Therefore, it has become possible to provide an operation control method for a hydrogen-containing gas generation apparatus that can be operated so as to improve the desulfurization treatment capacity and the modification treatment capacity with simple control while reducing the cost.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
Hereinafter, a first embodiment when the present invention is applied to a hydrogen-containing gas generator for a fuel cell will be described with reference to the drawings.
As shown in FIG. 1, the hydrogen-containing gas generation device P generates steam by heating the supplied raw water and a desulfurization section 1 for desulfurizing a hydrocarbon-based raw fuel gas such as natural gas to be supplied. The steam generation unit S that is heated and the combustion unit 4 that is a combustion-type reforming unit heating means are heated using the steam generated in the steam generation unit S from the desulfurization raw fuel gas supplied from the desulfurization unit 1. A reforming unit 3 for reforming to a gas containing hydrogen gas and carbon monoxide gas, and carbon monoxide gas in the reforming gas supplied from the reforming unit 3 is transformed into carbon dioxide gas using steam. The shift unit 5 for performing the shift process, the selective oxidation unit 6 for performing the selective oxidation process by selectively oxidizing the carbon monoxide gas in the shift process gas supplied from the shift unit 5, and the operation of the hydrogen-containing gas generating device A control unit C for controlling Low carbon monoxide gas concentration (e.g., 10ppm or less) is arranged to produce a hydrogen-rich hydrogen-containing gas.
[0015]
In the desulfurization section 1, for example, a sulfur compound in the raw fuel gas is hydrogenated by a desulfurization catalyst at a desulfurization treatment temperature in the range of 150 to 270 ° C., and the hydride is adsorbed by zinc oxide and desulfurized. Incidentally, the desulfurization reaction in the desulfurization part 1 is an exothermic reaction.
[0016]
In the reforming unit 3, when the natural gas mainly composed of methane gas is the raw fuel gas, the methane gas is used at a reforming treatment temperature in the range of 600 to 700 ° C., for example, due to the catalytic action of the reforming catalyst. And steam undergo a reforming reaction according to the following reaction formula, and reformed to a gas containing hydrogen gas and carbon monoxide gas. Incidentally, the reforming reaction in the reforming unit 3 is an endothermic reaction.
[0017]
[Chemical 1]
CHFour+ H2O → CO + 3H2
[0018]
In the shift unit 5, the carbon monoxide gas and water vapor in the reformed gas are converted into the following reaction formula under the shift processing temperature in the range of 150 to 250 ° C., for example, by the catalytic action of the shift catalyst. The carbon monoxide gas is converted to carbon dioxide gas through a shift reaction. Incidentally, the metamorphic reaction in the metamorphic part 5 is an exothermic reaction.
[0019]
[Chemical 2]
CO + H2O → CO2+ H2
[0020]
In the selective oxidation unit 6, the catalyst remaining in the shift treatment gas under a selective oxidation treatment temperature in the range of 80 to 100 ° C., for example, by the catalytic action of a noble metal shift catalyst such as platinum, ruthenium, and rhodium. Carbon oxide gas is selectively oxidized. Incidentally, the oxidation reaction in the selective oxidation unit 6 is an exothermic reaction.
[0021]
The hydrogen-containing gas generated by the hydrogen-containing gas generator is supplied as fuel gas to the fuel cell G through the fuel gas passage 23. Although detailed description is omitted, the fuel cell G is a solid polymer type having a polymer membrane as an electrolyte, hydrogen in the fuel gas supplied from the hydrogen-containing gas generator P, and a blower (not shown). Power is generated by an electrochemical reaction with oxygen in the reaction air supplied from.
[0022]
The combustion unit 4 burns off gas, which is a fuel gas discharged from the fuel cell G and supplied through the off gas passage 24, as gas fuel, and heats the reforming unit 3 so that it can be reformed. The city gas (13A or the like) supplied through the gas fuel supply passage 37 is burned as the gas fuel.
[0023]
The water vapor generation unit S is a vapor generation heating flow-through unit 11 through which the combustion gas discharged from the combustion unit 4 flows, and an evaporation that evaporates the supplied raw material water by heating by the water vapor generation heating through-flow unit 11 The processing unit 2 is configured.
[0024]
Further, the hydrogen-containing gas generation device P is supplied with a heat retaining flow passage 7 for keeping the reforming section 3 warm by passing the high-temperature reforming treatment gas discharged from the reforming section 3, and the desulfurization section 1. The desulfurization raw fuel gas and the high-temperature reforming treatment gas from the reforming section 3 are subjected to heat exchange to preheat the desulfurization raw fuel gas supplied to the reforming section 3. A heat exchanger for raw fuel gas that preheats the raw fuel gas by exchanging heat between the high-temperature reformed gas from the reforming unit 3 and the raw fuel gas supplied to the desulfurization unit 1. Ea, the metamorphic part cooling flow part 8 for allowing the cooling fluid to flow to cool the metamorphic part 5, and the metamorphic part cooling flow for allowing the cooling fluid to flow to cool the metamorphic part 5 A flow section 9 and a cooling fan 10 as a selective oxidation section cooling means for cooling the selective oxidation section 6 are provided.
In addition, a heat exchanger 17 for preheating the raw water is provided to preheat the raw water by exchanging heat between the shift gas discharged from the shift section 5 and the raw water supplied to the steam generation section S.
[0025]
The desulfurization raw fuel gas heat exchanger Ep includes an upstream reforming process gas flow part 12 through which the reforming process gas discharged from the heat retaining flow part 7 flows, and a desulfurization raw material supplied to the reforming part 3. The desulfurized raw fuel gas flow section 13 for allowing the fuel gas to flow is provided so as to be able to exchange heat, and the raw fuel gas heat exchanger Ea is modified from the upstream reforming process gas flow section 12. The downstream reforming process gas flow part 15 for flowing the quality treatment gas and the raw fuel gas flow part 16 for flowing the raw fuel gas supplied to the desulfurization part 1 are provided so as to be capable of heat exchange. is there.
[0026]
At the time of start-up, a desulfurization section heater 32 for heating the desulfurization section 1 so that it can be desulfurized, and two shift section heaters 33 for heating so that the shift section can be subjected to a modification process are provided. Consists of an electric heater.
[0027]
In the first embodiment, the reforming unit 3, the desulfurization unit 1, the conversion unit 5 and the selective oxidation unit 6 are located between the reforming unit 3 and the selective oxidation unit 6. In addition, adjacent ones are provided so as to conduct heat, the heating capacity of the combustion section 4 is adjusted so that the reforming section 3 is maintained at a temperature suitable for the reforming process, and the selective oxidation section 6 is provided. By adjusting the air flow rate of the cooling fan 10 and adjusting the cooling capacity so as to maintain the temperature suitable for the selective oxidation treatment, the desulfurization section 1 and the shift section 5 are brought to the proper temperature for each treatment. In addition, the heat transfer state between adjacent ones is set in advance.
[0028]
When the description is added, as shown in FIG. 1, the hydrogen-containing gas generation device P is provided by arranging a plurality of rectangular plate-like flat containers B in the thickness direction of the plate shape, and using each container B, The desulfurization unit 1, the reforming unit 3, the combustion unit 4, the shift unit 5, the selective oxidation unit 6, the steam generation unit S, each flow unit, and the like are configured.
A part of the plurality of containers B is constituted by a single-chamber container Bm formed so as to have one chamber, and the rest is a twin-chamber container Bd formed so as to have two compartments. It consists of.
[0029]
As shown in FIG. 2, the two-chamber container Bd has two flattened parts with a flat plate-shaped partition member 43 positioned between a pair of dish-shaped container forming members 41 by welding. As shown in FIG. 3, the single-chamber container Bm is divided into a flat chamber by welding the peripheral portion of the dish-shaped container forming member 41 and the flat container forming member 42 to each other. It is formed.
A connection nozzle 44 for fluid supply or fluid discharge is attached to each single-chamber container Bm or each double-chamber container Bd in a state of communicating with the internal chamber as necessary.
Although not shown, the interior of the container B is configured to be a meandering flow path as necessary, and the fluid flow path is lengthened.
[0030]
As shown in FIG. 1, in the first embodiment, eight twin-chamber equipped containers Bd and one single-chamber equipped container Bm are disposed, and the single-chamber equipped container Bm is disposed third from the left end in a side view. In a state where it is positioned, it is provided side by side in the thickness direction in the lateral direction, and is compactly formed.
In order to clarify the distinction between the eight twin-chamber equipped containers Bd, for convenience, the codes 1, 2, 3,... Attached.
[0031]
The steam generating section S is configured by the leftmost twin chamber equipped container Bd1, and the steam flow generating heating flow passage section 11 is configured by using the left chamber of the twin chamber equipped container Bd1. The evaporation process part 2 is comprised using the part provided with this chamber, and it fills with the heat-transfer promoter which consists of stainless wool etc. in the both chambers in the state which can be ventilated.
The combustion section 4 is configured by using the left side chamber of the second twin-chamber equipped container Bd2 from the left, and the reforming section 3 is configured by using the right chamber. The left chamber constituting the combustion section 4 is configured as a combustion chamber, a reforming burner 4b is provided so as to burn the gas fuel in the combustion chamber, and the right chamber constituting the reforming section 3 A large number of porous ceramic particles holding a reforming catalyst such as ruthenium, nickel, platinum, etc. are filled in a breathable state.
The heat retaining flow-through portion 7 is configured using the single-chamber container Bm.
[0032]
The upstream side reforming gas flow passage 12 is configured by using the portion provided with the left chamber of the third double-chamber container Bd3 from the left, and the desulfurization raw material is formed using the portion provided with the right chamber. A fuel gas flow section 13 is configured. Both chambers are filled with a heat transfer promoting material made of stainless wool or the like so as to allow ventilation.
[0033]
The desulfurization unit 1 is configured using the left side chamber of the fourth double chamber container Bd4 from the left, and the raw fuel gas flow unit 16 is configured using the right side chamber. It is. The left chamber constituting the desulfurization unit 1 is filled with a large number of ceramic porous particles holding a desulfurization catalyst in a state of allowing ventilation.
[0034]
The downstream side reforming gas flow-through portion 15 is configured using the portion provided with the left chamber of the fifth double-chamber container Bd5 from the left, and the transformation portion is configured using the portion provided with the right chamber. 5 is configured.
The portion having the left chamber of the sixth double-chamber equipped container Bd6 from the left is used to constitute the metamorphic portion 5, and the portion having the right chamber is used to form the metamorphic portion cooling flow-through portion 8 It is configured.
The metamorphic portion 5 is configured using the seventh double-chamber container Bd7 from the left. Each chamber constituting the shift section is filled with a large number of ceramic porous granulates holding a catalyst for shift reaction of iron oxide or copper-zinc in a breathable state.
In other words, the transformation unit 5 is configured by using the fifth twin chamber container Bd5 from the left, the sixth twin chamber container Bd6 from the left, and the seventh twin chamber container Bd7 from the left. Three units 5 are provided.
[0035]
The portion provided with the left chamber of the eighth (right end) double chamber container Bd8 from the left is used to form the metamorphic portion cooling flow passage 9, and selective oxidation is performed using the portion provided with the right chamber. Part 6 is configured. The chamber constituting the selective oxidation unit 6 is filled with a large number of ceramic porous particles holding a catalyst for selective oxidation of ruthenium so as to allow ventilation.
[0036]
That is, on one side of the twin chamber equipped container Bd2 constituting the combustion section 4 and the reforming section 3, from the side of the twin chamber equipped container Bd2, the single chamber equipped container Bm constituting the heat retaining flow passage 7 and the heat insulating material 19, the upstream reforming treatment gas flow section 12 and the desulfurization raw fuel gas flow section 13, that is, the twin-chamber equipped container Bd3 constituting the heat exchanger Ep for the desulfurization raw fuel gas, the heat insulating material 19, the desulfurization section 1 and the raw The twin-chamber equipped container Bd4 constituting the fuel gas flow part 16, the downstream reforming gas flow part 15 and the double-chamber equipped container Bd5 constituting the shift part 5, the shift part 5 and the cooling part cooling flow part 8 The two-chamber equipped container Bd6 constituting the transformation chamber 5, the twin-chamber equipped container Bd7 constituting the shift section 5, the twin-chamber equipped container Bd8 constituting the shift section cooling flow section 9 and the selective oxidation section 6 are arranged in close contact with each other so as to be arranged in the stated order. Arranged and provided on the other side of the container Bd2 From the side of the container Bd2, heat insulating material 19, is provided closely arranged side by side in the order described bi chamber comprises a container Bd1 constituting the steam generating unit S.
[0037]
The desulfurization section heater 32 is provided between the fourth double chamber container Bd4 from the left constituting the desulfurization section 1 and the heat insulating material 19 adjacent thereto, and one of the transformation section heaters 33 is the first stage Provided between the fifth double chamber container Bd5 from the left that constitutes the transformation section 5 and the sixth twin chamber container Bd6 from the left that constitutes the second stage transformation section 5, the other transformation section The heater 33 has a seventh double chamber container Bd7 from the left that constitutes the third stage transformation section 5, the eighth from the left that constitutes the transformation section cooling flow section 9 and the selective oxidation section 6 (the right end). ) Of the two-chamber equipped container Bd8.
[0038]
As shown in FIGS. 4 and 5, the hydrogen-containing gas generation device P has a plurality of containers B, a heat insulating material 19, and the like arranged side by side as described above, and a pair of holding plates on the containers B at both ends in the arrangement direction. In a state where 49 is applied separately, the pair of holding plates 49 are connected by six sets of screw-type connecting means to be integrally assembled.
The screw type connecting means includes a bolt 45, a pair of nuts 46, and a pair of spring washers 47.
Each holding plate 49 is formed in an L shape, and each holding plate 49 is reinforced by two reinforcing ribs 48.
Then, with both ends of the bolt 45 inserted into the holding plate 49, the plurality of containers B are moved relative to each other in a direction perpendicular to the arrangement direction by tightening them with nuts 46 from both sides via spring washers 47. Pressing from both sides in the line-up direction in an allowable state. Further, the expansion and contraction of the containers B in the arrangement direction is allowed by the expansion and contraction action of the spring washer 47.
The hydrogen-containing gas generation device P is installed in a state where the pair of holding plates 49 are erected and supported by the pair of holding plates 49.
[0039]
In FIG. 1, the raw fuel gas supply passage 21 is connected to the raw fuel gas flow passage 16 of the raw fuel gas heat exchanger Ea as shown by the white line arrows, and the raw fuel gas flow passage 16 is connected. , Desulfurization section 1, Desulfurization raw fuel gas heat exchanger Ep desulfurization raw fuel gas flow section 13, reforming section 3, heat insulation flow section 7, upstream reforming of desulfurization raw fuel gas heat exchanger Ep A gas processing path is formed so as to flow in order of the processing gas flow section 12, the downstream reforming process gas flow section 15 of the raw fuel gas heat exchanger Ea, each of the three-stage shift sections 5, and the selective oxidation section 6. They are connected by a gas processing flow path 22.
[0040]
The raw fuel gas supply path 21 is provided with a raw fuel gas intermittent valve 20 for intermittently supplying the raw fuel gas to the hydrogen-containing gas generator.
A raw material water preheating heat exchanger 17 that preheats raw material water flowing in a raw material water supply passage 25 (described later) to the gas processing flow path 22 connecting the last-stage shift conversion section 5 and the selective oxidation section 6 with the shift processing gas. And a drain trap 34 for removing condensed water from the shift gas is provided at a location downstream of the raw material water preheating heat exchanger 17.
[0041]
The selective oxidation unit 6 and the fuel cell G are connected by a fuel gas passage 23 so that the selective oxidation treatment gas discharged from the selective oxidation unit 6 is supplied to the fuel cell G as a fuel gas, and is discharged from the fuel cell G. In order to supply the exhausted fuel gas to the combustion unit 4, the fuel cell G and the combustion unit 4 are connected by an off-gas passage 24.
The off gas passage 24 is provided with a check valve 39 for preventing the backflow of gas, and the gas fuel supply passage 37 is connected to a location downstream of the check valve 39 in the off gas passage 24 and the gas fuel supply passage is connected thereto. 37 is provided with a gas fuel supply amount adjusting valve 38 for adjusting the supply amount of the gas fuel.
[0042]
In FIG. 1, as shown by a solid line arrow, a raw material water supply path 25 through which raw water for steam generation is sent from the raw water pump 14 is connected to the evaporation processing unit 2 of the steam generation unit S. The steam path 26 for delivering the steam generated in this way is connected to the gas processing flow path 22 connecting the desulfurization section 1 and the reformed gas flow section 13 and flows through the gas processing flow path 22. The desulfurization raw fuel gas is mixed with reforming water vapor.
[0043]
A raw material water preheating heat exchanger 17 is provided in the middle of the raw material water supply path 25, and the raw material water is meandered at a location downstream of the raw material water preheating heat exchanger 17 in the raw water supply path 25. A serpentine flow portion 18 is provided, and the serpentine flow portion 18 is provided so as to be able to conduct heat to a portion of the outer wall portion of the hydrogen-containing gas generation device P that covers the combustion portion 4 so as to conduct heat. The raw material water flowing through the meandering flow portion 18 is preheated by conduction heat and radiant heat from the outer wall portion of the contained gas generation device P.
[0044]
In FIG. 1, as indicated by broken line arrows, the combustion gas discharged from the combustion part 4 flows through the steam generation heating heating part 11 and the metamorphic part cooling communication part 8 in this order. The steam generation heating flow-through section 11 and the transformation section cooling flow-through section 8 are connected by the combustion gas passage 27, and the water vapor generation heating flow-through section 11 heats the evaporation processing section 2 with the combustion gas. The metamorphic section cooling flow section 8 is configured to cool the metamorphic section 5 where the metamorphic reaction, which is an exothermic reaction, is performed by the combustion gas.
[0045]
In FIG. 1, as indicated by a one-dot chain line arrow, the blower 28 is supplied so that the air from the blower 28 is supplied as combustion air to the combustion section 4 after flowing through the metamorphic section cooling flow section 9. The combustion air is connected so that the metamorphic portion cooling flow passage 9 and the combustion portion 4 are connected by the combustion air passage 29 and the combustion air is bypassed through the metamorphic portion cooling flow portion 9. The combustion air bypass passage 30 is connected to the passage 29, and the oxidizing air supply passage 31 connected to the blower 28 is transformed at the last stage so that the air from the blower 28 is supplied to the selective oxidation unit 6 as the oxidizing air. The gas treatment flow path 22 connecting the part 5 and the selective oxidation part 6 is connected.
[0046]
A cooling supply state in which combustion air is supplied to the combustion section 4 by passing through the metamorphic section cooling flow passage 9, and a combustion air bypass path 30 that bypasses the metamorphic section cooling flow section 9. In order to switch to the bypass supply state that is supplied through, the air path switching opening and closing valves 35 and 36 are provided, and further, the combustion air passage 29 is combusted at a location downstream of the bypass portion by the combustion air bypass passage 30. A combustion air supply amount adjustment valve 40 for adjusting the supply of combustion air to the unit 4 is provided. Note that the air path switching on-off valves 35 and 36 are normally switched to the bypass supply state. However, when the cooling capacity of the shift section 5 is insufficient, for example, when the air temperature is high in summer, the switching is switched to the cooling supply state and combustion is performed. The metamorphic part 5 is cooled with working air.
[0047]
Furthermore, a reforming unit temperature sensor T1 that detects the temperature of the reforming unit 3 and a selective oxidation unit temperature sensor T2 that detects the temperature of the selective oxidation unit 6 are provided.
The reforming unit temperature sensor T1 is provided so as to detect the temperature near the outlet of the reforming process gas in the reforming unit 3, and the selective oxidation unit temperature sensor T2 is the center in the surface direction of the flat selective oxidation unit 6. It is provided to detect the temperature in the vicinity of the part.
[0048]
In short, the desulfurization unit 1, the reforming unit 3, the transformation unit 5 and the selective oxidation unit 6 are the reforming unit 3 that needs to be maintained at the highest temperature and the selective oxidation unit that needs to be maintained at the lowest temperature. 6, the desulfurization unit 1 and the shift unit 5 that need to be maintained at a temperature between the temperature of the reforming unit 3 and the temperature of the selective oxidation unit 6 are arranged in the order of description from the reforming unit 3 side. It is located so that heat can be conducted between adjacent ones, and the combustion section 3 is maintained at a temperature lower than that on the side of the reforming section 3 opposite to the side where the desulfurization section 1 is provided. The steam generation units S that need to be arranged are arranged from the reforming unit 3 side in the order of description, and are provided so that heat can be transferred between adjacent ones.
[0049]
  ThenFIG.As shown by the arrows in FIG. 1, heat is sequentially transferred through the desulfurization unit 1 and the transformation unit 5 from the reforming unit 3 heated in the combustion unit 4 to the selective oxidation unit 6 and is radiated from the selective oxidation unit 6. At the same time, heat is transferred from the combustion unit 4 toward the steam generation unit S.
[0050]
On the other hand, the raw fuel gas supplied from the raw fuel gas supply passage 21 is preheated by heat exchange with the reformed gas in the raw fuel gas heat exchanger Ea, and then supplied to the desulfurization section 1 for desulfurization treatment. The desulfurized raw fuel gas is mixed with the water vapor from the water vapor path 26, and then preheated by heat exchange with the reformed gas in the desulfurized raw fuel gas heat exchanger Ep, and then supplied to the reforming unit 3. Then, the reforming process gas is heated and reformed in the combustion section 3, and the reformed gas is cooled by heat exchange with the desulfurized raw fuel gas in the desulfurized raw fuel gas heat exchanger Ep. After heat exchange is performed by heat exchange with the raw fuel gas in the heat exchanger Ea, the gas is sequentially supplied to the three-stage transformation section 5 to transform the carbon monoxide gas into carbon dioxide gas, which is transformed. The process gas is cooled by heat exchange with the raw water in the raw water preheating heat exchanger 17 and then selected. Is supplied to the oxidation unit 6 is selectively oxidized carbon monoxide gas is selectively oxidized treatment.
[0051]
Incidentally, since the shift reaction in the shift section 5 is an exothermic reaction, the reforming process gas supplied to the shift section 5 is converted in the desulfurized raw fuel gas heat exchanger Ep and the raw fuel gas heat exchanger Ea. Cooling to a temperature lower than the transformation temperature in the section 5, for example, about 200 ° C. when the transformation temperature is 250 ° C. Similarly, since the oxidation reaction in the selective oxidation unit 6 is also an exothermic reaction, the shift gas to be supplied to the selective oxidation unit 6 is supplied from the selective oxidation treatment temperature in the selective oxidation unit 6 in the raw water preheating heat exchanger 17. Cool down to a lower temperature.
[0052]
Further, the combustion gas discharged from the combustion section 4 is passed through the steam generation heating flow-through section 11 and is supplied with heat for steam generation, and then is passed through the metamorphic section cooling flow-through section 8. The metamorphic part 5 is cooled.
[0053]
Therefore, in the state where the desulfurization unit 1, the reforming unit 3, the transformation unit 5 and the selective oxidation unit 6 are arranged as described above, the adjacent ones, that is, the reforming unit are considered in consideration of the fluid flow as described above. 3 and the desulfurization section 1, between the desulfurization section 1 and the shift section 5, between the shift section 5 and the selective oxidation section 6, and between the combustion section 4 and the steam generation section S. By appropriately setting the state (heat transfer amount), the heating capacity of the combustion unit 4 is adjusted so that the reforming unit 3 is maintained at the reforming processing temperature, and the selective oxidation unit 6 is maintained at the selective oxidation processing temperature. By adjusting the air flow rate of the cooling fan 10 in such a manner, the desulfurization unit 1 and the shift unit 5 located between the reforming unit 3 and the selective oxidation unit 6 can be controlled without controlling the temperature. Can be maintained at the desulfurization treatment temperature and the transformation treatment temperature, respectively, It is possible to maintain the proper temperature in the gas generation.
[0054]
That is, between the reforming unit 3 and the desulfurization unit 1, the heat transfer amount is set by the heat insulating material 19, the desulfurization raw fuel gas heat exchanger Ep and the heat insulating material 19 arranged in order from the reforming unit 3 side, and desulfurization is performed. The heat transfer amount is set by the raw fuel gas heat exchanger Ea between the section 1 and the shift section 5, and the shift section cooling flow-through section 9 is set between the shift section 5 and the selective oxidation section 6. A heat transfer amount is set, and a heat transfer amount is set between the combustion unit 4 and the steam generation unit S by the heat insulating material 19.
[0055]
Next, an operation control method of the hydrogen-containing gas generation device P configured as described above will be described.
When the hydrogen-containing gas generator P is started, off gas is not supplied from the fuel cell G, so the gas fuel supply amount adjustment valve 38 is opened and burned with city gas supplied through the gas fuel supply passage 37. Combustion section 4 is heated, reforming section 3 is heated, desulfurization section heater 32 is heated and operated, desulfurization section 1 is heated, and shift section heater 33 is heated and operated so that shift section 5 is heated. The operation control is performed, and the start-up operation control is continued until the temperature detected by the reforming unit temperature sensor T1 reaches a preset reforming processing temperature.
[0056]
When the start-up operation control is completed, the desulfurization section heater 32 and the shift section heater 33 are stopped, while the combustion of the combustion section 4 continues, and the raw fuel gas intermittent valve 20 is opened to supply the raw fuel gas. And starting the supply of raw water by starting the raw water pump 14 to start the gas generation operation for generating the hydrogen-containing gas. Thereafter, during the gas generation operation, the desulfurization section heater 32 and the transformation are started. In the state where the heater 33 is stopped, the off gas discharged from the fuel cell G is combusted in the combustion unit 4, and when the reforming unit 3 is maintained at the reforming processing temperature, the off gas alone is insufficient. The city gas is supplied to the combustion unit 3 through the fuel supply passage 37 and burned.
[0057]
Next, an operation control method in the gas generation operation will be described.
In the present invention, the heating capacity of the combustion unit 4 is adjusted so that the reforming unit 3 is maintained at the set reforming treatment temperature, and the cooling is performed so that the selective oxidation unit 6 is maintained at the set selective oxidation processing temperature. The ventilation rate of the fan 10 is adjusted.
Then, as described above, between the reforming unit 3 and the desulfurization unit 1, between the desulfurization unit 1 and the conversion unit 5, between the conversion unit 5 and the selective oxidation unit 6, and between the combustion unit 4 and steam generation. Since the respective heat transfer amounts between the part S and the part S are set, the desulfurization part 1 and the modification part 5 can be maintained at the desulfurization treatment temperature and the modification treatment temperature, respectively, without controlling the temperature. In addition, the steam generation unit S can be maintained at a temperature suitable for steam generation.
[0058]
In the present invention, the control unit C is used to automatically perform the operation control in the start-up operation as described above and the operation control in the gas generation operation.
Hereinafter, the control operation when the control unit C executes the operation control in the gas generation operation will be described.
The control unit C controls the gas fuel supply amount adjustment valve 38 and the combustion air supply amount adjustment valve 40 so that the detection temperature of the reforming unit temperature sensor T1 becomes a preset reforming processing temperature, The heating capacity of the combustion unit 4 is adjusted, and the operation of the cooling fan 10 is controlled so that the temperature detected by the selective oxidation unit temperature sensor T2 becomes a preset selective oxidation treatment temperature, thereby providing a cooling air flow rate. That is, the cooling capacity is adjusted.
[0059]
If the heating capacity is increased, for example, when the heating capacity is increased, for example, the gas fuel supply amount adjustment valve 38 is controlled so as to increase the supply amount of the city gas, and the heating capacity is decreased. When controlling the gas fuel supply amount adjusting valve 38 so as to decrease the supply amount of city gas, and controlling the combustion air supply amount adjusting valve 40 so as to increase the combustion air supply amount. Execute under preset conditions.
[0060]
Hereinafter, the result of verifying the performance of the hydrogen-containing gas generator by operating with the above-described operation control method will be described.
[0061]
The operating conditions of the hydrogen-containing gas generator are as follows.
Raw fuel gas (13A) flow rate: 4.0 L (standard state) / min
Off-gas flow rate: 10.1 L (standard state) / min
Raw water for water vapor generation (pure water): 12.0cc / min
Air flow for selective oxidation treatment: 0.8L (standard state) / min
[0062]
Then, as shown in FIG. 6, the supply amount of city gas (13A) and the combustion air supply amount for maintaining the reforming unit 3 at the set reforming processing temperature according to the temperature of the reforming unit 3 Is stored in the control unit C as reforming unit temperature control information.
Based on the detected temperature of the reforming unit temperature sensor T1 and the stored reforming unit temperature control information, the control unit C controls the gas so that the city gas supply amount and the combustion air supply amount correspond to the detected temperature. So-called feed-forward control is performed to control the fuel supply amount adjustment valve 38 and the combustion air supply amount adjustment valve 40, respectively.
Further, the cooling fan 10 is turned on / off so that the temperature detected by the selective oxidation unit temperature sensor T2 becomes the set selective oxidation temperature.
[0063]
Then, the desulfurization section 1 and the shift section when the set reforming treatment temperature is set to 642.9 ° C. and the set selective oxidation treatment temperature is set to 95.0 ° C. and controlled as described above. 5 and the temperature of the evaporation processing unit 2 of the water vapor generation unit S are found to be in thermal equilibrium as follows and maintained at appropriate temperatures.
Further, the temperature of the combustion section 4 at that time is as follows, and the temperature of the combustion section 4 has a correlation with the temperature of the reforming section 3, so that the reforming section 3 is set and reformed as described above. As control information for adjusting the heating capacity of the combustion section 4 so as to reach the processing temperature, a combustion section temperature sensor for detecting the temperature of the combustion section 4 is provided instead of the reforming section temperature sensor T1, and the combustion section Based on the temperature detected by the temperature sensor, it is also possible to control the reforming unit 3 so as to adjust the heating capability of the combustion unit 4 so as to reach the set reforming processing temperature.
[0064]
Temperature of desulfurization part 1: 261.8 ° C
Transformer 5 temperature: 238.9 ° C
Temperature of the evaporation processing unit 2 of the water vapor generation unit S: 136.9 ° C
Temperature of the combustion part 4: 838.7 ° C
[0065]
  Hereinafter, the present invention2 fruitsI will explain the embodiment,thisIn the embodiment, the same constituent elements as those in the first embodiment and the constituent elements having the same action are denoted by the same reference numerals in order to avoid duplicate description, and the description thereof is mainly omitted. The configuration is mainly different from the first embodiment. Will be explained.
[0076]
  [No.2Embodiment)
  Hereinafter, based on the drawings, the present invention is applied to a hydrogen-containing gas generator for a fuel cell.2An embodiment will be described.
  Figure7As shown in2In the embodiment, a plurality of desulfurization sections 1 and multiple conversion sections 5 are provided between the reforming section 3 and the selective oxidation section 6 (this first section).2In the embodiment, three units are provided so that the desulfurization parts 1 and the transformation parts 5 are alternately arranged so that adjacent ones can conduct heat.
  Then, the heating capacity of the combustion unit 4 is adjusted so that the reforming unit 3 is maintained at a temperature suitable for the reforming process, and the selective oxidation unit 6 is maintained at a temperature suitable for the selective oxidation process. By adjusting the air flow rate of the cooling fan 10 and adjusting the cooling capacity, the plurality of desulfurization units 1 have temperatures appropriate for the desulfurization process, and the plurality of shift units 5 each have a temperature appropriate for the conversion process. As described above, the heat transfer state between adjacent ones is set in advance.
[0077]
  Adding a description, figure7As shown in FIG. 2, the hydrogen-containing gas generation device P includes a plurality of rectangular plate-like flat containers B arranged side by side in the thickness direction of the plate shape, and each vessel B is used to desulfurize part 1, reformer part 3, the combustion part 4, the transformation part 5, the selective oxidation part 6, the water vapor | steam production | generation part S, each flow part, etc. are each comprised. As in the first embodiment, a part of the plurality of containers B is constituted by a single-chamber equipped container Bm, and the rest is constituted by a double-chamber equipped container Bd.
  First2In the embodiment, 10 double-chamber equipped containers Bd and one single-chamber equipped container Bm are thick in the lateral direction in a state where the single-chamber equipped container Bm is positioned third from the left end in a side view. They are arranged side by side in the vertical direction and are compact.
  In order to make the distinction between the ten double-chamber containers Bd clear, for the sake of convenience, the reference numerals 1, 2, 3,... Attached.
[0078]
Similarly to the first embodiment, the steam generating unit S is configured by the leftmost twin chamber equipped container Bd1, and the combustion unit 4 and the reforming unit 3 are configured by using the second twin chamber equipped container Bd2 from the left. The single-chamber equipped container Bm is used to constitute the heat insulation flow-through section 7, and the third double-chamber equipped container Bd3 from the left is used to constitute the desulfurization raw fuel gas heat exchanger Ep.
[0079]
The desulfurization unit 1 is configured by using the fourth twin-chamber equipped container Bd4 from the left, and the desulfurization unit 1 is configured by using the left chamber of the fifth twin-chamber equipped container Bd5 from the left. In addition, the raw fuel gas flow-through portion 16 is configured using the portion having the right chamber.
The downstream side reforming gas flow section 15 is configured using the left side chamber of the sixth double chamber container Bd6 from the left, and the transformation section is configured using the right side chamber. 5 is configured.
The desulfurization unit 1 is configured by using the seventh twin chamber equipped container Bd7 from the left, and the transformation unit 5 is configured by using the left chamber of the eighth double chamber equipped container Bd8 from the left. And the flow part 8 for metamorphic part cooling is comprised using the part provided with the chamber of the right side.
Using the ninth double chamber container Bd9 from the left, the metamorphic section 5 is formed, and using the portion including the left chamber of the tenth (right end) double chamber container Bd10 from the left, the metamorphic section The selective flow section 9 is configured, and the selective oxidation section 6 is configured using a portion having a right chamber.
In other words, the desulfurization section 1 is configured by using the fourth twin-chamber equipped container Bd4 from the left, the fifth twin-chamber equipped container Bd5 from the left, and the seventh twin-chamber equipped container Bd7 from the left. Three units 1 are provided.
The metamorphic unit 5 is configured by using the sixth twin chamber container Bd6 from the left, the eighth twin chamber container Bd8 from the left, and the ninth twin chamber container Bd9 from the left. Three units 5 are provided.
And the three desulfurization parts 1 and the three metamorphic parts 5 are provided so that the desulfurization part 1 and the metamorphic part 5 may line up alternately.
[0080]
That is, on one side of the twin chamber equipped container Bd2 constituting the combustion section 4 and the reforming section 3, from the side of the twin chamber equipped container Bd2, the single chamber equipped container Bm constituting the heat retaining flow passage 7 and the heat insulating material 19, a double-chamber equipped container Bd 3 constituting the heat exchanger Ep for the desulfurized raw fuel gas, a heat insulating material 19, a double-chamber equipped container Bd 4 constituting the desulfurization part 1, the desulfurization part 1, and the raw fuel gas flow part 16. Twin-chamber equipped container Bd5, downstream reforming process gas flow section 15 and twin-chamber equipped container Bd6 constituting the reforming section 5, twin-chamber equipped container Bd7 constituting the desulfurization section 1, transforming section 5 and transforming section cooling passage The double-chamber equipped container Bd8 constituting the flow section 8, the twin-chamber equipped container Bd9 constituting the shift section 5, the double-chamber equipped container Bd10 constituting the shift section cooling flow section 9 and the selective oxidation section 6 are arranged in the order of description. Provided in close proximity to each other and the other of the two-chamber container Bd2 To, from its side of the double-chamber comprises a container Bd2, heat insulating material 19, is provided closely arranged side by side in the order described bi chamber comprises a container Bd1 constituting the steam generating unit S.
[0081]
  First2In the embodiment, the partition member 43 of the twin chamber equipped container Bd2 constituting the combustion section 4 and the reforming section 3 and the heat insulating material 19 adjacent to the combustion section 4 side of the twin chamber equipped container Bd are provided with a plurality of The reinforcing member 63 is bridged. The plurality of reinforcing members 63 are configured to suppress the deformation of the twin-chamber container Bd due to thermal expansion.
[0082]
  The desulfurization section heater 32 is provided between the fourth twin chamber container Bd4 from the left and the fifth twin chamber container Bd5 from the left, and the one transformer 33 heater is the sixth from the left. The double chamber equipped container Bd6 and the seventh double chamber equipped container Bd7 from the left are provided. The other heater 33 for the transformation section is the ninth double chamber equipped container Bd9 from the left and the tenth from the left. Between the two-chamber equipped container Bd10.
  In addition2In the embodiment, a steam generating heater 60 that heats the steam generating heating flow passage 11 and a raw fuel gas heater 61 that heats the desulfurized raw fuel gas flowing portion 13 are provided at the time of startup.
[0083]
The raw fuel gas supply path 21 is connected to the raw fuel gas flow section 16 of the raw fuel gas heat exchanger Ea, and the raw fuel gas flow section 16, the three-stage desulfurization section 1, the heat for desulfurized raw fuel gas Desulfurization raw fuel gas flow part 13 of the exchanger Ep, reforming part 3, heat insulation flow part 7, upstream reforming process gas flow part 12 of the desulfurization raw fuel gas heat exchanger Ep, for raw fuel gas These are connected by a gas processing flow path 22 so as to form a gas processing path that flows in the order of the downstream reforming process gas flow section 15, the three-stage shift section 5, and the selective oxidation section 6 of the heat exchanger Ea. It is.
By providing three desulfurization sections 1 and three shift sections 5 so that the desulfurization sections 1 and the shift sections 5 are alternately arranged, gas is supplied to the plurality of desulfurization sections 1 so that the gas to be treated flows sequentially. Connected in the flow path 22 for processing, and when connecting them in the flow path 22 for gas processing so that process target gas may flow through the some transformation | transformation part 5 in order, it connects in order of a flow path Since the length of the gas processing flow path 22 to be made can be increased, the connection work is facilitated.
[0084]
  First2In the embodiment, the combustion gas discharged from the metamorphic portion cooling flow passage 8 through the combustion gas passage 27 and the combustion air supplied to the combustion portion 4 through the combustion air passage 29 and the off-gas passage 24 to the combustion portion 4. A heat exchanger 62 for exhaust heat recovery is provided to preheat the combustion air and off gas by exchanging heat with the supplied off gas.
  Although not shown, a combustion air bypass 30 and air path switching on-off valves 35 and 36 are provided as in the first embodiment.
[0085]
The desulfurization unit 1, the conversion unit 5, the desulfurization unit 1, and the conversion unit 5 are sequentially transferred from the reforming unit 3 heated by the combustion unit 4 toward the selective oxidation unit 6 and radiated from the selective oxidation unit 6. At the same time, heat is transferred from the combustion unit 4 toward the steam generation unit S.
On the other hand, the raw fuel gas supplied from the raw fuel gas supply passage 21 is preheated by heat exchange with the reformed gas in the raw fuel gas heat exchanger Ea, and then sequentially supplied to the three-stage desulfurization section 1. The desulfurization raw fuel gas is mixed with the water vapor from the water vapor passage 26, and then preheated by heat exchange with the reforming treatment gas in the desulfurization raw fuel gas heat exchanger Ep. Is supplied to the unit 3 and heated in the combustion unit 3 to be reformed, and the reformed gas is cooled by heat exchange with the desulfurized raw fuel gas in the desulfurized raw fuel gas heat exchanger Ep, Then, heat exchange is performed by heat exchange with the raw fuel gas in the raw fuel gas heat exchanger Ea, and then sequentially supplied to the three-stage shift section 5 to convert the carbon monoxide gas into carbon dioxide gas for shift treatment Then, the modified gas is cooled by heat exchange with the raw water in the raw water preheating heat exchanger 17. After, the selective oxidation process by selective oxidation of carbon monoxide gas is supplied to the selective oxidation unit 6.
[0086]
Therefore, in the state where the three desulfurization units 1, the reforming unit 3, the three transformation units 5 and the selective oxidation unit 6 are arranged as described above, the adjacent ones are considered in consideration of the flow of the fluid as described above. By appropriately setting each heat transfer state (heat transfer amount) between the two, the heating capacity of the combustion unit 4 is adjusted so that the reforming unit 3 is maintained at the reforming treatment temperature, and the selective oxidation unit 6 is By adjusting the flow rate of the cooling fan 10 so as to maintain the selective oxidation treatment temperature, the three desulfurization units 1 and the three transformation units 5 located between the reforming unit 3 and the selective oxidation unit 6 are adjusted. Can be maintained at the desulfurization treatment temperature and the transformation treatment temperature, respectively, without controlling the temperature, and the steam generation unit S can be maintained at a temperature suitable for steam generation according to the circumstances. It is.
[0087]
Since the control operation when the control unit C executes the operation control in the gas generation operation is the same as that in the first embodiment, the description thereof is omitted.
[0088]
  [Another embodiment]
  Next, another embodiment will be described.The
[0093]
(I) As control for adjusting the heating capacity of the combustion unit 4, in the above embodiment, control for controlling the gas fuel supply amount adjustment valve 38 so as to reduce the supply amount of city gas, and supply of combustion air The case where the control for controlling the combustion air supply amount adjustment valve 40 so as to increase the amount is exemplified, but only the gas fuel supply amount adjustment valve 38 is controlled so as to decrease the supply amount of the city gas. You may comprise.
  Alternatively, an off-gas supply amount adjustment valve that adjusts the supply amount of off-gas to the combustion unit 4 is provided, and the heating capacity of the combustion unit 4 is adjusted by adjusting the off-gas supply amount by controlling the off-gas supply amount adjustment valve. You may do it.
[0094]
(B) To adjust the heating capacity of the combustion section 4 to maintain the reforming section 3 at the reforming temperature
The control mode is not limited to the feedforward control as exemplified in the above embodiment, and the detected temperature is improved by comparing the detected temperature of the reforming unit temperature sensor T1 with the reforming process temperature. The gas fuel supply amount adjusting valve 38 and the combustion air supply amount adjusting valve 40 are controlled so as to decrease the heating capacity when the temperature is higher than the processing temperature and increase the heating capacity when the detected temperature is lower than the reforming temperature. Feedback control may be performed, or both feedforward control and feedback control may be performed.
[0095]
(C) The temperature detection positions of the reforming unit temperature sensor T1 and the selective oxidation unit temperature sensor T2 are not limited to the positions exemplified in the above embodiment, and can be changed as appropriate.
[0096]
(DIn the first embodiment, the case where the transformation part 5 is provided in three stages has been illustrated, but the number of stages in the case where the transformation part 5 is provided in a plurality of stages can be changed as appropriate, or the transformation part 5 is provided in one stage. May be provided.
  Further, in the second embodiment, the case where three desulfurization sections 1 and three transformation sections 5 are provided is illustrated, but the number of cases where a plurality of desulfurization sections 1 and transformation sections 5 are provided can be changed as appropriate. The number of the desulfurization unit 1 and the transformation unit 5 may be different. Further, when the desulfurization part 1 and the transformation part 5 are alternately arranged, the form thereof is as described above.2It is not limited to the form illustrated in the embodiment, and may be alternately arranged one by one.
[0097]
(Ho) The specific configuration of the reforming section heating means is not limited to the combustion section 4 which is a combustion type reforming section heating means as exemplified in the above embodiment. Also good.
[Brief description of the drawings]
FIG. 1 is a longitudinal side view of a hydrogen-containing gas generator according to a first embodiment.
FIG. 2 is a perspective view of a twin-chamber container that constitutes a hydrogen-containing gas generator.
FIG. 3 is a perspective view of a single-chamber container that constitutes a hydrogen-containing gas generator.
FIG. 4 is a side view of the hydrogen-containing gas generator according to the first embodiment.
FIG. 5 is a front view of the hydrogen-containing gas generator according to the first embodiment.
FIG. 6 is a diagram showing the relationship between the temperature of the reforming section and the supply amount of city gas and the supply amount of combustion air.
FIG. 7 is a vertical side view of the hydrogen-containing gas generation device according to the second embodiment.
FIG. 8 is a diagram for explaining heat transfer in the hydrogen-containing gas generator.
FIG. 9 illustrates heat transfer in a hydrogen-containing gas generator.Figure
[Explanation of symbols]
  1 Desulfurization section
  3 reforming department
  4 Reforming part heating means
  5 Metamorphosis Department
  6 Selective oxidation part
  10 Selective oxidation part cooling means
  Ep heat exchanger
  S water vapor generator

Claims (4)

改質部加熱手段にて加熱されて、炭化水素系の原燃料ガスを水蒸気にて水素ガスと一酸化炭素ガスを含むガスに改質処理する改質部と、前記改質部から供給される改質処理ガスをその改質処理ガス中の一酸化炭素ガスを二酸化炭素ガスに変成させることにより変成処理する変成部と、その変成部から供給される変成処理ガスをその変成処理ガス中の一酸化炭素を選択酸化することにより選択酸化処理する選択酸化部が設けられた水素含有ガス生成装置の運転制御方法であって、
前記選択酸化部を冷却する選択酸化部冷却手段を設け、
前記改質部、前記変成部及び前記選択酸化部を、前記改質部と前記選択酸化部との間に前記変成部が位置し、且つ、隣接するもの同士で熱伝導可能なように設け、
炭化水素系の原燃料ガスを脱硫処理する脱硫部にて脱硫処理した脱硫原燃料ガスを、前記改質部で改質処理する炭化水素系の原燃料ガスとして供給し、
前記改質部と前記選択酸化部との間に、前記脱硫部及び前記変成部を並べて、且つ、隣接するもの同士で熱伝導可能なように設け、
前記脱硫部からの脱硫原燃料ガスと前記改質部からの改質処理ガスとを熱交換させる熱交換部を、前記改質部と前記脱硫部との間に設け、
前記改質部と前記脱硫部との間は、前記改質部の側から順に並ぶ断熱材、前記熱交換部及び断熱材にて伝熱量を設定し、
前記改質部を改質処理に適正な温度に維持するように、前記改質部加熱手段の加熱能力を調節し、且つ、前記選択酸化部を選択酸化処理に適正な温度に維持するように、前記選択酸化部冷却手段の冷却能力を調節し、
前記選択酸化部冷却手段が、通風量の調節により冷却能力を調節する冷却用ファンであり、
前記改質部加熱手段をガス燃料を燃焼させる燃焼式に構成し、
前記変成部を冷却するための変成部冷却用通流部を前記変成部と前記選択酸化部との間に設け、
ブロアからの空気を前記変成部冷却用通流部を通流させてから前記改質部加熱手段に供給する燃焼用空気路に、前記変成部冷却用通流部を迂回させて前記ブロアからの空気を通流させる燃焼用空気バイパス路を接続し、
前記燃焼用空気路を通して前記ブロアからの空気を通流させる冷却用供給状態と、前記燃焼用空気バイパス路を通して前記ブロアからの燃焼用空気を通流させるバイパス供給状態とに切換える空気経路切り換え用開閉弁を設け、
前記バイパス供給状態では前記変成部の冷却能力が不足するときには、前記冷却用供給状態に切り換える水素含有ガス生成装置の運転制御方法。
A reforming unit that is heated by the reforming unit heating means to reform the hydrocarbon-based raw fuel gas into a gas containing hydrogen gas and carbon monoxide gas with steam, and is supplied from the reforming unit A reforming section that transforms the reforming process gas by transforming carbon monoxide gas in the reforming process gas into carbon dioxide gas, and a modification process gas supplied from the reforming section An operation control method for a hydrogen-containing gas generation device provided with a selective oxidation unit for performing a selective oxidation treatment by selectively oxidizing carbon oxide,
Providing a selective oxidation part cooling means for cooling the selective oxidation part;
The reforming unit, the shift unit and the selective oxidation unit are provided such that the shift unit is located between the reforming unit and the selective oxidation unit, and adjacent ones can conduct heat,
Supplying a desulfurized raw fuel gas desulfurized in a desulfurization section for desulfurizing a hydrocarbon-based raw fuel gas as a hydrocarbon-based raw fuel gas reformed in the reforming section;
Between the reforming part and the selective oxidation part, the desulfurization part and the metamorphic part are arranged side by side, and provided so as to be able to conduct heat between adjacent ones,
A heat exchanging section for exchanging heat between the desulfurized raw fuel gas from the desulfurization section and the reforming treatment gas from the reforming section is provided between the reforming section and the desulfurization section;
Between the reforming unit and the desulfurization unit, set the amount of heat transfer in the heat insulating material, the heat exchange unit and the heat insulating material arranged in order from the reforming unit side,
Adjusting the heating capacity of the reforming unit heating means so as to maintain the reforming unit at an appropriate temperature for the reforming process, and maintaining the selective oxidation unit at an appropriate temperature for the selective oxidation process. , Adjusting the cooling capacity of the selective oxidation unit cooling means ,
The selective oxidation unit cooling means is a cooling fan that adjusts the cooling capacity by adjusting the air flow rate,
The reforming section heating means is configured as a combustion type that burns gas fuel,
Providing a metamorphic part cooling flow passage for cooling the metamorphic part between the metamorphic part and the selective oxidation part;
The combustion air passage for supplying air to the reforming unit heating means after flowing the air from the blower through the transformation unit cooling flow part bypasses the transformation part cooling flow part from the blower. Connect the combustion air bypass to allow air to flow,
Air path switching opening / closing switching between a cooling supply state in which air from the blower flows through the combustion air passage and a bypass supply state in which combustion air from the blower flows through the combustion air bypass passage A valve,
An operation control method for a hydrogen-containing gas generation device that switches to the cooling supply state when the cooling capacity of the shift section is insufficient in the bypass supply state .
前記改質部、前記熱交換部、前記脱硫部、前記変成部及び前記選択酸化部を、外形形状が偏平な板状になるように構成し、それら板状の前記改質部、前記熱交換部、前記脱硫部、前記変成部及び前記選択酸化部を厚さ方向に並設する請求項1記載の水素含有ガス生成装置の運転制御方法。  The reforming unit, the heat exchange unit, the desulfurization unit, the transformation unit, and the selective oxidation unit are configured such that the outer shape is a flat plate, and the plate-shaped reforming unit and the heat exchange The operation control method for the hydrogen-containing gas generator according to claim 1, wherein the section, the desulfurization section, the shift conversion section, and the selective oxidation section are arranged side by side in the thickness direction. 記改質部における前記変成部が設けられている側とは反対側に、供給される水を前記燃焼式の改質部加熱手段から排出される燃焼ガスにて加熱して、前記改質部における改質処理用の水蒸気を生成する水蒸気生成部を設ける請求項1又は2記載の水素含有ガス生成装置の運転制御方法。 Before the side opposite to the side where the shift converter at Kiaratame protein portion is provided, and heated in the combustion gas discharged water supplied from the reforming unit heating means of the combustion, the reforming The operation control method of the hydrogen-containing gas production | generation apparatus of Claim 1 or 2 which provides the water vapor | steam production | generation part which produces | generates the water vapor | steam for the reforming process in a part. 前記脱硫部及び前記変成部としてそれぞれ複数ずつを、前記脱硫部と前記変成部とが交互に並ぶように、且つ、隣接するもの同士で熱伝導可能なように設ける請求項1〜3のいずれか1項に記載の水素含有ガス生成装置の運転制御方法。  The plurality of desulfurization sections and the metamorphic sections, respectively, are provided so that the desulfurization sections and the metamorphic sections are alternately arranged so that adjacent ones can conduct heat. The operation control method for the hydrogen-containing gas generator according to item 1.
JP2002078141A 2001-03-28 2002-03-20 Operation control method for hydrogen-containing gas generator Expired - Fee Related JP4531320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002078141A JP4531320B2 (en) 2001-03-28 2002-03-20 Operation control method for hydrogen-containing gas generator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001093343 2001-03-28
JP2001-93343 2001-03-28
JP2002078141A JP4531320B2 (en) 2001-03-28 2002-03-20 Operation control method for hydrogen-containing gas generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007187190A Division JP4624382B2 (en) 2001-03-28 2007-07-18 Operation control method for hydrogen-containing gas generator

Publications (2)

Publication Number Publication Date
JP2002356309A JP2002356309A (en) 2002-12-13
JP4531320B2 true JP4531320B2 (en) 2010-08-25

Family

ID=26612397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002078141A Expired - Fee Related JP4531320B2 (en) 2001-03-28 2002-03-20 Operation control method for hydrogen-containing gas generator

Country Status (1)

Country Link
JP (1) JP4531320B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005261096B2 (en) * 2004-07-12 2010-01-21 Sumitomo Seika Chemicals Co., Ltd. Hydrogen production system and reforming apparatus
FR2875643B1 (en) * 2004-09-21 2006-12-01 Renault Sas FUEL CELL CATALYTIC REACTION DEVICE WITH TEMPERATURE AND CORRESPONDING METHOD
WO2007145218A1 (en) 2006-06-12 2007-12-21 Panasonic Corporation Hydrogen generation device and fuel cell system equipped with it
JP5379353B2 (en) * 2007-03-12 2013-12-25 大阪瓦斯株式会社 Temperature control system of reformer in fuel cell device
JP5324752B2 (en) * 2007-03-30 2013-10-23 大阪瓦斯株式会社 Hydrogen-containing gas generator
WO2014002470A1 (en) 2012-06-25 2014-01-03 パナソニック株式会社 Fuel treatment device
JP6539054B2 (en) * 2015-01-26 2019-07-03 本田技研工業株式会社 Fuel cell system

Also Published As

Publication number Publication date
JP2002356309A (en) 2002-12-13

Similar Documents

Publication Publication Date Title
JP5820873B2 (en) System having a high temperature fuel cell
JP4063430B2 (en) Fluid processing equipment
JP2003104706A (en) Fuel reformer and its starting method
JP3942405B2 (en) Three-fluid heat exchanger
JP4531320B2 (en) Operation control method for hydrogen-containing gas generator
JP4090234B2 (en) Hydrogen-containing gas generator
JP4624382B2 (en) Operation control method for hydrogen-containing gas generator
JP5324752B2 (en) Hydrogen-containing gas generator
JP3960002B2 (en) Fuel cell system
JP4429032B2 (en) Method for operating hydrogen-containing gas generator and hydrogen-containing gas generator
JP2001313053A (en) Fuel cell system
JP4502468B2 (en) Fuel cell power generator
JP3948885B2 (en) Hydrogen-containing gas generator for fuel cells
JP2002080204A (en) Shutting-down and maintaining method for hydrogen- containing gas generator
JP5643707B2 (en) Hydrogen-containing gas generator
JP2015140285A (en) Method for operating hydrogen-containing gas generation apparatus, and hydrogen-containing gas generation apparatus
JP4610906B2 (en) Fuel cell power generation system and method for starting fuel cell power generation system
JPH10324501A (en) Carbon monoxide remover and method for starting carbon monoxide remover
JPH0881202A (en) Methanol reformer for fuel cell
JP2005216615A (en) Fuel processing device and fuel cell power generation system
JP5643706B2 (en) Hydrogen-containing gas generator
JP4484585B2 (en) Reformer
JP2003160305A (en) Reformer
JP2002063926A (en) Operating method of solid polymer fuel cell
JP6270507B2 (en) Start-up operation method for hydrogen-containing gas generator and hydrogen-containing gas generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4531320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees