WO2007145218A1 - Hydrogen generation device and fuel cell system equipped with it - Google Patents

Hydrogen generation device and fuel cell system equipped with it Download PDF

Info

Publication number
WO2007145218A1
WO2007145218A1 PCT/JP2007/061831 JP2007061831W WO2007145218A1 WO 2007145218 A1 WO2007145218 A1 WO 2007145218A1 JP 2007061831 W JP2007061831 W JP 2007061831W WO 2007145218 A1 WO2007145218 A1 WO 2007145218A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
water
amount
supply amount
supplied
Prior art date
Application number
PCT/JP2007/061831
Other languages
French (fr)
Japanese (ja)
Inventor
Kunihiro Ukai
Akira Maenishi
Yuji Mukai
Toru Nakamura
Masaya Tsujimoto
Shingo Nagatomo
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to CN2007800219040A priority Critical patent/CN101466635B/en
Priority to US12/304,147 priority patent/US8273489B2/en
Publication of WO2007145218A1 publication Critical patent/WO2007145218A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0461Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds
    • B01J8/0465Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds the beds being concentric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0461Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds
    • B01J8/0469Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0492Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00203Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to a hydrogen generator in which a reformer that generates a hydrogen-containing gas, a converter and a selective oxidizer that reduce the concentration of carbon monoxide and carbon, and a heater that heats them are integrated.
  • the present invention relates to a device and a fuel cell system including the same.
  • a hydrogen-containing gas containing hydrogen and an oxygen-containing oxygen are contained in a fuel cell stack (hereinafter simply referred to as “fuel cell”) disposed as a main body of the power generation unit.
  • fuel cell a fuel cell stack
  • Each of the contained gases is supplied.
  • hydrogen contained in the supplied hydrogen-containing gas and oxygen contained in the oxygen-containing gas are used, and a predetermined electrochemical reaction proceeds.
  • the predetermined electrochemical reaction proceeds, the chemical energy of hydrogen and oxygen is directly converted into electrical energy in the fuel cell.
  • the fuel cell system outputs power toward the load.
  • the means for supplying the hydrogen-containing gas required during the power generation operation of the fuel cell system is not usually provided as an infrastructure. Therefore, in conventional fuel cell systems, for example, a temperature of 600 ° C to 700 ° C using city gas or LPG or other raw material gas that can also provide existing fossil raw material infrastructure power and water vapor generated by a water evaporator.
  • a reformer that proceeds with a steam reforming reaction to generate a hydrogen-containing gas is provided together with the fuel cell.
  • the hydrogen-containing gas obtained by the steam reforming reaction usually contains a large amount of carbon monoxide and carbon dioxide derived from the raw material gas.
  • the temperature of the hydrogen-containing gas is reduced to 200 ° C in order to reduce the concentration of acid-carbon in the hydrogen-containing gas produced by the reformer.
  • a water gas shift reaction at a temperature of ⁇ 350 ° C. to reduce the concentration of carbon monoxide and carbon
  • a selective oxidation reaction at a temperature of 100 ° C. to 150 ° C.
  • a selective oxidizer that further reduces the concentration of carbon monoxide is provided together with a fuel cell reformer.
  • the hydrogen generator is constituted by these reformer, transformer, and selective oxidizer.
  • Each of these reformer, shifter and selective oxidizer is provided with a catalyst suitable for each chemical reaction for proceeding with each of the steam reforming reaction, water gas shift reaction and selective oxidation reaction.
  • the reformer is provided with Ru catalyst or Ni catalyst.
  • the transformer is provided with a Cu-Zn catalyst and a noble metal catalyst.
  • the selective oxidizer is provided with a Ru catalyst or the like.
  • Patent Document 1 JP 2002-187705 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-225684 Disclosure of the invention
  • Patent Document 1 In order to eliminate the problem of the cost increase of the hydrogen generator and the deterioration of the durability performance due to the complicated configuration of the water vapor channel, the hydrogen generator described in Patent Document 1 is As described in Patent Document 2, it is assumed to incorporate a configuration in which a cylindrical water evaporator and a reformer are arranged side by side in the same axial direction.
  • the present invention has been made to solve the above-described problems of the conventional hydrogen generator and the fuel cell system including the conventional hydrogen generator, and suppresses complication of the water vapor channel and improves durability.
  • the present invention provides a hydrogen generator and a fuel cell system equipped with the hydrogen generator that reduce the possibility that the reforming reaction will be inhibited by the non-evaporated liquid water that is supplied by the power of the water evaporator. The purpose is that.
  • a hydrogen generator includes a heater that generates a combustion gas by burning a mixture of combustion fuel and combustion air, and the heater generates A ring-shaped preheating evaporator in which the raw material and water are heated by the combustion gas to generate a mixture of the raw material and water vapor, and the mixed gas generated by the preheating evaporator below the preheating evaporator.
  • an annular reformer that generates a hydrogen-containing gas by passing the gas through a reforming catalyst heated by the combustion gas, and further includes a water trap section that traps liquid water discharged from the preheating evaporator.
  • the hydrogen-containing gas generated by the reformer on the outer periphery of the preheat evaporator Further comprising a shifter having a shift catalyst for reducing carbon monoxide therein by a shift reaction, and heat exchange between the hydrogen-containing gas supplied from the reformer to the shifter and liquid water in the water trap section. It is configured to
  • the preheat evaporator, the water trap, the reformer, and the transformer are each provided in a cylindrical shape outside the heater, and the transformer is included in the preheat evaporator.
  • the preheat evaporator, the water trap part, and the reformer are supplied from the preheat evaporator to the reformer via the water trap part.
  • the hydrogen-containing gas generated in the reformer is configured to come into contact with the water trap portion before being supplied to the transformer.
  • the raw material supply port and the water supply port are provided on the other end side without the water trap portion of the preheating evaporator being connected.
  • the hydrogen generator includes a combustion air supply for supplying the combustion air to the heater, a water supply for supplying the water to the preheating evaporator, and the transformer.
  • a temperature detector that detects the temperature of the shift catalyst to be stored, and a controller, and the controller controls the preheat evaporation from the water supply based on the temperature of the shift catalyst detected by the temperature detector.
  • the amount of water supplied to the heater and the heater from the combustion air supply Controlling at least one of the combustion air supply amounts to.
  • the controller heats the amount of water supplied to the preheating evaporator and the combustion air supply from the power of the water supply based on the temperature of the shift catalyst detected by the temperature detector.
  • the temperature of the preheating evaporator changes by controlling at least one of the combustion air supply to the generator, and the temperature of the transformer provided on the outer periphery of the preheating evaporator can be controlled accordingly.
  • the hydrogen generator includes a storage device having information on an upper limit temperature and a lower limit temperature related to temperature control of the shift catalyst, and the controller has a temperature detected by the temperature detector equal to or higher than the upper limit temperature. If the temperature of the preheat evaporator becomes less than the lower limit temperature, the water supplier is controlled to increase the amount of water supplied to the preheat evaporator. The water supply is controlled so as to reduce the amount of water supplied to the water.
  • the storage device further includes information on an upper limit supply amount and a lower limit supply amount relating to the control of the water supply amount, and the controller supplies water from the water supply device to the preheating evaporator. It is determined that there is an abnormality when the amount exceeds the upper limit supply amount or when the water supply amount from the water supplier to the preheat evaporator becomes equal to or less than the lower limit supply amount.
  • the controller determines that an abnormality occurs when the water supply amount to the water supply power preheat evaporator exceeds the upper limit supply amount or below the lower limit supply amount. The user can detect the occurrence of an abnormality.
  • the hydrogen generator includes a storage device having information on an upper limit temperature and a lower limit temperature related to temperature control of the shift catalyst, and the controller detects the detected temperature of the temperature detector.
  • the combustion air supply device is controlled to reduce the amount of combustion air supplied to the heater, and the temperature detected by the temperature detector is equal to or lower than the lower limit temperature. In this case, increase the amount of combustion air supplied to the heater. Control the combustion air supply.
  • the amount of heat transferred to the combustion gas power preheating evaporator varies by controlling the amount of combustion air supplied to the combustion air supply power heater, so the temperature of the preheating evaporator Changes. This leads to fluctuations in the amount of heat transferred from the converter to the preheating evaporator, and it becomes possible to control the temperature of the conversion catalyst.
  • the storage device further includes information on an upper limit supply amount and a lower limit supply amount related to the control of the combustion air supply amount, and the controller is connected to the heater from the combustion air supply device. It is determined that there is an abnormality when the combustion air supply amount to the upper limit supply amount is greater than or equal to the upper limit supply amount or the combustion air supply force is less than the lower limit supply amount. To do.
  • the controller determines that there is an abnormality when the amount of combustion air supplied from the combustion air supply to the heater exceeds the upper limit supply amount or less than the lower limit supply amount. Therefore, it becomes possible for an operator or a user to detect the occurrence of an abnormality.
  • the hydrogen generation device includes information on the upper limit temperature and the lower limit temperature related to the temperature control of the shift catalyst and information on the upper limit supply amount and the lower limit supply amount related to the control of the water supply amount. And when the temperature of the shift catalyst is equal to or higher than the upper limit temperature, and the water supply force is less than or equal to the upper limit supply amount. Controls the combustion air supply so as to reduce the amount of combustion air supplied to the heater, the temperature of the shift catalyst is lower than the lower limit temperature, and water from the water supply to the preheating evaporator When the supply amount becomes equal to or less than the lower limit supply amount, the combustion air supply device is controlled so as to increase the combustion air supply amount to the heater.
  • the hydrogen generation device may include information on the upper limit temperature and the lower limit temperature related to the temperature control of the shift catalyst and the upper limit supply amount and the lower limit supply amount related to the control of the combustion air supply amount.
  • the controller has a temperature of the shift catalyst equal to or higher than the upper limit temperature, and a combustion air supply amount from the combustion air supply device to the heater is equal to or lower than the lower limit supply amount.
  • the water supplier is controlled to increase the amount of water supplied to the preheating evaporator, and the temperature of the shift catalyst is set to the lower limit temperature.
  • the water supply unit is configured to reduce the water supply amount to the preheating evaporator when the combustion air supply amount from the combustion air supply unit to the heater is equal to or greater than the upper limit supply amount. To control.
  • the transformer is built in by both the water supply force control of the water supply amount to the preheating evaporator and the control of the combustion air supply amount from the combustion air supply device to the heater. Since the temperature of the shift catalyst is controlled, the temperature control of the shift catalyst can be more reliably performed during operation of the fuel cell system.
  • the fuel cell system according to the present invention generates power using the characteristic hydrogen generation apparatus according to the present invention, and the hydrogen-containing gas and the oxygen-containing gas supplied from the hydrogen generation apparatus. And at least a fuel cell.
  • the fuel cell system uses the characteristic hydrogen generator according to the present invention and a fuel cell that generates power using the hydrogen-containing gas and the oxygen-containing gas supplied by the hydrogen generator. Therefore, liquid water is directly supplied to the reforming catalyst filled in the reformer and the reforming catalyst is inhibited by local quenching, which may inhibit the reforming reaction and destroy the catalyst. Performance is reduced, and a hydrogen-containing gas having a stable composition is supplied. This makes it possible to provide a fuel cell system that can continue stable operation.
  • the liquid water from the preheat evaporator is trapped by the water trap unit, so that the liquid water is directly supplied to the reforming catalyst filled in the reformer, and the reforming is performed.
  • Stable hydrogen production is possible because the possibility of inhibition of the reforming reaction and destruction of the catalyst caused by local quenching of the catalyst is reduced.
  • the hydrogen generator operates stably, and a high-quality hydrogen-containing gas having a stable composition is stabilized toward the fuel cell. It is possible to provide a fuel cell system capable of stable power generation operation.
  • FIG. 1 is a block diagram and a cross-sectional view schematically showing a first configuration of a hydrogen generator according to Embodiment 1 of the present invention and an additional configuration for driving the first configuration. is there.
  • FIG. 2 is a block diagram and a cross-sectional view schematically showing a second configuration of the hydrogen generator according to Embodiment 1 of the present invention and an additional configuration for driving the second configuration.
  • FIG. 3 is a schematic diagram for explaining the principle of the present invention.
  • FIG. 4 is a flowchart schematically showing one cycle of characteristic operations of the hydrogen generator according to Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart schematically showing one cycle of characteristic operations of the hydrogen generator according to Embodiment 2 of the present invention.
  • FIG. 6 is a graph schematically showing the results of one evaluation example regarding the temperature activity of a Cu—Zn-based shift catalyst.
  • FIG. 1 is a block diagram and a cross-sectional view schematically showing a first configuration of the hydrogen generator according to Embodiment 1 of the present invention and an additional configuration for driving the first configuration.
  • the hydrogen generator 100a supplies a gas source gas such as city gas or LPG obtained from the existing fossil raw material infrastructure, or a fuel cell.
  • a gas source gas such as city gas or LPG obtained from the existing fossil raw material infrastructure, or a fuel cell.
  • the heating unit 1 is provided with a reforming unit 2, a transformation unit 3, and a selective oxidation unit 4 that are concentrically and integrally disposed with the heating unit 1.
  • the hydrogen generator 100a has a predetermined diameter, and an upper opening and a lower opening are an upper wall portion a and a lower wall portion b. Concentric with the outer wall A so that its upper and lower ends are connected to the cylindrical outer wall A closed by the upper wall a and lower wall b disposed above and below the outer wall A. And a substantially cylindrical inner wall portion B having a diameter smaller than the diameter of the outer wall portion A provided therein.
  • the inner wall portion B has a cylindrical first inner wall portion B1 extending vertically from the upper wall portion a to a predetermined position, and a lower end of the first inner wall portion B1.
  • the hydrogen generator 100a includes a substantially cylindrical partition wall C between the outer wall A and the inner wall B.
  • the upper end of the partition wall C is connected to the upper part of the outer wall A spaced a predetermined distance from the upper wall a, and the partition C is inclined downward at a predetermined angle from the connection.
  • the first conical first partition wall C 1 extending to a predetermined position in the vicinity of the inner wall B and the bottom end force of the first partition wall C 1 is a cylinder extending vertically to the predetermined position.
  • a cylindrical heating section 1 for heating the reforming catalyst 2a of the reforming section 2 through the third inner wall section B3 is provided so as to form the path 5.
  • This heating unit 1 is provided with a combustion burner (not shown in FIG. 1), and is supplied from a raw material supplier 10 (to be described later) using combustion air supplied from a combustion air supplier 11 (to be described later) having a sirocco fan or the like.
  • the combustion gas discharged from the heating unit 1 and used to heat the reforming catalyst 2a and the preheating evaporation unit 6 of the reforming unit 2 is also an exhaust gas exhausting loca provided at the upper part of the hydrogen generator 100a. It is discharged outside the hydrogen generator 100a as exhaust gas.
  • the hydrogen generator 100a includes a cylindrical reforming catalyst 2a between a predetermined lower portion of the third inner wall portion B3 and the second partition wall portion C2. It has.
  • the reforming catalyst 2a is composed of a Ru-based catalyst, and a raw material such as city gas, a hydrocarbon-based component such as LPG, an alcohol such as methanol, or a naphtha component, or a raw material gas and steam.
  • the steam reforming reaction to be used mainly proceeds to generate a hydrogen-containing gas containing hydrogen as a main component and carbon monoxide as a subcomponent.
  • the reforming unit 2 indirectly detects the temperature of the reforming catalyst 2a by detecting the temperature of the reforming catalyst 2a and the hydrogen-containing gas discharged from the reforming catalyst 2a. Temperature detecting section 2b.
  • a cylindrical shift catalyst 3a and a selection catalyst are selected between a predetermined upper portion of the outer wall portion A and the second partition wall portion C2.
  • An oxidation catalyst 4a is provided.
  • the shift catalyst 3a is a predetermined position on the side close to the reforming catalyst 2a (i.e., the flow of the hydrogen-containing gas) in the cylindrical region surrounded by the predetermined portion of the outer wall portion A and the second partition wall portion C2. On the upstream side).
  • selective oxidation catalyst 4a is disposed at a predetermined position far from the reforming catalyst 2a in the cylindrical region (that is, downstream of the flow of the hydrogen-containing gas).
  • the shift catalyst 3a and the selective oxidation catalyst 4a are disposed so as to be separated from each other by a predetermined distance.
  • An air supply port 103 is provided so as to communicate with the space between the shift catalyst 3a and the selective oxidation catalyst 4a.
  • a fuel gas outlet 105 is provided in the outer wall portion A so as to communicate with the space above the selective acid catalyst 4a.
  • the shift catalyst 3a is composed of a Cu-Zn-based catalyst, and steam is used as the concentration of carbon monoxide contained in the hydrogen-containing gas generated in the reforming section 2.
  • the concentration is reduced below a predetermined concentration.
  • the shift unit 3 detects the temperature of the shift catalyst 3a and the temperature of the shift catalyst 3a indirectly by detecting the temperature of the hydrogen-containing gas introduced into the shift catalyst 3a. And a temperature detector 3c that directly detects the temperature of the shift catalyst 3a.
  • the selective oxidation catalyst 4a is composed of a Ru-based catalyst in the present embodiment, and the concentration of monoxide carbon that is still contained in the hydrogen-containing gas in which the concentration of monoxide carbon is reduced in the shift section 3 This is further reduced to a predetermined concentration or less by mainly proceeding with a selective oxidation reaction using air supplied from the air supply port 103 by the selective oxidation air supplier 12 described later.
  • the hydrogen-containing gas that has passed through the selective oxidation catalyst 4a is taken out from the fuel gas outlet 105.
  • the selective oxidation unit 4 according to the present embodiment includes a selective oxidation catalyst 4a and a temperature detection unit 4b that directly detects the temperature of the selective oxidation catalyst 4a.
  • a preheating evaporation section 6 for evaporating water supplied from a water supply device 9 to be described later is configured over a predetermined region surrounded by the above.
  • the preheating evaporation section 6 includes an evaporation rod 6a in a cylindrical area between the first inner wall section B1 of the inner wall section B and a predetermined portion of the second partition wall section C2 facing the first inner wall section B1. Is arranged.
  • the evaporation rod 6a is formed in the vertical direction in which the second partition wall C2 in the partition wall C is directed from the upper end to the lower end.
  • a cylindrical region between the wall portion B and the second partition wall portion C2 extends so as to swirl around the heating portion 1 in a spiral manner.
  • the evaporation rod 6a is disposed so that the outer peripheral portion thereof is in contact with the inner wall portion B and the second partition wall portion C2.
  • the upper wall portion a is provided with a water supply port 101 so as to communicate with the preheating evaporation unit 6.
  • the preheating evaporation unit 6 is configured such that the water supplied from the water supplier 9 through the water supply port 101 flows along the first partition wall portion C1 in the partition wall portion C, and then the evaporation rod It is configured so as to flow down while spirally turning between the inner wall portion B and the second partition wall portion C2 vertically downward along 6a.
  • the preheating evaporation section 6 is provided with a raw material supply port 102 communicating with the preheating evaporation section 6 on the outer wall portion A, and the raw material gas supplied from the raw material supply device 10 to be described later through the raw material supply port 102 is supplied.
  • the raw gas supplied from the raw material supplier 10 by the preheating evaporation unit 6 is heated to a predetermined temperature by the high-temperature combustion gas discharged from the heating unit 1 and the water supplied from the water supplier 9 is heated. It is thoroughly mixed with water vapor obtained by evaporating water. As a result, a mixture of the raw material gas and the water vapor is generated in the preheating evaporator 6. The mixture of the raw material gas and water vapor is then supplied to the reforming catalyst 2a in the reforming section 2.
  • a heat exchanging portion 8 is constituted by a concave water trap portion 7 provided in an annular shape over the entire circumference. This heat exchanging unit 8 transfers the heat held by the hydrogen-containing gas before being discharged from the reforming unit 2 and supplied to the transformation unit 3 from the transformation unit 3 side through the second partition unit C2. It is configured to move to the 6 side by heat exchange.
  • the water trap section 7 is configured to flow spirally along the evaporation rod 6a of the preheating evaporation section 6 and trap the liquid water discharged without being completely evaporated in the preheating evaporation section 6. .
  • the second partition wall portion C 2 in the partition wall portion C mediates heat transfer between the liquid water stored in the water trap section 7 and the hydrogen-containing gas before being introduced into the shift section 3. Note that the mixture of the raw material gas and water vapor generated in the preheating evaporation section 6 extends over the entire circumference between the heat exchange section 8 and the inner wall section B without staying in the heat exchange section 8. It passes through the formed predetermined gap 104 and is sequentially supplied to the reforming catalyst 2a in the reforming section 2.
  • the heating unit 1 is disposed at the center thereof, and the cylindrical preheating evaporation unit 6 is disposed above the heating unit 1 in the gravity direction.
  • a cylindrical heat exchanging portion 8 and a reforming portion 2 are disposed on the lower side in the gravity direction.
  • the combustion gas discharged from the heating unit 1 is passed between the heating unit 1 and the preheating evaporation unit 6.
  • a combustion gas flow path 5 is provided for flow.
  • the heat exchanging section 8 is arranged at the boundary between the flow path through which the mixture of the raw material gas and water vapor flows and the flow path through which the hydrogen-containing gas supplied to the shift section 3 flows.
  • the temperature of the hydrogen-containing gas before being supplied to the shift section 3 can be appropriately controlled via the second partition wall section C2.
  • the conversion unit 3 and the selective oxidation unit 4 that reduce the concentration of carbon monoxide contained in the hydrogen-containing gas generated in the reforming unit 2 are placed outside the preheating evaporation unit 6. It is arranged so that the heat energy surplus in the transformation unit 3 and the selective acid unit 4 can be supplied to the preheating evaporation unit 6.
  • the reforming catalyst filled in the reforming section 2 is used. It is possible to prevent the reforming catalyst 2a from being destroyed by inhibiting the reforming reaction caused by supplying liquid water directly to 2a and locally cooling the reforming catalyst 2a.
  • FIG. 2 is a block diagram and a cross-sectional view schematically showing a second configuration of the hydrogen generator according to Embodiment 1 of the present invention and an additional configuration for driving the second configuration. .
  • the configuration of the heat exchange unit 8 and its surroundings is slightly different from the configuration of the hydrogen generator 100a.
  • the hydrogen generator 100b is similar to the hydrogen generator 100a in that it has a cylindrical outer wall portion A and upper and lower portions disposed above and below the outer wall portion A.
  • a cylindrical inner wall B having a diameter smaller than the diameter of the outer wall A concentrically provided with the outer wall A so that the upper and lower ends thereof are connected to the wall a and the lower wall b.
  • the hydrogen generator 100b includes a substantially cylindrical partition wall C between the outer wall A and the inner wall B as in the hydrogen generator 100a.
  • the partition wall portion C has a connecting portion force with the outer wall portion A.
  • the first partition wall portion C1 having an inverted conical shape that inclines downward at a predetermined angle and extends to a predetermined position in the vicinity of the inner wall portion B.
  • the lower end force of the first partition wall portion C1 is a cylindrical second partition wall portion C 2 that extends vertically downward to a predetermined position, and the inner edge portion is formed at the lower end of the second partition wall portion C2.
  • a fourth partition wall portion C4 is provided to the outer edge of the third partition wall C3 and extends vertically downward to a predetermined position near the lower wall b.
  • a heat exchanging portion 8 is constituted by a concave water trap portion 7 provided in an annular shape over the entire circumference of the inner wall portion B on the inner side.
  • a flow path through which a mixture of the raw material gas and water vapor flows is provided inside the fourth partition wall C4 in the partition wall, and the inside thereof is provided. Further, a configuration in which the water trap part 7 is arranged is adopted.
  • the water trap section 7 of the hydrogen generator 100b flows spirally along the evaporation rod 6a of the preheat evaporator 6 and does not evaporate completely in the preheat evaporator 6. It is configured to trap the discharged liquid water. Even in such a configuration, as in the case of using the hydrogen generator 100a shown in FIG. 1, the temperature of the hydrogen-containing gas before being supplied to the shift unit 3 can be appropriately controlled via the fourth partition wall C4. It becomes possible. In other respects, the configuration of the hydrogen generator 100b and the configuration of the hydrogen generator 100a are the same.
  • water vapor is supplied to the preheating evaporator 6 of the hydrogen generator 100a.
  • a water supply 9 for supplying water necessary for the progress of the reforming reaction and the city gas or the gas required for the steam reforming reaction to proceed to the heating unit 1 and the preheating evaporation unit 6 of the hydrogen generator 100a. Combustion air required for combustion of city gas, etc.
  • a selective oxidation air supply 12 for supplying selective oxidation air necessary for advancing the selective oxidation reaction to the selective oxidation unit 4 of the hydrogen generator 100a.
  • the water supplier 9 is connected to, for example, an infrastructure that can constantly supply water such as water. Then, after removing foreign substances as necessary, the water supply unit 9 generates hydrogen by appropriately controlling the supply amount of water supplied by water, etc., while appropriately controlling the supply amount of water. The water is supplied to the preheating evaporator 6 in the apparatus 100a through the water supply port 101.
  • the raw material supplier 10 is connected to the city gas infrastructure.
  • the raw material supplier 10 removes sulfur and other components harmful to the fuel cell system contained in the city gas as needed, and then properly supplies the city gas from which the sulfur etc. has been removed.
  • the city gas whose supply amount is appropriately controlled is supplied to the preheating evaporation unit 6 in the hydrogen generator 100a through the raw material supply port 102 and also to the heating unit 1.
  • the combustion air supply 11 includes a sirocco fan, for example, and removes dust, foreign matter, and the like as necessary with a filter or the like, and then air is supplied to the hydrogen generator 100a with an appropriate supply amount. Supply to heating unit 1.
  • the selective oxidation air supply 12 includes, for example, a diaphragm type pump or the like, and after removing dust or foreign matter as necessary with a filter or the like in the same manner as the combustion air supply 11, Air is supplied through the air supply port 103 to the selective acid tank 4 in the hydrogen generator 100a with an appropriate supply amount.
  • the fuel cell system includes flow path switching valves 13a and 13b.
  • the flow path switching valve 13a is constituted by, for example, a three-way valve, and switches the flow path through which the hydrogen-containing gas generated by the hydrogen generation apparatus 100a flows.
  • the flow path switching valve 13a switches the supply destination of the hydrogen-containing gas generated by the hydrogen generator 100a between the fuel cell and the heating unit 1.
  • the flow path switching valve 13b is configured by, for example, a three-way valve in the same manner as the flow path switching valve 13a, and supplies the raw material gas as the supply source of the combustion gas to the heating unit 1 in the hydrogen generator 100a. It switches between the raw material supply device 10 and the hydrogen production
  • the fuel cell system includes a controller 14.
  • the controller 14 is composed of an arithmetic unit such as a microcomputer, and includes an arithmetic unit (not shown in FIG. 1) that also has CPU power, a storage unit (not shown in FIG. 1) that has internal memory power, and the like. Have. Then, the controller 14 is based on the output signals of the temperature detection units 2b, 3b, 3c, 4b, etc. shown in FIG. 1 and the sequence stored in the storage unit during the power generation operation of the fuel cell system. Control the operation of each component of the fuel cell system such as water supply 9, raw material supply 10, combustion air supply 11, selective oxidation air supply 12, flow path switching valves 13a and 13b, etc. To do.
  • FIG. 3 is a schematic diagram for explaining the principle of the present invention.
  • the supply amount S1 is the supply amount S2
  • the heat amount Hl is less than the heat amount H2.
  • the following explanation is based on a virtual model! Now, the principle of the present invention will be schematically described.
  • water is supplied at an amount of supply S1 to the evaporation section P1 corresponding to the preheating evaporation section 6 shown in FIG. 1, and at an amount of heat HI to the evaporation section P1.
  • the water trap part of the heat exchange part P2 corresponding to the heat exchange part 8 shown in FIG. 1 completely evaporates from the evaporation stick corresponding to the evaporation stick 6a shown in FIG. 1 of the evaporation part P1.
  • the discharged liquid water is trapped.
  • the hydrogen-containing gas that passes in the vicinity of the heat exchange part P2 is adjusted to the temperature T1 by the heat exchange action of the heat exchange part P2 according to the amount of water trapped in the water trap part.
  • the present invention appropriately controls at least one of the amount of heat supplied to the preheating evaporator 6 and the amount of water supplied from the water supplier 9 to the preheating evaporator 6 shown in FIG.
  • the temperature of the hydrogen-containing gas introduced into the shift unit 3 is appropriately controlled by appropriately controlling the amount of water stored in the water trap unit 7 of the heat exchange unit 8 in the hydrogen generator 100a.
  • the water supply device 9 and the raw material supply device 10 are operated to supply water and the raw material gas to the preheating evaporation unit 6 of the hydrogen generator 100a.
  • a raw material gas a city gas containing methane after desulfurization as a main component is used.
  • the water supply is set so that it contains oxygen molecules that are three times the amount of carbon atoms in the average composition of the raw material gas.
  • the city gas mainly composed of methane is used as the raw material gas.
  • the required amount of water is supplied to the preheating evaporator 6 because 3 mol of water vapor is present per methane. That is, water is supplied from the water supplier 9 toward the preheating evaporator 6 so that the steam carbon ratio (SZC ratio) is 3.
  • the raw material gas and water are supplied from the upper part of the preheating evaporation unit 6.
  • the raw material gas and water are heated by the high-temperature combustion gas discharged from the heating unit 1 and heat transfer from the selective oxidation unit 4 and the transformation unit 3 inside the preheating evaporation unit 6.
  • the preheating evaporation unit 6 before the reforming unit 2 becomes a mixture of raw material gas and water vapor, and this mixture is supplied to the reforming unit 2.
  • the air-fuel mixture composed of water vapor and the raw material gas flows from the preheating evaporation unit 6 into the reforming unit 2 with an upward force from the lower side in FIG.
  • the water supplied by the water supply 9 also causes a pressure fluctuation in the preheating evaporation section 6 due to an increase in volume accompanying evaporation.
  • the pressure fluctuation is large, a fluctuation due to the pressure fluctuation occurs in the supply amount of the raw material gas supplied to the preheating evaporation unit 6 at the same time.
  • the supplied water follows the gravity and preheats evaporation. Since it can flow downstream in the part 6, it is possible to prevent pressure fluctuations in the preheating evaporation part 6.
  • the water trap portion 7 provided in the heat exchanger 8 is arranged below the preheating evaporator 6 in the direction of the weight. Accordingly, the liquid water discharged from the preheating evaporation unit 6 moves downward in the direction of gravity and is then trapped in the water trap unit 7. For this reason, liquid water is not directly supplied to the reforming catalyst 2a filled in the reforming section 2. Therefore, with such a configuration, it is possible to reliably prevent the reforming catalyst 2a from being destroyed by inhibiting the reforming reaction caused by locally quenching the reforming catalyst 2a.
  • the operation of the heating unit 1 is controlled using the temperature detected by the temperature detection unit 2b as a guide.
  • the high-temperature combustion gas discharged from the heating unit 1 heats the reforming catalyst 2a in the reforming unit 2 and then heats the preheating evaporation unit 6 when passing through the combustion gas channel 5.
  • the temperature of the hydrogen-containing gas discharged from the reforming catalyst 2a detected by the temperature detection unit 2b provided immediately after (below) the reforming unit 2 is about 650.
  • the temperature of the combustion gas discharged from the heating unit 1 is controlled so that the temperature becomes ° C. As a result, about 85% of the city gas becomes hydrogen-containing gas by the steam reforming reaction at the outlet of the reforming section 2.
  • the direction of travel of the hydrogen-containing gas discharged from the reforming unit 2 is then reversed below the reforming unit 2 and travels upward along the heat exchange unit 8.
  • the hydrogen-containing gas is supplied to the shift catalyst 3a in the shift section 3 after exchanging heat with the preheating evaporation section 6 side in the heat exchange section 8.
  • the concentration of carbon monoxide contained in the hydrogen-containing gas is reduced to a predetermined concentration by a water gas shift reaction using water vapor.
  • the transformation unit 3 is operated so that the temperature detected by the temperature detection unit 3b in the transformation unit 3 is about 250 ° C.
  • the concentration of carbon monoxide contained in the hydrogen-containing gas at the outlet of the shift section 3 becomes about 0.5% (dry gas base).
  • the reaction temperature can be maintained at about 250 ° C by the heat retained in the hydrogen-containing gas discharged from the reforming section 2, so the shift catalyst 3a in the shift section 3 can be used as a heater, etc. There is no need to heat by.
  • the amount of air supplied to the hydrogen-containing gas from the selective oxidation air supply 12 is set so that the amount of oxygen contained in the hydrogen-containing gas is about twice the number of moles of carbon monoxide and carbon. To do.
  • the amount of air supplied from the selective oxidation air supplier 12 is controlled by setting the amount of air supplied on the basis of the amount of hydrogen to be generated. Further, in the present embodiment, the temperature detected by the temperature detection unit 4b in the selective oxidation unit 4 becomes 125 ° C. by controlling the amount of air supplied from the selective oxidation air supplier 12. Thus, the selective oxidation unit 4 is operated.
  • an air cooling fan as a selective oxidation cooler is provided in the space between the transformation unit 3 and the selective oxidation unit 4 or the outer wall surface of the selective oxidation unit 4, so that the selective oxidation unit 4 It is good also as a structure which controls operating temperature accurately.
  • the reforming section 2 below the preheating evaporation section 6 (lower side in the direction of gravity)
  • the mixture gas of raw material gas and water vapor is smoothly transferred from the preheating evaporation section 6 to the reforming section 2. It can be supplied to Even in the case where water cannot be evaporated in the preheating evaporation section 6, the water can be evaporated in the reforming section 2 which becomes high temperature.
  • the hydrogen generator 100a operates in the same manner as the operation of a conventional general hydrogen generator during normal operation. Then, through the series of operations described above, the hydrogen generator 100a generates a hydrogen-containing gas so that the concentration of carbon monoxide carbon is about 20 ppm or less.
  • FIG. 4 is a flowchart schematically showing one cycle of the characteristic operation of the hydrogen generator according to Embodiment 1 of the present invention. Actually, during the power generation operation of the fuel cell system, for example, the operation of one cycle shown in FIG. 4 is continuously executed without being intermittent.
  • the controller 14 included in the fuel cell system includes at least one of the temperature detectors 3b and 3c. Based on the output signal, the temperature Ts of the shift catalyst 3a is acquired (step Sl).
  • the controller 14 determines whether or not the temperature Ts of the shift catalyst 3a is equal to or higher than the upper limit temperature Tu set in advance in the storage unit of the controller 14 (step S2a).
  • the controller 14 determines that the temperature Ts of the shift catalyst 3a is not higher than the upper limit temperature Tu preset in the storage unit of the controller 14 (NO in step S2a)
  • the shift catalyst 3a It is determined whether or not the temperature Ts is lower than the lower limit temperature T1 preset in the storage unit of the controller 14 (step S2b).
  • the controller 14a Acquire temperature Ts again.
  • controller 14 determines that temperature Ts of shift catalyst 3a is equal to or higher than upper limit temperature Tu preset in the storage unit of controller 14 (YES in step S2a).
  • controller 14 Increase the amount of water supplied to the preheating evaporator 6 (step S3a).
  • the controller 14 determines that the temperature Ts of the modified catalyst 3a is equal to or lower than the lower limit temperature T1 preset in the storage unit of the controller 14 (YES in step S2b)
  • the controller 14 preheats from the water supplier 9. Reduce the amount of water supplied to the evaporator 6 (step S3b).
  • the water supplier 9 to the preheating evaporator 6 The increase in the amount of water supplied to the is performed according to preset increase data. Similarly, the reduction in the amount of water supplied from the water supplier 9 to the preheating evaporator 6 is also executed according to preset reduction data.
  • the characteristic operation of the hydrogen generator 100a according to the present embodiment is that the upper limit temperature Tu and the lower limit temperature T1 are set in advance with respect to the temperature detected by at least one of the temperature detection units 3b and 3c. If the temperature detected by at least one of the temperature detectors 3b and 3c exceeds the upper limit temperature Tu, the amount of water supplied from the water supplier 9 to the preheating evaporator 6 is increased. This is different from the operation of the conventional hydrogen generator in that the amount of latent heat of vaporization is increased in the preheating evaporator 6.
  • the amount of water supplied from the water supply unit 9 to the preheating evaporation unit 6 is reduced to reduce the amount of the preheating evaporation unit. This is different from the operation of the conventional hydrogen generator in that the required latent heat of vaporization in step 6 is reduced.
  • the controller 14 determines whether or not the temperature Ts of the shift catalyst 3a is not equal to or higher than the upper limit temperature Tu after the amount of water supplied from the water supplier 9 to the preheating evaporator 6 is increased in step S3a. (Step S4a). Alternatively, the controller 14 determines whether or not the temperature Ts of the shift catalyst 3a does not fall below the lower limit temperature T1 after the amount of water supplied from the water supplier 9 to the preheating evaporator 6 is reduced in step S3b. Is determined (step S4b).
  • the controller 14 determines that the temperature Ts of the shift catalyst 3a is still equal to or higher than the upper limit temperature Tu (NO in step S4a)
  • the water from the water supplier 9 to the preheating evaporator 6 is determined. Further increase the supply amount.
  • the controller 14 determines that the temperature Ts of the shift catalyst 3a is still below the lower limit temperature T1 (NO in step S4b)
  • the controller 14 reduces the amount of water supplied from the water supplier 9 to the preheating evaporation unit 6. Reduce the dose further.
  • step S4a when the controller 14 determines that the temperature Ts of the shift catalyst 3a has become lower than the upper limit temperature Tu (YES in step S4a), the controller 14 controls the amount of water supplied from the water supplier 9 to the preheating evaporator 6. While the temperature is maintained, it is determined whether or not the temperature Ts of the shift catalyst 3a is not lower than the lower limit temperature T1 (step S5). Alternatively, when the controller 14 determines that the temperature Ts of the shift catalyst 3a exceeds the lower limit temperature T1 (YES in step S4b), the controller 14 maintains the amount of water supplied from the water supplier 9 to the preheating evaporation unit 6.
  • Step S5 Whether the temperature Ts of the shift catalyst 3a is equal to or higher than the upper limit temperature Tu is determined. Step S5). Then, the controller 14 causes the temperature Ts of the shift catalyst 3a to decrease excessively and become the lower limit temperature T1 or lower, or the temperature Ts of the shift catalyst 3a increases excessively to reach the upper limit temperature Tu or higher. If (NO in step S5), for example, an alarm is output to the operator or user (step S6). However, when the temperature Ts of the shift catalyst 3a is between the upper limit temperature Tu and the lower limit temperature T1 (YES in step S5), the controller 14 ends the temperature control of the shift catalyst 3a.
  • the characteristic operation of the hydrogen generator 100a according to the present embodiment is that the temperature of the shift catalyst 3a in the shift section 3 is set to an optimum temperature by the operations of steps S1 to S5 shown in FIG. This is different from the operation of the conventional hydrogen generator in terms of control.
  • the reason why the temperature Ts of the shift catalyst 3a in the shift section 3 can be reduced is that the amount of water supplied from the water supplier 9 to the preheating evaporation section 6 is increased, thereby increasing the heat exchange section 8 In this way, the amount of water stored in the water trap section 7 is increased, and this increases the amount of heat exchange from the hydrogen-containing gas discharged from the reforming section 2 to the preheating evaporation section 6 side. This is because the temperature of the produced hydrogen-containing gas is lowered.
  • the reason why the temperature Ts of the shift catalyst 3a in the shift section 3 can be increased is that the amount of water supplied from the water supply 9 to the preheating evaporation section 6 is reduced so that heat exchange can be achieved.
  • the amount of water stored in the water trap part 7 in the part 8 is reduced, and this reduces the amount of heat exchange to the preheating steaming part 6 side of the hydrogen-containing gas power discharged from the reforming part 2. This is because the temperature of the hydrogen-containing gas supplied to the tank rises.
  • the hydrogen generator 100a configured by integrating the carbon monoxide removal unit such as the reforming unit 2, the conversion unit 3, and the selective oxidation unit 4, heat transfer is stable at each operating temperature. Therefore, when the temperature of one reaction zone changes, the balance changes, and it may not be possible to maintain the optimum operating temperature. That is, the change in the temperature of the carbon monoxide removal section is often caused by the supply balance of water or source gas being lost. In particular, when the supply amount of water changes, for example, if the supply amount of water becomes lower than the supply amount assumed for some reason, the temperature of the shift catalyst 3a in the shift section 3 increases as described above. Become.
  • the control is performed to increase the amount of water supplied from the water supplier 9 to the preheating evaporator 6, so that the temperature detector 3b (or temperature detector) is finally used.
  • the effect that the temperature detected by part 3c) is stabilized within the proper range and the supply amount of water within the proper range can be supplied is also exhibited.
  • the temperature of the shift catalyst 3a in the shift section 3 is supplied for the steam reforming reaction by providing the heat exchange section 8 in the flow path of the hydrogen-containing gas to the shift section 3. It can be easily controlled by controlling the amount of water supplied.
  • FIG. 6 is a graph schematically showing the results of one evaluation example regarding the temperature activity of the Cu—Zn-based shift catalyst according to Embodiment 1 of the present invention.
  • FIG. 6 shows the result of an evaluation example in a stationary phase flow device for a Cu—Zn-based shift catalyst.
  • the upper limit temperature Tu is set to 240 ° C and the lower limit temperature T1 is set to 200 ° C with respect to the temperature detected by the temperature detection unit 3b.
  • water supply 9 Force By appropriately increasing or decreasing the amount of water supplied to the preheating vaporization section 6, the concentration of carbon monoxide contained in the hydrogen-containing gas at the outlet of the transformation section 3 exceeds 0.5% (dry gas base). Control to not.
  • the upper limit temperature Tu and the lower limit temperature T1 with respect to the temperature detected by the temperature detector 3b are the configuration of the hydrogen generator 100a, such as the size of the shift catalyst 3a, the type of catalyst to be applied, the amount of catalyst charged, and the operating conditions. Is different.
  • the temperature of the shift catalyst 3a in the shift section 3 is detected by the temperature detector 3b or the like disposed in the vicinity thereof.
  • the shift section 3 is not limited to this configuration. As long as the temperature of the shift catalyst 3a can be detected directly or indirectly, the temperature detector can be arranged at any position.
  • a water flow meter is disposed between the water supply unit 9 and the preheating evaporation unit 6, and the upper limit supply amount of water supplied to the preheating evaporation unit 6 is set. And the lower limit supply amount are set respectively, it becomes possible to detect the performance deterioration of the temperature detectors 3b and 3c in the fuel cell system. That is, the self-diagnosis of the fuel cell system can be performed.
  • a water flow meter is built in the water supply device 9, and an upper limit supply amount and a lower limit supply amount are provided in advance with respect to the supply amount of water supplied from the water supply device 9 to the preheating evaporator 6. For example, when the temperature detected by the temperature detector 3b is equal to or higher than the upper limit temperature Tu and the amount of water supplied from the water supplier 9 to the preheating evaporator 6 is increased, the increased amount of water If the supply amount is greater than or equal to the upper limit supply amount described above, it is determined that performance degradation has occurred in the temperature detectors 3b and 3c and the like.
  • the temperature detected by the temperature detection unit 3b is lower than the lower limit temperature T1
  • the amount of water supplied from the water supply unit 9 to the preheating evaporation unit 6 is reduced
  • the supply of water after the reduction is made
  • the amount is equal to or less than the above-described lower limit supply amount, it is determined that the performance deterioration has occurred in the temperature detection units 3b and 3c.
  • the temperature of each reaction part changes in a relatively stable state. Therefore, by controlling the amount of water supplied from the water supplier 9, the temperature of the shift catalyst 3a in the shift section 3 can be stabilized within the assumed range.
  • the temperature detected by the temperature detection unit 3b is not controlled within the assumed range even if the amount of water supply is controlled within the assumed range, Heat exchange is unstable. In this case, it is considered that the amount of water supplied from the water supplier 9 to the preheating evaporator 6 deviates from the expected range as a factor that causes instability in the transfer of heat. For example, when the performance of the water supply device 9 deteriorates over time, water may not be supplied with the correct supply amount with respect to the input voltage. In addition, even if the performance of the temperature detector such as the temperature detector 3b deteriorates over time, it may not be stable within the initially assumed temperature range.
  • the size is increased when a separate temperature control mechanism is provided for each reaction unit in order to optimize the individual operating temperature.
  • the amount of water supplied to the preheating evaporation unit is changed to change without reducing the hydrogen generation efficiency.
  • the temperature of the shift catalyst 3a in part 3 can be controlled appropriately.
  • the difference between the characteristic operation of the hydrogen generator shown in the present embodiment and the characteristic operation of the hydrogen generator shown in Embodiment 1 is, for example, the temperature detected by the temperature detector 3b.
  • the upper limit temperature Tu and the lower limit temperature T1 are set in advance, and the amount of combustion air supplied to the heating section 1 when the temperature detected by the temperature detection section 3b exceeds the upper limit temperature Tu Is to reduce the weight.
  • Another difference is that, for example, when the temperature detected by the temperature detection unit 3b is lower than the lower limit temperature T1, the supply amount of combustion air supplied to the heating unit 1 is increased. .
  • Such a characteristic operation makes it possible to control the temperature of the shift catalyst 3a in the shift section 3 to an optimum temperature.
  • FIG. 5 is a flowchart schematically showing one cycle of the characteristic operation of the hydrogen generator according to Embodiment 2 of the present invention.
  • the controller 14 included in the fuel cell system has at least one of the temperature detectors 3b and 3c. Based on the output signal, the temperature Ts of the shift catalyst 3a is acquired (step Sl).
  • the controller 14 determines whether or not the temperature Ts of the shift catalyst 3a is equal to or higher than the upper limit temperature Tu set in advance in the storage unit of the controller 14 (step S2a).
  • the controller 14 determines that the temperature Ts of the shift catalyst 3a is not higher than the upper limit temperature Tu preset in the storage unit of the controller 14 (NO in step S2a)
  • the shift catalyst 3a It is determined whether or not the temperature Ts is lower than the lower limit temperature T1 preset in the storage unit of the controller 14 (step S2b).
  • the temperature Ts of the shift catalyst 3a is acquired again.
  • step S3a the combustion air The amount of air supplied from the feeder 11 to the heating unit 1 is reduced.
  • step S3b the combustion air supply 11 Increase the amount of air supplied to heating unit 1
  • the reduction in the amount of air supplied from the combustion air supply 11 to the heating unit 1 is executed in accordance with preset reduction data.
  • the increase in the amount of air supplied from the combustion air supply 11 to the heating unit 1 is executed according to preset increase data.
  • the characteristic operation of the hydrogen generator 100a according to the present embodiment is that the upper limit temperature Tu and the lower limit temperature T1 are set in advance with respect to the temperature detected by at least one of the temperature detection units 3b and 3c. If the temperature detected by at least one of the temperature detection units 3b and 3c exceeds the upper limit temperature Tu, the amount of air supplied from the combustion air supply 11 to the heating unit 1 is reduced. This is different from the operation of the conventional hydrogen generator in that the amount of heat supplied to the preheating evaporator 6 is reduced. In addition, when the temperature detected by at least one of the temperature detection units 3b and 3c is lower than the lower limit temperature T1, the amount of air supplied from the combustion air supply unit 11 to the heating unit 1 is increased. This is different from the operation of the conventional hydrogen generator in that the amount of heat supplied to the preheating evaporator 6 is increased.
  • step S4a the controller 14 reduces the temperature Ts of the shift catalyst 3a below the upper limit temperature Tu. It is determined whether or not (step S4a). Alternatively, the controller 14 determines whether or not the temperature Ts of the shift catalyst 3a exceeds the lower limit temperature T1 after the amount of air supplied from the combustion air supply 11 to the heating unit 1 is increased in step S3b. Is determined (step S4b).
  • the controller 14 determines that the temperature Ts of the shift catalyst 3a is still equal to or higher than the upper limit temperature Tu (NO in step S4a)
  • the controller 14 sends the combustion air supply 11 to the heating unit 1. Reduce the air supply further.
  • the controller 14 determines that the temperature Ts of the shift catalyst 3a is still below the lower limit temperature T1 (NO in step S4b)
  • the controller 14 supplies air from the combustion air supply 11 to the heating unit 1. Increase supply further.
  • step S5 determines that the temperature Ts of the shift catalyst 3a is less than the upper limit temperature Tu (YES in step S4a)
  • the air from the combustion air supply 11 to the heating unit 1 Supply While maintaining the amount it is determined whether or not the temperature Ts of the shift catalyst 3a is lower than the lower limit temperature T1 (step S5).
  • the controller 14 determines that the temperature Ts of the shift catalyst 3a exceeds the lower limit temperature T1 (YES in step S4b)
  • the controller 14 maintains the air supply amount from the combustion air supply 11 to the heating unit 1. Whether or not the temperature Ts of the shift catalyst 3a is equal to or higher than the upper limit temperature Tu is determined (step S5).
  • the controller 14 detects when the temperature Ts of the shift catalyst 3a is excessively decreased to the lower limit temperature T1 or lower, or when the temperature Ts of the shift catalyst 3a is excessively increased to be higher than the upper limit temperature Tu ( In step S5, NO), an alarm is output to the operator or user (step S6).
  • the controller 14 ends the temperature control of the shift catalyst 3a.
  • the characteristic operation of the hydrogen generator 100a according to the present embodiment is that the temperature of the shift catalyst 3a in the shift section 3 is set to an optimum temperature by the operations of steps S1 to S5 shown in FIG. This is different from the operation of the conventional hydrogen generator in terms of control.
  • the relationship between the voltage applied to the sirocco fan or the like and the supply amount of air is created in a database in advance, thereby increasing or decreasing the supply amount of air supplied to the heating unit 1 Control is performed by changing the voltage applied to a fan or the like.
  • the relationship between the rotation speed of the sirocco fan and the supply amount of air it is possible to increase or decrease the supply amount of air supplied to the heating unit 1 even by controlling the rotation speed of the sirocco fan. It is.
  • the upper limit temperature Tu and the lower limit temperature T1 set with respect to the temperature detected by the temperature detection unit 3b are the size of the shift catalyst 3a, the type of catalyst to be applied, the amount of catalyst loaded, the operation It differs depending on the configuration of the hydrogen generator 100a, such as the conversion conditions. Therefore, in setting the upper limit temperature Tu and the lower limit temperature T1, it is necessary to measure and determine in advance the correlation between the supply air amount and the temperature detected by the temperature detection unit 3b for each hydrogen generator 100a.
  • an air flow meter is disposed between the combustion air supply 11 and the heating unit 1, and the upper limit for the amount of air supplied to the heating unit 1 is set.
  • the supply amount and the lower limit supply amount it is possible to detect the performance deterioration of the temperature detectors 3b and 3c in the fuel cell system. That is, the self-diagnosis of the fuel cell system can be performed.
  • an air flow meter is built in the combustion air supply unit 11, and the upper limit supply amount and the lower limit supply are supplied in advance to the supply amount of air supplied from the combustion air supply unit 11 to the heating unit 1. Provide an amount. Then, when the temperature detected by the temperature detection unit 3b is equal to or higher than the upper limit temperature Tu and the amount of air supplied from the combustion air supply 11 to the heating unit 1 is reduced, the amount of air after the reduction is reduced. When the supply amount is equal to or less than the above-mentioned lower limit supply amount, it is determined that the performance deterioration has occurred in the temperature detectors 3b and 3c.
  • the air after the increase is increased.
  • the supply amount is as described above. If it exceeds the limit supply amount, it is judged that the performance has deteriorated in the temperature detectors 3b and 3c.
  • the transfer of heat is stable at each operating temperature, and therefore the temperature of each reaction section changes in a relatively stable state. . Therefore, by controlling the amount of air supplied from the combustion air supply 11, the temperature of the shift catalyst 3 a in the shift section 3 can be stabilized within an assumed range.
  • the heat in each reaction unit is controlled.
  • the delivery of is unstable.
  • the supply amount of air supplied from the combustion air supply 11 to the heating unit 1 may deviate from the expected range.
  • the size is increased when a separate temperature control mechanism is provided for each reaction section in order to optimize the individual operating temperature.
  • the transformation unit that does not reduce the hydrogen generation efficiency.
  • the temperature of the shift catalyst 3a in 3 can be appropriately controlled.
  • the characteristic operation of the hydrogen generator 100a shown in the present embodiment is the characteristic operation of the hydrogen generator 100a shown in the first embodiment and the characteristic operation of the hydrogen generator 100a shown in the second embodiment. The operation will be described as an appropriate combination of various operations.
  • the upper limit temperature Tu and the lower limit temperature T1 are set in advance for the temperature detected by the temperature detection unit 3b, and the supply amount of water supplied from the water supplier 9 to the preheating evaporation unit 6 is set.
  • the upper limit supply amount and the lower limit supply amount are set in advance.
  • the heating unit Increase the amount of combustion air supplied to 1.
  • the temperature of the shift catalyst 3a in the shift section 3 is adjusted to an optimum temperature. Control appropriately at every degree.
  • the first control factor that increases or decreases the amount of water supplied from the water supplier 9 to the preheating evaporator 6 and the amount of water supplied from the combustion air supplier 11 to the heater 1 are as follows. Since the temperature of the shift catalyst 3a in the shift section 3 is controlled by two control factors, the second control factor that increases or decreases the air supply amount, the difference between the upper limit supply amount and the lower limit supply amount related to the water supply amount is controlled. (That is, it is possible to suppress the change width of the water supply amount).
  • the temperature of the reforming catalyst 2a and the selective oxidation catalyst 4a in the reforming unit 2 other than the shift unit 3 and the selective oxidation unit 4 can be reduced. Can be stabilized.
  • the upper limit temperature Tu and the lower limit temperature T1 set for the temperature detected by the temperature detection unit 3b are the size of the shift catalyst 3a, the type of catalyst to be applied, the amount of catalyst loaded, the operation It differs depending on the configuration of the hydrogen generator 100a, such as the conversion conditions. Therefore, upper limit temperature In setting the temperature Tu and the lower limit temperature Tl, the correlation between the amount of water supplied to the preheating evaporator 6 and the amount of air supplied to the heating unit 1 and the temperature detected by the temperature detector 3b is previously determined for each hydrogen generator 100a. It needs to be determined by measurement.
  • Embodiment 4 of the present invention The hardware configuration of the hydrogen generator according to Embodiment 4 of the present invention, the configuration of additional hardware for driving the same, and the basic operation of the hydrogen generator are described in the embodiment. It is the same as the case of 1-3. Therefore, in Embodiment 4 of the present invention, description thereof is omitted.
  • the characteristic operation of the hydrogen generator 100a shown in the present embodiment is the characteristic operation of the hydrogen generator 100a shown in the first embodiment and the characteristic operation of the hydrogen generator 100a shown in the second embodiment. The operation will be described as other operations appropriately combined with other operations.
  • the upper limit temperature Tu and the lower limit temperature T1 are set in advance with respect to the temperature detected by the temperature detection unit 3b, and the amount of air supplied from the combustion air supply 11 to the heating unit 1 is set.
  • an upper limit supply amount and a lower limit supply amount are set in advance. Then, when the temperature detected by the temperature detection unit 3b is equal to or higher than the upper limit temperature Tu and the supply amount of air supplied from the combustion air supply 11 to the heating unit 1 is equal to or lower than the lower limit supply amount, the water supply 9 From there, increase the amount of water supplied to the preheating evaporator 6.
  • the temperature detected by the temperature detection unit 3b is lower than the lower limit temperature T1 and the supply amount of air supplied from the combustion air supply 11 to the heating unit 1 is higher than the upper limit supply amount, Reduce the amount of water supplied from the feeder 9 to the preheating evaporator 6.
  • the temperature of the shift catalyst 3a in the shift section 3 is appropriately controlled to an optimum temperature.
  • the difference between the characteristic operation of the hydrogen generator 100a shown in the present embodiment and the characteristic operation of the hydrogen generator 100a shown in the third embodiment is that the combustion air supply 11 This is because the setting of the upper limit supply amount and the lower limit supply amount with respect to the supply amount of air supplied to 1 is prioritized.
  • the combustion air supply 11 This is because the setting of the upper limit supply amount and the lower limit supply amount with respect to the supply amount of air supplied to 1 is prioritized.
  • the concentration of carbon monoxide contained in the combustion gas increases, or when the air supply amount is large, combustion occurs.
  • the concentration of carbon monoxide and carbon contained in the gas increases, and the combustion gas Problems such as an increase in the thermal energy that is taken out from the hydrogen generator 100a can be preferentially avoided.
  • the supply amount of air supplied to the heating unit 1 is Otherwise, incomplete combustion occurs and the concentration of carbon monoxide contained in the combustion gas increases. Further, if the amount of air supplied to the heating unit 1 is large, the combustion state becomes unstable, and the concentration of carbon monoxide contained in the combustion gas increases. Alternatively, since the thermal energy that the combustion gas brings out of the hydrogen generator 1 OOa increases, the hydrogen generation efficiency of the hydrogen generator 100a decreases.
  • the first control factor that increases or decreases the amount of water supplied from the water supplier 9 to the preheating evaporator 6 and the amount of water supplied from the combustion air supplier 11 to the heater 1 are as follows. Since the temperature of the shift catalyst 3a in the shift section 3 is controlled by two control factors, the second control factor that increases or decreases the air supply amount, the difference between the upper limit supply amount and the lower limit supply amount related to the air supply amount It is possible to suppress (that is, the change width of the air supply amount). Further, since the difference between the upper limit supply amount and the lower limit supply amount can be suppressed, the temperature of the reforming catalyst 2a in the reforming section 2 can be stabilized. In addition, it becomes possible to sufficiently ensure the temperature controllability of the shift catalyst 3a in the shift section 3.
  • the control range of the temperature of the shift catalyst 3a in the shift unit 3 is narrowed. Even when the control range is exceeded, the temperature of the shift catalyst 3a in the shift section 3 can be controlled by controlling the amount of water supplied from the water supply unit 9 to the preheating evaporation section 6. . As a result, the generation probability of carbon monoxide and carbon in the metamorphic section 3 can be suppressed, and the operating temperature of the carbon monoxide removing section can be controlled to a more appropriate operating temperature.
  • the upper limit temperature and the lower limit temperature are set in advance with respect to the temperature detected by the temperature detection unit for detecting the temperature of the shift unit.
  • the temperature detected by the temperature detector exceeds the upper limit temperature, the amount of water supplied from the water feeder to the preheating evaporator is increased, so that the preheating evaporator Increase the amount of latent heat of vaporization.
  • the amount of heat exchange from the hydrogen-containing gas discharged from the reforming section to the preheating evaporation section increases, so the temperature of the hydrogen-containing gas supplied to the shift section decreases, and the temperature of the shift catalyst in the shift section Can be reduced.
  • the amount of water supplied from the water supply to the preheating evaporation unit is reduced, so that the required latent heat of vaporization is obtained in the preheating evaporation unit. Reduce the amount.
  • the amount of heat exchange from the hydrogen-containing gas discharged from the reforming section to the preheating evaporation section decreases, so the temperature of the hydrogen-containing gas supplied to the shift section rises, and the shift catalyst in the shift section increases. The temperature can be raised.
  • the upper limit supply amount and the lower limit supply amount are set in advance for the supply amount of water supplied from the water supplier to the preheating evaporator, and the temperature detection is performed.
  • the temperature detected at the outlet is equal to or higher than the upper limit temperature and the water supply force is also higher than the upper limit supply rate, or the temperature detected by the temperature detector is lower than the lower limit. It can be determined that the operation of the hydrogen generator is abnormal when the temperature is below the temperature and the amount of water supplied from the water supplier to the preheating evaporator is below the lower limit.
  • the amount of heat exchange in the preheating evaporation unit is determined by the amount of water supplied, so each reaction
  • the temperature balance of the part is generally constant. Therefore, by setting the upper limit temperature and the lower limit temperature for the temperature detected by the temperature detection unit within a range that does not hinder the operation of the hydrogen generator, the amount of water supplied to the preheating evaporation unit is reduced. It can be judged whether it is within the assumed range, and an abnormality outside the assumed range in the hydrogen generator can be judged.
  • the fuel supplied to the heating unit is set.
  • the amount of air supplied for baking the amount of heat generated by the heating unit to the preheating evaporation unit provided outside the heating unit can be reduced.
  • the necessary amount of latent heat of vaporization required in the preheating evaporation unit is constant, the amount of heat exchange from the hydrogen-containing gas discharged from the reforming unit to the preheating evaporation unit increases and is supplied to the transformation unit.
  • the temperature of the hydrogen-containing gas is low I will give you.
  • the temperature of the shift catalyst in the shift section can be lowered.
  • the amount of combustion air supplied to the heating unit is increased to the preheating evaporation unit provided outside the heating unit.
  • the amount of heat of the heating part can be increased.
  • the necessary amount of latent heat of vaporization required in the preheating evaporation unit is constant, the amount of heat exchange from the hydrogen-containing gas discharged from the reforming unit to the preheating evaporation unit is reduced and supplied to the transformation unit.
  • the temperature of the hydrogen-containing gas increases. Thereby, the temperature of the shift catalyst in the shift section can be increased.
  • the temperature detected by the temperature detection unit becomes equal to or higher than the upper limit temperature.
  • the combustion air supply force is heated from the combustion air supply unit. It can be determined that the operation of the hydrogen generator is abnormal when the supply amount of air supplied to the section exceeds the upper limit supply amount.
  • a hydrogen generator that integrates a carbon monoxide removal unit such as a reforming unit, a transformation unit, and a selective oxidation unit, the supply amount of water and raw materials to be supplied is stable! Since the heat exchange amount in each part is determined, the temperature balance in each reaction part is almost constant. Therefore, by setting the upper limit temperature and the lower limit temperature for the temperature detected by the temperature detector within a range that does not hinder the operation of the hydrogen generator, the operation of the combustion air supply device is within the expected range. Therefore, it is possible to determine an abnormality outside the assumed range in the hydrogen generator.
  • an upper limit supply amount and a lower limit supply amount are provided in advance for the amount of water supplied to the water supply power preheating evaporation unit, and the temperature detected by the temperature detection unit exceeds the upper limit temperature and the water supply If the amount of water supplied to the preheating evaporator from the heater exceeds the upper limit supply, the amount of combustion air supplied from the combustion air supply to the heating unit is reduced.
  • the combustion air supply unit supplies the heating unit. Increase the amount of combustion air supplied to the engine.
  • the upper limit supply amount and the lower limit supply It is possible to provide a margin for setting the amount.
  • the probability of carbon monoxide generation in the carbon monoxide removal unit can be reduced, and the operating temperature of the carbon monoxide removal unit can be controlled to a more optimal operation temperature.
  • an upper limit supply amount and a lower limit supply amount are set in advance for the supply amount of air supplied from the combustion air supply to the heating unit, and the temperature detected by the temperature detection unit exceeds the upper limit temperature and combustion
  • the supply amount of air supplied from the air supply unit to the heating unit falls below the lower limit supply amount
  • the supply amount of water supplied from the water supply unit to the preheating evaporation unit is increased.
  • the water supply unit supplies the preheating vaporizer. Reduce the amount of water supplied to.
  • the temperature of the shift catalyst in the shift section is controlled by two powerful control factors, it is possible to provide a margin for setting the upper limit supply amount and the lower limit supply amount.
  • the generation probability of carbon monoxide and carbon in the monoxide and carbon removal section can be reduced, and the operating temperature of the carbon monoxide removal section can be controlled to a more optimal operation temperature.
  • the carbon monoxide removal unit is a shift unit
  • a temperature detection unit is provided in the shift unit to detect the temperature of the shift catalyst, thereby stabilizing the temperature state of the shift catalyst in the shift unit. Therefore, it is possible to supply the fuel cell with a high-quality hydrogen-containing gas in which the concentration of carbon monoxide is sufficiently reduced without increasing the amount of air supplied to the selective oxidation unit.
  • the carbon monoxide such as a reforming section, a shift section, and a selective oxidation section that generates a hydrogen-containing gas by a steam reforming reaction between a raw material gas and water.
  • the temperature of the shift catalyst in the shift section can be appropriately controlled without providing a special temperature control mechanism. become.
  • a temperature control mechanism such as an air cooling fan is not required, it is possible to configure a hydrogen generator that does not increase the amount of heat released.
  • liquid water having the power of the preheat evaporator is trapped by the water trap unit, so that liquid water is directly supplied to the reforming catalyst filled in the reformer, and reforming is performed.
  • the catalyst can be used industrially as a hydrogen generator capable of stable hydrogen generation, because the possibility of inhibiting the reforming reaction and destroying the catalyst caused by local rapid cooling of the catalyst is reduced.
  • the hydrogen generator is stably operated, and a high-quality hydrogen-containing gas having a stable composition is stably supplied to the fuel cell. It can be used industrially as a fuel cell system capable of stable power generation operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

A hydrogen generation device in which not only complication of a steam channel is retrained and durability performance is enhanced but also the possibility of obstruction of reforming reaction or destruction of a reforming catalyst due to nonevaporation liquid water supplied from a steam unit is reduced. The hydrogen generation device (100a), comprising a heater (1) for generating combustion gas by combusting mixture gas of combustion fuel and combustion air, an annular preheating evaporator (6) for generating mixture gas of material and steam by heating the material and steam with the combustion gas generated by the heater, and an annular reformer (2) disposed below the preheating evaporator and generating hydrogen containing gas by passing the mixture gas generated from the preheating evaporator through a reforming catalyst (2a) heated by the combustion gas, is further provided with a water trap section (7) for trapping the liquid water discharged from the preheating evaporator. Furthermore, an annular transforming device (3) incorporating a transforming catalyst (3a) for reducing carbon monoxide in the hydrogen containing gas generated from the reformer by shift reaction is provided on the outer circumference of the preheating evaporator, and heat is exchanged between the hydrogen containing gas supplied from the reformer to the transforming device and the liquid water in the water trap.

Description

明 細 書  Specification
水素生成装置及びそれを備える燃料電池システム  Hydrogen generator and fuel cell system including the same
技術分野  Technical field
[0001] 本発明は、水素含有ガスを生成する改質器と一酸ィ匕炭素の濃度を低減する変成 器及び選択酸化器とそれらを加熱するための加熱器とが一体化された水素生成装 置及びそれを備える燃料電池システムに関する。  The present invention relates to a hydrogen generator in which a reformer that generates a hydrogen-containing gas, a converter and a selective oxidizer that reduce the concentration of carbon monoxide and carbon, and a heater that heats them are integrated. The present invention relates to a device and a fuel cell system including the same.
背景技術  Background art
[0002] 従来から、小規模な高効率発電が可能である燃料電池システムは、発電運転の際 に発生する熱エネルギーを利用するためのシステム構築が容易であるため、高 ヽェ ネルギー利用効率を実現することが可能な分散型の発電システムとして開発が進め られている。  Conventionally, a fuel cell system capable of small-scale high-efficiency power generation has been easy to construct a system for using thermal energy generated during power generation operation, and therefore has high energy utilization efficiency. Development is underway as a distributed power generation system that can be realized.
[0003] 燃料電池システムでは、発電運転の際、その発電部の本体として配設された燃料 電池スタック(以下、単に「燃料電池」という)に、水素を含む水素含有ガスと酸素を含 む酸素含有ガスとが各々供給される。すると、燃料電池では、その供給される水素含 有ガスに含まれる水素と酸素含有ガスに含まれる酸素とが用いられて、所定の電気 化学反応が進行する。この所定の電気化学反応が進行することにより、燃料電池に ぉ 、て、水素及び酸素が有する化学的なエネルギーが電気的なエネルギーに直接 変換される。これにより、燃料電池システムは、負荷に向けて電力を出力する。  In a fuel cell system, during a power generation operation, a hydrogen-containing gas containing hydrogen and an oxygen-containing oxygen are contained in a fuel cell stack (hereinafter simply referred to as “fuel cell”) disposed as a main body of the power generation unit. Each of the contained gases is supplied. Then, in the fuel cell, hydrogen contained in the supplied hydrogen-containing gas and oxygen contained in the oxygen-containing gas are used, and a predetermined electrochemical reaction proceeds. As the predetermined electrochemical reaction proceeds, the chemical energy of hydrogen and oxygen is directly converted into electrical energy in the fuel cell. As a result, the fuel cell system outputs power toward the load.
[0004] さて、燃料電池システムの発電運転時に必要となる水素含有ガスの供給手段は、 通常、インフラストラクチャーとして整備されていない。そのため、従来の燃料電池シ ステムでは、例えば既存の化石原料インフラストラクチャー力も得られる都市ガス又は LPG等の原料ガスと水蒸発器により生成した水蒸気とを用いて 600°C〜700°Cの温 度で水蒸気改質反応を進行させて水素含有ガスを生成する改質器が、燃料電池と 共に配設されていることが多い。一方、水蒸気改質反応により得られる水素含有ガス には、通常、原料ガスに由来する一酸化炭素及び二酸化炭素が大量に含まれてい る。そこで、従来の燃料電池システムでは、改質器で生成された水素含有ガスに含ま れるー酸ィ匕炭素の濃度を低減するために、水素含有ガスの温度を低下させ、 200°C 〜350°Cの温度で水性ガスシフト反応を進行させることにより一酸ィ匕炭素の濃度を低 減する変成器、及び、 100°C〜150°Cの温度で選択酸化反応を進行させることによ り一酸化炭素の濃度を更に低減する選択酸化器が、燃料電池ゃ改質器と共に配設 されていることが多い。ここで、従来の燃料電池システムでは、これらの改質器及び 変成器及び選択酸化器により、水素生成装置が構成されている。尚、これらの改質 器及び変成器及び選択酸化器の各々には、水蒸気改質反応、水性ガスシフト反応、 選択酸化反応の各々を進行させるための各化学反応に適した触媒が各々配設され ている。例えば、改質器には、 Ru触媒や Ni触媒が配設されている。又、変成器には 、 Cu— Zn触媒や貴金属系触媒が配設されている。又、選択酸化器には、 Ru触媒等 が配設されている。 [0004] Now, the means for supplying the hydrogen-containing gas required during the power generation operation of the fuel cell system is not usually provided as an infrastructure. Therefore, in conventional fuel cell systems, for example, a temperature of 600 ° C to 700 ° C using city gas or LPG or other raw material gas that can also provide existing fossil raw material infrastructure power and water vapor generated by a water evaporator. In many cases, a reformer that proceeds with a steam reforming reaction to generate a hydrogen-containing gas is provided together with the fuel cell. On the other hand, the hydrogen-containing gas obtained by the steam reforming reaction usually contains a large amount of carbon monoxide and carbon dioxide derived from the raw material gas. Therefore, in the conventional fuel cell system, the temperature of the hydrogen-containing gas is reduced to 200 ° C in order to reduce the concentration of acid-carbon in the hydrogen-containing gas produced by the reformer. By a water gas shift reaction at a temperature of ˜350 ° C. to reduce the concentration of carbon monoxide and carbon, and a selective oxidation reaction at a temperature of 100 ° C. to 150 ° C. In many cases, a selective oxidizer that further reduces the concentration of carbon monoxide is provided together with a fuel cell reformer. Here, in the conventional fuel cell system, the hydrogen generator is constituted by these reformer, transformer, and selective oxidizer. Each of these reformer, shifter and selective oxidizer is provided with a catalyst suitable for each chemical reaction for proceeding with each of the steam reforming reaction, water gas shift reaction and selective oxidation reaction. ing. For example, the reformer is provided with Ru catalyst or Ni catalyst. The transformer is provided with a Cu-Zn catalyst and a noble metal catalyst. The selective oxidizer is provided with a Ru catalyst or the like.
[0005] ところで、上記構成を有する水素生成装置では、一般的に、各反応器での化学反 応を適切に進行させるために、各反応器の温度を最適な温度に維持する必要がある 。又、上記構成を有する水素生成装置では、各反応器の温度を最適な温度に維持 する際に必要となる熱エネルギーを有効に利用することが重要な課題になっている。  [0005] By the way, in the hydrogen generator having the above-described configuration, it is generally necessary to maintain the temperature of each reactor at an optimum temperature in order to appropriately advance the chemical reaction in each reactor. In addition, in the hydrogen generator having the above-described configuration, it is an important issue to effectively use the thermal energy necessary for maintaining the temperature of each reactor at an optimum temperature.
[0006] そこで、改質器、水蒸発器、変成器、及び選択酸化器の各々を加熱器の周りに同 心円筒状に配設する水素生成装置が提案されている (例えば、特許文献 1参照)。  [0006] In view of this, there has been proposed a hydrogen generator in which each of a reformer, a water evaporator, a transformer, and a selective oxidizer is arranged concentrically around a heater (for example, Patent Document 1). reference).
[0007] 一方、上記特許文献 1に記載のような水素生成装置の構成の場合、通常、改質器 の外周側に配設される水蒸発器で生成した水蒸気を改質器に供給する際に、水蒸 発器力 送出された水蒸気の流れを水蒸発器の軸方向から周方向に変更させること に起因して、水蒸気流路の構成が複雑化する。これにより、例えば、水蒸気流路と改 質器入口とを連結する混合ガス供給パイプは径方向に延び、この混合ガス供給パイ プと軸方向に延びる改質器との接続箇所においては、溶接等の配管施工を施すこと が必要となる。この水蒸気流路の配管施工は、水素生成装置のコストアップや耐久 性能の劣化をもたらす可能性がある。  [0007] On the other hand, in the case of the configuration of the hydrogen generator as described in Patent Document 1, normally, when steam generated by a water evaporator disposed on the outer peripheral side of the reformer is supplied to the reformer. In addition, the structure of the water vapor flow path is complicated by changing the flow of the water vapor delivered from the water evaporator force from the axial direction of the water evaporator to the circumferential direction. As a result, for example, the mixed gas supply pipe connecting the steam flow path and the reformer inlet extends in the radial direction, and welding or the like is performed at the connection point between the mixed gas supply pipe and the reformer extending in the axial direction. It is necessary to install the piping. This piping for the water vapor channel may increase the cost of the hydrogen generator and deteriorate the durability.
[0008] そこで、同一軸方向に各々筒状の水蒸発器と改質器とを並べて配置する水素生成 装置が提案されている (例えば、特許文献 2参照)。  [0008] In view of this, there has been proposed a hydrogen generator in which a cylindrical water evaporator and a reformer are arranged side by side in the same axial direction (see, for example, Patent Document 2).
特許文献 1 :特開 2002— 187705号公報  Patent Document 1: JP 2002-187705 A
特許文献 2:特開 2005 - 225684号公報 発明の開示 Patent Document 2: Japanese Patent Laid-Open No. 2005-225684 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] ここで、水蒸気流路の複雑な構成に起因する水素生成装置のコストアップや耐久 性能の劣化の問題を解消するためには、上記特許文献 1に記載の水素生成装置に 対して上記特許文献 2に記載のように同一軸方向に各々筒状の水蒸発器と改質器と を並べて配置する構成を組み入れることが想定される。  [0009] Here, in order to eliminate the problem of the cost increase of the hydrogen generator and the deterioration of the durability performance due to the complicated configuration of the water vapor channel, the hydrogen generator described in Patent Document 1 is As described in Patent Document 2, it is assumed to incorporate a configuration in which a cylindrical water evaporator and a reformer are arranged side by side in the same axial direction.
[0010] し力しながら、その場合には、水蒸発器が改質器の上方に配置されるため、水蒸発 器で蒸発しなかった液水が改質器内の改質触媒に直接供給される可能性がある。こ の場合、改質触媒が局所的に急冷されることで、改質反応の阻害ゃ改質触媒の破 壊が弓 Iき起こされる可能性がある。  [0010] However, in this case, since the water evaporator is disposed above the reformer, liquid water that has not evaporated in the water evaporator is directly supplied to the reforming catalyst in the reformer. There is a possibility that. In this case, if the reforming catalyst is locally cooled, inhibition of the reforming reaction may cause bowing of the reforming catalyst.
[0011] 本発明は、上記従来の水素生成装置及びそれを備える燃料電池システムが有する 上記課題を解決するためになされたものであり、水蒸気流路の複雑化を抑制し、耐 久性能の向上を図るだけではなぐ水蒸発器力 供給される未蒸発の液水により改 質反応の阻害ゃ改質触媒の破壊が引き起こされる可能性を低減した水素生成装置 及びそれを備える燃料電池システムを提供することを目的としている。 [0011] The present invention has been made to solve the above-described problems of the conventional hydrogen generator and the fuel cell system including the conventional hydrogen generator, and suppresses complication of the water vapor channel and improves durability. The present invention provides a hydrogen generator and a fuel cell system equipped with the hydrogen generator that reduce the possibility that the reforming reaction will be inhibited by the non-evaporated liquid water that is supplied by the power of the water evaporator. The purpose is that.
課題を解決するための手段  Means for solving the problem
[0012] 上記課題を解決するために、本発明に係る水素生成装置は、燃焼用燃料と燃焼用 空気との混合気を燃焼して燃焼ガスを生成する加熱器と、前記加熱器が生成する前 記燃焼ガスにより原料及び水が加熱されて該原料と水蒸気との混合気を生成する環 状の予熱蒸発器と、前記予熱蒸発器の下方に、前記予熱蒸発器が生成する前記混 合気を前記燃焼ガスにより加熱された改質触媒に通過させることにより水素含有ガス を生成する環状の改質器と、を備え、前記予熱蒸発器から排出された液水をトラップ する水トラップ部を更に備えている。  [0012] In order to solve the above problems, a hydrogen generator according to the present invention includes a heater that generates a combustion gas by burning a mixture of combustion fuel and combustion air, and the heater generates A ring-shaped preheating evaporator in which the raw material and water are heated by the combustion gas to generate a mixture of the raw material and water vapor, and the mixed gas generated by the preheating evaporator below the preheating evaporator. And an annular reformer that generates a hydrogen-containing gas by passing the gas through a reforming catalyst heated by the combustion gas, and further includes a water trap section that traps liquid water discharged from the preheating evaporator. I have.
[0013] 力かる構成とすると、水トラップ部により予熱蒸発器力も排出された液水がトラップさ れるため、改質器に充填された改質触媒に液水が直接供給され改質触媒が局所的 に急冷されることで生じる改質反応の阻害や触媒の破壊の可能性を低減することが 可能となる。  [0013] With a powerful configuration, since the liquid water from which the preheat evaporator power has been discharged is trapped by the water trap unit, the liquid water is directly supplied to the reforming catalyst filled in the reformer, and the reforming catalyst is locally supplied. Therefore, it is possible to reduce the possibility of inhibition of the reforming reaction and destruction of the catalyst caused by rapid cooling.
[0014] この場合、前記予熱蒸発器の外周に、前記改質器で生成された前記水素含有ガス 中の一酸化炭素をシフト反応により低減する変成触媒を内蔵する変成器を更に備え 、前記改質器から前記変成器に供給される前記水素含有ガスと前記水トラップ部内 の液水とが熱交換するように構成されて 、る。 [0014] In this case, the hydrogen-containing gas generated by the reformer on the outer periphery of the preheat evaporator Further comprising a shifter having a shift catalyst for reducing carbon monoxide therein by a shift reaction, and heat exchange between the hydrogen-containing gas supplied from the reformer to the shifter and liquid water in the water trap section. It is configured to
[0015] 力かる構成とすると、水トラップ部内の液水と変成器に供給される水素含有ガスとの 間で熱交換が行われ、この熱交換により変成器に供給される水素含有ガスの温度を 好適に低下させることが可能になる。  [0015] With a powerful configuration, heat exchange is performed between the liquid water in the water trap section and the hydrogen-containing gas supplied to the transformer, and the temperature of the hydrogen-containing gas supplied to the transformer by this heat exchange. Can be suitably reduced.
[0016] この場合、前記加熱器の外方に、前記予熱蒸発器と、前記水トラップ部と、前記改 質器及び前記変成器とを各々筒状に備え、前記予熱蒸発器に前記変成器が周設さ れ、前記予熱蒸発器と、前記水トラップ部と、前記改質器とが、該予熱蒸発器から該 水トラップ部を介して該改質器に前記混合気が供給されるように連設され、前記改質 器で生成された前記水素含有ガスが前記変成器に供給される前に前記水トラップ部 と接触するように構成されて 、る。  [0016] In this case, the preheat evaporator, the water trap, the reformer, and the transformer are each provided in a cylindrical shape outside the heater, and the transformer is included in the preheat evaporator. The preheat evaporator, the water trap part, and the reformer are supplied from the preheat evaporator to the reformer via the water trap part. The hydrogen-containing gas generated in the reformer is configured to come into contact with the water trap portion before being supplied to the transformer.
[0017] 力かる構成とすると、水トラップ部内の液水と変成器に供給される水素含有ガスとの 間で熱交換が行われ、この熱交換により変成器に供給される水素含有ガスの温度を 好適に低下させることが可能になる。  [0017] With a powerful configuration, heat exchange is performed between the liquid water in the water trap section and the hydrogen-containing gas supplied to the transformer, and the temperature of the hydrogen-containing gas supplied to the transformer by this heat exchange. Can be suitably reduced.
[0018] この場合、前記原料の供給口及び前記水の供給口を、前記予熱蒸発器の前記水 トラップ部が連設されな 、他端側に備えて 、る。  [0018] In this case, the raw material supply port and the water supply port are provided on the other end side without the water trap portion of the preheating evaporator being connected.
[0019] かかる構成とすると、原料の供給口及び水の供給口を予熱蒸発器の熱交換器が連 設されない他端側に備えているので、予熱蒸発器における原料と水蒸気との混合気 の流通方向と重力方向とが実質的に一致しかつ改質器を重力方向下方に配置する よう水素生成装置を配設した場合に、予熱蒸発器の重力方向上方で生成された原 料と水蒸気との混合気を滞留することなく重力方向下方にある改質器に効率よく供 給することが可能になる。  [0019] With such a configuration, since the raw material supply port and the water supply port are provided on the other end side where the heat exchanger of the preheating evaporator is not connected, the mixture of the raw material and water vapor in the preheating evaporator is provided. When the hydrogen generator is installed so that the flow direction and the gravity direction are substantially the same and the reformer is disposed below the gravity direction, the raw material and water vapor generated above the gravity direction of the preheating evaporator This makes it possible to efficiently supply the reformer below the gravitational direction without stagnating the air-fuel mixture.
[0020] 上記の場合、水素生成装置は、前記加熱器に前記燃焼用空気を供給する燃焼用 空気供給器と、前記予熱蒸発器に前記水を供給する水供給器と、前記変成器が内 蔵する前記変成触媒の温度を検出する温度検出器と、制御器と、を備え、前記制御 器が、前記温度検出器により検出される前記変成触媒の温度に基づき前記水供給 器から前記予熱蒸発器への水供給量及び前記燃焼用空気供給器から前記加熱器 への燃焼用空気供給量の少なくとも一方を制御する。 [0020] In the above case, the hydrogen generator includes a combustion air supply for supplying the combustion air to the heater, a water supply for supplying the water to the preheating evaporator, and the transformer. A temperature detector that detects the temperature of the shift catalyst to be stored, and a controller, and the controller controls the preheat evaporation from the water supply based on the temperature of the shift catalyst detected by the temperature detector. The amount of water supplied to the heater and the heater from the combustion air supply Controlling at least one of the combustion air supply amounts to.
[0021] かかる構成とすると、制御器が温度検出器により検出される変成触媒の温度に基づ き水供給器力ゝら予熱蒸発器への水供給量及び燃焼用空気供給器カゝら加熱器への 燃焼用空気供給量の少なくとも一方を制御することで予熱蒸発器の温度が変化し、 これに伴い予熱蒸発部の外周に設けられた変成器の温度を制御することが可能にな る。  [0021] With such a configuration, the controller heats the amount of water supplied to the preheating evaporator and the combustion air supply from the power of the water supply based on the temperature of the shift catalyst detected by the temperature detector. The temperature of the preheating evaporator changes by controlling at least one of the combustion air supply to the generator, and the temperature of the transformer provided on the outer periphery of the preheating evaporator can be controlled accordingly. .
[0022] この場合、水素生成装置は、前記変成触媒の温度制御に係る上限温度及び下限 温度の情報を有する記憶器を備え、前記制御器が、前記温度検出器の検出温度が 前記上限温度以上になった場合には前記予熱蒸発器への水供給量を増量させるよ う前記水供給器を制御し、前記温度検出器の検出温度が前記下限温度以下になつ た場合には前記予熱蒸発器への水供給量を減量させるよう前記水供給器を制御す る。  [0022] In this case, the hydrogen generator includes a storage device having information on an upper limit temperature and a lower limit temperature related to temperature control of the shift catalyst, and the controller has a temperature detected by the temperature detector equal to or higher than the upper limit temperature. If the temperature of the preheat evaporator becomes less than the lower limit temperature, the water supplier is controlled to increase the amount of water supplied to the preheat evaporator. The water supply is controlled so as to reduce the amount of water supplied to the water.
[0023] 力かる構成とすると、水供給器力 予熱蒸発器への水供給量を制御することで、予 熱蒸発器の温度が変化、又は、水トラップ部内の液水量が変動し、これが、変成器か ら予熱蒸発器への伝熱量、若しくは変成器に供給される水素含有ガスと水トラップ部 との熱交換量の変動につながり、変成触媒の温度を制御することが可能になる。  [0023] With a powerful configuration, by controlling the amount of water supplied to the water supply power preheating evaporator, the temperature of the preheating evaporator changes or the amount of liquid water in the water trap section fluctuates. This leads to fluctuations in the amount of heat transferred from the transformer to the preheating evaporator, or the amount of heat exchange between the hydrogen-containing gas supplied to the converter and the water trap, making it possible to control the temperature of the conversion catalyst.
[0024] この場合、前記記憶器が前記水供給量の制御に係る上限供給量及び下限供給量 の情報を更に有し、前記制御器が、前記水供給器から前記予熱蒸発器への水供給 量が前記上限供給量以上になった場合又は前記水供給器から前記予熱蒸発器へ の水供給量が前記下限供給量以下になった場合に異常と判断する。  [0024] In this case, the storage device further includes information on an upper limit supply amount and a lower limit supply amount relating to the control of the water supply amount, and the controller supplies water from the water supply device to the preheating evaporator. It is determined that there is an abnormality when the amount exceeds the upper limit supply amount or when the water supply amount from the water supplier to the preheat evaporator becomes equal to or less than the lower limit supply amount.
[0025] 力かる構成とすると、制御器が水供給器力 予熱蒸発器への水供給量が上限供給 量以上になった場合や下限供給量以下になった場合に異常と判断するので、オペ レータゃ使用者が異常の発生を察知することが可能になる。  [0025] If the configuration is powerful, the controller determines that an abnormality occurs when the water supply amount to the water supply power preheat evaporator exceeds the upper limit supply amount or below the lower limit supply amount. The user can detect the occurrence of an abnormality.
[0026] 又、上記の場合、水素生成装置は、前記変成触媒の温度制御に係る上限温度及 び下限温度の情報を有する記憶器を備え、前記制御器が、前記温度検出器の検出 温度が前記上限温度以上になった場合には前記加熱器への燃焼用空気供給量を 減量させるよう前記燃焼用空気供給器を制御し、前記温度検出器の検出温度が前 記下限温度以下になった場合には前記加熱器への燃焼用空気供給量を増量させる よう前記燃焼用空気供給器を制御する。 [0026] In the above case, the hydrogen generator includes a storage device having information on an upper limit temperature and a lower limit temperature related to temperature control of the shift catalyst, and the controller detects the detected temperature of the temperature detector. When the temperature exceeds the upper limit temperature, the combustion air supply device is controlled to reduce the amount of combustion air supplied to the heater, and the temperature detected by the temperature detector is equal to or lower than the lower limit temperature. In this case, increase the amount of combustion air supplied to the heater. Control the combustion air supply.
[0027] 力かる構成とすると、燃焼用空気供給器力 加熱器への燃焼用空気供給量を制御 することにより、燃焼ガス力 予熱蒸発器への伝熱量が変動するので、予熱蒸発器の 温度が変化する。これが、変成器から予熱蒸発器への伝熱量の変動につながり、変 成触媒の温度を制御することが可能になる。  [0027] With a powerful configuration, the amount of heat transferred to the combustion gas power preheating evaporator varies by controlling the amount of combustion air supplied to the combustion air supply power heater, so the temperature of the preheating evaporator Changes. This leads to fluctuations in the amount of heat transferred from the converter to the preheating evaporator, and it becomes possible to control the temperature of the conversion catalyst.
[0028] この場合、前記記憶器が前記燃焼用空気供給量の制御に係る上限供給量及び下 限供給量の情報を更に有し、前記制御器が、前記燃焼用空気供給器から前記加熱 器への燃焼用空気供給量が前記上限供給量以上になった場合又は前記燃焼用空 気供給器力 前記加熱器への燃焼用空気供給量が前記下限供給量以下になった 場合に異常と判断する。  [0028] In this case, the storage device further includes information on an upper limit supply amount and a lower limit supply amount related to the control of the combustion air supply amount, and the controller is connected to the heater from the combustion air supply device. It is determined that there is an abnormality when the combustion air supply amount to the upper limit supply amount is greater than or equal to the upper limit supply amount or the combustion air supply force is less than the lower limit supply amount. To do.
[0029] 力かる構成とすると、制御器が燃焼用空気供給器から加熱器への燃焼用空気供給 量が上限供給量以上になった場合や下限供給量以下になった場合に異常と判断す るので、オペレータや使用者が異常の発生を察知することが可能になる。  [0029] With this configuration, the controller determines that there is an abnormality when the amount of combustion air supplied from the combustion air supply to the heater exceeds the upper limit supply amount or less than the lower limit supply amount. Therefore, it becomes possible for an operator or a user to detect the occurrence of an abnormality.
[0030] 又、上記の場合、水素生成装置は、前記変成触媒の温度制御に係る上限温度及 び下限温度の情報と前記水供給量の制御に係る上限供給量及び下限供給量の情 報とを有する記憶器を備え、前記制御器が、前記変成触媒の温度が前記上限温度 以上になりかつ前記水供給器力も前記予熱蒸発器への水供給量が前記上限供給 量以下になった場合には前記加熱器への燃焼用空気供給量を減量させるよう前記 燃焼用空気供給器を制御し、前記変成触媒の温度が前記下限温度以下になりかつ 前記水供給器から前記予熱蒸発器への水供給量が前記下限供給量以下になった 場合には前記加熱器への燃焼用空気供給量を増量させるよう前記燃焼用空気供給 器を制御する。  [0030] Further, in the above case, the hydrogen generation device includes information on the upper limit temperature and the lower limit temperature related to the temperature control of the shift catalyst and information on the upper limit supply amount and the lower limit supply amount related to the control of the water supply amount. And when the temperature of the shift catalyst is equal to or higher than the upper limit temperature, and the water supply force is less than or equal to the upper limit supply amount. Controls the combustion air supply so as to reduce the amount of combustion air supplied to the heater, the temperature of the shift catalyst is lower than the lower limit temperature, and water from the water supply to the preheating evaporator When the supply amount becomes equal to or less than the lower limit supply amount, the combustion air supply device is controlled so as to increase the combustion air supply amount to the heater.
[0031] 或いは、上記の場合、水素生成装置は、前記変成触媒の温度制御に係る上限温 度及び下限温度の情報と前記燃焼用空気供給量の制御に係る上限供給量及び下 限供給量の情報とを有する記憶器を備え、前記制御器が、前記変成触媒の温度が 前記上限温度以上になりかつ前記燃焼用空気供給器から前記加熱器への燃焼用 空気供給量が前記下限供給量以下になった場合には前記予熱蒸発器への水供給 量を増量させるよう前記水供給器を制御し、前記変成触媒の温度が前記下限温度 以下になりかつ前記燃焼用空気供給器から前記加熱器への燃焼用空気供給量が 前記上限供給量以上になった場合には前記予熱蒸発器への水供給量を減量させる よう前記水供給器を制御する。 [0031] Alternatively, in the above case, the hydrogen generation device may include information on the upper limit temperature and the lower limit temperature related to the temperature control of the shift catalyst and the upper limit supply amount and the lower limit supply amount related to the control of the combustion air supply amount. And the controller has a temperature of the shift catalyst equal to or higher than the upper limit temperature, and a combustion air supply amount from the combustion air supply device to the heater is equal to or lower than the lower limit supply amount. In this case, the water supplier is controlled to increase the amount of water supplied to the preheating evaporator, and the temperature of the shift catalyst is set to the lower limit temperature. The water supply unit is configured to reduce the water supply amount to the preheating evaporator when the combustion air supply amount from the combustion air supply unit to the heater is equal to or greater than the upper limit supply amount. To control.
[0032] 力かる構成とすると、水供給器力 予熱蒸発器への水供給量の制御と燃焼用空気 供給器から加熱器への燃焼用空気供給量の制御との双方により変成器が内蔵する 変成触媒の温度を制御するので、その変成触媒の温度制御を燃料電池システムの 運転中にお 、てより一層確実に実施することが可能になる。  [0032] With a powerful configuration, the transformer is built in by both the water supply force control of the water supply amount to the preheating evaporator and the control of the combustion air supply amount from the combustion air supply device to the heater. Since the temperature of the shift catalyst is controlled, the temperature control of the shift catalyst can be more reliably performed during operation of the fuel cell system.
[0033] 一方、本発明に係る燃料電池システムは、上記本発明に係る特徴的な水素生成装 置と、前記水素生成装置から供給される前記水素含有ガスと酸素含有ガスとを用い て発電する燃料電池と、を少なくとも備えている。  [0033] On the other hand, the fuel cell system according to the present invention generates power using the characteristic hydrogen generation apparatus according to the present invention, and the hydrogen-containing gas and the oxygen-containing gas supplied from the hydrogen generation apparatus. And at least a fuel cell.
[0034] 力かる構成とすると、燃料電池システムが、本発明に係る特徴的な水素生成装置と 、この水素生成装置力 供給される水素含有ガスと酸素含有ガスとを用いて発電す る燃料電池とを備えて ヽるので、改質器に充填された改質触媒に液水が直接供給さ れ改質触媒が局所的に急冷されることで生じる改質反応の阻害や触媒の破壊の可 能性が低減され、組成の安定した水素含有ガスが供給されるようになる。これにより、 安定した運転を継続可能な燃料電池システムを提供することが可能になる。  [0034] With a powerful configuration, the fuel cell system uses the characteristic hydrogen generator according to the present invention and a fuel cell that generates power using the hydrogen-containing gas and the oxygen-containing gas supplied by the hydrogen generator. Therefore, liquid water is directly supplied to the reforming catalyst filled in the reformer and the reforming catalyst is inhibited by local quenching, which may inhibit the reforming reaction and destroy the catalyst. Performance is reduced, and a hydrogen-containing gas having a stable composition is supplied. This makes it possible to provide a fuel cell system that can continue stable operation.
発明の効果  The invention's effect
[0035] 本発明に係る水素生成装置によれば、水トラップ部により予熱蒸発器からの液水が トラップされるため、改質器に充填された改質触媒に直接液水が供給され、改質触 媒が局所的に急冷されることで生じる改質反応の阻害や触媒の破壊の可能性が低 減されるので、安定した水素生成が可能となる。  [0035] According to the hydrogen generator of the present invention, the liquid water from the preheat evaporator is trapped by the water trap unit, so that the liquid water is directly supplied to the reforming catalyst filled in the reformer, and the reforming is performed. Stable hydrogen production is possible because the possibility of inhibition of the reforming reaction and destruction of the catalyst caused by local quenching of the catalyst is reduced.
[0036] 又、本発明に係る水素生成装置を備える燃料電池システムによれば、水素生成装 置が安定に動作して、組成の安定した良質な水素含有ガスが燃料電池に向けて安 定して供給される、安定な発電運転が可能な燃料電池システムを提供することが可 會 になる。  [0036] Further, according to the fuel cell system including the hydrogen generator according to the present invention, the hydrogen generator operates stably, and a high-quality hydrogen-containing gas having a stable composition is stabilized toward the fuel cell. It is possible to provide a fuel cell system capable of stable power generation operation.
図面の簡単な説明  Brief Description of Drawings
[0037] [図 1]図 1は、本発明の実施の形態 1に係る水素生成装置の第 1の構成とこれを駆動 するための付加的構成とを模式的に示すブロック図及び断面図である。 [図 2]図 2は、本発明の実施の形態 1に係る水素生成装置の第 2の構成とこれを駆動 するための付加的構成とを模式的に示すブロック図及び断面図である。 FIG. 1 is a block diagram and a cross-sectional view schematically showing a first configuration of a hydrogen generator according to Embodiment 1 of the present invention and an additional configuration for driving the first configuration. is there. FIG. 2 is a block diagram and a cross-sectional view schematically showing a second configuration of the hydrogen generator according to Embodiment 1 of the present invention and an additional configuration for driving the second configuration.
[図 3]図 3は、本発明の原理を説明するための模式図である。 FIG. 3 is a schematic diagram for explaining the principle of the present invention.
[図 4]図 4は、本発明の実施の形態 1に係る水素生成装置の特徴的な動作の 1サイク ルを模式的に示すフローチャートである。  FIG. 4 is a flowchart schematically showing one cycle of characteristic operations of the hydrogen generator according to Embodiment 1 of the present invention.
[図 5]図 5は、本発明の実施の形態 2に係る水素生成装置の特徴的な動作の 1サイク ルを模式的に示すフローチャートである。  FIG. 5 is a flowchart schematically showing one cycle of characteristic operations of the hydrogen generator according to Embodiment 2 of the present invention.
[図 6]図 6は、 Cu— Zn系変成触媒の温度活性に関する一評価例の結果を模式的に 示すグラフである。  [FIG. 6] FIG. 6 is a graph schematically showing the results of one evaluation example regarding the temperature activity of a Cu—Zn-based shift catalyst.
符号の説明 Explanation of symbols
1 加熱部  1 Heating part
2 改質部  2 Modification section
2a 改質触媒  2a Reforming catalyst
2b 温度検出部  2b Temperature detector
3 変成部  3 Metamorphosis Department
3a 変成触媒  3a shift catalyst
3b, 3c 温度検出部  3b, 3c Temperature detector
4 選択酸化部  4 Selective oxidation part
4a 選択酸化触媒  4a Selective oxidation catalyst
4b 温度検出部  4b Temperature detector
5 燃焼ガス流路  5 Combustion gas flow path
6 予熱蒸発部  6 Preheating evaporator
6a 燕 棒  6a stick
7 水トラップ部  7 Water trap
8 熱交換部  8 Heat exchanger
9 水供給器  9 Water supply
10 原料供給器  10 Raw material feeder
11 燃焼用空気供給器 12 選択酸化用空気供給器 11 Combustion air supply 12 Air supply for selective oxidation
13a, 13b 流路切り替え弁  13a, 13b Channel switching valve
14 制御器  14 Controller
a 上壁部  a Upper wall
b 下壁部  b Lower wall
A 外壁部  A Exterior wall
B 内壁部  B Inner wall
B1 第 1の内壁部  B1 First inner wall
B2 第 2の内壁部  B2 Second inner wall
B3 第 3の内壁部  B3 Third inner wall
C 隔壁部  C Bulkhead
C1 第 1の隔壁部  C1 First bulkhead
C2 第 2の隔壁部  C2 Second partition
C3 第 3の隔壁部  C3 Third bulkhead
C4 第 4の隔壁部  C4 Fourth bulkhead
P1 蒸発部  P1 evaporation section
P2 熱交換部  P2 heat exchanger
100a, 100b 水素生成装置  100a, 100b hydrogen generator
101 水供給口  101 Water supply port
102 原料供給口  102 Raw material supply port
103 空気供給口  103 Air supply port
104 間隙  104 gap
105 燃料ガス取り出し口  105 Fuel gas outlet
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0039] 以下、本発明を実施するための最良の形態について、図面を参照しながら詳細に 説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.
[0040] (実施の形態 1) [0040] (Embodiment 1)
先ず、本発明の実施の形態 1に係る水素生成装置の基本的な構成について説明 する。 First, the basic configuration of the hydrogen generator according to Embodiment 1 of the present invention will be described. To do.
[0041] 図 1は、本発明の実施の形態 1に係る水素生成装置の第 1の構成と、これを駆動す るための付加的構成とを模式的に示すブロック図及び断面図である。  FIG. 1 is a block diagram and a cross-sectional view schematically showing a first configuration of the hydrogen generator according to Embodiment 1 of the present invention and an additional configuration for driving the first configuration.
[0042] 図 1に示すように、本実施の形態に係る水素生成装置 100aは、既存の化石原料ィ ンフラストラクチャ一力ゝら得られる都市ガス又は LPG等の原料ガス、又は、燃料電池 に供給することができない一酸ィ匕炭素を既定濃度以上に含む水素含有ガスを燃焼し て後述する改質部 2及び変成部 3及び選択酸化部 4を加熱するための円筒状の加 熱部 1と、この加熱部 1の周りに加熱部 1と同心円筒状にかつ一体的に配設された改 質部 2及び変成部 3及び選択酸化部 4の各々とを備えて!/ヽる。  [0042] As shown in FIG. 1, the hydrogen generator 100a according to the present embodiment supplies a gas source gas such as city gas or LPG obtained from the existing fossil raw material infrastructure, or a fuel cell. A cylindrical heating part 1 for heating a reforming part 2, a transformation part 3 and a selective oxidation part 4 to be described later by burning a hydrogen-containing gas containing carbon monoxide and carbon dioxide exceeding a predetermined concentration, The heating unit 1 is provided with a reforming unit 2, a transformation unit 3, and a selective oxidation unit 4 that are concentrically and integrally disposed with the heating unit 1.
[0043] 具体的に説明すると、この水素生成装置 100aは、図 1に示すように、所定の直径を 有しかつその上方の開口部及び下方の開口部が上壁部 a及び下壁部 bにより閉鎖さ れた円筒状の外壁部 Aと、この外壁部 Aの上方及び下方に配設された上壁部 a及び 下壁部 bにその上端及び下端が接続するよう外壁部 Aと同心状に内設された外壁部 Aの直径よりも小さ 、直径を有する略円筒状の内壁部 Bとを備えて 、る。  Specifically, as shown in FIG. 1, the hydrogen generator 100a has a predetermined diameter, and an upper opening and a lower opening are an upper wall portion a and a lower wall portion b. Concentric with the outer wall A so that its upper and lower ends are connected to the cylindrical outer wall A closed by the upper wall a and lower wall b disposed above and below the outer wall A. And a substantially cylindrical inner wall portion B having a diameter smaller than the diameter of the outer wall portion A provided therein.
[0044] ここで、内壁部 Bは、上壁部 aから鉛直下方に向けて所定の位置まで延出する円筒 状の第 1の内壁部 B1と、この第 1の内壁部 B1の下端にその外縁部が接続されたリン グ状の第 2の内壁部 B2と、この第 2の内壁部 B2の内縁部にその上端が接続されか つ鉛直下方に向けて下壁部 bまで延出する円筒状の第 3の内壁部 B3とを備えている  [0044] Here, the inner wall portion B has a cylindrical first inner wall portion B1 extending vertically from the upper wall portion a to a predetermined position, and a lower end of the first inner wall portion B1. A ring-shaped second inner wall B2 to which the outer edge is connected, and a cylinder having an upper end connected to the inner edge of the second inner wall B2 and extending vertically downward to the lower wall b And a third inner wall B3
[0045] 又、図 1に示すように、この水素生成装置 100aは、外壁部 Aと内壁部 Bとの間に、 略円筒状の隔壁部 Cを備えている。 Further, as shown in FIG. 1, the hydrogen generator 100a includes a substantially cylindrical partition wall C between the outer wall A and the inner wall B.
[0046] ここで、この隔壁部 Cの上端は上壁部 aから所定の距離を隔てた外壁部 Aの上方に 接続され、隔壁部 Cは、この接続部から所定の角度で下方に傾斜して内壁部 B近傍 の所定の位置まで延出する逆円錐状の第 1の隔壁部 C 1と、この第 1の隔壁部 C 1の 下端力 鉛直下方に向けて所定の位置まで延出する円筒状の第 2の隔壁部 C2とを 備えている。  [0046] Here, the upper end of the partition wall C is connected to the upper part of the outer wall A spaced a predetermined distance from the upper wall a, and the partition C is inclined downward at a predetermined angle from the connection. The first conical first partition wall C 1 extending to a predetermined position in the vicinity of the inner wall B and the bottom end force of the first partition wall C 1 is a cylinder extending vertically to the predetermined position. And a second partition wall portion C2.
[0047] そして、内壁部 Bにより囲まれる円柱状の領域の上方には、その中心軸と水素生成 装置 100aの中心軸とがー致しかつその壁部と第 1の内壁部 B1との間に燃焼ガス流 路 5を形成するようにして、改質部 2の改質触媒 2aを第 3の内壁部 B3を介して加熱 するための円筒状の加熱部 1が配設されている。この加熱部 1は、図 1では図示しな い燃焼バーナー備え、シロッコファン等を備える後述する燃焼用空気供給器 11から 供給される燃焼用の空気を用いて、後述する原料供給器 10から供給される原料ガス の一部、又は、後述する流路切り替え弁 13a, 13bを介して供給される燃料電池に供 給することができない一酸ィ匕炭素を既定濃度以上に含む水素含有ガスを燃焼するこ とにより、改質部 2における改質触媒 2aの温度を水蒸気改質反応の進行に適した温 度にまで加熱して保温する。ここで、本実施の形態では、水素含有ガスを生成する際 における熱効率を向上させるために、加熱部 1から排出される燃焼ガスが、改質部 2 の改質触媒 2aを加熱した後に、燃焼ガス流路 5を通過して後述する予熱蒸発部 6を も加熱する構成としている。尚、加熱部 1から排出され、改質部 2の改質触媒 2a及び 予熱蒸発部 6を加熱するために用いられた燃焼ガスは、水素生成装置 100aの上部 に設けられた排気ガス排出ロカも排気ガスとして水素生成装置 100aの外部に排出 される。 [0047] Then, above the cylindrical region surrounded by the inner wall portion B, the central axis and the central axis of the hydrogen generator 100a are aligned, and between the wall portion and the first inner wall portion B1. Combustion gas flow A cylindrical heating section 1 for heating the reforming catalyst 2a of the reforming section 2 through the third inner wall section B3 is provided so as to form the path 5. This heating unit 1 is provided with a combustion burner (not shown in FIG. 1), and is supplied from a raw material supplier 10 (to be described later) using combustion air supplied from a combustion air supplier 11 (to be described later) having a sirocco fan or the like. Combustion of hydrogen-containing gas containing a certain concentration or more of carbon monoxide that cannot be supplied to the fuel cell supplied through the flow path switching valves 13a and 13b described later. As a result, the temperature of the reforming catalyst 2a in the reforming section 2 is heated to a temperature suitable for the progress of the steam reforming reaction and kept warm. Here, in this embodiment, in order to improve the thermal efficiency in generating the hydrogen-containing gas, the combustion gas discharged from the heating unit 1 burns after the reforming catalyst 2a of the reforming unit 2 is heated. A configuration is also employed in which the preheating evaporation section 6 described later passes through the gas flow path 5 and is also heated. The combustion gas discharged from the heating unit 1 and used to heat the reforming catalyst 2a and the preheating evaporation unit 6 of the reforming unit 2 is also an exhaust gas exhausting loca provided at the upper part of the hydrogen generator 100a. It is discharged outside the hydrogen generator 100a as exhaust gas.
[0048] 又、図 1に示すように、この水素生成装置 100aは、第 3の内壁部 B3における下方 の所定の部分と第 2の隔壁部 C2との間に、円筒状の改質触媒 2aを備えている。この 改質触媒 2aは、本実施の形態では Ru系の触媒により構成され、都市ガス、 LPG等 の炭化水素系成分、メタノール等のアルコール類、或いはナフサ成分等の原料又は 原料ガスと水蒸気とを用いる水蒸気改質反応を主に進行させ、これにより、水素を主 成分として含みかつ一酸化炭素を副成分として含む水素含有ガスを生成する。ここ で、本実施の形態に係る改質部 2は、改質触媒 2aと、この改質触媒 2aから排出され る水素含有ガスの温度を検出して改質触媒 2aの温度を間接的に検出する温度検出 部 2bとを備えている。  Further, as shown in FIG. 1, the hydrogen generator 100a includes a cylindrical reforming catalyst 2a between a predetermined lower portion of the third inner wall portion B3 and the second partition wall portion C2. It has. In the present embodiment, the reforming catalyst 2a is composed of a Ru-based catalyst, and a raw material such as city gas, a hydrocarbon-based component such as LPG, an alcohol such as methanol, or a naphtha component, or a raw material gas and steam. The steam reforming reaction to be used mainly proceeds to generate a hydrogen-containing gas containing hydrogen as a main component and carbon monoxide as a subcomponent. Here, the reforming unit 2 according to the present embodiment indirectly detects the temperature of the reforming catalyst 2a by detecting the temperature of the reforming catalyst 2a and the hydrogen-containing gas discharged from the reforming catalyst 2a. Temperature detecting section 2b.
[0049] 又、図 1に示すように、この水素生成装置 100aでは、外壁部 Aにおける上方の所 定の部分と第 2の隔壁部 C2との間に、各々円筒状の変成触媒 3a及び選択酸化触 媒 4aが配設されている。ここで、変成触媒 3aは、外壁部 Aにおける所定の部分と第 2 の隔壁部 C2とにより囲まれる円筒状の領域における改質触媒 2aに近い側の所定の 位置 (即ち、水素含有ガスの流れの上流側)に配設されている。一方、選択酸化触媒 4aは、その円筒状の領域における改質触媒 2aから遠い側の所定の位置 (即ち、水 素含有ガスの流れの下流側)に配設されている。又、変成触媒 3aと選択酸化触媒 4a とは、互いに所定の距離を隔てるようにして、各々配設されている。そして、この変成 触媒 3aと選択酸化触媒 4aとの間の空間に連通するように、空気供給口 103が設けら れている。又、選択酸ィ匕触媒 4aの上方の空間に連通するように、外壁部 Aに燃料ガ ス取り出し口 105が設けられて!/、る。 In addition, as shown in FIG. 1, in this hydrogen generator 100a, a cylindrical shift catalyst 3a and a selection catalyst are selected between a predetermined upper portion of the outer wall portion A and the second partition wall portion C2. An oxidation catalyst 4a is provided. Here, the shift catalyst 3a is a predetermined position on the side close to the reforming catalyst 2a (i.e., the flow of the hydrogen-containing gas) in the cylindrical region surrounded by the predetermined portion of the outer wall portion A and the second partition wall portion C2. On the upstream side). On the other hand, selective oxidation catalyst 4a is disposed at a predetermined position far from the reforming catalyst 2a in the cylindrical region (that is, downstream of the flow of the hydrogen-containing gas). The shift catalyst 3a and the selective oxidation catalyst 4a are disposed so as to be separated from each other by a predetermined distance. An air supply port 103 is provided so as to communicate with the space between the shift catalyst 3a and the selective oxidation catalyst 4a. Also, a fuel gas outlet 105 is provided in the outer wall portion A so as to communicate with the space above the selective acid catalyst 4a.
[0050] 変成触媒 3aは、本実施の形態では Cu— Zn系の触媒により構成され、改質部 2に おいて生成した水素含有ガスに含まれる一酸ィ匕炭素の濃度を、水蒸気を用いる水性 ガスシフト反応を主に進行させることにより、所定の濃度以下にまで低減する。ここで 、本実施の形態に係る変成部 3は、変成触媒 3aと、この変成触媒 3aに導入される水 素含有ガスの温度を検出して変成触媒 3aの温度を間接的に検出する温度検出部 3 bと、変成触媒 3aの温度を直接検出する温度検出部 3cとを備えている。一方、選択 酸化触媒 4aは、本実施の形態では Ru系の触媒により構成され、変成部 3において 一酸ィヒ炭素の濃度が低減された水素含有ガスに依然として含まれる一酸ィヒ炭素の 濃度を、後述する選択酸化用空気供給器 12が空気供給口 103から供給する空気を 用いる選択酸ィ匕反応を主に進行させることにより、所定の濃度以下にまで更に低減 する。この選択酸化触媒 4aを通過した水素含有ガスは、燃料ガス取り出し口 105から 取り出される。ここで、本実施の形態に係る選択酸化部 4は、選択酸化触媒 4aと、こ の選択酸化触媒 4aの温度を直接検出する温度検出部 4bとを備えている。  [0050] In this embodiment, the shift catalyst 3a is composed of a Cu-Zn-based catalyst, and steam is used as the concentration of carbon monoxide contained in the hydrogen-containing gas generated in the reforming section 2. By proceeding mainly with the water gas shift reaction, the concentration is reduced below a predetermined concentration. Here, the shift unit 3 according to the present embodiment detects the temperature of the shift catalyst 3a and the temperature of the shift catalyst 3a indirectly by detecting the temperature of the hydrogen-containing gas introduced into the shift catalyst 3a. And a temperature detector 3c that directly detects the temperature of the shift catalyst 3a. On the other hand, the selective oxidation catalyst 4a is composed of a Ru-based catalyst in the present embodiment, and the concentration of monoxide carbon that is still contained in the hydrogen-containing gas in which the concentration of monoxide carbon is reduced in the shift section 3 This is further reduced to a predetermined concentration or less by mainly proceeding with a selective oxidation reaction using air supplied from the air supply port 103 by the selective oxidation air supplier 12 described later. The hydrogen-containing gas that has passed through the selective oxidation catalyst 4a is taken out from the fuel gas outlet 105. Here, the selective oxidation unit 4 according to the present embodiment includes a selective oxidation catalyst 4a and a temperature detection unit 4b that directly detects the temperature of the selective oxidation catalyst 4a.
[0051] 次に、本発明の実施の形態 1に係る水素生成装置における予熱蒸発部及び熱交 換部の構成について説明する。  [0051] Next, the configuration of the preheating evaporation unit and the heat exchange unit in the hydrogen generator according to Embodiment 1 of the present invention will be described.
[0052] 本実施の形態に係る水素生成装置 100aでは、外壁部 Aの上部及び上壁部 aの端 部及び内壁部 Bの上部及び隔壁部 Cにおける第 1,第 2の隔壁部 CI, C2により包囲 される所定の領域にぉ ヽて、後述する水供給器 9から供給される水を蒸発させるため の予熱蒸発部 6が構成されている。そして、この予熱蒸発部 6には、内壁部 Bにおけ る第 1の内壁部 B1とそれと対向する第 2の隔壁部 C2における所定の部分との間の円 筒状の領域に、蒸発棒 6aが配設されている。この蒸発棒 6aは、本実施の形態では、 隔壁部 Cにおける第 2の隔壁部 C2の上端から下端に向力う鉛直方向において、内 壁部 Bと第 2の隔壁部 C2との間の円筒状領域を加熱部 1の周りに螺旋状に旋回する ように延在している。又、この蒸発棒 6aは、その外周部が内壁部 Bと第 2の隔壁部 C2 とに接するように配設されている。そして、上壁部 aには、予熱蒸発部 6に連通するよ うに、水供給口 101が設けられている。つまり、本実施の形態では、予熱蒸発部 6は、 水供給器 9から水供給口 101を通って供給される水が隔壁部 Cにおける第 1の隔壁 部 C1に沿って流れ、その後、蒸発棒 6aに沿って鉛直下方に向けて内壁部 Bと第 2の 隔壁部 C2との間を螺旋状に旋回しながら流れ落ちるように構成されている。又、この 予熱蒸発部 6は、外壁部 Aに予熱蒸発部 6に連通する原料供給口 102が設けられて いて、後述する原料供給器 10から原料供給口 102を通って供給される原料ガスが 隔壁部 Cにおける第 1の隔壁部 C1上の空間に供給され、その後、蒸発棒 6a上の空 間を鉛直下方に向けて内壁部 Bと第 2の隔壁部 C2との間を螺旋状に旋回しながら移 動するように構成されている。この予熱蒸発部 6により、原料供給器 10から供給され る原料ガスは、加熱部 1が排出する高温状態の燃焼ガスにより所定の温度にまでカロ 熱されると共に、水供給器 9から供給される水を蒸発させて得た水蒸気と十分に混合 される。これにより、予熱蒸発部 6において、原料ガスと水蒸気との混合気が生成され る。この原料ガスと水蒸気との混合気が、その後、改質部 2における改質触媒 2aに供 給される。 [0052] In the hydrogen generator 100a according to the present embodiment, the first and second partition walls CI, C2 in the upper part of the outer wall part A, the end part of the upper wall part a, the upper part of the inner wall part B, and the partition part C. A preheating evaporation section 6 for evaporating water supplied from a water supply device 9 to be described later is configured over a predetermined region surrounded by the above. The preheating evaporation section 6 includes an evaporation rod 6a in a cylindrical area between the first inner wall section B1 of the inner wall section B and a predetermined portion of the second partition wall section C2 facing the first inner wall section B1. Is arranged. In the present embodiment, the evaporation rod 6a is formed in the vertical direction in which the second partition wall C2 in the partition wall C is directed from the upper end to the lower end. A cylindrical region between the wall portion B and the second partition wall portion C2 extends so as to swirl around the heating portion 1 in a spiral manner. Further, the evaporation rod 6a is disposed so that the outer peripheral portion thereof is in contact with the inner wall portion B and the second partition wall portion C2. The upper wall portion a is provided with a water supply port 101 so as to communicate with the preheating evaporation unit 6. That is, in the present embodiment, the preheating evaporation unit 6 is configured such that the water supplied from the water supplier 9 through the water supply port 101 flows along the first partition wall portion C1 in the partition wall portion C, and then the evaporation rod It is configured so as to flow down while spirally turning between the inner wall portion B and the second partition wall portion C2 vertically downward along 6a. In addition, the preheating evaporation section 6 is provided with a raw material supply port 102 communicating with the preheating evaporation section 6 on the outer wall portion A, and the raw material gas supplied from the raw material supply device 10 to be described later through the raw material supply port 102 is supplied. Supplied to the space above the first partition wall portion C1 in the partition wall portion C, and then spirally swivels between the inner wall portion B and the second partition wall portion C2 with the space above the evaporation rod 6a directed vertically downward. It is configured to move. The raw gas supplied from the raw material supplier 10 by the preheating evaporation unit 6 is heated to a predetermined temperature by the high-temperature combustion gas discharged from the heating unit 1 and the water supplied from the water supplier 9 is heated. It is thoroughly mixed with water vapor obtained by evaporating water. As a result, a mixture of the raw material gas and the water vapor is generated in the preheating evaporator 6. The mixture of the raw material gas and water vapor is then supplied to the reforming catalyst 2a in the reforming section 2.
又、図 1に示すように、本実施の形態に係る水素生成装置 100aでは、隔壁部じに おける第 2の隔壁部 C2の一部と、この第 2の隔壁部 C2の一部の内側にその全周に 渡って環状に設けられた凹状の水トラップ部 7とにより、熱交換部 8が構成されている 。この熱交換部 8は、改質部 2から排出され変成部 3に供給される前の水素含有ガス が保有する熱を、第 2の隔壁部 C2を介して、変成部 3側から予熱蒸発部 6側へと熱 交換により移動させるように構成されている。ここで、水トラップ部 7は、予熱蒸発部 6 の蒸発棒 6aに沿って螺旋状に流れ、予熱蒸発部 6において蒸発し切れずに排出さ れた液水をトラップするように構成されている。又、隔壁部 Cにおける第 2の隔壁部 C 2は、水トラップ部 7に貯蔵される液水と、変成部 3に導入される前の水素含有ガスと の間の熱の移動を媒介する。尚、予熱蒸発部 6で生成された原料ガスと水蒸気との 混合気は、熱交換部 8に滞留することなぐ熱交換部 8と内壁部 Bとの間に全周に渡り 形成された所定の間隙 104を通過して、改質部 2における改質触媒 2aに順次供給さ れる。 Further, as shown in FIG. 1, in the hydrogen generator 100a according to the present embodiment, a part of the second partition wall part C2 in the partition wall part and a part of the second partition wall part C2 are disposed inside. A heat exchanging portion 8 is constituted by a concave water trap portion 7 provided in an annular shape over the entire circumference. This heat exchanging unit 8 transfers the heat held by the hydrogen-containing gas before being discharged from the reforming unit 2 and supplied to the transformation unit 3 from the transformation unit 3 side through the second partition unit C2. It is configured to move to the 6 side by heat exchange. Here, the water trap section 7 is configured to flow spirally along the evaporation rod 6a of the preheating evaporation section 6 and trap the liquid water discharged without being completely evaporated in the preheating evaporation section 6. . Further, the second partition wall portion C 2 in the partition wall portion C mediates heat transfer between the liquid water stored in the water trap section 7 and the hydrogen-containing gas before being introduced into the shift section 3. Note that the mixture of the raw material gas and water vapor generated in the preheating evaporation section 6 extends over the entire circumference between the heat exchange section 8 and the inner wall section B without staying in the heat exchange section 8. It passes through the formed predetermined gap 104 and is sequentially supplied to the reforming catalyst 2a in the reforming section 2.
[0054] このように、本実施の形態では、水素生成装置 100aにおいて、加熱部 1をその中 心部に配置すると共に、その加熱部 1の周りの重力方向上側に円筒状の予熱蒸発 部 6を、その重力方向下側に円筒状の熱交換部 8及び改質部 2を配置している。ここ で、改質部 2の改質触媒 2aを加熱した後に予熱蒸発部 6を加熱するために、加熱部 1と予熱蒸発部 6との間に、加熱部 1から排出される燃焼ガスを通流させるための燃 焼ガス流路 5を配置している。又、本実施の形態では、熱交換部 8を、原料ガスと水 蒸気との混合気が流れる流路と変成部 3に供給される水素含有ガスが流れる流路と の境界部に配置し、変成部 3に供給される前の水素含有ガスの温度を第 2の隔壁部 C2を介して適宜制御することが可能となるように構成している。又、本実施の形態で は、改質部 2で生成された水素含有ガスに含まれる一酸ィヒ炭素の濃度を低減する変 成部 3及び選択酸化部 4を予熱蒸発部 6の外側に配置して、変成部 3及び選択酸ィ匕 部 4で余剰となった熱エネルギーを予熱蒸発部 6へ供給可能とする構成としている。  As described above, in the present embodiment, in the hydrogen generator 100a, the heating unit 1 is disposed at the center thereof, and the cylindrical preheating evaporation unit 6 is disposed above the heating unit 1 in the gravity direction. A cylindrical heat exchanging portion 8 and a reforming portion 2 are disposed on the lower side in the gravity direction. Here, in order to heat the preheating evaporation unit 6 after heating the reforming catalyst 2a of the reforming unit 2, the combustion gas discharged from the heating unit 1 is passed between the heating unit 1 and the preheating evaporation unit 6. A combustion gas flow path 5 is provided for flow. In the present embodiment, the heat exchanging section 8 is arranged at the boundary between the flow path through which the mixture of the raw material gas and water vapor flows and the flow path through which the hydrogen-containing gas supplied to the shift section 3 flows. The temperature of the hydrogen-containing gas before being supplied to the shift section 3 can be appropriately controlled via the second partition wall section C2. Further, in the present embodiment, the conversion unit 3 and the selective oxidation unit 4 that reduce the concentration of carbon monoxide contained in the hydrogen-containing gas generated in the reforming unit 2 are placed outside the preheating evaporation unit 6. It is arranged so that the heat energy surplus in the transformation unit 3 and the selective acid unit 4 can be supplied to the preheating evaporation unit 6.
[0055] 又、本実施の形態では、熱交換器 8に設けた水トラップ部 7により予熱蒸発器 6から の液水が確実にトラップされるため、改質部 2に充填された改質触媒 2aに液水が直 接供給され、改質触媒 2aが局所的に急冷されることで生じる改質反応の阻害ゃ改質 触媒 2aの破壊を防止することが可能となる。  [0055] In the present embodiment, since the liquid water from the preheat evaporator 6 is reliably trapped by the water trap section 7 provided in the heat exchanger 8, the reforming catalyst filled in the reforming section 2 is used. It is possible to prevent the reforming catalyst 2a from being destroyed by inhibiting the reforming reaction caused by supplying liquid water directly to 2a and locally cooling the reforming catalyst 2a.
[0056] 一方、図 2は、本発明の実施の形態 1に係る水素生成装置の第 2の構成と、これを 駆動するための付加的構成とを模式的に示すブロック図及び断面図である。  On the other hand, FIG. 2 is a block diagram and a cross-sectional view schematically showing a second configuration of the hydrogen generator according to Embodiment 1 of the present invention and an additional configuration for driving the second configuration. .
[0057] 図 2に示すように、本実施の形態に係る水素生成装置 100bでは、熱交換部 8及び その周辺の構成が、水素生成装置 100aにおける構成と比べて若干異なって 、る。  As shown in FIG. 2, in the hydrogen generator 100b according to the present embodiment, the configuration of the heat exchange unit 8 and its surroundings is slightly different from the configuration of the hydrogen generator 100a.
[0058] 具体的に説明すると、本実施の形態に係る水素生成装置 100bは、水素生成装置 100aと同様、円筒状の外壁部 Aと、この外壁部 Aの上方及び下方に配設された上壁 部 a及び下壁部 bにその上端及び下端が接続するよう外壁部 Aと同心状に内設され た外壁部 Aの直径よりも小さ 、直径を有する円筒状の内壁部 Bとを備えて 、る。又、 この水素生成装置 100bは、水素生成装置 100aと同様、外壁部 Aと内壁部 Bとの間 に略円筒状の隔壁部 Cを備えている。 [0059] ここで、隔壁部 Cは、外壁部 Aとの接続部力 所定の角度で下方に傾斜して内壁部 B近傍の所定の位置まで延出する逆円錐状の第 1の隔壁部 C1と、この第 1の隔壁部 C1の下端力 鉛直下方に向けて所定の位置まで延出する円筒状の第 2の隔壁部 C 2と、この第 2の隔壁部 C2の下端にその内縁部が接続されたリング状の第 3の隔壁部 C3と、この第 3の隔壁部 C3の外縁部にその上端が接続されかつ鉛直下方に向けて 下壁部 b近傍の所定の位置まで延出する円筒状の第 4の隔壁部 C4とを備えている。 More specifically, the hydrogen generator 100b according to the present embodiment is similar to the hydrogen generator 100a in that it has a cylindrical outer wall portion A and upper and lower portions disposed above and below the outer wall portion A. A cylindrical inner wall B having a diameter smaller than the diameter of the outer wall A concentrically provided with the outer wall A so that the upper and lower ends thereof are connected to the wall a and the lower wall b. RU The hydrogen generator 100b includes a substantially cylindrical partition wall C between the outer wall A and the inner wall B as in the hydrogen generator 100a. [0059] Here, the partition wall portion C has a connecting portion force with the outer wall portion A. The first partition wall portion C1 having an inverted conical shape that inclines downward at a predetermined angle and extends to a predetermined position in the vicinity of the inner wall portion B. The lower end force of the first partition wall portion C1 is a cylindrical second partition wall portion C 2 that extends vertically downward to a predetermined position, and the inner edge portion is formed at the lower end of the second partition wall portion C2. Connected ring-shaped third partition wall C3 and a cylinder whose upper end is connected to the outer edge of the third partition wall C3 and extends vertically downward to a predetermined position near the lower wall b And a fourth partition wall portion C4.
[0060] そして、図 2に示すように、本実施の形態に係る水素生成装置 100bでは、隔壁部 Cにおける第 4の隔壁部 C4の一部と、この第 4の隔壁部 C4の一部の内側に内壁部 B の全周に渡って環状に設けられた凹状の水トラップ部 7とにより、熱交換部 8が構成さ れている。換言すれば、本実施の形態に係る水素生成装置 100bでは、隔壁部じに おける第 4の隔壁部 C4の内側に原料ガスと水蒸気との混合気が流れる流路が設け られており、その内側に、水トラップ部 7が配置される構成が採られている。ここで、水 素生成装置 100bの水トラップ部 7は、水素生成装置 100aの場合と同様、予熱蒸発 部 6の蒸発棒 6aに沿って螺旋状に流れ、予熱蒸発部 6において蒸発し切れずに排 出された液水をトラップするように構成されている。かかる構成においても、図 1に示 す水素生成装置 100aを用いる場合と同様、変成部 3に供給される前の水素含有ガ スの温度を第 4の隔壁部 C4を介して適宜制御することが可能となる。尚、その他の点 については、水素生成装置 100bの構成と水素生成装置 100aの構成とは同様であ る。  [0060] As shown in FIG. 2, in the hydrogen generator 100b according to the present embodiment, a part of the fourth partition wall part C4 in the partition wall part C and a part of the fourth partition wall part C4. A heat exchanging portion 8 is constituted by a concave water trap portion 7 provided in an annular shape over the entire circumference of the inner wall portion B on the inner side. In other words, in the hydrogen generator 100b according to the present embodiment, a flow path through which a mixture of the raw material gas and water vapor flows is provided inside the fourth partition wall C4 in the partition wall, and the inside thereof is provided. Further, a configuration in which the water trap part 7 is arranged is adopted. Here, as in the case of the hydrogen generator 100a, the water trap section 7 of the hydrogen generator 100b flows spirally along the evaporation rod 6a of the preheat evaporator 6 and does not evaporate completely in the preheat evaporator 6. It is configured to trap the discharged liquid water. Even in such a configuration, as in the case of using the hydrogen generator 100a shown in FIG. 1, the temperature of the hydrogen-containing gas before being supplied to the shift unit 3 can be appropriately controlled via the fourth partition wall C4. It becomes possible. In other respects, the configuration of the hydrogen generator 100b and the configuration of the hydrogen generator 100a are the same.
[0061] 次に、本発明の実施の形態 1に係る水素生成装置を駆動するための付加的構成に ついて説明する。尚、以下の説明では、便宜上、水素生成装置 100aを駆動するた めの付カ卩的構成について説明する。  [0061] Next, an additional configuration for driving the hydrogen generator according to Embodiment 1 of the present invention will be described. In the following description, an additional configuration for driving the hydrogen generator 100a will be described for convenience.
[0062] 図 1に示すように、本実施の形態に係る燃料電池システムは、その発電運転の際に 水素生成装置 100aを駆動するために、水素生成装置 100aの予熱蒸発部 6に水蒸 気改質反応を進行させる際に必要となる水を供給する水供給器 9と、水素生成装置 100aの加熱部 1及び予熱蒸発部 6に水蒸気改質反応を進行させる際に必要となる 都市ガス又は LPG等の原料ガスを供給する原料供給器 10と、水素生成装置 100a の加熱部 1に燃焼バーナーでの都市ガス等の燃焼のために必要となる燃焼用空気 を供給する燃焼用空気供給器 11と、水素生成装置 100aの選択酸化部 4に選択酸 化反応を進行させる際に必要となる選択酸化用空気を供給する選択酸化用空気供 給器 12とを各々備えている。 As shown in FIG. 1, in the fuel cell system according to the present embodiment, in order to drive the hydrogen generator 100a during the power generation operation, water vapor is supplied to the preheating evaporator 6 of the hydrogen generator 100a. A water supply 9 for supplying water necessary for the progress of the reforming reaction and the city gas or the gas required for the steam reforming reaction to proceed to the heating unit 1 and the preheating evaporation unit 6 of the hydrogen generator 100a. Combustion air required for combustion of city gas, etc. in the combustion burner in the raw material supply device 10 for supplying raw material gas such as LPG and the heating unit 1 of the hydrogen generator 100a And a selective oxidation air supply 12 for supplying selective oxidation air necessary for advancing the selective oxidation reaction to the selective oxidation unit 4 of the hydrogen generator 100a. Each has.
[0063] 水供給器 9は、例えば、水道等の水を常時供給することが可能であるインフラストラ クチャ一等に接続されている。そして、水供給器 9は、必要に応じて異物等を除去し た後、水道等力 供給される水の供給量を適切に制御しながら、その供給量が適切 に制御された水を水素生成装置 100aにおける予熱蒸発部 6に水供給口 101を通じ て供給する。 [0063] The water supplier 9 is connected to, for example, an infrastructure that can constantly supply water such as water. Then, after removing foreign substances as necessary, the water supply unit 9 generates hydrogen by appropriately controlling the supply amount of water supplied by water, etc., while appropriately controlling the supply amount of water. The water is supplied to the preheating evaporator 6 in the apparatus 100a through the water supply port 101.
[0064] 又、原料供給器 10は、本実施の形態では、都市ガスのインフラストラクチャーに接 続されている。そして、この原料供給器 10は、必要に応じて都市ガスに含まれている 硫黄等の燃料電池システムにとって有害な成分を除去した後、その硫黄等が除去さ れた都市ガスの供給量を適切に制御しながら、その供給量が適切に制御された都巿 ガスを水素生成装置 100aにおける予熱蒸発部 6に原料供給口 102を通じて供給す ると共に、加熱部 1にも供給する。  [0064] In the present embodiment, the raw material supplier 10 is connected to the city gas infrastructure. The raw material supplier 10 removes sulfur and other components harmful to the fuel cell system contained in the city gas as needed, and then properly supplies the city gas from which the sulfur etc. has been removed. In addition, the city gas whose supply amount is appropriately controlled is supplied to the preheating evaporation unit 6 in the hydrogen generator 100a through the raw material supply port 102 and also to the heating unit 1.
[0065] 又、燃焼用空気供給器 11は、例えばシロッコファン等を備え、フィルタ一等により必 要に応じて粉塵や異物等を除去した後、適切な供給量で空気を水素生成装置 100a における加熱部 1に供給する。  [0065] The combustion air supply 11 includes a sirocco fan, for example, and removes dust, foreign matter, and the like as necessary with a filter or the like, and then air is supplied to the hydrogen generator 100a with an appropriate supply amount. Supply to heating unit 1.
[0066] 又、選択酸化用空気供給器 12は、例えばダイアフラム式ポンプ等を備え、燃焼用 空気供給器 11と同様にしてフィルタ一等により必要に応じて粉塵や異物等を除去し た後、適切な供給量で空気を水素生成装置 100aにおける選択酸ィ匕部 4に空気供給 口 103を通じて供給する。  [0066] Further, the selective oxidation air supply 12 includes, for example, a diaphragm type pump or the like, and after removing dust or foreign matter as necessary with a filter or the like in the same manner as the combustion air supply 11, Air is supplied through the air supply port 103 to the selective acid tank 4 in the hydrogen generator 100a with an appropriate supply amount.
[0067] 又、図 1に示すように、本実施の形態に係る燃料電池システムは、流路切り替え弁 1 3a, 13bを備えている。ここで、流路切り替え弁 13aは、例えば三方弁により構成され 、水素生成装置 100aにお 、て生成された水素含有ガスが流れる流路を切り替える。 本実施の形態では、この流路切り替え弁 13aは、水素生成装置 100aで生成された 水素含有ガスの供給先を、燃料電池と、加熱部 1との間で切り替える。又、流路切り 替え弁 13bは、流路切り替え弁 13aと同様にして例えば三方弁により構成され、水素 生成装置 100aにおける加熱部 1への燃焼用ガスの供給元を、原料ガスを供給する 原料供給器 10と水素含有ガスを供給する水素生成装置 100aとの間で切り替える。 Further, as shown in FIG. 1, the fuel cell system according to the present embodiment includes flow path switching valves 13a and 13b. Here, the flow path switching valve 13a is constituted by, for example, a three-way valve, and switches the flow path through which the hydrogen-containing gas generated by the hydrogen generation apparatus 100a flows. In the present embodiment, the flow path switching valve 13a switches the supply destination of the hydrogen-containing gas generated by the hydrogen generator 100a between the fuel cell and the heating unit 1. Further, the flow path switching valve 13b is configured by, for example, a three-way valve in the same manner as the flow path switching valve 13a, and supplies the raw material gas as the supply source of the combustion gas to the heating unit 1 in the hydrogen generator 100a. It switches between the raw material supply device 10 and the hydrogen production | generation apparatus 100a which supplies hydrogen containing gas.
[0068] 又、図 1に示すように、本実施の形態に係る燃料電池システムは、制御器 14を備え ている。この制御器 14は、マイコン等の演算装置により構成され、 CPU等力もなる演 算部(図 1では図示せず)と、内部メモリ等力 なる記憶部(図 1では図示せず)等とを 有している。そして、この制御器 14は、燃料電池システムの発電運転等の際、図 1に 示す温度検出部 2b, 3b, 3c, 4b等の出力信号や記憶部に記憶されているシーケン ス等に基づき、水供給器 9、原料供給器 10、燃焼用空気供給器 11、選択酸化用空 気供給器 12、流路切り替え弁 13a及び 13b等の燃料電池システムを構成する各構 成要素の動作を適宜制御する。  Further, as shown in FIG. 1, the fuel cell system according to the present embodiment includes a controller 14. The controller 14 is composed of an arithmetic unit such as a microcomputer, and includes an arithmetic unit (not shown in FIG. 1) that also has CPU power, a storage unit (not shown in FIG. 1) that has internal memory power, and the like. Have. Then, the controller 14 is based on the output signals of the temperature detection units 2b, 3b, 3c, 4b, etc. shown in FIG. 1 and the sequence stored in the storage unit during the power generation operation of the fuel cell system. Control the operation of each component of the fuel cell system such as water supply 9, raw material supply 10, combustion air supply 11, selective oxidation air supply 12, flow path switching valves 13a and 13b, etc. To do.
[0069] 次に、以下に記載する本実施の形態に係る水素生成装置の特徴的な動作の基礎 となる、本発明の原理について模式的に説明する。  [0069] Next, the principle of the present invention, which is the basis of the characteristic operation of the hydrogen generator according to the present embodiment described below, will be schematically described.
[0070] 図 3は、本発明の原理を説明するための模式図である。尚、以下の説明において は、便宜上、供給量 S1く供給量 S2とし、熱量 Hl <熱量 H2とする。又、以下の説明 では、仮想上のモデルに基づ!ヽて本発明の原理を模式的に説明する。  FIG. 3 is a schematic diagram for explaining the principle of the present invention. In the following description, for convenience, it is assumed that the supply amount S1 is the supply amount S2, and the heat amount Hl is less than the heat amount H2. The following explanation is based on a virtual model! Now, the principle of the present invention will be schematically described.
[0071] 図 3 (a)に示すように、図 1に示す予熱蒸発部 6に相当する蒸発部 P1に対して供給 量 S1で水が供給され、かつその蒸発部 P1に対して熱量 HIで熱エネルギーが供給 される際、図 1に示す熱交換部 8に相当する熱交換部 P2の水トラップ部には、蒸発 部 P1の図 1に示す蒸発棒 6aに相当する蒸発棒から蒸発し切れずに排出された液水 がトラップされる。そして、熱交換部 P2の近傍を通過する水素含有ガスは、水トラップ 部にトラップされた水量に応じて、熱交換部 P2の熱交換作用により、温度 T1に調整 される。  [0071] As shown in FIG. 3 (a), water is supplied at an amount of supply S1 to the evaporation section P1 corresponding to the preheating evaporation section 6 shown in FIG. 1, and at an amount of heat HI to the evaporation section P1. When the heat energy is supplied, the water trap part of the heat exchange part P2 corresponding to the heat exchange part 8 shown in FIG. 1 completely evaporates from the evaporation stick corresponding to the evaporation stick 6a shown in FIG. 1 of the evaporation part P1. The discharged liquid water is trapped. The hydrogen-containing gas that passes in the vicinity of the heat exchange part P2 is adjusted to the temperature T1 by the heat exchange action of the heat exchange part P2 according to the amount of water trapped in the water trap part.
[0072] さて、図 3 (b)に示すように、蒸発部 P1に対して供給量 S1よりも多い供給量 S 2で水 が供給され、かつその蒸発部 P 1に対して図 3 (a)の場合と同様の熱量 H 1で熱エネ ルギ一が供給される場合には、蒸発部 P1の蒸発棒力もは蒸発しな力つた液水が比 較的大量に排出されて、熱交換部 P2の水トラップ部には体積 VIよりも多い体積 V2 の水が貯蔵される。そして、この場合は、熱交換部 P2が貯蔵する体積 V2の水により より一層冷却されるので、熱交換部 P2の近傍を通過する水素含有ガスは、温度 T1よ りも低い温度 T2に調整される。つまり、蒸発部 P1に供給する熱エネルギーの熱量を 変化させない場合、蒸発部 PIに供給する水量を制御することにより、熱交換部 P2〖こ 接触する水素含有ガスの温度を任意に制御することができる。 [0072] Now, as shown in FIG. 3 (b), water is supplied to the evaporation section P1 at a supply amount S2 larger than the supply amount S1, and to the evaporation section P1, the water is supplied as shown in FIG. When heat energy is supplied with the same amount of heat H 1 as in the case of), a relatively large amount of liquid water that does not evaporate as the evaporation rod force of the evaporation part P1 is discharged, and the heat exchange part The water trap part of P2 stores water of volume V2, which is larger than volume VI. In this case, since the water is further cooled by the volume V2 of water stored in the heat exchanging part P2, the hydrogen-containing gas passing near the heat exchanging part P2 is adjusted to a temperature T2 lower than the temperature T1. The In other words, the amount of heat energy supplied to the evaporator P1 If not changed, the temperature of the hydrogen-containing gas in contact with the heat exchanger P2 can be arbitrarily controlled by controlling the amount of water supplied to the evaporator PI.
[0073] 一方、図 3 (c)に示すように、蒸発部 P1に対して供給量 S 2で水が供給され、かつそ の蒸発部 P1に対して熱量 HIで熱エネルギーが供給される際、熱交換部 P2の水トラ ップ部には、蒸発部 P1の蒸発棒力も蒸発しな力つた液水が排出されて、体積 V2の 水が貯蔵されるとする。そして、この場合、熱交換部 P2の近傍を通過する水素含有 ガスが、熱交換部 P2の熱交換作用により、温度 T2に調整されるとする。  On the other hand, as shown in FIG. 3 (c), when water is supplied to the evaporation part P1 with the supply amount S2, and heat energy is supplied to the evaporation part P1 with the heat quantity HI. In addition, it is assumed that the liquid water that does not evaporate the evaporation rod force of the evaporation part P1 is discharged to the water trap part of the heat exchange part P2, and water of volume V2 is stored. In this case, it is assumed that the hydrogen-containing gas passing through the vicinity of the heat exchange part P2 is adjusted to the temperature T2 by the heat exchange action of the heat exchange part P2.
[0074] さて、図 3 (d)に示すように、蒸発部 P1に対して供給量 S 2で水が供給され、かつそ の蒸発部 P1に対して熱量 HIよりも多い熱量 H2で熱エネルギーが供給される場合 には、蒸発部 P1の蒸発棒力も蒸発しな力つた液水の排出量が減少して、熱交換部 P 2の水トラップ部には体積 V2よりも少ない体積 VIの水が貯蔵される。そして、この場 合は、熱交換部 P2が貯蔵する体積 VIの水により弱く冷却されるので、熱交換部 P2 の近傍を通過する水素含有ガスは、温度 T2よりも高い温度 T1に調整される。つまり 、蒸発部 P1に供給する水量を変化させない場合は、蒸発部 P1に供給する熱ェネル ギ一の熱量を制御することにより、水素含有ガスの温度を任意に制御することができ る。  [0074] Now, as shown in Fig. 3 (d), water is supplied to the evaporation part P1 with the supply amount S2, and the heat energy with the heat quantity H2 greater than the heat quantity HI is supplied to the evaporation part P1. When water is supplied, the amount of liquid water discharged without the evaporation rod force of the evaporation part P1 decreases, and the water trap part of the heat exchange part P2 has a volume VI of less than volume V2. Is stored. In this case, the water-containing gas passing through the vicinity of the heat exchanging part P2 is adjusted to a temperature T1 higher than the temperature T2 because it is weakly cooled by the water of the volume VI stored in the heat exchanging part P2. . In other words, when the amount of water supplied to the evaporator P1 is not changed, the temperature of the hydrogen-containing gas can be arbitrarily controlled by controlling the amount of heat supplied to the evaporator P1.
[0075] このような原理に基づいて、本発明では、図 1に示す予熱蒸発部 6に供給する熱量 及び水供給器 9から予熱蒸発部 6に供給する水量の少なくとも一方を適切に制御し て、水素生成装置 100aにおける熱交換部 8の水トラップ部 7の貯水量を適切に制御 することにより、変成部 3に導入される水素含有ガスの温度を適切に制御する。  Based on such a principle, the present invention appropriately controls at least one of the amount of heat supplied to the preheating evaporator 6 and the amount of water supplied from the water supplier 9 to the preheating evaporator 6 shown in FIG. In addition, the temperature of the hydrogen-containing gas introduced into the shift unit 3 is appropriately controlled by appropriately controlling the amount of water stored in the water trap unit 7 of the heat exchange unit 8 in the hydrogen generator 100a.
[0076] 次に、本発明の実施の形態 1に係る水素生成装置の基本的な動作について、図 1 を参照しながら説明する。  Next, the basic operation of the hydrogen generator according to Embodiment 1 of the present invention will be described with reference to FIG.
[0077] 先ず、本発明に係る燃料電池システムを起動する際には、水供給器 9と原料供給 器 10とを作動させ、水と原料ガスとを水素生成装置 100aの予熱蒸発部 6に供給する 。ここで、本実施の形態では、原料ガスとして、脱硫後のメタンを主成分とする都巿ガ スを使用する。又、水の供給量については、原料ガス平均組成の炭素原子の 3倍量 となる酸素分子を含むように、水の供給量を設定する。尚、本実施の形態では、メタ ンを主成分とする都市ガスを原料ガスとして用いる構成とするため、供給する 1モル のメタンに対して 3モルの水蒸気が存在するために必要な量の水を予熱蒸発部 6に 供給する。即ち、スチームカーボン比(SZC比)が 3となるように、水供給器 9から予 熱蒸発部 6に向けて水を供給する。 [0077] First, when starting the fuel cell system according to the present invention, the water supply device 9 and the raw material supply device 10 are operated to supply water and the raw material gas to the preheating evaporation unit 6 of the hydrogen generator 100a. To do. Here, in the present embodiment, as a raw material gas, a city gas containing methane after desulfurization as a main component is used. The water supply is set so that it contains oxygen molecules that are three times the amount of carbon atoms in the average composition of the raw material gas. In this embodiment, since the city gas mainly composed of methane is used as the raw material gas, The required amount of water is supplied to the preheating evaporator 6 because 3 mol of water vapor is present per methane. That is, water is supplied from the water supplier 9 toward the preheating evaporator 6 so that the steam carbon ratio (SZC ratio) is 3.
[0078] 本実施の形態にぉ 、て、原料ガス及び水は、予熱蒸発部 6の上部より供給する。こ れにより、予熱蒸発部 6の内部において、加熱部 1が排出する高温状態の燃焼ガス 及び選択酸化部 4と変成部 3とからの伝熱により原料ガス及び水が加熱される。そし て、最終的に熱交換部 8を介する伝熱により、改質部 2の手前の予熱蒸発部 6では原 料ガスと水蒸気との混合気となり、この混合気が改質部 2に供給される。  In the present embodiment, the raw material gas and water are supplied from the upper part of the preheating evaporation unit 6. As a result, the raw material gas and water are heated by the high-temperature combustion gas discharged from the heating unit 1 and heat transfer from the selective oxidation unit 4 and the transformation unit 3 inside the preheating evaporation unit 6. Finally, due to the heat transfer through the heat exchange unit 8, the preheating evaporation unit 6 before the reforming unit 2 becomes a mixture of raw material gas and water vapor, and this mixture is supplied to the reforming unit 2. The
[0079] 本実施の形態では、水蒸気及び原料ガスからなる混合気は、図 1において上方か ら下方に向力つて予熱蒸発部 6から改質部 2に流入することになる。尚、水供給器 9 力も供給される水は、蒸発に伴う体積増加のため、予熱蒸発部 6において少な力もず 圧力変動を発生させる。ここで、その圧力変動が大きい場合、予熱蒸発部 6に向けて 同時に供給する原料ガスの供給量にその圧力変動に起因する変動が発生する。し かし、本実施の形態では、水供給器 9から水を予熱蒸発部 6の上部より供給すること で、蒸発に伴う体積増加時にぉ 、てもその供給する水を重力に従 、予熱蒸発部 6の 内部において下流側に流すことができるため、予熱蒸発部 6の内部における圧力変 動を防止することを可能として 、る。  In the present embodiment, the air-fuel mixture composed of water vapor and the raw material gas flows from the preheating evaporation unit 6 into the reforming unit 2 with an upward force from the lower side in FIG. Note that the water supplied by the water supply 9 also causes a pressure fluctuation in the preheating evaporation section 6 due to an increase in volume accompanying evaporation. Here, when the pressure fluctuation is large, a fluctuation due to the pressure fluctuation occurs in the supply amount of the raw material gas supplied to the preheating evaporation unit 6 at the same time. However, in the present embodiment, by supplying water from the upper part of the preheating evaporation unit 6 from the water supply unit 9, even when the volume increases due to evaporation, the supplied water follows the gravity and preheats evaporation. Since it can flow downstream in the part 6, it is possible to prevent pressure fluctuations in the preheating evaporation part 6.
[0080] 又、本実施の形態では、熱交換器 8に設けた水トラップ部 7が、予熱蒸発器 6の重 力方向下方に配置されている。従って、予熱蒸発部 6から排出された液水は、重力 方向下方に移動した後、水トラップ部 7にトラップされる。そのため、改質部 2に充填さ れた改質触媒 2aに液水が直接供給されることはない。よって、このような構成により、 改質触媒 2aが局所的に急冷されることで生じる改質反応の阻害ゃ改質触媒 2aの破 壊を確実に防止することが可能となる。  In the present embodiment, the water trap portion 7 provided in the heat exchanger 8 is arranged below the preheating evaporator 6 in the direction of the weight. Accordingly, the liquid water discharged from the preheating evaporation unit 6 moves downward in the direction of gravity and is then trapped in the water trap unit 7. For this reason, liquid water is not directly supplied to the reforming catalyst 2a filled in the reforming section 2. Therefore, with such a configuration, it is possible to reliably prevent the reforming catalyst 2a from being destroyed by inhibiting the reforming reaction caused by locally quenching the reforming catalyst 2a.
[0081] 又、本実施の形態では、加熱部 1の動作は、温度検出部 2bにより検出される温度 を目安にして制御する。ここで、加熱部 1から排出される高温状態の燃焼ガスは、改 質部 2における改質触媒 2aを加熱した後、燃焼ガス流路 5を通過する際に予熱蒸発 部 6をも加熱する。本実施の形態では、改質部 2の直後(下方)に設けられた温度検 出部 2bにより検出される改質触媒 2aから排出された水素含有ガスの温度が約 650 °Cとなるように、加熱部 1が排出する燃焼ガスの温度を制御する。その結果、改質部 2 の出口では、都市ガスの約 85%が水蒸気改質反応により水素含有ガスとなる。 In the present embodiment, the operation of the heating unit 1 is controlled using the temperature detected by the temperature detection unit 2b as a guide. Here, the high-temperature combustion gas discharged from the heating unit 1 heats the reforming catalyst 2a in the reforming unit 2 and then heats the preheating evaporation unit 6 when passing through the combustion gas channel 5. In the present embodiment, the temperature of the hydrogen-containing gas discharged from the reforming catalyst 2a detected by the temperature detection unit 2b provided immediately after (below) the reforming unit 2 is about 650. The temperature of the combustion gas discharged from the heating unit 1 is controlled so that the temperature becomes ° C. As a result, about 85% of the city gas becomes hydrogen-containing gas by the steam reforming reaction at the outlet of the reforming section 2.
[0082] 改質部 2から排出される水素含有ガスは、その後、改質部 2の下方において進行方 向が反転され、熱交換部 8に沿って上方に向かう。この際、水素含有ガスは、熱交換 部 8において予熱蒸発部 6側と熱交換を行った後、変成部 3における変成触媒 3aに 供給される。すると、変成部 3では、水素含有ガスに含まれる一酸化炭素の濃度が、 水蒸気を用いる水性ガスシフト反応により所定の濃度にまで低減される。ここで、本 実施の形態では、変成部 3における温度検出部 3bにより検出される温度が 250°C程 度となるよう、変成部 3を動作させる。これにより、変成部 3の出口における水素含有 ガスに含まれる一酸ィ匕炭素の濃度が約 0. 5% (ドライガスベース)となる。尚、通常の 動作時においては、改質部 2から排出される水素含有ガスの保有熱により反応温度 を 250°C程度に維持することができるため、変成部 3の変成触媒 3aを加熱器等により 加熱する必要はない。 [0082] The direction of travel of the hydrogen-containing gas discharged from the reforming unit 2 is then reversed below the reforming unit 2 and travels upward along the heat exchange unit 8. At this time, the hydrogen-containing gas is supplied to the shift catalyst 3a in the shift section 3 after exchanging heat with the preheating evaporation section 6 side in the heat exchange section 8. Then, in the metamorphic section 3, the concentration of carbon monoxide contained in the hydrogen-containing gas is reduced to a predetermined concentration by a water gas shift reaction using water vapor. Here, in the present embodiment, the transformation unit 3 is operated so that the temperature detected by the temperature detection unit 3b in the transformation unit 3 is about 250 ° C. As a result, the concentration of carbon monoxide contained in the hydrogen-containing gas at the outlet of the shift section 3 becomes about 0.5% (dry gas base). Note that during normal operation, the reaction temperature can be maintained at about 250 ° C by the heat retained in the hydrogen-containing gas discharged from the reforming section 2, so the shift catalyst 3a in the shift section 3 can be used as a heater, etc. There is no need to heat by.
[0083] その後、変成部 3から排出される水素含有ガスには、選択酸化用空気供給器 12か ら空気が供給される。ここで、選択酸化用空気供給器 12から水素含有ガスに供給す る空気の供給量は、水素含有ガスに含まれる酸素量が一酸ィ匕炭素の約 2倍のモル 数となるように設定する。尚、生成させる水素量を基準として供給する空気量を予め 設定することにより、選択酸化用空気供給器 12から供給する空気量を制御する。又 、本実施の形態では、選択酸化用空気供給器 12からの空気の供給量を制御するこ とにより、選択酸ィ匕部 4における温度検出部 4bにより検出される温度が 125°Cとなる ように、選択酸化部 4を動作させる。尚、変成部 3と選択酸ィ匕部 4との間の空間、或い は選択酸化部 4の外壁面に選択酸化冷却器としての空冷ファンを設け、これにより、 選択酸ィ匕部 4の動作温度を精度良く制御する構成としてもよい。尚、本実施の形態で は、改質部 2を予熱蒸発部 6の下方 (重力方向下側)に設けることにより、予熱蒸発部 6から原料ガス及び水蒸気の混合気を改質部 2にスムーズに供給できる構成としてい る。又、万が一予熱蒸発部 6において水を蒸発させることができない場合においても 、高温となる改質部 2ではその水を蒸発させることができる。その結果、改質部 2にお いて水蒸気改質反応を好適に進行させるために必要な水蒸気が不足することが防 止される。 [0083] Thereafter, air is supplied from the selective oxidation air supplier 12 to the hydrogen-containing gas discharged from the shift unit 3. Here, the amount of air supplied to the hydrogen-containing gas from the selective oxidation air supply 12 is set so that the amount of oxygen contained in the hydrogen-containing gas is about twice the number of moles of carbon monoxide and carbon. To do. The amount of air supplied from the selective oxidation air supplier 12 is controlled by setting the amount of air supplied on the basis of the amount of hydrogen to be generated. Further, in the present embodiment, the temperature detected by the temperature detection unit 4b in the selective oxidation unit 4 becomes 125 ° C. by controlling the amount of air supplied from the selective oxidation air supplier 12. Thus, the selective oxidation unit 4 is operated. In addition, an air cooling fan as a selective oxidation cooler is provided in the space between the transformation unit 3 and the selective oxidation unit 4 or the outer wall surface of the selective oxidation unit 4, so that the selective oxidation unit 4 It is good also as a structure which controls operating temperature accurately. In this embodiment, by providing the reforming section 2 below the preheating evaporation section 6 (lower side in the direction of gravity), the mixture gas of raw material gas and water vapor is smoothly transferred from the preheating evaporation section 6 to the reforming section 2. It can be supplied to Even in the case where water cannot be evaporated in the preheating evaporation section 6, the water can be evaporated in the reforming section 2 which becomes high temperature. As a result, it is possible to prevent the steam necessary for the steam reforming reaction to proceed appropriately in the reforming section 2. Stopped.
[0084] このように、本発明の実施の形態に係る水素生成装置 100aは、通常運転時、従来 の一般的な水素生成装置の動作と同様に動作する。そして、上記一連の運転動作 により、水素生成装置 100aは、一酸ィ匕炭素の濃度が約 20ppm以下となるように水 素含有ガスを生成する。  [0084] Thus, the hydrogen generator 100a according to the embodiment of the present invention operates in the same manner as the operation of a conventional general hydrogen generator during normal operation. Then, through the series of operations described above, the hydrogen generator 100a generates a hydrogen-containing gas so that the concentration of carbon monoxide carbon is about 20 ppm or less.
[0085] 次に、本発明の実施の形態 1に係る水素生成装置の特徴的な動作について、図 1 及び図 4を参照しながら説明する。  Next, a characteristic operation of the hydrogen generator according to Embodiment 1 of the present invention will be described with reference to FIG. 1 and FIG.
[0086] 図 4は、本発明の実施の形態 1に係る水素生成装置の特徴的な動作の 1サイクルを 模式的に示すフローチャートである。尚、実際には、燃料電池システムの発電運転の 際には、例えば、図 4に示す 1サイクルの動作が断続することなく連続して実行される  FIG. 4 is a flowchart schematically showing one cycle of the characteristic operation of the hydrogen generator according to Embodiment 1 of the present invention. Actually, during the power generation operation of the fuel cell system, for example, the operation of one cycle shown in FIG. 4 is continuously executed without being intermittent.
[0087] さて、図 4に示すように、水素生成装置 100aにおいて水素含有ガスの生成が開始 されると、燃料電池システムが備える制御器 14は、温度検出部 3b及び 3cの少なくと も一方の出力信号に基づいて、変成触媒 3aの温度 Tsを取得する (ステップ Sl)。 [0087] Now, as shown in FIG. 4, when the generation of the hydrogen-containing gas is started in the hydrogen generator 100a, the controller 14 included in the fuel cell system includes at least one of the temperature detectors 3b and 3c. Based on the output signal, the temperature Ts of the shift catalyst 3a is acquired (step Sl).
[0088] そして、制御器 14は、その変成触媒 3aの温度 Tsが制御器 14の記憶部に予め設 定される上限温度 Tu以上であるか否かを判定する (ステップ S2a)。ここで、制御器 1 4は、変成触媒 3aの温度 Tsが制御器 14の記憶部に予め設定される上限温度 Tu以 上ではないと判定した場合 (ステップ S 2aで NO)、その変成触媒 3aの温度 Tsが制御 器 14の記憶部に予め設定される下限温度 T1以下である力否かを判定する (ステップ S2b)。ここで、制御器 14は、変成触媒 3aの温度 Tsが制御器 14の記憶部に予め設 定される下限温度 T1以下ではないと判定した場合 (ステップ S 2bで NO)、変成触媒 3 aの温度 Tsを再び取得する。  Then, the controller 14 determines whether or not the temperature Ts of the shift catalyst 3a is equal to or higher than the upper limit temperature Tu set in advance in the storage unit of the controller 14 (step S2a). Here, when the controller 14 determines that the temperature Ts of the shift catalyst 3a is not higher than the upper limit temperature Tu preset in the storage unit of the controller 14 (NO in step S2a), the shift catalyst 3a It is determined whether or not the temperature Ts is lower than the lower limit temperature T1 preset in the storage unit of the controller 14 (step S2b). Here, when the controller 14 determines that the temperature Ts of the shift catalyst 3a is not lower than the lower limit temperature T1 preset in the storage unit of the controller 14 (NO in step S2b), the controller 14a Acquire temperature Ts again.
[0089] 一方、制御器 14は、変成触媒 3aの温度 Tsが制御器 14の記憶部に予め設定され る上限温度 Tu以上であると判定した場合 (ステップ S2aで YES)、水供給器 9から予 熱蒸発部 6への水の供給量を増量する (ステップ S3a)。又は、制御器 14は、変成触 媒 3aの温度 Tsが制御器 14の記憶部に予め設定される下限温度 T1以下であると判 定した場合 (ステップ S2bで YES)、水供給器 9から予熱蒸発部 6への水の供給量を 減量する (ステップ S3b)。ここで、本実施の形態では、水供給器 9から予熱蒸発部 6 への水の供給量の増量は、予め設定される増量データに従い実行される。又、同様 にして、水供給器 9から予熱蒸発部 6への水の供給量の減量も、予め設定される減 量データに従い実行される。 On the other hand, when controller 14 determines that temperature Ts of shift catalyst 3a is equal to or higher than upper limit temperature Tu preset in the storage unit of controller 14 (YES in step S2a), controller 14 Increase the amount of water supplied to the preheating evaporator 6 (step S3a). Alternatively, when the controller 14 determines that the temperature Ts of the modified catalyst 3a is equal to or lower than the lower limit temperature T1 preset in the storage unit of the controller 14 (YES in step S2b), the controller 14 preheats from the water supplier 9. Reduce the amount of water supplied to the evaporator 6 (step S3b). Here, in the present embodiment, the water supplier 9 to the preheating evaporator 6 The increase in the amount of water supplied to the is performed according to preset increase data. Similarly, the reduction in the amount of water supplied from the water supplier 9 to the preheating evaporator 6 is also executed according to preset reduction data.
[0090] このように、本実施の形態に係る水素生成装置 100aの特徴的な動作は、温度検出 部 3b及び 3cの少なくとも一方により検出される温度に対して上限温度 Tu及び下限 温度 T1を予め設定して、温度検出部 3b及び 3cの少なくとも一方により検出される温 度が上限温度 Tu以上となった場合には水供給器 9から予熱蒸発部 6に供給する水 の量を増量させることで予熱蒸発部 6において必要蒸発潜熱量を増量させる点で、 従来の水素生成装置の動作と異なっている。又、温度検出部 3b及び 3cの少なくとも 一方により検出される温度が下限温度 T1以下となった場合には水供給器 9から予熱 蒸発部 6に供給する水の量を減量させることで予熱蒸発部 6において必要蒸発潜熱 量を減量させる点で、従来の水素生成装置の動作と異なって 、る。  As described above, the characteristic operation of the hydrogen generator 100a according to the present embodiment is that the upper limit temperature Tu and the lower limit temperature T1 are set in advance with respect to the temperature detected by at least one of the temperature detection units 3b and 3c. If the temperature detected by at least one of the temperature detectors 3b and 3c exceeds the upper limit temperature Tu, the amount of water supplied from the water supplier 9 to the preheating evaporator 6 is increased. This is different from the operation of the conventional hydrogen generator in that the amount of latent heat of vaporization is increased in the preheating evaporator 6. In addition, when the temperature detected by at least one of the temperature detection units 3b and 3c is lower than the lower limit temperature T1, the amount of water supplied from the water supply unit 9 to the preheating evaporation unit 6 is reduced to reduce the amount of the preheating evaporation unit. This is different from the operation of the conventional hydrogen generator in that the required latent heat of vaporization in step 6 is reduced.
[0091] そして、制御器 14は、ステップ S3aにおいて水供給器 9から予熱蒸発部 6への水の 供給量が増量された後、変成触媒 3aの温度 Tsが上限温度 Tu以上ではなくなつたか 否かを判定する (ステップ S4a)。又は、制御器 14は、ステップ S3bにおいて水供給 器 9から予熱蒸発部 6への水の供給量が減量された後、変成触媒 3aの温度 Tsが下 限温度 T1以下ではなくなつた力否かを判定する (ステップ S4b)。  [0091] Then, the controller 14 determines whether or not the temperature Ts of the shift catalyst 3a is not equal to or higher than the upper limit temperature Tu after the amount of water supplied from the water supplier 9 to the preheating evaporator 6 is increased in step S3a. (Step S4a). Alternatively, the controller 14 determines whether or not the temperature Ts of the shift catalyst 3a does not fall below the lower limit temperature T1 after the amount of water supplied from the water supplier 9 to the preheating evaporator 6 is reduced in step S3b. Is determined (step S4b).
[0092] ここで、制御器 14は、変成触媒 3aの温度 Tsが未だ上限温度 Tu以上であると判定 した場合には (ステップ S4aで NO)、水供給器 9から予熱蒸発部 6への水の供給量を 更に増量させる。又は、制御器 14は、変成触媒 3aの温度 Tsが未だ下限温度 T1以下 であると判定した場合には (ステップ S4bで NO)、水供給器 9から予熱蒸発部 6への 水の供給量を更に減量させる。  [0092] Here, when the controller 14 determines that the temperature Ts of the shift catalyst 3a is still equal to or higher than the upper limit temperature Tu (NO in step S4a), the water from the water supplier 9 to the preheating evaporator 6 is determined. Further increase the supply amount. Alternatively, if the controller 14 determines that the temperature Ts of the shift catalyst 3a is still below the lower limit temperature T1 (NO in step S4b), the controller 14 reduces the amount of water supplied from the water supplier 9 to the preheating evaporation unit 6. Reduce the dose further.
[0093] 一方、制御器 14は、変成触媒 3aの温度 Tsが上限温度 Tu未満になったと判定した 場合 (ステップ S4aで YES)、水供給器 9から予熱蒸発部 6への水の供給量を維持さ せたまま、変成触媒 3aの温度 Tsが下限温度 T1以下でないか否かを判定する (ステツ プ S5)。又は、制御器 14は、変成触媒 3aの温度 Tsが下限温度 T1を超えると判定し た場合 (ステップ S4bで YES)、水供給器 9から予熱蒸発部 6への水の供給量を維持 させたまま、変成触媒 3aの温度 Tsが上限温度 Tu以上でな 、か否かを判定する (ス テツプ S5)。そして、制御器 14は、変成触媒 3aの温度 Tsが過剰に低下して下限温 度 T1以下となった場合や、変成触媒 3aの温度 Tsが過剰に上昇して上限温度 Tu以 上となった場合 (ステップ S5で NO)、例えばオペレータや使用者に向けてアラームを 出力する (ステップ S6)。し力しながら、制御器 14は、変成触媒 3aの温度 Tsが上限 温度 Tu及び下限温度 T1の間の温度である場合 (ステップ S5で YES)、変成触媒 3a の温度制御を終了する。 [0093] On the other hand, when the controller 14 determines that the temperature Ts of the shift catalyst 3a has become lower than the upper limit temperature Tu (YES in step S4a), the controller 14 controls the amount of water supplied from the water supplier 9 to the preheating evaporator 6. While the temperature is maintained, it is determined whether or not the temperature Ts of the shift catalyst 3a is not lower than the lower limit temperature T1 (step S5). Alternatively, when the controller 14 determines that the temperature Ts of the shift catalyst 3a exceeds the lower limit temperature T1 (YES in step S4b), the controller 14 maintains the amount of water supplied from the water supplier 9 to the preheating evaporation unit 6. Whether the temperature Ts of the shift catalyst 3a is equal to or higher than the upper limit temperature Tu is determined. Step S5). Then, the controller 14 causes the temperature Ts of the shift catalyst 3a to decrease excessively and become the lower limit temperature T1 or lower, or the temperature Ts of the shift catalyst 3a increases excessively to reach the upper limit temperature Tu or higher. If (NO in step S5), for example, an alarm is output to the operator or user (step S6). However, when the temperature Ts of the shift catalyst 3a is between the upper limit temperature Tu and the lower limit temperature T1 (YES in step S5), the controller 14 ends the temperature control of the shift catalyst 3a.
[0094] このように、本実施の形態に係る水素生成装置 100aの特徴的な動作は、図 4に示 すステップ S1〜S5の動作により変成部 3における変成触媒 3aの温度を最適な温度 に制御する点で、従来の水素生成装置の動作と異なって 、る。  [0094] As described above, the characteristic operation of the hydrogen generator 100a according to the present embodiment is that the temperature of the shift catalyst 3a in the shift section 3 is set to an optimum temperature by the operations of steps S1 to S5 shown in FIG. This is different from the operation of the conventional hydrogen generator in terms of control.
[0095] ここで、変成部 3における変成触媒 3aの温度 Tsを低下させることができる理由は、 水供給器 9から予熱蒸発部 6に供給する水の量を増量させることにより、熱交換部 8 における水トラップ部 7の貯水量が増量され、これにより、改質部 2から排出された水 素含有ガスからの予熱蒸発部 6側への熱交換量が増量されるため、変成部 3へ供給 される水素含有ガスの温度が低下するからである。又、それとは反対に、変成部 3に おける変成触媒 3aの温度 Tsを上昇させることができる理由は、水供給器 9から予熱 蒸発部 6に供給する水の量を減量させることで、熱交換部 8における水トラップ部 7の 貯水量が減量され、これにより、改質部 2から排出された水素含有ガス力もの予熱蒸 発部 6側への熱交換量が減量されるため、変成部 3へ供給される水素含有ガスの温 度が上昇するからである。  [0095] Here, the reason why the temperature Ts of the shift catalyst 3a in the shift section 3 can be reduced is that the amount of water supplied from the water supplier 9 to the preheating evaporation section 6 is increased, thereby increasing the heat exchange section 8 In this way, the amount of water stored in the water trap section 7 is increased, and this increases the amount of heat exchange from the hydrogen-containing gas discharged from the reforming section 2 to the preheating evaporation section 6 side. This is because the temperature of the produced hydrogen-containing gas is lowered. On the other hand, the reason why the temperature Ts of the shift catalyst 3a in the shift section 3 can be increased is that the amount of water supplied from the water supply 9 to the preheating evaporation section 6 is reduced so that heat exchange can be achieved. The amount of water stored in the water trap part 7 in the part 8 is reduced, and this reduces the amount of heat exchange to the preheating steaming part 6 side of the hydrogen-containing gas power discharged from the reforming part 2. This is because the temperature of the hydrogen-containing gas supplied to the tank rises.
[0096] 又、改質部 2、変成部 3及び選択酸化部 4等の一酸化炭素除去部を一体化して構 成した水素生成装置 100aでは、それぞれの動作温度で熱の授受が安定ィ匕している ため、 1つの反応部の温度が変化するとそのバランスが変化し、最適な動作温度を保 つことができなくなる場合がある。即ち、一酸化炭素除去部の温度の変化は、水或い は原料ガスの供給バランスが崩れることがその要因となることが多い。特に、水の供 給量が変化した場合、例えば、何らかの原因により水の供給量が想定する供給量よ りも少なくなると、上述のように変成部 3における変成触媒 3aの温度が上昇することに なる。従って、本実施の形態で示す構成によれば、水供給器 9から予熱蒸発部 6への 水の供給量を増量させる制御となるため、最終的に温度検出部 3b (又は、温度検出 部 3c)により検出される温度が適正な範囲内で安定する、適正な範囲内の供給量の 水を供給することができるようになるという効果も併せて発揮されることになる。尚、本 実施の形態では、熱交換部 8を変成部 3への水素含有ガスの流路に設ける構成によ り、変成部 3における変成触媒 3aの温度を水蒸気改質反応のために供給する水の 供給量を制御することにより容易に制御可能として 、る。 [0096] Further, in the hydrogen generator 100a configured by integrating the carbon monoxide removal unit such as the reforming unit 2, the conversion unit 3, and the selective oxidation unit 4, heat transfer is stable at each operating temperature. Therefore, when the temperature of one reaction zone changes, the balance changes, and it may not be possible to maintain the optimum operating temperature. That is, the change in the temperature of the carbon monoxide removal section is often caused by the supply balance of water or source gas being lost. In particular, when the supply amount of water changes, for example, if the supply amount of water becomes lower than the supply amount assumed for some reason, the temperature of the shift catalyst 3a in the shift section 3 increases as described above. Become. Therefore, according to the configuration shown in the present embodiment, the control is performed to increase the amount of water supplied from the water supplier 9 to the preheating evaporator 6, so that the temperature detector 3b (or temperature detector) is finally used. The effect that the temperature detected by part 3c) is stabilized within the proper range and the supply amount of water within the proper range can be supplied is also exhibited. In this embodiment, the temperature of the shift catalyst 3a in the shift section 3 is supplied for the steam reforming reaction by providing the heat exchange section 8 in the flow path of the hydrogen-containing gas to the shift section 3. It can be easily controlled by controlling the amount of water supplied.
[0097] 又、本実施の形態においては、制御器 14の記憶部に予め設定される上限温度 Tu 及び下限温度 T1を、変成触媒 3aの触媒特性を考慮して決定する必要がある。  Further, in the present embodiment, it is necessary to determine the upper limit temperature Tu and the lower limit temperature T1 set in advance in the storage unit of the controller 14 in consideration of the catalyst characteristics of the shift catalyst 3a.
[0098] 図 6は、本発明の実施の形態 1に係る Cu— Zn系変成触媒の温度活性に関する一 評価例の結果を模式的に示すグラフである。尚、この図 6では、 Cu— Zn系変成触媒 の固定相流通装置における一評価例の結果を示している。又、この図 6では、一酸 化炭素の含有率が 10%でありかつ二酸化炭素の含有率が 10%である水素バランス ガス (ドライガスベース)に水蒸気を添加した疑似混合ガスを用いて、水蒸気改質反 応を想定した S/C = 2. 7, S/C = 3. 0, S/C = 3. 3における空間速度(SV) = 1 OOOZ時間での評価結果を示して 、る。  FIG. 6 is a graph schematically showing the results of one evaluation example regarding the temperature activity of the Cu—Zn-based shift catalyst according to Embodiment 1 of the present invention. FIG. 6 shows the result of an evaluation example in a stationary phase flow device for a Cu—Zn-based shift catalyst. Further, in FIG. 6, a pseudo mixed gas obtained by adding water vapor to a hydrogen balance gas (dry gas base) having a carbon monoxide content of 10% and a carbon dioxide content of 10% is used. Assuming steam reforming reaction S / C = 2.7, S / C = 3.0, S / C = 3.3 Space velocity (SV) = 1 .
[0099] 図 6によれば、 SZCの値に関係なぐ改質部 2から排出される水素含有ガスに含ま れるー酸ィヒ炭素の濃度を効果的に低減するためには、変成部 3における変成触媒 3 aの温度を約 220°Cに制御することが望ましい。  [0099] According to FIG. 6, in order to effectively reduce the concentration of oxy-carbon in the hydrogen-containing gas discharged from the reforming section 2 related to the value of SZC, It is desirable to control the temperature of the shift catalyst 3a to about 220 ° C.
[0100] 一方、この図 6によれば、 SZCの値が低下するにつれて、特に低温領域において 一酸化炭素の低減効率が低下することが分かる。実際の水素生成装置では、水供 給器 9から予熱蒸発部 6への水の供給量の減量に伴い変成部 3における変成触媒 3 aの温度が上昇するため、水素含有ガスに含まれる一酸ィ匕炭素の濃度が著しく上昇 する可能性は小さい。そして、その状態で、水供給器 9から予熱蒸発部 6への水の供 給量を増量させた場合、変成部 3における変成触媒 3aの温度は低下するが、 S/C の値が上昇するので、一酸ィ匕炭素の低減効率が著しく低下する可能性は小さい。そ のため、変成部 3から排出される水素含有ガスに含まれる一酸ィ匕炭素の濃度が上昇 しな 、よう制御することが可能となる。  [0100] On the other hand, according to FIG. 6, it can be seen that as the value of SZC decreases, the reduction efficiency of carbon monoxide decreases particularly in the low temperature region. In an actual hydrogen generator, the temperature of the shift catalyst 3a in the shift section 3 rises as the amount of water supplied from the water feeder 9 to the preheating evaporation section 6 decreases, so that the monoacid contained in the hydrogen-containing gas It is unlikely that the carbon concentration will rise significantly. In this state, when the amount of water supplied from the water supplier 9 to the preheating evaporator 6 is increased, the temperature of the shift catalyst 3a in the shift section 3 decreases, but the S / C value increases. Therefore, there is little possibility that the reduction efficiency of carbon monoxide and carbon will be remarkably lowered. For this reason, it is possible to control so that the concentration of carbon monoxide contained in the hydrogen-containing gas discharged from the shift section 3 does not increase.
[0101] 本実施の形態では、例えば、温度検出部 3bにより検出される温度に対して、上限 温度 Tuを 240°Cとし、かつ下限温度 T1を 200°Cと設定している。そして、水供給器 9 力 予熱蒸発部 6へ供給する水の量を適切に増減させることにより、変成部 3の出口 における水素含有ガスに含まれる一酸ィ匕炭素の濃度が 0. 5% (ドライガスベース)を 上回らないように制御する。尚、温度検出部 3bにより検出される温度に対する上限温 度 Tu及び下限温度 T1は、変成触媒 3aの大きさ、適用する触媒の種類、触媒の充填 量、運転条件等、水素生成装置 100aの構成により相違するものである。そのため、 上限温度 Tu及び下限温度 T1の設定においては、水素生成装置 100a毎に供給水 量と温度検出部 3bにより検出される温度との相関関係を予め測定して決定する必要 がある。又、本実施の形態では、変成部 3における変成触媒 3aの温度をその近傍に 配設される温度検出部 3b等により検出する構成としているが、この構成に限定される ことはなぐ変成部 3における変成触媒 3aの温度を直接又は間接的に検出すること が可能な位置であれば、如何なる位置に温度検出部を配設することができる。 [0101] In the present embodiment, for example, the upper limit temperature Tu is set to 240 ° C and the lower limit temperature T1 is set to 200 ° C with respect to the temperature detected by the temperature detection unit 3b. And water supply 9 Force By appropriately increasing or decreasing the amount of water supplied to the preheating vaporization section 6, the concentration of carbon monoxide contained in the hydrogen-containing gas at the outlet of the transformation section 3 exceeds 0.5% (dry gas base). Control to not. The upper limit temperature Tu and the lower limit temperature T1 with respect to the temperature detected by the temperature detector 3b are the configuration of the hydrogen generator 100a, such as the size of the shift catalyst 3a, the type of catalyst to be applied, the amount of catalyst charged, and the operating conditions. Is different. Therefore, in setting the upper limit temperature Tu and the lower limit temperature T1, it is necessary to measure and determine in advance the correlation between the amount of water supplied and the temperature detected by the temperature detector 3b for each hydrogen generator 100a. In the present embodiment, the temperature of the shift catalyst 3a in the shift section 3 is detected by the temperature detector 3b or the like disposed in the vicinity thereof. However, the shift section 3 is not limited to this configuration. As long as the temperature of the shift catalyst 3a can be detected directly or indirectly, the temperature detector can be arranged at any position.
[0102] 又、本実施の形態においては、例えば、水供給器 9から予熱蒸発部 6の間に水の 流量計を配設すると共に、予熱蒸発部 6への水の供給量に上限供給量と下限供給 量とを各々設定することにより、燃料電池システムにおける温度検出部 3b及び 3c等 の性能劣化を検知することが可能になる。即ち、燃料電池システムの自己診断を実 施することができる。 [0102] In the present embodiment, for example, a water flow meter is disposed between the water supply unit 9 and the preheating evaporation unit 6, and the upper limit supply amount of water supplied to the preheating evaporation unit 6 is set. And the lower limit supply amount are set respectively, it becomes possible to detect the performance deterioration of the temperature detectors 3b and 3c in the fuel cell system. That is, the self-diagnosis of the fuel cell system can be performed.
[0103] 例えば、水供給器 9に水の流量計を内蔵させる共に、水供給器 9から予熱蒸発部 6 に供給する水の供給量に対して予め上限供給量及び下限供給量を設ける。そして、 例えば、温度検出部 3bにより検出される温度が上限温度 Tu以上となり、水供給器 9 から予熱蒸発部 6に供給する水の供給量を増量させた際、その増量させた後の水の 供給量が上述した上限供給量以上となる場合には、温度検出部 3b及び 3c等に性能 劣化が発生したと判断する。又は、温度検出部 3bで検出される温度が下限温度 T1 以下となり、水供給器 9から予熱蒸発部 6に供給する水の供給量を減量させた際、そ の減量させた後の水の供給量が上述した下限供給量以下となる場合、温度検出部 3 b及び 3c等に性能劣化が発生したと判断する。  [0103] For example, a water flow meter is built in the water supply device 9, and an upper limit supply amount and a lower limit supply amount are provided in advance with respect to the supply amount of water supplied from the water supply device 9 to the preheating evaporator 6. For example, when the temperature detected by the temperature detector 3b is equal to or higher than the upper limit temperature Tu and the amount of water supplied from the water supplier 9 to the preheating evaporator 6 is increased, the increased amount of water If the supply amount is greater than or equal to the upper limit supply amount described above, it is determined that performance degradation has occurred in the temperature detectors 3b and 3c and the like. Alternatively, when the temperature detected by the temperature detection unit 3b is lower than the lower limit temperature T1, and the amount of water supplied from the water supply unit 9 to the preheating evaporation unit 6 is reduced, the supply of water after the reduction is made When the amount is equal to or less than the above-described lower limit supply amount, it is determined that the performance deterioration has occurred in the temperature detection units 3b and 3c.
[0104] 又、他の例を挙げて説明すると、本実施の形態にお!、て例示する改質部 2及び変 成部 3及び選択酸ィ匕部 4が一体化された水素生成装置 100aでは、原料ガス及び水 の供給量が安定して 、る場合、それぞれの動作温度で熱の授受が安定ィ匕して 、るた め、各反応部の温度は比較的安定な状態で推移する。従って、水供給器 9からの水 の供給量を制御することにより、変成部 3における変成触媒 3aの温度を想定範囲内 にお 、て安定ィ匕させることができる。 [0104] Further, another example will be described. In this embodiment, the hydrogen generator 100a in which the reforming unit 2, the reforming unit 3, and the selective acid tank unit 4 illustrated in this embodiment are integrated. In this case, when the supply amount of the raw material gas and water is stable, heat transfer is stable at each operating temperature. Therefore, the temperature of each reaction part changes in a relatively stable state. Therefore, by controlling the amount of water supplied from the water supplier 9, the temperature of the shift catalyst 3a in the shift section 3 can be stabilized within the assumed range.
[0105] し力しながら、例えば、想定範囲内において水の供給量を制御しても温度検出部 3 bで検出される温度が想定範囲内において制御されない場合には、それぞれの反応 部での熱の授受が不安定となっている。この場合、その熱の授受の不安定化を引き 起こす要因としては、水供給器 9から予熱蒸発部 6に供給する水の供給量が想定範 囲内から逸脱していることが考えられる。例えば、水供給器 9の性能が経年劣化した 場合には、入力電圧に対して正しい供給量で水を供給することができない場合があ る。又、温度検出部 3b等の温度検出部の性能が経年劣化した場合にも、初期に想 定した温度範囲内において安定しない場合がある。このような場合、格別な処置を施 さな 、まま燃料電池システムの運転を継続させると、実際に供給される水の供給量が 少ない場合には、変成部 3から排出される水素含有ガスに含まれる一酸ィ匕炭素の濃 度が上昇する。又、実際に供給される水の供給量が多い場合には、水を蒸発させる ために過剰の熱エネルギーを消費するため、水素生成効率が低下する。しかしなが ら、上述した流量計を配設すると共に水の供給量に上限供給量と下限供給量とを設 定する構成によれば、水供給器 9や温度検出部 3b及び 3c等の性能劣化を検出する ことができるので、本実施の形態で例示する水素生成装置 100aの特徴的な動作を 好適にかつ確実に実行させることが可能になる。又、力かる構成によれば、燃料電池 システムの異常な発電運転の継続を回避することが可能になる。  For example, if the temperature detected by the temperature detection unit 3b is not controlled within the assumed range even if the amount of water supply is controlled within the assumed range, Heat exchange is unstable. In this case, it is considered that the amount of water supplied from the water supplier 9 to the preheating evaporator 6 deviates from the expected range as a factor that causes instability in the transfer of heat. For example, when the performance of the water supply device 9 deteriorates over time, water may not be supplied with the correct supply amount with respect to the input voltage. In addition, even if the performance of the temperature detector such as the temperature detector 3b deteriorates over time, it may not be stable within the initially assumed temperature range. In such a case, if the operation of the fuel cell system is continued without taking any special measures, if the amount of water actually supplied is small, the hydrogen-containing gas discharged from the shift section 3 will be reduced. Concentration of contained carbon monoxide increases. In addition, when the amount of water that is actually supplied is large, excessive heat energy is consumed to evaporate the water, resulting in a decrease in hydrogen generation efficiency. However, according to the configuration in which the flow meter described above is installed and the upper limit supply amount and the lower limit supply amount are set for the water supply amount, the performance of the water supply unit 9 and the temperature detection units 3b and 3c, etc. Since the deterioration can be detected, the characteristic operation of the hydrogen generator 100a exemplified in the present embodiment can be suitably and reliably executed. In addition, according to the configuration, it is possible to avoid the continuation of abnormal power generation operation of the fuel cell system.
[0106] 以上、改質部及び変成部及び選択酸化部を一体化した水素生成装置では、個々 の動作温度を最適化するために反応部毎に個別の温度制御機構を設ける場合には 大型化により放熱量が増加して水素の生成効率が低下する力 本実施の形態によ れば、予熱蒸発部に供給する水の供給量を変化させることにより、水素の生成効率 を低下させることなく変成部 3における変成触媒 3aの温度を適切に制御することがで きる。  [0106] As described above, in the hydrogen generator in which the reforming unit, the shift unit, and the selective oxidation unit are integrated, the size is increased when a separate temperature control mechanism is provided for each reaction unit in order to optimize the individual operating temperature. According to the present embodiment, the amount of water supplied to the preheating evaporation unit is changed to change without reducing the hydrogen generation efficiency. The temperature of the shift catalyst 3a in part 3 can be controlled appropriately.
[0107] (実施の形態 2)  [Embodiment 2]
本発明の実施の形態 2に係る水素生成装置のハードウェアの構成及びそれを駆動 するための付加的なハードウェアの構成、及び、水素生成装置の基本的な動作につ いては、実施の形態 1の場合と同様である。従って、本発明の実施の形態 2では、そ れらの説明につ 、ては省略する。 Hardware configuration of a hydrogen generator according to Embodiment 2 of the present invention and driving the same The configuration of additional hardware for performing this operation and the basic operation of the hydrogen generator are the same as in the first embodiment. Accordingly, in the second embodiment of the present invention, those descriptions are omitted.
[0108] 本実施の形態に示す水素生成装置の特徴的な動作と、実施の形態 1に示す水素 生成装置の特徴的な動作との相違点は、例えば、温度検出部 3bにより検出される温 度に対して予め上限温度 Tu及び下限温度 T1を設定して、温度検出部 3bにより検出 される温度が上限温度 Tu以上となった場合に、加熱部 1に供給する燃焼用の空気 の供給量を減量させる点である。又、他の相違点は、例えば、温度検出部 3bにより 検出される温度が下限温度 T1以下となった場合に、加熱部 1に供給する燃焼用の空 気の供給量を増量させる点である。このような特徴的な動作により、変成部 3における 変成触媒 3aの温度を最適な温度に制御することを可能にする。  [0108] The difference between the characteristic operation of the hydrogen generator shown in the present embodiment and the characteristic operation of the hydrogen generator shown in Embodiment 1 is, for example, the temperature detected by the temperature detector 3b. The upper limit temperature Tu and the lower limit temperature T1 are set in advance, and the amount of combustion air supplied to the heating section 1 when the temperature detected by the temperature detection section 3b exceeds the upper limit temperature Tu Is to reduce the weight. Another difference is that, for example, when the temperature detected by the temperature detection unit 3b is lower than the lower limit temperature T1, the supply amount of combustion air supplied to the heating unit 1 is increased. . Such a characteristic operation makes it possible to control the temperature of the shift catalyst 3a in the shift section 3 to an optimum temperature.
[0109] 以下、本発明の実施の形態 2に係る水素生成装置の特徴的な動作について、図 1 及び図 5を参照しながら説明する。  Hereinafter, a characteristic operation of the hydrogen generator according to Embodiment 2 of the present invention will be described with reference to FIG. 1 and FIG.
[0110] 図 5は、本発明の実施の形態 2に係る水素生成装置の特徴的な動作の 1サイクルを 模式的に示すフローチャートである。  FIG. 5 is a flowchart schematically showing one cycle of the characteristic operation of the hydrogen generator according to Embodiment 2 of the present invention.
[0111] さて、図 5に示すように、水素生成装置 100aにおいて水素含有ガスの生成が開始 されると、燃料電池システムが備える制御器 14は、温度検出部 3b及び 3cの少なくと も一方の出力信号に基づいて、変成触媒 3aの温度 Tsを取得する (ステップ Sl)。  Now, as shown in FIG. 5, when the generation of the hydrogen-containing gas is started in the hydrogen generator 100a, the controller 14 included in the fuel cell system has at least one of the temperature detectors 3b and 3c. Based on the output signal, the temperature Ts of the shift catalyst 3a is acquired (step Sl).
[0112] そして、制御器 14は、その変成触媒 3aの温度 Tsが制御器 14の記憶部に予め設 定される上限温度 Tu以上であるか否かを判定する (ステップ S2a)。ここで、制御器 1 4は、変成触媒 3aの温度 Tsが制御器 14の記憶部に予め設定される上限温度 Tu以 上ではないと判定した場合 (ステップ S 2aで NO)、その変成触媒 3aの温度 Tsが制御 器 14の記憶部に予め設定される下限温度 T1以下である力否かを判定する (ステップ S2b)。ここで、変成触媒 3aの温度 Tsが制御器 14の記憶部に予め設定される下限 温度 T1以下ではないと判定した場合 (ステップ S2bで NO)、変成触媒 3aの温度 Tsを 再び取得する。  [0112] Then, the controller 14 determines whether or not the temperature Ts of the shift catalyst 3a is equal to or higher than the upper limit temperature Tu set in advance in the storage unit of the controller 14 (step S2a). Here, when the controller 14 determines that the temperature Ts of the shift catalyst 3a is not higher than the upper limit temperature Tu preset in the storage unit of the controller 14 (NO in step S2a), the shift catalyst 3a It is determined whether or not the temperature Ts is lower than the lower limit temperature T1 preset in the storage unit of the controller 14 (step S2b). Here, when it is determined that the temperature Ts of the shift catalyst 3a is not lower than the lower limit temperature T1 preset in the storage unit of the controller 14 (NO in step S2b), the temperature Ts of the shift catalyst 3a is acquired again.
[0113] 一方、制御器 14は、変成触媒 3aの温度 Tsが制御器 14の記憶部に予め設定され る上限温度 Tu以上であると判定した場合には (ステップ S2aで YES)、燃焼用空気 供給器 11から加熱部 1への空気の供給量を減量する (ステップ S3a)。又は、制御器 14は、変成触媒 3aの温度 Tsが制御器 14の記憶部に予め設定される下限温度 T1以 下であると判定した場合 (ステップ S2bで YES)、燃焼用空気供給器 11から加熱部 1 への空気の供給量を増量する (ステップ S3b)。ここで、本実施の形態では、燃焼用 空気供給器 11から加熱部 1への空気の供給量の減量は、予め設定される減量デー タに従い実行される。又、同様にして、燃焼用空気供給器 11から加熱部 1への空気 の供給量の増量は、予め設定される増量データに従い実行される。 [0113] On the other hand, if the controller 14 determines that the temperature Ts of the shift catalyst 3a is equal to or higher than the upper limit temperature Tu preset in the storage unit of the controller 14 (YES in step S2a), the combustion air The amount of air supplied from the feeder 11 to the heating unit 1 is reduced (step S3a). Alternatively, when the controller 14 determines that the temperature Ts of the shift catalyst 3a is equal to or lower than the lower limit temperature T1 preset in the storage unit of the controller 14 (YES in step S2b), from the combustion air supply 11 Increase the amount of air supplied to heating unit 1 (step S3b). Here, in the present embodiment, the reduction in the amount of air supplied from the combustion air supply 11 to the heating unit 1 is executed in accordance with preset reduction data. Similarly, the increase in the amount of air supplied from the combustion air supply 11 to the heating unit 1 is executed according to preset increase data.
[0114] このように、本実施の形態に係る水素生成装置 100aの特徴的な動作は、温度検出 部 3b及び 3cの少なくとも一方により検出される温度に対して上限温度 Tu及び下限 温度 T1を予め設定して、温度検出部 3b及び 3cの少なくとも一方により検出される温 度が上限温度 Tu以上となった場合には燃焼用空気供給器 11から加熱部 1に供給 する空気の供給量を減量させることで予熱蒸発部 6に供給する熱量を減量させる点 で、従来の水素生成装置の動作と異なっている。又、温度検出部 3b及び 3cの少なく とも一方により検出される温度が下限温度 T1以下となった場合には燃焼用空気供給 器 11から加熱部 1に供給する空気の供給量を増量させることで予熱蒸発部 6に供給 する熱量を増量させる点で、従来の水素生成装置の動作と異なって 、る。  [0114] As described above, the characteristic operation of the hydrogen generator 100a according to the present embodiment is that the upper limit temperature Tu and the lower limit temperature T1 are set in advance with respect to the temperature detected by at least one of the temperature detection units 3b and 3c. If the temperature detected by at least one of the temperature detection units 3b and 3c exceeds the upper limit temperature Tu, the amount of air supplied from the combustion air supply 11 to the heating unit 1 is reduced. This is different from the operation of the conventional hydrogen generator in that the amount of heat supplied to the preheating evaporator 6 is reduced. In addition, when the temperature detected by at least one of the temperature detection units 3b and 3c is lower than the lower limit temperature T1, the amount of air supplied from the combustion air supply unit 11 to the heating unit 1 is increased. This is different from the operation of the conventional hydrogen generator in that the amount of heat supplied to the preheating evaporator 6 is increased.
[0115] そして、制御器 14は、ステップ S3aにおいて燃焼用空気供給器 11から加熱部 1へ の空気の供給量が減量された後、変成触媒 3aの温度 Tsが上限温度 Tu未満となつ た力否かを判定する(ステップ S4a)。又は、制御器 14は、ステップ S3bにおいて燃焼 用空気供給器 11から加熱部 1への空気の供給量が増量された後、変成触媒 3aの温 度 Tsが下限温度 T1を超えたカゝ否かを判定する (ステップ S4b)。  [0115] Then, after the amount of air supplied from the combustion air supply 11 to the heating unit 1 is reduced in step S3a, the controller 14 reduces the temperature Ts of the shift catalyst 3a below the upper limit temperature Tu. It is determined whether or not (step S4a). Alternatively, the controller 14 determines whether or not the temperature Ts of the shift catalyst 3a exceeds the lower limit temperature T1 after the amount of air supplied from the combustion air supply 11 to the heating unit 1 is increased in step S3b. Is determined (step S4b).
[0116] ここで、制御器 14は、変成触媒 3aの温度 Tsが未だ上限温度 Tu以上であると判定 した場合には (ステップ S4aで NO)、燃焼用空気供給器 11から加熱部 1への空気の 供給量を更に減量させる。又は、制御器 14は、変成触媒 3aの温度 Tsが未だ下限温 度 T1以下であると判定した場合には (ステップ S4bで NO)、燃焼用空気供給器 11か ら加熱部 1への空気の供給量を更に増量させる。  [0116] Here, when the controller 14 determines that the temperature Ts of the shift catalyst 3a is still equal to or higher than the upper limit temperature Tu (NO in step S4a), the controller 14 sends the combustion air supply 11 to the heating unit 1. Reduce the air supply further. Alternatively, if the controller 14 determines that the temperature Ts of the shift catalyst 3a is still below the lower limit temperature T1 (NO in step S4b), the controller 14 supplies air from the combustion air supply 11 to the heating unit 1. Increase supply further.
[0117] 一方、制御器 14は、変成触媒 3aの温度 Tsが上限温度 Tu未満であると判定した場 合には (ステップ S4aで YES)、燃焼用空気供給器 11から加熱部 1への空気の供給 量を維持させたまま、変成触媒 3aの温度 Tsが下限温度 T1以下でな 、か否かを判定 する (ステップ S5)。又は、制御器 14は、変成触媒 3aの温度 Tsが下限温度 T1を超え たと判定した場合 (ステップ S4bで YES)、燃焼用空気供給器 11から加熱部 1への空 気の供給量を維持させたまま、変成触媒 3aの温度 Tsが上限温度 Tu以上でな 、か 否かを判定する (ステップ S5)。そして、制御器 14は、変成触媒 3aの温度 Tsが過剰 に低下して下限温度 T1以下となった場合や、変成触媒 3aの温度 Tsが過剰に上昇し て上限温度 Tu以上となった場合 (ステップ S5で NO)、オペレータや使用者に向けて アラームを出力する (ステップ S6)。しかしながら、制御器 14は、変成触媒 3aの温度 Tsが上限温度 Tu及び下限温度 T1の間の温度となった場合には (ステップ S 5で YE S)、変成触媒 3aの温度制御を終了する。 [0117] On the other hand, if the controller 14 determines that the temperature Ts of the shift catalyst 3a is less than the upper limit temperature Tu (YES in step S4a), the air from the combustion air supply 11 to the heating unit 1 Supply While maintaining the amount, it is determined whether or not the temperature Ts of the shift catalyst 3a is lower than the lower limit temperature T1 (step S5). Alternatively, when the controller 14 determines that the temperature Ts of the shift catalyst 3a exceeds the lower limit temperature T1 (YES in step S4b), the controller 14 maintains the air supply amount from the combustion air supply 11 to the heating unit 1. Whether or not the temperature Ts of the shift catalyst 3a is equal to or higher than the upper limit temperature Tu is determined (step S5). Then, the controller 14 detects when the temperature Ts of the shift catalyst 3a is excessively decreased to the lower limit temperature T1 or lower, or when the temperature Ts of the shift catalyst 3a is excessively increased to be higher than the upper limit temperature Tu ( In step S5, NO), an alarm is output to the operator or user (step S6). However, when the temperature Ts of the shift catalyst 3a reaches a temperature between the upper limit temperature Tu and the lower limit temperature T1 (YES in step S5), the controller 14 ends the temperature control of the shift catalyst 3a.
[0118] このように、本実施の形態に係る水素生成装置 100aの特徴的な動作は、図 5に示 すステップ S1〜S5の動作により変成部 3における変成触媒 3aの温度を最適な温度 に制御する点で、従来の水素生成装置の動作と異なって 、る。  [0118] As described above, the characteristic operation of the hydrogen generator 100a according to the present embodiment is that the temperature of the shift catalyst 3a in the shift section 3 is set to an optimum temperature by the operations of steps S1 to S5 shown in FIG. This is different from the operation of the conventional hydrogen generator in terms of control.
[0119] ここで、変成部 3における変成触媒 3aの温度 Tsを低下させることができる理由は、 以下のように説明される。  [0119] Here, the reason why the temperature Ts of the shift catalyst 3a in the shift section 3 can be lowered will be described as follows.
[0120] 即ち、燃焼用空気供給器 11から加熱部 1に供給する空気の量を減量させることに よって、燃焼ガス流路 5に供給される燃焼ガスの流量が減量するので、加熱部 1から 予熱蒸発部 6に供給される熱量が減量される。この際、予熱蒸発部 6において必要と なる必要蒸発潜熱量は一定であるため、熱交換部 8における水トラップ部 7の貯水量 が増量される。これにより、改質部 2から排出された水素含有ガス力もの予熱蒸発部 6 側への熱交換量が増量されるため、変成部 3へ供給される水素含有ガスの温度が低 下する。従って、変成部 3における変成触媒 3aの温度 Tsを低下させることができる。  [0120] That is, by reducing the amount of air supplied from the combustion air supply 11 to the heating unit 1, the flow rate of the combustion gas supplied to the combustion gas channel 5 is reduced. The amount of heat supplied to the preheating evaporator 6 is reduced. At this time, since the necessary amount of latent heat of vaporization required in the preheating evaporation unit 6 is constant, the amount of water stored in the water trap unit 7 in the heat exchange unit 8 is increased. As a result, the amount of heat exchanged to the preheating vaporization section 6 side of the hydrogen-containing gas power discharged from the reforming section 2 is increased, so that the temperature of the hydrogen-containing gas supplied to the shift section 3 is lowered. Therefore, the temperature Ts of the shift catalyst 3a in the shift section 3 can be lowered.
[0121] 又、変成部 3における変成触媒 3aの温度 Tsを上昇させることができる理由は、以下 のように説明される。  [0121] The reason why the temperature Ts of the shift catalyst 3a in the shift section 3 can be raised is explained as follows.
[0122] 即ち、燃焼用空気供給器 11から加熱部 1に供給する空気の量を増量させることに よって、燃焼ガス流路 5に供給される燃焼ガスの流量が増量するので、加熱部 1から 予熱蒸発部 6に供給される熱量が増量される。この際、予熱蒸発部 6において必要と なる必要蒸発潜熱量は一定であるため、熱交換部 8における水トラップ部 7の貯水量 が減量される。これにより、改質部 2から排出された水素含有ガス力もの予熱蒸発部 6 側への熱交換量が減量されるため、変成部 3へ供給される水素含有ガスの温度が上 昇する。従って、変成部 3における変成触媒 3aの温度 Tsを上昇させることができる。 [0122] That is, by increasing the amount of air supplied from the combustion air supply 11 to the heating unit 1, the flow rate of the combustion gas supplied to the combustion gas channel 5 is increased. The amount of heat supplied to the preheating evaporator 6 is increased. At this time, since the required amount of latent heat of vaporization required in the preheating evaporation unit 6 is constant, the amount of water stored in the water trap unit 7 in the heat exchange unit 8 Is reduced. As a result, the amount of heat exchanged to the preheating evaporation section 6 side of the hydrogen-containing gas power discharged from the reforming section 2 is reduced, so that the temperature of the hydrogen-containing gas supplied to the shift section 3 rises. Therefore, the temperature Ts of the shift catalyst 3a in the shift section 3 can be increased.
[0123] 尚、本実施の形態では、シロッコファン等への印加電圧と空気の供給量との関係を 予めデータベース化することにより、加熱部 1へ供給する空気の供給量の増減を、シ ロッコファン等への印加電圧を変化させることにより制御する。尚、シロッコファン等の 回転数と空気の供給量との関係を予めデータベース化することにより、シロッコファン 等の回転数の制御によっても加熱部 1へ供給する空気の供給量を増減させることが 可能である。 [0123] In this embodiment, the relationship between the voltage applied to the sirocco fan or the like and the supply amount of air is created in a database in advance, thereby increasing or decreasing the supply amount of air supplied to the heating unit 1 Control is performed by changing the voltage applied to a fan or the like. In addition, by creating a database of the relationship between the rotation speed of the sirocco fan and the supply amount of air, it is possible to increase or decrease the supply amount of air supplied to the heating unit 1 even by controlling the rotation speed of the sirocco fan. It is.
[0124] 又、例えば、温度検出部 3bにより検出される温度に対して設定する上限温度 Tu及 び下限温度 T1は、変成触媒 3aの大きさ、適用する触媒の種類、触媒の充填量、運 転条件等、水素生成装置 100aの構成により相違するものである。そのため、上限温 度 Tu及び下限温度 T1の設定においては、水素生成装置 100a毎に供給空気量と温 度検出部 3bにより検出される温度との相関関係を予め測定して決定する必要がある  [0124] For example, the upper limit temperature Tu and the lower limit temperature T1 set with respect to the temperature detected by the temperature detection unit 3b are the size of the shift catalyst 3a, the type of catalyst to be applied, the amount of catalyst loaded, the operation It differs depending on the configuration of the hydrogen generator 100a, such as the conversion conditions. Therefore, in setting the upper limit temperature Tu and the lower limit temperature T1, it is necessary to measure and determine in advance the correlation between the supply air amount and the temperature detected by the temperature detection unit 3b for each hydrogen generator 100a.
[0125] 又、本実施の形態においても、例えば、燃焼用空気供給器 11から加熱部 1の間に 空気の流量計を配設すると共に、加熱部 1への空気の供給量に対して上限供給量と 下限供給量とを各々設定することにより、燃料電池システムにおける温度検出部 3b 及び 3c等の性能劣化を検出することが可能になる。即ち、燃料電池システムの自己 診断を実施することができる。 Also in the present embodiment, for example, an air flow meter is disposed between the combustion air supply 11 and the heating unit 1, and the upper limit for the amount of air supplied to the heating unit 1 is set. By setting the supply amount and the lower limit supply amount, it is possible to detect the performance deterioration of the temperature detectors 3b and 3c in the fuel cell system. That is, the self-diagnosis of the fuel cell system can be performed.
[0126] 例えば、燃焼用空気供給器 11に空気の流量計を内蔵させる共に、燃焼用空気供 給器 11から加熱部 1に供給する空気の供給量に対して、予め上限供給量及び下限 供給量を設ける。そして、温度検出部 3bで検出される温度が上限温度 Tu以上となり 、燃焼用空気供給器 11から加熱部 1に供給する空気の供給量を減量させた際、そ の減量させた後の空気の供給量が上述した下限供給量以下となる場合には、温度 検出部 3b及び 3c等に性能の劣化が発生したと判断する。又は、温度検出部 3bで検 出される温度が下限温度 T1以下となり、燃焼用空気供給器 11から加熱部 1に供給す る空気の供給量を増量させた際、その増量させた後の空気の供給量が上述した上 限供給量以上となる場合には、温度検出部 3b及び 3c等に性能の劣化が発生したと 判断する。 [0126] For example, an air flow meter is built in the combustion air supply unit 11, and the upper limit supply amount and the lower limit supply are supplied in advance to the supply amount of air supplied from the combustion air supply unit 11 to the heating unit 1. Provide an amount. Then, when the temperature detected by the temperature detection unit 3b is equal to or higher than the upper limit temperature Tu and the amount of air supplied from the combustion air supply 11 to the heating unit 1 is reduced, the amount of air after the reduction is reduced. When the supply amount is equal to or less than the above-mentioned lower limit supply amount, it is determined that the performance deterioration has occurred in the temperature detectors 3b and 3c. Alternatively, when the temperature detected by the temperature detection unit 3b becomes the lower limit temperature T1 or less and the supply amount of air supplied from the combustion air supply unit 11 to the heating unit 1 is increased, the air after the increase is increased. The supply amount is as described above. If it exceeds the limit supply amount, it is judged that the performance has deteriorated in the temperature detectors 3b and 3c.
[0127] 又、他の例を上げて説明すると、本実施の形態にお!、て例示する改質部 2及び変 成部 3及び選択酸ィ匕部 4が一体化された水素生成装置 100aでは、原料ガス及び水 の供給量が安定して 、る場合、それぞれの動作温度で熱の授受が安定ィ匕して 、るた め、各反応部の温度は比較的安定な状態で推移する。従って、燃焼用空気供給器 1 1からの空気の供給量を制御することにより、変成部 3における変成触媒 3aの温度を 想定範囲内にお 、て安定化させることができる。  [0127] Further, another example will be described. In this embodiment, the hydrogen generator 100a in which the reforming unit 2, the reforming unit 3, and the selective acid tank unit 4 illustrated in this embodiment are integrated. In this case, when the supply amount of the raw material gas and water is stable, the transfer of heat is stable at each operating temperature, and therefore the temperature of each reaction section changes in a relatively stable state. . Therefore, by controlling the amount of air supplied from the combustion air supply 11, the temperature of the shift catalyst 3 a in the shift section 3 can be stabilized within an assumed range.
[0128] し力しながら、例えば、想定範囲内において空気の供給量を制御しても温度検出 部 3bで検出される温度が想定範囲内において制御されない場合には、それぞれの 反応部での熱の授受が不安定となっている。そして、その熱の授受の不安定化を引 き起こす要因としては、燃焼用空気供給器 11から加熱部 1に供給する空気の供給量 が想定範囲内から逸脱していることが考えられる。  For example, if the temperature detected by the temperature detection unit 3b is not controlled within the assumed range even if the air supply amount is controlled within the assumed range, the heat in each reaction unit is controlled. The delivery of is unstable. As a factor that causes instability in the transfer of heat, the supply amount of air supplied from the combustion air supply 11 to the heating unit 1 may deviate from the expected range.
[0129] 例えば、燃焼用空気供給器 11に配設されたシロッコファンの性能が経年劣化した 場合には、入力電圧に対して正しい供給量で空気を供給することができない場合が ある。又、温度検出部 3b等の温度検出部の性能が経年劣化した場合にも、初期に 想定した温度範囲内において安定しない場合がある。更には、燃焼用空気供給器 1 1における空気取り入れ口の封鎖や、加熱部 1の内部における圧損上昇等によりシロ ッコファンが所定の能力を十分に発揮できない場合もある。  [0129] For example, when the performance of the sirocco fan disposed in the combustion air supply device 11 has deteriorated over time, air may not be supplied with a correct supply amount with respect to the input voltage. In addition, even when the performance of the temperature detection unit such as the temperature detection unit 3b deteriorates over time, it may not be stable within the initially assumed temperature range. Furthermore, there may be a case where the white fan cannot sufficiently exhibit a predetermined capacity due to blockage of an air intake port in the combustion air supply 11 or an increase in pressure loss inside the heating unit 1.
[0130] このような場合、格別な処置を施さないまま燃料電池システムの運転を継続させると 、実際に供給される空気の供給量が少ない場合には、加熱部 1から排出される燃焼 ガスに含まれる一酸ィ匕炭素の濃度が上昇する。一方、実際に供給される空気の供給 量が多い場合には、加熱部 1における燃焼状態が不安定となり、やはり、加熱部 1か ら排出される燃焼ガスに含まれる一酸ィ匕炭素の濃度が上昇する。或いは、水素生成 装置 100aから排出される燃焼ガスの持ち出し熱エネルギーが増加するため、水素 生成装置 100aにおける水素生成効率が低下する。  [0130] In such a case, if the operation of the fuel cell system is continued without taking any special measures, the combustion gas discharged from the heating unit 1 is reduced if the amount of air actually supplied is small. The concentration of carbon monoxide contained increases. On the other hand, when the supply amount of air actually supplied is large, the combustion state in the heating unit 1 becomes unstable, and again the concentration of carbon monoxide contained in the combustion gas discharged from the heating unit 1 Rises. Alternatively, since the heat energy taken out of the combustion gas discharged from the hydrogen generator 100a increases, the hydrogen generation efficiency in the hydrogen generator 100a decreases.
[0131] しかしながら、上述した流量計を配設すると共に空気の供給量に上限供給量と下 限供給量とを設定する構成によれば、燃焼用空気供給器 11や温度検出部 3b及び 3 c等の性能劣化を検出することができるので、本実施の形態で例示する水素生成装 置 100aの特徴的な動作を好適にかつ確実に実行させることが可能になる。又、かか る構成によれば、燃料電池システムの異常な発電運転の継続を回避することが可能 になる。 [0131] However, according to the configuration in which the above-described flowmeter is provided and the upper limit supply amount and the lower limit supply amount are set as the air supply amount, the combustion air supply 11 and the temperature detection units 3b and 3 Since performance degradation such as c can be detected, the characteristic operation of the hydrogen generation apparatus 100a exemplified in this embodiment can be suitably and reliably executed. Further, according to such a configuration, it is possible to avoid the continuation of abnormal power generation operation of the fuel cell system.
[0132] 以上、改質部及び変成部及び選択酸化部を一体化した水素生成装置では、個々 の動作温度を最適化するために反応部毎に個別の温度制御機構を設ける場合には 大型化により放熱量が増加して水素の生成効率が低下する力 本実施の形態によ れば、加熱部に供給する空気の供給量を変化させることにより、水素の生成効率を 低下させることなぐ変成部 3における変成触媒 3aの温度を適切に制御することがで きる。  [0132] As described above, in the hydrogen generation apparatus in which the reforming section, the conversion section, and the selective oxidation section are integrated, the size is increased when a separate temperature control mechanism is provided for each reaction section in order to optimize the individual operating temperature. According to the present embodiment, by changing the supply amount of air supplied to the heating unit, the transformation unit that does not reduce the hydrogen generation efficiency. The temperature of the shift catalyst 3a in 3 can be appropriately controlled.
[0133] 尚、その他の点については、実施の形態 1の場合と同様である。  [0133] The other points are the same as in the first embodiment.
[0134] (実施の形態 3)  [Embodiment 3]
本発明の実施の形態 3に係る水素生成装置のハードウェアの構成及びそれを駆動 するための付加的なハードウェアの構成、及び、水素生成装置の基本的な動作につ いては、実施の形態 1及び 2の場合と同様である。従って、本発明の実施の形態 3で は、それらの説明については省略する。  The hardware configuration of the hydrogen generator according to Embodiment 3 of the present invention, the configuration of additional hardware for driving the same, and the basic operation of the hydrogen generator are described in the embodiment. Same as 1 and 2. Therefore, in the third embodiment of the present invention, description thereof is omitted.
[0135] 本実施の形態に示す水素生成装置 100aの特徴的な動作は、実施の形態 1に示す 水素生成装置 100aの特徴的な動作と、実施の形態 2に示す水素生成装置 100aの 特徴的な動作とを適宜組み合わせた動作として説明される。  [0135] The characteristic operation of the hydrogen generator 100a shown in the present embodiment is the characteristic operation of the hydrogen generator 100a shown in the first embodiment and the characteristic operation of the hydrogen generator 100a shown in the second embodiment. The operation will be described as an appropriate combination of various operations.
[0136] 即ち、例えば、温度検出部 3bにより検出される温度に対して予め上限温度 Tu及び 下限温度 T1を設定すると共に、水供給器 9から予熱蒸発部 6に供給する水の供給量 に対しても予め上限供給量及び下限供給量を設定する。そして、温度検出部 3bによ り検出される温度が上限温度 Tu以上となりかつ水供給器 9から予熱蒸発部 6に供給 する水の供給量が上限供給量以上となった場合に、加熱部 1に供給する燃焼用の 空気の供給量を減量させる。又、例えば、温度検出部 3bにより検出される温度が下 限温度 T1以下となりかつ水供給器 9から予熱蒸発部 6に供給する水の供給量が下限 供給量以下となった場合に、加熱部 1に供給する燃焼用の空気の供給量を増量させ る。このような特徴的な動作により、変成部 3における変成触媒 3aの温度を最適な温 度に適切に制御する。 That is, for example, the upper limit temperature Tu and the lower limit temperature T1 are set in advance for the temperature detected by the temperature detection unit 3b, and the supply amount of water supplied from the water supplier 9 to the preheating evaporation unit 6 is set. However, the upper limit supply amount and the lower limit supply amount are set in advance. When the temperature detected by the temperature detection unit 3b is equal to or higher than the upper limit temperature Tu and the supply amount of water supplied from the water supply unit 9 to the preheating evaporation unit 6 is equal to or higher than the upper limit supply amount, the heating unit 1 Reduce the amount of combustion air supplied to. Also, for example, when the temperature detected by the temperature detection unit 3b is lower than the lower limit temperature T1 and the supply amount of water supplied from the water supply unit 9 to the preheating evaporation unit 6 is lower than the lower limit supply amount, the heating unit Increase the amount of combustion air supplied to 1. By such a characteristic operation, the temperature of the shift catalyst 3a in the shift section 3 is adjusted to an optimum temperature. Control appropriately at every degree.
[0137] ここで、変成部 3において水素含有ガスに含まれる一酸化炭素の濃度を効果的に 低減するためには、水供給器 9から予熱蒸発部 6に供給する水の供給量をある程度 確保することが望ましい。一方、水素生成装置 100aにおける水素生成効率を十分に 確保するためには、水供給器 9から予熱蒸発部 6に供給する水の供給量が大幅に増 加することを避ける必要がある。  [0137] Here, in order to effectively reduce the concentration of carbon monoxide contained in the hydrogen-containing gas in the shift section 3, a certain amount of water supplied from the water supplier 9 to the preheating evaporator 6 is secured. It is desirable to do. On the other hand, in order to sufficiently secure the hydrogen generation efficiency in the hydrogen generator 100a, it is necessary to avoid a significant increase in the amount of water supplied from the water supplier 9 to the preheating evaporator 6.
[0138] 本実施の形態によれば、水供給器 9から予熱蒸発部 6への水の供給量を増減させ るという第 1の制御因子と、燃焼用空気供給器 11から加熱部 1への空気の供給量を 増減させるという第 2の制御因子との 2つの制御因子によって変成部 3における変成 触媒 3aの温度を制御するので、水の供給量に係る上限供給量と下限供給量との差( 即ち、水の供給量の変化幅)を抑制することが可能になる。又、上限供給量と下限供 給量との差を抑制することが可能になることにより、変成部 3以外の改質部 2や選択 酸化部 4における改質触媒 2aや選択酸化触媒 4aの温度を安定化させることが可能 になる。  [0138] According to the present embodiment, the first control factor that increases or decreases the amount of water supplied from the water supplier 9 to the preheating evaporator 6 and the amount of water supplied from the combustion air supplier 11 to the heater 1 are as follows. Since the temperature of the shift catalyst 3a in the shift section 3 is controlled by two control factors, the second control factor that increases or decreases the air supply amount, the difference between the upper limit supply amount and the lower limit supply amount related to the water supply amount is controlled. (That is, it is possible to suppress the change width of the water supply amount). In addition, since it becomes possible to suppress the difference between the upper limit supply amount and the lower limit supply amount, the temperature of the reforming catalyst 2a and the selective oxidation catalyst 4a in the reforming unit 2 other than the shift unit 3 and the selective oxidation unit 4 can be reduced. Can be stabilized.
[0139] 尚、水供給器 9から予熱蒸発部 6への水の供給量の変化幅を小さく設定した場合、 変成部 3における変成触媒 3aの温度の制御範囲が狭くなる力 その制御範囲を越し た場合でも、燃焼用空気供給器 11から加熱部 1への空気の供給量を制御することに より、変成部 3における変成触媒 3aの温度を制御することができる。その結果、変成 部 3における一酸ィ匕炭素の発生確率を抑制することができると共に、一酸化炭素除 去部の動作温度をより一層適切な動作温度に制御することができる。  [0139] When the change amount of the amount of water supplied from the water supplier 9 to the preheating evaporator 6 is set small, the force that reduces the temperature control range of the shift catalyst 3a in the shift portion 3 exceeds the control range. Even in this case, the temperature of the shift catalyst 3a in the shift section 3 can be controlled by controlling the amount of air supplied from the combustion air supply 11 to the heating section 1. As a result, it is possible to suppress the generation probability of carbon monoxide and carbon in the metamorphic section 3, and to control the operating temperature of the carbon monoxide removing section to a more appropriate operating temperature.
[0140] 又、上述した制御動作に加えて、温度検出部 2bで検出される温度が予め設定した 温度となるように加熱部 1での燃焼量を調整する制御を併用することにより、加熱部 1 に供給する燃焼用の空気の供給量を増加させた場合でも、改質部 2での動作温度 が安定化して水素生成反応も安定化するため、水素生成装置 100aをより一層適切 に動作させることができる。  [0140] Further, in addition to the control operation described above, by combining the control for adjusting the combustion amount in the heating unit 1 so that the temperature detected by the temperature detection unit 2b becomes a preset temperature, the heating unit Even when the amount of combustion air supplied to 1 is increased, the operating temperature in the reforming unit 2 is stabilized and the hydrogen generation reaction is also stabilized, so that the hydrogen generator 100a is operated more appropriately. be able to.
[0141] 又、例えば、温度検出部 3bにより検出される温度に対して設定する上限温度 Tu及 び下限温度 T1は、変成触媒 3aの大きさ、適用する触媒の種類、触媒の充填量、運 転条件等、水素生成装置 100aの構成により相違するものである。そのため、上限温 度 Tu及び下限温度 Tlの設定においては、水素生成装置 100a毎に予熱蒸発部 6へ の供給水量及び加熱部 1への供給空気量と温度検出部 3bにより検出される温度と の相関関係を予め測定して決定する必要がある。 [0141] Further, for example, the upper limit temperature Tu and the lower limit temperature T1 set for the temperature detected by the temperature detection unit 3b are the size of the shift catalyst 3a, the type of catalyst to be applied, the amount of catalyst loaded, the operation It differs depending on the configuration of the hydrogen generator 100a, such as the conversion conditions. Therefore, upper limit temperature In setting the temperature Tu and the lower limit temperature Tl, the correlation between the amount of water supplied to the preheating evaporator 6 and the amount of air supplied to the heating unit 1 and the temperature detected by the temperature detector 3b is previously determined for each hydrogen generator 100a. It needs to be determined by measurement.
[0142] 尚、その他の点については、実施の形態 1及び 2の場合と同様である。  [0142] The other points are the same as in the first and second embodiments.
[0143] (実施の形態 4)  [Embodiment 4]
本発明の実施の形態 4に係る水素生成装置のハードウェアの構成及びそれを駆動 するための付加的なハードウェアの構成、及び、水素生成装置の基本的な動作につ いては、実施の形態 1〜3の場合と同様である。従って、本発明の実施の形態 4では 、それらの説明については省略する。  The hardware configuration of the hydrogen generator according to Embodiment 4 of the present invention, the configuration of additional hardware for driving the same, and the basic operation of the hydrogen generator are described in the embodiment. It is the same as the case of 1-3. Therefore, in Embodiment 4 of the present invention, description thereof is omitted.
[0144] 本実施の形態に示す水素生成装置 100aの特徴的な動作は、実施の形態 1に示す 水素生成装置 100aの特徴的な動作と、実施の形態 2に示す水素生成装置 100aの 特徴的な動作とを適宜組み合わせた他の動作として説明される。  [0144] The characteristic operation of the hydrogen generator 100a shown in the present embodiment is the characteristic operation of the hydrogen generator 100a shown in the first embodiment and the characteristic operation of the hydrogen generator 100a shown in the second embodiment. The operation will be described as other operations appropriately combined with other operations.
[0145] 即ち、例えば、温度検出部 3bにより検出される温度に対して予め上限温度 Tu及び 下限温度 T1を設定すると共に、燃焼用空気供給器 11から加熱部 1に供給する空気 の供給量に対しても予め上限供給量及び下限供給量を設定する。そして、温度検出 部 3bにより検出される温度が上限温度 Tu以上となりかつ燃焼用空気供給器 11から 加熱部 1に供給する空気の供給量が下限供給量以下となった場合に、水供給器 9か ら予熱蒸発部 6に供給する水の供給量を増量させる。又、例えば、温度検出部 3bに より検出される温度が下限温度 T1以下となりかつ燃焼用空気供給器 11から加熱部 1 に供給する空気の供給量が上限供給量以上となった場合に、水供給器 9から予熱蒸 発部 6に供給する水の供給量を減量させる。このような特徴的な動作により、変成部 3 における変成触媒 3aの温度を最適な温度に適切に制御する。  That is, for example, the upper limit temperature Tu and the lower limit temperature T1 are set in advance with respect to the temperature detected by the temperature detection unit 3b, and the amount of air supplied from the combustion air supply 11 to the heating unit 1 is set. In contrast, an upper limit supply amount and a lower limit supply amount are set in advance. Then, when the temperature detected by the temperature detection unit 3b is equal to or higher than the upper limit temperature Tu and the supply amount of air supplied from the combustion air supply 11 to the heating unit 1 is equal to or lower than the lower limit supply amount, the water supply 9 From there, increase the amount of water supplied to the preheating evaporator 6. Also, for example, when the temperature detected by the temperature detection unit 3b is lower than the lower limit temperature T1 and the supply amount of air supplied from the combustion air supply 11 to the heating unit 1 is higher than the upper limit supply amount, Reduce the amount of water supplied from the feeder 9 to the preheating evaporator 6. With such a characteristic operation, the temperature of the shift catalyst 3a in the shift section 3 is appropriately controlled to an optimum temperature.
[0146] 本実施の形態に示す水素生成装置 100aの特徴的な動作と、実施の形態 3に示す 水素生成装置 100aの特徴的な動作との相違点は、燃焼用空気供給器 11から加熱 部 1に供給する空気の供給量に対する上限供給量及び下限供給量の設定を優先さ せた点である。これにより、加熱部 1の動作に関わる課題である、空気の供給量が少 ない場合に燃焼ガスに含まれる一酸ィ匕炭素の濃度が上昇することや、空気の供給量 が多い場合に燃焼ガスに含まれる一酸ィ匕炭素の濃度が上昇すること、及び、燃焼ガ スが水素生成装置 100aの外部へ持ち出す熱エネルギーが増加すること等の課題を 、優先的に回避することができる。 [0146] The difference between the characteristic operation of the hydrogen generator 100a shown in the present embodiment and the characteristic operation of the hydrogen generator 100a shown in the third embodiment is that the combustion air supply 11 This is because the setting of the upper limit supply amount and the lower limit supply amount with respect to the supply amount of air supplied to 1 is prioritized. As a result, when the air supply amount is low, which is a problem related to the operation of the heating unit 1, the concentration of carbon monoxide contained in the combustion gas increases, or when the air supply amount is large, combustion occurs. The concentration of carbon monoxide and carbon contained in the gas increases, and the combustion gas Problems such as an increase in the thermal energy that is taken out from the hydrogen generator 100a can be preferentially avoided.
[0147] ここで、燃焼用空気供給器 11から加熱部 1に供給する空気の供給量に対する上限 供給量と下限供給量との差が大きい場合、加熱部 1に供給される空気の供給量が少 ないと、不完全燃焼が発生して、燃焼ガスに含まれる一酸ィ匕炭素の濃度が上昇する 。又、加熱部 1に供給される空気の供給量が多いと、燃焼状態が不安定となり、燃焼 ガスに含まれる一酸ィ匕炭素の濃度が上昇する。或いは、燃焼ガスが水素生成装置 1 OOaの外部に持ち出す熱エネルギーが増加するため、水素生成装置 100aの水素生 成効率が低下する。 Here, when the difference between the upper limit supply amount and the lower limit supply amount with respect to the supply amount of air supplied from the combustion air supply device 11 to the heating unit 1 is large, the supply amount of air supplied to the heating unit 1 is Otherwise, incomplete combustion occurs and the concentration of carbon monoxide contained in the combustion gas increases. Further, if the amount of air supplied to the heating unit 1 is large, the combustion state becomes unstable, and the concentration of carbon monoxide contained in the combustion gas increases. Alternatively, since the thermal energy that the combustion gas brings out of the hydrogen generator 1 OOa increases, the hydrogen generation efficiency of the hydrogen generator 100a decreases.
[0148] 本実施の形態によれば、水供給器 9から予熱蒸発部 6への水の供給量を増減させ るという第 1の制御因子と、燃焼用空気供給器 11から加熱部 1への空気の供給量を 増減させるという第 2の制御因子との 2つの制御因子によって変成部 3における変成 触媒 3aの温度を制御するので、空気の供給量に係る上限供給量と下限供給量との 差 (即ち、空気の供給量の変化幅)を抑制することが可能になる。又、上限供給量と 下限供給量との差を抑制することが可能になることにより、特に改質部 2における改 質触媒 2aの温度を安定化させることが可能になる。又、変成部 3における変成触媒 3 aの温度制御性を十分に確保することが可能になる。  [0148] According to the present embodiment, the first control factor that increases or decreases the amount of water supplied from the water supplier 9 to the preheating evaporator 6 and the amount of water supplied from the combustion air supplier 11 to the heater 1 are as follows. Since the temperature of the shift catalyst 3a in the shift section 3 is controlled by two control factors, the second control factor that increases or decreases the air supply amount, the difference between the upper limit supply amount and the lower limit supply amount related to the air supply amount It is possible to suppress (that is, the change width of the air supply amount). Further, since the difference between the upper limit supply amount and the lower limit supply amount can be suppressed, the temperature of the reforming catalyst 2a in the reforming section 2 can be stabilized. In addition, it becomes possible to sufficiently ensure the temperature controllability of the shift catalyst 3a in the shift section 3.
[0149] 尚、燃焼用空気供給器 11から加熱部 1への空気の供給量の変化幅を小さく設定し た場合には、変成部 3における変成触媒 3aの温度の制御範囲が狭くなるが、その制 御範囲を越した場合であっても、水供給器 9から予熱蒸発部 6への水の供給量を制 御することにより、変成部 3における変成触媒 3aの温度を制御することができる。その 結果、変成部 3における一酸ィ匕炭素の発生確率を抑制することができると共に、一酸 化炭素除去部の動作温度をより一層適切な動作温度に制御することができる。  [0149] When the change width of the air supply amount from the combustion air supply 11 to the heating unit 1 is set small, the control range of the temperature of the shift catalyst 3a in the shift unit 3 is narrowed. Even when the control range is exceeded, the temperature of the shift catalyst 3a in the shift section 3 can be controlled by controlling the amount of water supplied from the water supply unit 9 to the preheating evaporation section 6. . As a result, the generation probability of carbon monoxide and carbon in the metamorphic section 3 can be suppressed, and the operating temperature of the carbon monoxide removing section can be controlled to a more appropriate operating temperature.
[0150] 尚、その他の点については、実施の形態 1〜3の場合と同様である。  [0150] The other points are the same as in the first to third embodiments.
[0151] 以上、本発明の実施の形態に係る水素生成装置では、変成部の温度を検出する ための温度検出部により検出される温度に対して予め上限温度及び下限温度を設 定し、その温度検出部により検出される温度が上限温度以上となった場合、水供給 器から予熱蒸発部に供給する水の供給量を増量させることで、予熱蒸発部において 必要蒸発潜熱量を増加させる。これにより、改質部力 排出された水素含有ガスから 予熱蒸発部側への熱交換量が増加するため、変成部に供給される水素含有ガスの 温度が低下し、変成部における変成触媒の温度を低下させることができる。一方、温 度検出部により検出される温度が下限温度以下となった場合には、水供給器から予 熱蒸発部に供給する水の供給量を減量させることで、予熱蒸発部において必要蒸発 潜熱量を減少させる。これにより、改質部から排出された水素含有ガスから予熱蒸発 部側への熱交換量が減少するため、変成部に供給される水素含有ガスの温度が上 昇し、変成部における変成触媒の温度を上昇させることができる。そして、これらの制 御動作により、変成部における変成触媒の温度を適切に制御することが可能になる。 [0151] As described above, in the hydrogen generator according to the embodiment of the present invention, the upper limit temperature and the lower limit temperature are set in advance with respect to the temperature detected by the temperature detection unit for detecting the temperature of the shift unit. When the temperature detected by the temperature detector exceeds the upper limit temperature, the amount of water supplied from the water feeder to the preheating evaporator is increased, so that the preheating evaporator Increase the amount of latent heat of vaporization. As a result, the amount of heat exchange from the hydrogen-containing gas discharged from the reforming section to the preheating evaporation section increases, so the temperature of the hydrogen-containing gas supplied to the shift section decreases, and the temperature of the shift catalyst in the shift section Can be reduced. On the other hand, when the temperature detected by the temperature detection unit is below the lower limit temperature, the amount of water supplied from the water supply to the preheating evaporation unit is reduced, so that the required latent heat of vaporization is obtained in the preheating evaporation unit. Reduce the amount. As a result, the amount of heat exchange from the hydrogen-containing gas discharged from the reforming section to the preheating evaporation section decreases, so the temperature of the hydrogen-containing gas supplied to the shift section rises, and the shift catalyst in the shift section increases. The temperature can be raised. These control operations make it possible to appropriately control the temperature of the shift catalyst in the shift section.
[0152] 又、本発明の実施の形態に係る水素生成装置によれば、水供給器から予熱蒸発 部に供給する水の供給量に対して予め上限供給量及び下限供給量を設け、温度検 出部で検出される温度が上限温度以上となりかつ水供給器力も予熱蒸発部に供給 する水の供給量が上限供給量以上となった場合、又は、温度検出部で検出される温 度が下限温度以下となりかつ水供給器から予熱蒸発部に供給する水の供給量が下 限供給量以下となった場合、水素生成装置の運転が異常であると判断することがで きる。ここで、改質部、変成部及び選択酸化部等の一酸化炭素除去部を一体化した 水素生成装置では、供給する水の供給量により予熱蒸発部での熱交換量が決まる ため、各反応部の温度バランスは概ね一定となる。従って、水素生成装置の運転に 対して支障の出ない範囲で、温度検出部で検出される温度に上限温度及び下限温 度を設定しておくことにより、予熱蒸発部への水の供給量が想定範囲内であるか否 かを判断することができ、水素生成装置における想定範囲外の異常を判断すること ができる。  [0152] Further, according to the hydrogen generator according to the embodiment of the present invention, the upper limit supply amount and the lower limit supply amount are set in advance for the supply amount of water supplied from the water supplier to the preheating evaporator, and the temperature detection is performed. When the temperature detected at the outlet is equal to or higher than the upper limit temperature and the water supply force is also higher than the upper limit supply rate, or the temperature detected by the temperature detector is lower than the lower limit. It can be determined that the operation of the hydrogen generator is abnormal when the temperature is below the temperature and the amount of water supplied from the water supplier to the preheating evaporator is below the lower limit. Here, in a hydrogen generator that integrates a carbon monoxide removal unit such as a reforming unit, a shift unit, and a selective oxidation unit, the amount of heat exchange in the preheating evaporation unit is determined by the amount of water supplied, so each reaction The temperature balance of the part is generally constant. Therefore, by setting the upper limit temperature and the lower limit temperature for the temperature detected by the temperature detection unit within a range that does not hinder the operation of the hydrogen generator, the amount of water supplied to the preheating evaporation unit is reduced. It can be judged whether it is within the assumed range, and an abnormality outside the assumed range in the hydrogen generator can be judged.
[0153] 又、温度検出部で検出される温度に対して予め上限温度及び下限温度を設定して 、温度検出部で検出される温度が上限温度以上となった場合、加熱部に供給する燃 焼用の空気の供給量を減量させることにより、加熱部の外側に設けてある予熱蒸発 部への加熱部力もの熱量を減少させることができる。この場合、予熱蒸発部で必要と なる必要蒸発潜熱量は一定であるため、改質部から排出される水素含有ガスから予 熱蒸発部側への熱交換量が増加し、変成部へ供給される水素含有ガスの温度が低 下する。これにより、変成部における変成触媒の温度を低下させることができる。又、 温度検出部で検出される温度が下限温度以下となった場合、加熱部に供給する燃 焼用の空気の供給量を増量させることにより、加熱部の外側に設けてある予熱蒸発 部への加熱部力もの熱量を増カロさせることができる。この場合、予熱蒸発部で必要と なる必要蒸発潜熱量は一定であるため、改質部から排出される水素含有ガスから予 熱蒸発部側への熱交換量が減少し、変成部へ供給される水素含有ガスの温度が上 昇する。これにより、変成部における変成触媒の温度を上昇させることができる。 [0153] In addition, when the upper limit temperature and the lower limit temperature are set in advance with respect to the temperature detected by the temperature detection unit and the temperature detected by the temperature detection unit exceeds the upper limit temperature, the fuel supplied to the heating unit is set. By reducing the amount of air supplied for baking, the amount of heat generated by the heating unit to the preheating evaporation unit provided outside the heating unit can be reduced. In this case, since the necessary amount of latent heat of vaporization required in the preheating evaporation unit is constant, the amount of heat exchange from the hydrogen-containing gas discharged from the reforming unit to the preheating evaporation unit increases and is supplied to the transformation unit. The temperature of the hydrogen-containing gas is low I will give you. Thereby, the temperature of the shift catalyst in the shift section can be lowered. In addition, when the temperature detected by the temperature detection unit falls below the lower limit temperature, the amount of combustion air supplied to the heating unit is increased to the preheating evaporation unit provided outside the heating unit. The amount of heat of the heating part can be increased. In this case, since the necessary amount of latent heat of vaporization required in the preheating evaporation unit is constant, the amount of heat exchange from the hydrogen-containing gas discharged from the reforming unit to the preheating evaporation unit is reduced and supplied to the transformation unit. The temperature of the hydrogen-containing gas increases. Thereby, the temperature of the shift catalyst in the shift section can be increased.
[0154] 又、燃焼用空気供給器から加熱部に供給する空気の供給量に対して予め上限供 給量及び下限供給量を設けることにより、温度検出部で検出される温度が上限温度 以上となりかつ燃焼用空気供給器力も加熱部に供給する空気の供給量が下限供給 量以下となった場合、又は、温度検出部で検出される温度が下限温度以下となりか つ燃焼用空気供給器から加熱部に供給する空気の供給量が上限供給量以上となつ た場合に、水素生成装置の運転が異常であると判断することができる。ここで、改質 部、変成部及び選択酸化部等の一酸化炭素除去部を一体化した水素生成装置で は、供給する水や原料の供給量が安定して!/、る場合には加熱部での熱交換量が決 まるため、各反応部の温度バランスは概ね一定となる。従って、水素生成装置の運転 に対して支障の出ない範囲で、温度検出部で検出される温度に上限温度及び下限 温度を設定しておくことにより、燃焼用空気供給器の動作が想定範囲内である力否 かを判断することができ、水素生成装置における想定範囲外の異常を判断すること ができる。  [0154] Further, by providing an upper limit supply amount and a lower limit supply amount in advance with respect to the supply amount of air supplied from the combustion air supply to the heating unit, the temperature detected by the temperature detection unit becomes equal to or higher than the upper limit temperature. In addition, if the supply amount of air supplied to the heating unit falls below the lower limit supply amount, or the temperature detected by the temperature detection unit falls below the lower limit temperature, the combustion air supply force is heated from the combustion air supply unit. It can be determined that the operation of the hydrogen generator is abnormal when the supply amount of air supplied to the section exceeds the upper limit supply amount. Here, in a hydrogen generator that integrates a carbon monoxide removal unit such as a reforming unit, a transformation unit, and a selective oxidation unit, the supply amount of water and raw materials to be supplied is stable! Since the heat exchange amount in each part is determined, the temperature balance in each reaction part is almost constant. Therefore, by setting the upper limit temperature and the lower limit temperature for the temperature detected by the temperature detector within a range that does not hinder the operation of the hydrogen generator, the operation of the combustion air supply device is within the expected range. Therefore, it is possible to determine an abnormality outside the assumed range in the hydrogen generator.
[0155] 又、水供給器力 予熱蒸発部に供給する水の供給量に対して予め上限供給量及 び下限供給量を設け、温度検出部で検出される温度が上限温度以上となりかつ水 供給器から予熱蒸発部に供給する水の供給量が上限供給量以上となった場合、燃 焼用空気供給器から加熱部に供給する燃焼用の空気の供給量を減量させる。又は 、温度検出部で検出される温度が下限温度以下となりかつ水供給器から予熱蒸発 部に供給する水の供給量が下限供給量以下となった場合には、燃焼用空気供給器 から加熱部に供給する燃焼用の空気の供給量を増量させる。かかる 2つの制御因子 により変成部における変成触媒の温度を制御するため、上限供給量及び下限供給 量の設定に余裕を持たせることができる。又、一酸化炭素除去部における一酸化炭 素の発生確率を小さくすることができると共に、一酸ィ匕炭素除去部の動作温度をより 最適な動作温度に制御することができる。そして、これらの制御動作と、改質触媒の 温度を検出する温度検出部で検出される温度が予め設定した温度となるように加熱 部での燃焼量を調整することとを併用することにより、改質部における水蒸気改質反 応をも安定ィ匕することができるため、水素生成装置をより一層最適に動作させること が可能になる。 [0155] In addition, an upper limit supply amount and a lower limit supply amount are provided in advance for the amount of water supplied to the water supply power preheating evaporation unit, and the temperature detected by the temperature detection unit exceeds the upper limit temperature and the water supply If the amount of water supplied to the preheating evaporator from the heater exceeds the upper limit supply, the amount of combustion air supplied from the combustion air supply to the heating unit is reduced. Alternatively, when the temperature detected by the temperature detection unit is lower than the lower limit temperature and the supply amount of water supplied from the water supply unit to the preheating evaporation unit is lower than the lower limit supply amount, the combustion air supply unit supplies the heating unit. Increase the amount of combustion air supplied to the engine. In order to control the temperature of the shift catalyst in the shift section by these two control factors, the upper limit supply amount and the lower limit supply It is possible to provide a margin for setting the amount. In addition, the probability of carbon monoxide generation in the carbon monoxide removal unit can be reduced, and the operating temperature of the carbon monoxide removal unit can be controlled to a more optimal operation temperature. By using these control operations in combination with adjusting the amount of combustion in the heating section so that the temperature detected by the temperature detection section for detecting the temperature of the reforming catalyst becomes a preset temperature, Since the steam reforming reaction in the reforming section can be stabilized, the hydrogen generator can be operated more optimally.
[0156] 又、燃焼用空気供給器から加熱部に供給する空気の供給量に対して予め上限供 給量及び下限供給量を設け、温度検出部で検出される温度が上限温度以上となり かつ燃焼用空気供給器から加熱部に供給する空気の供給量が下限供給量以下とな つた場合、水供給器から予熱蒸発部に供給する水の供給量を増量させる。又は、温 度検出部で検出される温度が下限温度以下となりかつ燃焼用空気供給器力 加熱 部に供給する空気の供給量が上限供給量以上となった場合、水供給器から予熱蒸 発部に供給する水の供給量を減量させる。力かる 2つの制御因子により変成部にお ける変成触媒の温度を制御するため、上限供給量及び下限供給量の設定に余裕を 持たせることができる。又、一酸ィ匕炭素除去部における一酸ィ匕炭素の発生確率を小 さくすることができると共に、一酸化炭素除去部の動作温度をより最適な動作温度に 帘 U御することができる。  [0156] In addition, an upper limit supply amount and a lower limit supply amount are set in advance for the supply amount of air supplied from the combustion air supply to the heating unit, and the temperature detected by the temperature detection unit exceeds the upper limit temperature and combustion When the supply amount of air supplied from the air supply unit to the heating unit falls below the lower limit supply amount, the supply amount of water supplied from the water supply unit to the preheating evaporation unit is increased. Or, if the temperature detected by the temperature detector is lower than the lower limit temperature and the supply amount of air supplied to the combustion air supply power heating unit is higher than the upper limit supply amount, the water supply unit supplies the preheating vaporizer. Reduce the amount of water supplied to. Since the temperature of the shift catalyst in the shift section is controlled by two powerful control factors, it is possible to provide a margin for setting the upper limit supply amount and the lower limit supply amount. In addition, the generation probability of carbon monoxide and carbon in the monoxide and carbon removal section can be reduced, and the operating temperature of the carbon monoxide removal section can be controlled to a more optimal operation temperature.
[0157] 又、予熱蒸発部における重力方向の上方力 原料及び水を供給することにより、予 熱蒸発部において水の蒸発時に発生する圧力変動を抑制することが可能となり、改 質部に対する原料及び水の供給をスムーズに行うことが可能になる。  [0157] Further, by supplying the upward force material and water in the gravity direction in the preheating evaporation section, it becomes possible to suppress the pressure fluctuation that occurs when water evaporates in the preheating evaporation section. Water can be supplied smoothly.
[0158] 又、一酸化炭素除去部を変成部とする場合、変成部に変成触媒の温度を検出する よう温度検出部を設けることにより、変成部における変成触媒の温度状態を安定ィ匕す ることができるため、選択酸化部への空気供給量を増加させることなぐ一酸化炭素 の濃度が十分に低減された良質の水素含有ガスを燃料電池に供給することが可能 になる。  [0158] When the carbon monoxide removal unit is a shift unit, a temperature detection unit is provided in the shift unit to detect the temperature of the shift catalyst, thereby stabilizing the temperature state of the shift catalyst in the shift unit. Therefore, it is possible to supply the fuel cell with a high-quality hydrogen-containing gas in which the concentration of carbon monoxide is sufficiently reduced without increasing the amount of air supplied to the selective oxidation unit.
[0159] そして、本発明によれば、比較的単純な構成により、原料ガスと水との水蒸気改質 反応により水素含有ガスを生成する改質部と変成部及び選択酸化部等の一酸化炭 素除去部とを加熱部の周りに円筒状に配置しかつ一体化した水素生成装置におい て、特別な温度制御機構を設けることなぐ変成部における変成触媒の温度を適切 に制御することができるようになる。又、空冷ファン等の温度制御機構を必要としない ため、放熱量が増カロしない水素生成装置を構成することが可能となる。又、水素生成 装置に求められている水素生成効率を損なうことなぐ水素生成装置の構成の簡便 ィ匕と水素生成効率の高効率化との両立を実現することが可能となる。 [0159] According to the present invention, with a relatively simple structure, the carbon monoxide such as a reforming section, a shift section, and a selective oxidation section that generates a hydrogen-containing gas by a steam reforming reaction between a raw material gas and water. In a hydrogen generator in which the element removal section is arranged in a cylindrical shape around the heating section and integrated, the temperature of the shift catalyst in the shift section can be appropriately controlled without providing a special temperature control mechanism. become. In addition, since a temperature control mechanism such as an air cooling fan is not required, it is possible to configure a hydrogen generator that does not increase the amount of heat released. In addition, it is possible to realize both the simplicity of the configuration of the hydrogen generator without compromising the hydrogen generation efficiency required for the hydrogen generator and the enhancement of the hydrogen generation efficiency.
産業上の利用可能性  Industrial applicability
[0160] 本発明に係る水素生成装置は、水トラップ部により予熱蒸発器力もの液水がトラッ プされるため、改質器に充填された改質触媒に直接液水が供給され、改質触媒が局 所的に急冷されることで生じる改質反応の阻害や触媒の破壊の可能性が低減される 、安定した水素生成が可能な水素生成装置として、産業上利用することが可能であ る。  [0160] In the hydrogen generator according to the present invention, liquid water having the power of the preheat evaporator is trapped by the water trap unit, so that liquid water is directly supplied to the reforming catalyst filled in the reformer, and reforming is performed. The catalyst can be used industrially as a hydrogen generator capable of stable hydrogen generation, because the possibility of inhibiting the reforming reaction and destroying the catalyst caused by local rapid cooling of the catalyst is reduced. The
[0161] 又、本発明に係る水素生成装置を備える燃料電池システムは、水素生成装置が安 定に動作して組成の安定した良質な水素含有ガスが燃料電池に向けて安定して供 給される、安定な発電運転が可能な燃料電池システムとして、産業上利用することが 可能である。  [0161] Further, in the fuel cell system including the hydrogen generator according to the present invention, the hydrogen generator is stably operated, and a high-quality hydrogen-containing gas having a stable composition is stably supplied to the fuel cell. It can be used industrially as a fuel cell system capable of stable power generation operation.

Claims

請求の範囲 The scope of the claims
[1] 燃焼用燃料と燃焼用空気との混合気を燃焼して燃焼ガスを生成する加熱器と、 前記加熱器が生成する前記燃焼ガスにより原料及び水が加熱されて該原料と水蒸 気との混合気を生成する環状の予熱蒸発器と、  [1] A heater that burns an air-fuel mixture of combustion fuel and combustion air to generate combustion gas, and the raw material and water are heated by the combustion gas generated by the heater so that the raw material and water vapor are heated. An annular preheat evaporator that produces a mixture with
前記予熱蒸発器の下方に、前記予熱蒸発器が生成する前記混合気を前記燃焼ガ スにより加熱された改質触媒に通過させることにより水素含有ガスを生成する環状の 改質器と、  An annular reformer that generates a hydrogen-containing gas by passing the air-fuel mixture generated by the preheat evaporator through a reforming catalyst heated by the combustion gas, below the preheat evaporator;
を備え、  With
前記予熱蒸発器力も排出された液水をトラップする水トラップ部を更に備えている、 水素生成装置。  A hydrogen generator, further comprising a water trap section for trapping the liquid water from which the preheat evaporator power is also discharged.
[2] 前記予熱蒸発器の外周に、前記改質器で生成された前記水素含有ガス中の一酸 化炭素をシフト反応により低減する変成触媒を内蔵する環状の変成器を更に備え、 前記改質器から前記変成器に供給される前記水素含有ガスと前記水トラップ部内 の液水とが熱交換するように構成されている、請求項 1記載の水素生成装置。  [2] The annular reformer is further provided on the outer periphery of the preheat evaporator, and further includes an annular shifter incorporating a shift catalyst for reducing carbon monoxide in the hydrogen-containing gas generated by the reformer by a shift reaction. 2. The hydrogen generator according to claim 1, wherein the hydrogen-containing gas supplied from a mass device to the transformer and the liquid water in the water trap section are configured to exchange heat.
[3] 前記加熱器の外方に、前記予熱蒸発器と、前記水トラップ部と、前記改質器及び 前記変成器とを各々筒状に備え、 [3] Outside the heater, the preheating evaporator, the water trap unit, the reformer and the transformer are each provided in a cylindrical shape,
前記予熱蒸発器に前記変成器が周設され、  The transformer is provided around the preheating evaporator,
前記予熱蒸発器と、前記水トラップ部と、前記改質器とが、該予熱蒸発器から該水 トラップ部を介して該改質器に前記混合気が供給されるように連設され、  The preheating evaporator, the water trap part, and the reformer are connected in series so that the air-fuel mixture is supplied from the preheating evaporator to the reformer through the water trap part,
前記改質器で生成された前記水素含有ガスが前記変成器に供給される前に前記 水トラップ部と接触するように構成されている、請求項 2記載の水素生成装置。  3. The hydrogen generation apparatus according to claim 2, wherein the hydrogen-containing gas generated in the reformer is configured to come into contact with the water trap unit before being supplied to the transformer.
[4] 前記原料の供給口及び前記水の供給口を、前記予熱蒸発器の前記水トラップ部 が連設されない他端側に備えている、請求項 3記載の水素生成装置。 4. The hydrogen generator according to claim 3, wherein the raw material supply port and the water supply port are provided on the other end side where the water trap portion of the preheating evaporator is not connected.
[5] 前記加熱器に前記燃焼用空気を供給する燃焼用空気供給器と、 [5] a combustion air supply for supplying the combustion air to the heater;
前記予熱蒸発器に前記水を供給する水供給器と、  A water supply for supplying the water to the preheating evaporator;
前記変成器が内蔵する前記変成触媒の温度を検出する温度検出器と、 制御器と、を備え、  A temperature detector for detecting the temperature of the shift catalyst incorporated in the shift converter, and a controller,
前記制御器が、前記温度検出器により検出される前記変成触媒の温度に基づき前 記水供給器から前記予熱蒸発器への水供給量及び前記燃焼用空気供給器から前 記加熱器への燃焼用空気供給量の少なくとも一方を制御する、請求項 2記載の水素 生成装置。 Based on the temperature of the shift catalyst detected by the temperature detector, the controller 3. The hydrogen generator according to claim 2, wherein at least one of a water supply amount from the water supply device to the preheat evaporator and a combustion air supply amount from the combustion air supply device to the heating device is controlled.
[6] 前記変成触媒の温度制御に係る上限温度及び下限温度の情報を有する記憶器を 備え、  [6] A storage device having information on an upper limit temperature and a lower limit temperature related to temperature control of the shift catalyst is provided,
前記制御器が、前記温度検出器の検出温度が前記上限温度以上になった場合に は前記予熱蒸発器への水供給量を増量させるよう前記水供給器を制御し、前記温 度検出器の検出温度が前記下限温度以下になった場合には前記予熱蒸発器への 水供給量を減量させるよう前記水供給器を制御する、請求項 5記載の水素生成装置  The controller controls the water supply unit to increase the amount of water supplied to the preheating evaporator when the temperature detected by the temperature detector exceeds the upper limit temperature. 6. The hydrogen generator according to claim 5, wherein when the detected temperature is equal to or lower than the lower limit temperature, the water supply device is controlled so as to reduce the amount of water supplied to the preheating evaporator.
[7] 前記記憶器が前記水供給量の制御に係る上限供給量及び下限供給量の情報を 更に有し、 [7] The storage device further includes information on an upper limit supply amount and a lower limit supply amount relating to the control of the water supply amount,
前記制御器が、前記水供給器から前記予熱蒸発器への水供給量が前記上限供給 量以上になった場合又は前記水供給器から前記予熱蒸発器への水供給量が前記 下限供給量以下になった場合に異常と判断する、請求項 6記載の水素生成装置。  When the controller supplies the water supply amount from the water supply unit to the preheating evaporator equal to or higher than the upper limit supply amount, or the water supply amount from the water supply unit to the preheating evaporator is equal to or less than the lower limit supply amount. 7. The hydrogen generator according to claim 6, wherein an abnormality is determined when it becomes.
[8] 前記変成触媒の温度制御に係る上限温度及び下限温度の情報を有する記憶器を 備え、 [8] A storage device having information on an upper limit temperature and a lower limit temperature related to temperature control of the shift catalyst,
前記制御器が、前記温度検出器の検出温度が前記上限温度以上になった場合に は前記加熱器への燃焼用空気供給量を減量させるよう前記燃焼用空気供給器を制 御し、前記温度検出器の検出温度が前記下限温度以下になった場合には前記加熱 器への燃焼用空気供給量を増量させるよう前記燃焼用空気供給器を制御する、請 求項 5記載の水素生成装置。  The controller controls the combustion air supply device to reduce the amount of combustion air supplied to the heater when the temperature detected by the temperature detector is equal to or higher than the upper limit temperature, and the temperature 6. The hydrogen generator according to claim 5, wherein when the detected temperature of the detector becomes equal to or lower than the lower limit temperature, the combustion air supply device is controlled to increase the supply amount of combustion air to the heater.
[9] 前記記憶器が前記燃焼用空気供給量の制御に係る上限供給量及び下限供給量 の情報を更に有し、 [9] The storage device further includes information on an upper limit supply amount and a lower limit supply amount related to the control of the combustion air supply amount,
前記制御器が、前記燃焼用空気供給器から前記加熱器への燃焼用空気供給量が 前記上限供給量以上になった場合又は前記燃焼用空気供給器から前記加熱器へ の燃焼用空気供給量が前記下限供給量以下になった場合に異常と判断する、請求 項 8記載の水素生成装置。 When the controller supplies the combustion air supply amount from the combustion air supply device to the heater equal to or higher than the upper limit supply amount, or the combustion air supply amount from the combustion air supply device to the heater 9. The hydrogen generation apparatus according to claim 8, wherein an abnormality is determined when the value becomes equal to or less than the lower limit supply amount.
[10] 前記変成触媒の温度制御に係る上限温度及び下限温度の情報と前記水供給量の 制御に係る上限供給量及び下限供給量の情報とを有する記憶器を備え、 [10] A storage device having information on an upper limit temperature and a lower limit temperature related to temperature control of the shift catalyst and information on an upper limit supply amount and a lower limit supply amount related to control of the water supply amount,
前記制御器が、前記変成触媒の温度が前記上限温度以上になりかつ前記水供給 器力 前記予熱蒸発器への水供給量が前記上限供給量以上になった場合には前 記加熱器への燃焼用空気供給量を減量させるよう前記燃焼用空気供給器を制御し 、前記変成触媒の温度が前記下限温度以下になりかつ前記水供給器から前記予熱 蒸発器への水供給量が前記下限供給量以下になった場合には前記加熱器への燃 焼用空気供給量を増量させるよう前記燃焼用空気供給器を制御する、請求項 5記載 の水素生成装置。  When the temperature of the shift catalyst becomes equal to or higher than the upper limit temperature and the water supply capacity of the preheat evaporator becomes equal to or higher than the upper limit supply quantity, the controller supplies the heater to the heater. Controlling the combustion air supply unit to reduce the combustion air supply amount, the temperature of the shift catalyst is equal to or lower than the lower limit temperature, and the water supply amount from the water supply unit to the preheating evaporator is the lower limit supply. 6. The hydrogen generator according to claim 5, wherein the combustion air supply device is controlled to increase the amount of combustion air supplied to the heater when the amount becomes less than the amount.
[11] 前記変成触媒の温度制御に係る上限温度及び下限温度の情報と前記燃焼用空 気供給量の制御に係る上限供給量及び下限供給量の情報とを有する記憶器を備え 前記制御器が、前記変成触媒の温度が前記上限温度以上になりかつ前記燃焼用 空気供給器から前記加熱器への燃焼用空気供給量が前記下限供給量以下になつ た場合には前記予熱蒸発器への水供給量を増量させるよう前記水供給器を制御し、 前記変成触媒の温度が前記下限温度以下になりかつ前記燃焼用空気供給器から 前記加熱器への燃焼用空気供給量が前記上限供給量以上になった場合には前記 予熱蒸発器への水供給量を減量させるよう前記水供給器を制御する、請求項 5記載 の水素生成装置。  [11] A storage device including information on an upper limit temperature and a lower limit temperature related to temperature control of the shift catalyst and information on an upper limit supply amount and a lower limit supply amount related to the control of the combustion air supply amount. When the temperature of the shift catalyst becomes equal to or higher than the upper limit temperature and the amount of combustion air supplied from the combustion air supply to the heater becomes equal to or lower than the lower limit supply, water to the preheating evaporator is Controlling the water supply unit to increase the supply amount, wherein the temperature of the shift catalyst is not more than the lower limit temperature, and the combustion air supply amount from the combustion air supply unit to the heater is not less than the upper limit supply amount 6. The hydrogen generator according to claim 5, wherein the water supply device is controlled so as to reduce the amount of water supplied to the preheating evaporator when the value becomes.
[12] 請求項 1乃至 11に記載の水素生成装置と、 [12] The hydrogen generator according to claims 1 to 11,
前記水素生成装置から供給される前記水素含有ガスと酸素含有ガスとを用いて発 電する燃料電池と、  A fuel cell that generates electricity using the hydrogen-containing gas and the oxygen-containing gas supplied from the hydrogen generator;
を少なくとも備えている、燃料電池システム。  A fuel cell system comprising at least a fuel cell system.
PCT/JP2007/061831 2006-06-12 2007-06-12 Hydrogen generation device and fuel cell system equipped with it WO2007145218A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800219040A CN101466635B (en) 2006-06-12 2007-06-12 Hydrogen generating apparatus and fuel battery system equipped with the same
US12/304,147 US8273489B2 (en) 2006-06-12 2007-06-12 Hydrogen generator and fuel cell system including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006162614 2006-06-12
JP2006-162614 2006-06-12

Publications (1)

Publication Number Publication Date
WO2007145218A1 true WO2007145218A1 (en) 2007-12-21

Family

ID=38831733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061831 WO2007145218A1 (en) 2006-06-12 2007-06-12 Hydrogen generation device and fuel cell system equipped with it

Country Status (3)

Country Link
US (1) US8273489B2 (en)
CN (1) CN101466635B (en)
WO (1) WO2007145218A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139159A1 (en) * 2008-05-15 2009-11-19 パナソニック株式会社 Hydrogen generator and fuel cell power generator
JP2010059051A (en) * 2008-09-05 2010-03-18 Samsung Sdi Co Ltd Evaporator and fuel reformer
JP2010157498A (en) * 2008-12-03 2010-07-15 Tokyo Gas Co Ltd Multiple cylindrical steam reformer for fuel cell
US20110117461A1 (en) * 2008-07-25 2011-05-19 Panasonic Corporation Hydrogen generation device and fuel cell system provided therewith

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101466636B (en) * 2006-06-15 2011-05-04 松下电器产业株式会社 Hydrogen generator and fuel cell system
WO2011108264A1 (en) 2010-03-04 2011-09-09 パナソニック株式会社 Hydrogen generator and fuel cell power generation system
AU2011234159B2 (en) * 2010-03-31 2016-01-21 Council Of Scientific & Industrial Research Hydrogen/syngas generator
KR20120047545A (en) * 2010-11-04 2012-05-14 삼성에스디아이 주식회사 Reformer
US8697451B2 (en) * 2010-11-22 2014-04-15 Fuelcell Energy, Inc. Sulfur breakthrough detection assembly for use in a fuel utilization system and sulfur breakthrough detection method
EP2716598B1 (en) * 2011-05-27 2019-01-16 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generator and fuel cell system
EP2750232B1 (en) * 2011-08-25 2019-04-17 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system and method of operating the same
TWI438957B (en) * 2011-09-22 2014-05-21 Atomic Energy Council Combustion reformer for fuel cell power generating system
WO2013132276A1 (en) * 2012-03-08 2013-09-12 Helbio Societé Anonyme Hydrogen And Energy Production Systems Catalytically heated fuel processor with replaceable structured supports bearing catalyst for fuel cell
US9144781B2 (en) 2012-06-25 2015-09-29 Panasonic International Property Management Co., Ltd. Fuel processing device
US20150303502A1 (en) * 2012-12-17 2015-10-22 Panasonic Intellectual Property Management Management Co., Ltd. Hydrogen generator
JP6311865B2 (en) * 2014-02-03 2018-04-18 Toto株式会社 Solid oxide fuel cell device
RU2617754C1 (en) * 2016-06-15 2017-04-26 Андрей Владиславович Курочкин Hydrogen plant
JP6477638B2 (en) * 2016-09-14 2019-03-06 トヨタ自動車株式会社 Heat, hydrogen generator
MY193298A (en) 2016-11-09 2022-10-03 8 Rivers Capital Llc Systems and methods for power production with integrated production of hydrogen
KR101866500B1 (en) * 2016-11-14 2018-07-04 한국에너지기술연구원 Hydrogen production rector including carbon monoxide removing unit
JP6944349B2 (en) * 2017-11-09 2021-10-06 エア・ウォーター株式会社 Hydrogen generator
CA3082075A1 (en) 2017-11-09 2019-05-16 8 Rivers Capital, Llc Systems and methods for production and separation of hydrogen and carbon dioxide
CN108128752B (en) * 2018-02-23 2019-02-26 山西城市动力新能源有限公司 A kind of preparation facilities of ultra-high purity hydrogen
WO2019234922A1 (en) 2018-06-08 2019-12-12 フレンド株式会社 Hydrogen mixed gas generation method
US11859517B2 (en) 2019-06-13 2024-01-02 8 Rivers Capital, Llc Power production with cogeneration of further products
WO2023089570A1 (en) 2021-11-18 2023-05-25 8 Rivers Capital, Llc Apparatus for hydrogen production

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003112904A (en) * 2001-10-05 2003-04-18 Tokyo Gas Co Ltd Single tube type cylindrical reformer
JP2003252604A (en) * 2001-12-25 2003-09-10 Matsushita Electric Ind Co Ltd Apparatus for generating hydrogen and fuel cell system equipped with it
JP2004071242A (en) * 2002-08-02 2004-03-04 Fuji Electric Holdings Co Ltd Reformed steam generator of fuel cell power generator
JP2004149402A (en) * 2002-10-10 2004-05-27 Matsushita Electric Ind Co Ltd Hydrogen generator and fuel cell system having the same
JP2005306658A (en) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd Hydrogen producing apparatus
JP2007015911A (en) * 2005-06-10 2007-01-25 Fuji Electric Holdings Co Ltd Fuel reforming apparatus
JP2007055892A (en) * 2005-07-27 2007-03-08 Fuji Electric Holdings Co Ltd Fuel reforming apparatus
JP2007099560A (en) * 2005-10-04 2007-04-19 Matsushita Electric Ind Co Ltd Hydrogen producing apparatus and fuel cell system provided with the same
JP2007157407A (en) * 2005-12-02 2007-06-21 Fuji Electric Holdings Co Ltd Fuel reforming system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3734966B2 (en) 1998-09-09 2006-01-11 松下電器産業株式会社 Hydrogen generator
JP3808743B2 (en) 2000-10-10 2006-08-16 東京瓦斯株式会社 Single tube cylindrical reformer
CA2357960C (en) * 2000-10-10 2007-01-30 Tokyo Gas Co., Ltd. Single-pipe cylinder type reformer
JP4531320B2 (en) 2001-03-28 2010-08-25 大阪瓦斯株式会社 Operation control method for hydrogen-containing gas generator
EP1324414A3 (en) 2001-12-25 2003-11-26 Matsushita Electric Industrial Co., Ltd. Hydrogen generation system and fuel cell system having the same
CA2478797C (en) * 2002-03-15 2010-05-04 Matsushita Electric Works, Ltd. Reforming apparatus and operation method thereof
JP4342803B2 (en) 2003-01-16 2009-10-14 東京瓦斯株式会社 Reformer system with polymer electrolyte fuel cell and method for operating the same
DE602004028555D1 (en) * 2003-07-29 2010-09-23 Panasonic Corp Hydrogen generator and fuel cell power system
JP4477890B2 (en) 2004-02-10 2010-06-09 パナソニック株式会社 Hydrogen generator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003112904A (en) * 2001-10-05 2003-04-18 Tokyo Gas Co Ltd Single tube type cylindrical reformer
JP2003252604A (en) * 2001-12-25 2003-09-10 Matsushita Electric Ind Co Ltd Apparatus for generating hydrogen and fuel cell system equipped with it
JP2004071242A (en) * 2002-08-02 2004-03-04 Fuji Electric Holdings Co Ltd Reformed steam generator of fuel cell power generator
JP2004149402A (en) * 2002-10-10 2004-05-27 Matsushita Electric Ind Co Ltd Hydrogen generator and fuel cell system having the same
JP2005306658A (en) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd Hydrogen producing apparatus
JP2007015911A (en) * 2005-06-10 2007-01-25 Fuji Electric Holdings Co Ltd Fuel reforming apparatus
JP2007055892A (en) * 2005-07-27 2007-03-08 Fuji Electric Holdings Co Ltd Fuel reforming apparatus
JP2007099560A (en) * 2005-10-04 2007-04-19 Matsushita Electric Ind Co Ltd Hydrogen producing apparatus and fuel cell system provided with the same
JP2007157407A (en) * 2005-12-02 2007-06-21 Fuji Electric Holdings Co Ltd Fuel reforming system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139159A1 (en) * 2008-05-15 2009-11-19 パナソニック株式会社 Hydrogen generator and fuel cell power generator
RU2458854C2 (en) * 2008-05-15 2012-08-20 Панасоник Корпорэйшн Hydrogen generator and energy source with fuel cell
JP5477748B2 (en) * 2008-05-15 2014-04-23 パナソニック株式会社 Hydrogen generator and fuel cell power generator
US20110117461A1 (en) * 2008-07-25 2011-05-19 Panasonic Corporation Hydrogen generation device and fuel cell system provided therewith
JP2010059051A (en) * 2008-09-05 2010-03-18 Samsung Sdi Co Ltd Evaporator and fuel reformer
US8486164B2 (en) 2008-09-05 2013-07-16 Samsung Sdi Co., Ltd. Evaporator and fuel reformer having the same
JP2010157498A (en) * 2008-12-03 2010-07-15 Tokyo Gas Co Ltd Multiple cylindrical steam reformer for fuel cell

Also Published As

Publication number Publication date
US20090317671A1 (en) 2009-12-24
CN101466635A (en) 2009-06-24
CN101466635B (en) 2011-07-20
US8273489B2 (en) 2012-09-25

Similar Documents

Publication Publication Date Title
WO2007145218A1 (en) Hydrogen generation device and fuel cell system equipped with it
JP5138986B2 (en) Hydrogen generator and fuel cell system including the same
JP4105758B2 (en) Fuel cell system
KR20030004011A (en) Hydrogen producing apparatus and power generating system using it
WO2006088018A1 (en) Hydrogen generation device, operation method thereof, and fuel cell system
JP5057938B2 (en) Hydrogen generator and fuel cell system provided with the same
JP2004006093A (en) Fuel treating equipment and fuel cell power generation system
JP2005174745A (en) Operation method of fuel cell system and fuel cell system
JP2007273281A (en) Fuel cell power generation device
JP2007331951A (en) Hydrogen generator and fuel cell system
JP2008103278A (en) Fuel cell system
JP2005206414A (en) Hydrogen producing apparatus
JP2009076392A (en) Liquid fuel cell power generation system
JP2005353347A (en) Fuel cell system
JP2012119244A (en) Fuel cell system
JP2007269538A (en) Reforming apparatus
JP2003077517A (en) Fuel cell system
JP2005216615A (en) Fuel processing device and fuel cell power generation system
JP6115310B2 (en) Fuel cell system
JP2016062796A (en) Solid oxide type fuel cell system
JP2008081331A (en) Reformer
JP2008074688A (en) Reforming apparatus
JP2004175637A (en) Co remover and hydrogen production apparatus
JP2009107876A (en) Hydrogen generating apparatus and fuel cell power system
JPH11302001A (en) Carbon monoxide remover and fuel battery power generation system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780021904.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745118

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12304147

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07745118

Country of ref document: EP

Kind code of ref document: A1