JP2004006093A - Fuel treating equipment and fuel cell power generation system - Google Patents

Fuel treating equipment and fuel cell power generation system Download PDF

Info

Publication number
JP2004006093A
JP2004006093A JP2002159433A JP2002159433A JP2004006093A JP 2004006093 A JP2004006093 A JP 2004006093A JP 2002159433 A JP2002159433 A JP 2002159433A JP 2002159433 A JP2002159433 A JP 2002159433A JP 2004006093 A JP2004006093 A JP 2004006093A
Authority
JP
Japan
Prior art keywords
process water
reforming
unit
fuel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002159433A
Other languages
Japanese (ja)
Inventor
Hirotaka Takagi
高木 裕登
Kunihiko Murayama
村山 邦彦
Kazumi Maehara
前原 和巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Ballard Corp
Original Assignee
Ebara Ballard Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Ballard Corp filed Critical Ebara Ballard Corp
Priority to JP2002159433A priority Critical patent/JP2004006093A/en
Publication of JP2004006093A publication Critical patent/JP2004006093A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel treating equipment having stable carbon monoxide removeability at the time of load fluctuation of fuel cell power generation system. <P>SOLUTION: The fuel treating equipment comprises, a reforming unit 11 which reforms hydrocarbonaceous raw materials 40 and 40a into reformed gas 44 mainly consisting of hydrogen and carbon monoxide, a process water supply unit 3 which supplies reforming process water 41 to the reforming unit 11, a conversion catalyst unit 14 which converts the reformed gas 44 and reduces carbon monoxide content in the reformed gas 44, a conversion unit 12 having the first heat exchanging unit 13 which exchanges heat between the reforming process water 41 and the conversion catalyst unit 14, and a process water quantity adjusting unit 5 which adjusts quantity of the reforming process water 41 basing on temperature detected by a temperature detector 17 which detects temperature of the conversion catalyst unit 14. The process water quantity adjusting unit 5 increases or reduces supply amount of the reforming process water 41 within flow rate which is calculated from hydrocarbonaceous raw material flow rate and prescribed S/C range. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池発電システムに用いて好適な水素リッチガスを生成する燃料処理装置に関し、特に燃料電池発電システムの負荷変動時などにも安定した一酸化炭素除去能力を有する燃料処理装置に関する。また本発明は、燃料電池発電システムの負荷変動時などにも安定した発電能力が発揮できる燃料電池発電システムに関する。
【0002】
【従来の技術】
固体高分子型燃料電池発電システムは、例えば都市ガス、LPG(液化石油ガス)、下水汚泥より発生する消化ガス、メタノールや灯油のような原料燃料を、燃料処理装置を用いて水蒸気改質法により水素ガスに富む燃料ガスに改質し、改質された燃料ガスを燃料電池スタックの燃料極に供給するものである。固体高分子型燃料電池発電システムの燃料ガスは、燃料電池スタックの発電性能を維持するために一酸化炭素含有量を一般的に約10ppm以下にする必要がある。そこで、燃料ガス中の一酸化炭素含有量を10ppm以下とするため、燃料処理装置内には改質器以外に一酸化炭素変成器、一酸化炭素選択酸化器を持つのが一般的である。
【0003】
ところで、一酸化炭素変成器および一酸化炭素選択酸化器における反応の熱力学的性質としては、発熱反応に分類される。また安定した一酸化炭素除去性能を維持するために、一酸化炭素変成器および一酸化炭素選択酸化器では反応温度をある温度範囲内に維持する必要がある。この温度範囲は、例えば一酸化炭素変成器で200〜350℃、一酸化炭素選択酸化器で100〜200℃程度となっている。そして、家庭用のように発電容量の小さな燃料電池発電システムにおいては、システム全体の容積を小さくするため、改質部、変成部、選択酸化部等を含む一体型燃料処理装置が用いられることが多い。一体型燃料処理装置において、改質部は通常燃焼部の近くに配置され、改質部温度は燃焼部温度から比較的簡単に制御できることが多い。また、変成部温度は改質部温度よりも数百度低いため、変成部と燃焼部の間に改質部をはさむ構造になっていることも多い。そこで、一体型燃料処理装置における変成部温度は、燃焼部温度を制御することによって間接的に変成部温度を制御している場合が多い。
【0004】
一方、水蒸気改質法を用いる燃料処理装置においては、原料燃料の量に応じてある設定比率(S/C)の範囲内で改質用プロセス水を投入する必要がある。ここで、S/Cは、投入水蒸気モル数と投入燃料中の炭素モル数との比である。この改質用プロセス水は水蒸気改質法の原料となるほか、燃料処理装置内に設けられた変成部の熱交換器にて改質用プロセス水が蒸発する際の潜熱を用いて、一酸化炭素変成触媒部を冷却する役割を持たせることができる。
【0005】
【発明が解決しようとする課題】
上述の一体型燃料処理装置においては、以下のような課題がある。
▲1▼燃料極出口ガスを燃焼部に戻して燃焼させる形式の燃料処理装置の場合に、燃料電池発電システムの負荷増段時や負荷変動時などに、燃焼部に対しての燃料電池の燃料極出口ガス供給量が変動する。すると、燃料極出口ガス供給量が過剰な場合には、変成部熱交換器の改質用プロセス水が完全に蒸発してしまい、変成触媒部の温度が過昇温する場合がある。すると、変成触媒部の触媒としての作用が不安定になることがある。選択酸化触媒部についても、選択酸化触媒部の温度が過昇温すると、触媒としての作用が不安定になる点は同様である。
▲2▼一酸化炭素変成器および一酸化炭素選択酸化器の温度制御に関しては、燃焼部への原料燃料供給量を制御し改質部温度からの伝熱で2次的に当該温度を制御する構成とすると、制御動作に対する時定数が大きくなって、応答が遅く制御が間に合わない場合が多い。すると、変成触媒において十分な一酸化炭素除去が可能な温度域を外れ、一酸化炭素除去性能が一時的に低下する。すると、燃料電池スタックに供給される燃料ガスに含まれる一酸化炭素の含有率が増大して、結果として燃料電池スタックの発電出力が下がると共に、燃料電池スタックの寿命を縮めてしまう。
▲3▼燃料電池スタック冷却水などで外部から変成触媒部を冷却し、燃料電池発電システムの負荷変動時などの一時的な温度変動に対して冷却水の流量によって対応する構成を用いることもできる。しかし、システム全体としての構成機器点数が増加するため、燃料電池発電システムの製造コストが増加するほか、変成触媒部の発熱を燃料処理装置内に取り込めず、燃料処理効率が下がる。
【0006】
本発明は、上述する課題を解決したもので、簡単な構成でありながら、燃料電池発電システムの負荷変動時などにも安定した一酸化炭素除去能力を有する燃料処理装置を提供することを目的とする。また本発明は、負荷変動時などにも安定した電気出力を維持できる燃料電池発電システムを提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明による燃料処理装置は、例えば図1に示すように、炭化水素系原料(40、40a)を処理して水素を主成分とする燃料ガス42に改質する燃料処理装置において、炭化水素系原料(40、40a)を水素と一酸化炭素とを主成分とする改質ガス44に改質する改質部11と、改質部11に改質用プロセス水41を供給するプロセス水供給系統3と、改質ガス44を変成して、改質ガス44中の一酸化炭素含有量を減少させる変成触媒部14、並びに改質用プロセス水41と変成触媒部14との間で熱交換させる第1の熱交換部13を有する変成部12と、変成触媒部14の温度を検出する温度検出器17と、温度検出器17で検出される温度に基いて、改質用プロセス水41の供給量を調節するプロセス水量調節装置5を備え、プロセス水量調節装置5は前記炭化水素系原料流量とあらかじめ設定されたS/C範囲とから算出される流量範囲内で改質用プロセス水41の供給量を増減する構成としている。
【0008】
このように構成すると、第1の熱交換部13にて改質用プロセス水41の蒸発潜熱により効果的に変成触媒部14の冷却を行えるため、改質用プロセス水41の流量を調整することにより変成触媒部14の冷却量の調整を速やかに行うことができ、変成触媒部14の温度異常による一酸化炭素の発生を未然に防ぐことができる。また、プロセス水量調節装置5の改質用プロセス水41の流量制御範囲をあらかじめ設定されたS/C範囲によって制約しているため、改質用プロセス水41の改質部11への供給不足による改質触媒炭化を防ぐことができる。
【0009】
好ましくは、本発明による燃料処理装置は、例えば図1に示すように、さらに燃料極出口ガス31又は燃焼燃料32の少なくとも一方を燃焼する燃焼部10と、改質燃料40を改質部11に供給する改質燃料ブロワ2と、燃焼燃料量制御装置7を備えるとよい。燃焼燃料量制御装置7は、改質部11の改質触媒温度が一定になるように燃焼部10に供給する燃料極出口ガス31又は燃焼燃料32の供給量並びに燃焼に必要とされる空気量を制御している。
【0010】
好ましくは、炭化水素系原料(40、40a)は、改質燃料40を燃料処理装置1に供給して、燃料処理装置1の内部で改質燃料40と改質用プロセス水41の混合流体40aとするものでもよく、また燃料処理装置1の外部で改質燃料40と改質用プロセス水41の混合流体40aを生成して、この混合流体40aを燃料処理装置1に供給して、改質部11にて改質するものでもよい。ここで、改質燃料40は変成部12における第1の熱交換部13を通さず、直接改質部11に供給してもよく、また改質燃料40と改質用プロセス水41の混合流体を第1の熱交換部13を通した後で、改質部11に供給してもよく、更に改質用プロセス水41と変成部12の第1の熱交換部13とは別系統で、改質燃料40と変成部12との間で熱交換させる第3の熱交換部を設けてもよい。また、変成触媒温度検出部17は変成触媒部14の温度を直接検出してもよいし、また変成触媒部14出口における変成ガス43の温度を検出してもよい。
【0011】
さらに、プロセス水量調節装置5による改質用プロセス水41の流量制御は改質用プロセス水ポンプ3の回転数を調節する方法でもよいし、改質用プロセス水ポンプ3の下流にコントロールバルブを設置し(不図示)、その開度を調節してもよい。また、燃料処理装置運転時の初期改質用プロセス水41の流量は、改質燃料40の供給流量とあらかじめ設定された初期運転時のS/C値から計算された量である。そして、燃料処理装置の運転中、変成触媒温度検出部17の温度が過昇温しきい値よりも上昇した場合、プロセス水量調節装置5はあらかじめ設定されたS/C範囲と改質燃料40の流量から計算される流量範囲内で、改質用プロセス水41の流量を増加させて、変成触媒部14の冷却を強める。他方、燃料処理装置の運転中、変成触媒温度検出部17の温度が過降温しきい値よりも低下した場合、プロセス水量調節装置5はあらかじめ設定されたS/C範囲と改質燃料40の流量から計算される流量範囲内で改質用プロセス水41の流量を減少させて、変成触媒部14の冷却を弱める。
【0012】
上記目的を達成するために、本発明による燃料処理装置は、例えば、図5に示すように、炭化水素系原料(40、40a)を処理して水素を主成分とする燃料ガス42に改質する燃料処理装置において、炭化水素系原料(40、40a)を水素と一酸化炭素とを主成分とする改質ガス44に改質する改質部11と、改質部11に改質用プロセス水41を供給するプロセス水供給系統3と、改質ガス44を変成して、改質ガス44中の一酸化炭素含有量を減少させる変成触媒部14と、変成触媒部14で変成された改質ガスを選択酸化する選択酸化触媒部19、並びに改質用プロセス水41と選択酸化触媒部19との間で熱交換させる第2の熱交換部18を有する選択酸化部と、選択酸化触媒部19の温度を検出する温度検出器20と、温度検出器20で検出される温度に基いて、改質用プロセス水41の供給量を調節するプロセス水量調節装置5を備え、プロセス水量調節装置5は前記炭化水素系原料流量とあらかじめ設定されたS/C範囲とから算出される流量範囲内で改質用プロセス水41の供給量を増減する構成としている。
【0013】
このように構成すると、第2の熱交換部18にて改質用プロセス水41の蒸発潜熱により効果的に選択酸化触媒部19の冷却を行えるため、改質用プロセス水41の流量を調整することにより選択酸化触媒部19の冷却量の調整を速やかに行うことができ、選択酸化触媒部19の温度異常による一酸化炭素の発生を未然に防ぐことができる。また、プロセス水量調節装置5の改質用プロセス水41の流量制御範囲をあらかじめ設定されたS/C範囲によって制約しているため、改質用プロセス水41の改質部11への供給不足による改質触媒炭化を防ぐことができる。
【0014】
好ましくは、炭化水素系原料(40、40a)を改質燃料40として、選択酸化部15における第2の熱交換部18を通さず、直接改質部11あるいは変成部12に炭化水素系原料を供給してもよい。また炭化水素系原料(40、40a)を改質燃料40と改質用プロセス水41の混合流体40aとして、第2の熱交換部18を通した後で、改質部11あるいは変成部12に炭化水素系原料を供給してもよい。更に、炭化水素系原料(40、40a)を改質燃料40として、改質用プロセス水41と選択酸化部15の第2の熱交換部18とは別系統で、炭化水素系原料40と選択酸化部15との間で熱交換する第4の熱交換部を設けてもよい。選択酸化触媒温度検出部20は選択酸化触媒部19の温度を直接検出してもよく、また選択酸化触媒部19出口における燃料ガス42の温度を検出してもよい。
【0015】
また、燃料処理装置の運転中、選択酸化触媒温度検出部20の温度が過昇温しきい値よりも上昇した場合、プロセス水量調節装置5はあらかじめ設定されたS/C範囲と改質燃料40の流量から計算される流量範囲内で改質用プロセス水41の流量を増加させて、選択酸化触媒部19の冷却を強める。他方、燃料処理装置の運転中、選択酸化触媒温度検出部20の温度が過降温しきい値よりも低下した場合、プロセス水量調節装置5はあらかじめ設定されたS/C範囲と改質燃料40の流量から計算される流量範囲内で改質用プロセス水41の流量を減少させて、選択酸化触媒部19の冷却を弱める。
【0016】
上記目的を達成するために、本発明による燃料電池発電システムは、例えば図1又は図5に示すように、燃料処理装置と、燃料処理装置で得られた燃料ガス42を燃料とし、空気中の酸素を酸化剤として発電を行う燃料電池スタック8を備える。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を図示例と共に説明する。図1から図3は発明を実施する形態の一例であって、図中、図と同一又は類似の符号を付した部分は同一物又は相当物を表し、重複した説明は省略する。図1は本発明による第1の実施の形態である燃料処理装置の模式的ブロック図である。図において、燃料処理装置は、燃料処理器1、改質燃料供給系統としての改質燃料ブロワ2、プロセス水供給系統としての改質用プロセス水ポンプ3、プロセス水量調節装置5、改質燃料流量センサ6並びに燃焼燃料量制御装置7を備える。ここで、燃料処理器1は、燃焼部10、ボイラ16、改質部11、変成部12、並びに選択酸化部15を備えている。また、燃料電池発電システムは、燃料処理装置と燃料電池スタック8にて構成されている。
【0018】
燃焼部10は、燃料極出口ガス31又は燃焼燃料32の少なくとも一方を空気30と共に燃焼して、燃料処理器1全体を加熱すると共に、特に改質部11を改質触媒の反応温度に維持する。改質部11は、炭化水素系原料としての改質燃料40を水素と一酸化炭素とを主成分とする改質ガス44に改質するもので、例えば改質触媒が用いられる。改質燃料40には都市ガス、LPG(液化石油ガス)、下水汚泥より発生する消化ガス等のように常温で気体や、メタノールや灯油のように常温で液体のものが含まれる。
【0019】
変成部12は、第1の熱交換部としての変成器熱交換部13、変成触媒部14、変成触媒温度検出器17を有している。変成器熱交換部13は、改質用プロセス水41と変成触媒部14との間で熱交換させるもので、2流体が伝熱板をはさんで対向流や平行流で流れている熱交換器、コイル式熱交換器、プレート式熱交換器等が用いられる。変成触媒部14は、改質ガス44を変成して、改質ガス44中の一酸化炭素含有量を減少させる。変成触媒温度検出器17は燃料処理装置運転中、常に変成触媒部14の温度を検出するもので、例えば熱電対、サーミスタ、放射温度計等が用いられる。選択酸化部15は、選択酸化触媒を用いて変成ガス43中に含まれる一酸化炭素を酸化剤として空気30aを用いて選択酸化して、燃料ガス42を燃料電池スタック8に供給する。
【0020】
改質燃料ブロワ2は、改質燃料40を改質部11に供給する。プロセス水供給系統3は、改質部11に改質用プロセス水41を供給する。ここでは、改質部11の入口にて、改質燃料40と改質用プロセス水41が混合された混合流体40aとなる。混合流体40aは、燃料処理器1の内部で生成されるので、ボイラ16を燃料処理器1の内部に収容して熱効率を高めることができる。プロセス水量調節装置5は、温度検出器17で検出される温度に基いて、改質用プロセス水41の供給量を調節する。改質燃料流量センサ6は、改質燃料ブロワ2によって改質部11に供給される改質燃料40の流量を測定するもので、例えば差圧式やドップラー式の計器が用いられる。燃焼燃料量制御装置7は、改質部11の改質触媒温度が一定になるように燃焼部10に供給する燃料極出口ガス31又は燃焼燃料32の供給量、並びに燃焼に必要とされる空気量を制御している。燃料電池スタック8は、燃料処理装置で得られた燃料ガス42を燃料とし、空気中の酸素を酸化剤として発電を行うもので、例えば固体高分子型の燃料電池が用いられる。
【0021】
このように構成された装置における改質燃料と改質用プロセス水の流れを説明する。燃料処理装置では、改質用プロセス水ポンプ3から供給される改質用プロセス水41をボイラ16で予熱し、改質燃料ブロワ2から供給される改質燃料40と予熱された改質用プロセス水41を混合して混合流体40aとする。そして、混合流体40aは改質部11の変成器熱交換部13で加熱されて、気化して原料混合ガス45となる。変成器熱交換部13を出た原料混合ガス45は改質部11で改質ガス44に改質される。改質部11から排出される改質ガス44は、変成部12および選択酸化部15で一酸化炭素濃度が低減されたあとで、燃料ガス42として燃料電池スタック8の燃料極(不図示)に供給される。変成触媒部14で発生する反応熱は、変成器熱交換部13で改質用プロセス水41と改質燃料40の混合流体が吸収する。
【0022】
燃焼部10には燃料電池スタック8の燃料極出口ガス31および空気30を供給し、改質部11における改質反応の熱源とする。改質部11における改質反応の熱源が不足した場合には、燃焼燃料32を燃焼部10に供給して、熱供給量を増加させることができる。燃焼燃料32には、炭化水素系原料40を用いてもよいが、一酸化炭素を発生するため炭化水素系原料40として利用できない低級燃料を用いてもよい。選択酸化部15には選択酸化用の酸化剤として空気30aを改質燃料40の流量に応じて供給する。
【0023】
続いて、プロセス水量調節装置5の詳細を説明する。図2はプロセス水量調節装置の詳細を説明する構成ブロック図である。プロセス水量調節装置5は、変成触媒/選択酸化触媒温度判断部52、S/C比調整部54、プロセス水供給量演算部56、並びにプロセス水供給量調節計58を備えている。変成触媒/選択酸化触媒温度判断部52には、過昇温しきい値522と過降温しきい値524のレジスタが設けられている。S/C比調整部54には、S/C比通常設定値542、S/C比オフセット値544、S/C比設定上限値546、S/C比設定下限値548のレジスタが設けられている。なお、ここでは変成触媒温度検出器17と選択酸化触媒温度検出部20を同時に取上げる事で、図1に示す第1の実施の形態、並びに図5に示す第2の実施の形態の双方に対処する構成を示している。
【0024】
変成触媒/選択酸化触媒温度判断部52は、変成触媒温度検出器17又は選択酸化触媒温度検出部20の温度検出信号を入力し、過昇温しきい値522並びに過降温しきい値524と比較する。過昇温しきい値522は、触媒としての動作上限温度を基準として定めるもので、変成触媒部14に対しては例えば220℃〜230℃、選択酸化触媒部19に対しては例えば190℃〜200℃とする。過降温しきい値524は、触媒としての動作下限温度を基準として定めるもので、変成触媒部14に対しては例えば160℃〜170℃、選択酸化触媒部19に対しては例えば120℃〜130℃とする。
【0025】
S/C比調整部54は、S/C比設定上限値546に設定されたS/C比、例えば5.0と、S/C比設定下限値548に設定されたS/C比、例えば2.5の間で、変成触媒/選択酸化触媒温度判断部52の触媒温度に応じた最適なS/C比を算出する。S/C比通常設定値542には、燃料処理器1が正常に動作している場合に適する最適値、例えば3.0が設定されている。S/C比オフセット値544には、燃料処理器1の内部に設けられる流量計や圧力計のような各種センサに計測誤差が発生している場合でも、燃料処理器1が適切に動作できるようにS/C比通常設定値542を微調整するのに適するオフセット値が設定されている。このオフセット値には、例えば0.05が設定されている。S/C比設定上限値546とS/C比設定下限値548には、燃料処理器1が故障することなく動作できる上限と下限のS/C比が設定されている。
【0026】
プロセス水供給量演算部56は、S/C比調整部54で算出された最適なS/C比と、改質燃料流量センサ6で測定された改質燃料40の流量により、供給すべきプロセス水の供給量を演算する。プロセス水供給量調節計58は、プロセス水供給量演算部56で演算されたプロセス水の供給量となるように、改質用プロセス水ポンプ3の回転数を調節したり、あるいは改質用プロセス水ポンプ3の下流に設置されたコントロールバルブ(不図示)の弁開度を調節する。
【0027】
このように構成された装置の動作を次に説明する。図3は変成触媒部温度(又は選択酸化触媒温度検出部)とプロセス水量調節装置の選定するS/Cの推移を示した図で、S/C比オフセット値544を用いない場合を示してある。時刻t0において、プロセス水量調節装置5は、通常運転時の流量としてS/C比通常設定値542に設定されたS/Cを用いて、改質燃料40の流量から計算される流量の改質用プロセス水41を燃料処理器1に供給している。変成触媒部14の温度は、過昇温しきい値522と過降温しきい値524の中間にあるものとする。
【0028】
燃料処理装置運転中、時刻t1において、変成触媒温度検出部17の温度が過上昇して過昇温しきい値522を超えた場合、プロセス水量調節装置5は、S/C比設定上限値546とS/C比設定下限値548を用いて設定されたS/C範囲内であって、プロセス水供給量演算部56により改質燃料40の流量から計算される流量範囲内で、改質用プロセス水41の流量を最大限増加し、変成触媒部14の冷却を強める。ここでは、S/C比調整部54は、S/C比設定上限値546をS/C比調整部54で算出された最適なS/C比としている。そして、時刻t2において、変成触媒温度検出部17の温度が過昇温しきい値522を下回った時点で、プロセス水量調節装置5は改質用プロセス水41の流量をS/C比通常設定値542で設定されたS/C比を用いて通常運転時の流量に戻す。
【0029】
時刻t3において、変成触媒温度検出部17の温度が過下降して過降温しきい値524を下回った場合、プロセス水量調節装置5は、S/C比設定上限値546とS/C比設定下限値548を用いて設定されたS/C範囲内であって、プロセス水供給量演算部56により改質燃料40の流量から計算される流量範囲内で、改質用プロセス水41の流量を最小限まで減少し、変成触媒部14の冷却を弱める。ここでは、S/C比調整部54は、S/C比設定下限値548をS/C比調整部54で算出された最適なS/C比としている。そして、時刻t4において、変成触媒温度検出部17の温度が過降温しきい値524を上回った時点で、プロセス水量調節装置5は改質用プロセス水41の流量をS/C比通常設定値542で設定されたS/C比を用いて通常運転時の流量に戻す。
【0030】
このように構成すると、プロセス水量調節装置5による改質用プロセス水41の流量制御範囲は、S/C比設定上限値546とS/C比設定下限値548を用いて設定されたS/C範囲内に制約されているため、改質用プロセス水41の改質部11への供給不足による改質触媒炭化を防ぐことができる。また、燃料処理器1では改質用プロセス水41が変成器熱交換部13にて蒸発潜熱により効果的に変成触媒部14の冷却を行うと共に、プロセス水量調節装置5は、S/C比設定上限値546とS/C比設定下限値548を用いて設定されたS/C範囲内で最適なS/C比を用いて、改質用プロセス水41の流量を調整することにより、変成触媒部14の冷却量の調整を速やかに行うことができ、変成触媒部14の温度異常による一酸化炭素の発生を未然に防ぐことができる。ここで、最適なS/C比とは、変成触媒部温度を一定に保持するのに最適な値や、温度計の誤差が増大した場合でも熱バランスを制御して改質反応上最適な温度に保持するのに最適な値をいう。
【0031】
図4は変成触媒部温度(又は選択酸化触媒温度検出部)とプロセス水量調節装置の選定するS/Cの推移を示した図で、S/C比オフセット値544を用いる場合を示してある。時刻t5において、プロセス水量調節装置5は、通常運転時の流量としてS/C比通常設定値542に設定されたS/Cを用いて、改質燃料40の流量から計算される流量の改質用プロセス水41を燃料処理器1に供給している。
【0032】
燃料処理装置運転中、時刻t6において、変成触媒温度検出部17の温度が過上昇して過昇温しきい値522を超えた場合、プロセス水量調節装置5は、S/C比設定上限値546をS/C比調整部54で算出された最適なS/C比として、プロセス水供給量演算部56により改質燃料40の流量から計算される流量範囲内で、改質用プロセス水41の流量を最大限増加し、変成触媒部14の冷却を強める。そして、時刻t7において、変成触媒温度検出部17の温度が過昇温しきい値522を下回った時点で、S/C比調整部54はS/C比通常設定値542にS/C比オフセット値544で設定されたS/C比を加算して、新たなS/C比通常設定値542を算出する。そして、プロセス水量調節装置5は新たなS/C比通常設定値542を用いて、改質用プロセス水41の流量として更新された通常運転時の流量を用いる。
【0033】
次に、時刻t8において、再び変成触媒温度検出部17の温度が過上昇して過昇温しきい値522を超えた場合、プロセス水量調節装置5は、S/C比設定上限値546をS/C比調整部54で算出された最適なS/C比として、プロセス水供給量演算部56により改質燃料40の流量から計算される流量範囲内で、改質用プロセス水41の流量を最大限増加し、変成触媒部14の冷却を強める。そして、時刻t9において、変成触媒温度検出部17の温度が過昇温しきい値522を下回った時点で、S/C比調整部54は直近のS/C比通常設定値542にS/C比オフセット値544で設定されたS/C比を加算して、新たなS/C比通常設定値542を算出する。そして、プロセス水量調節装置5は新たなS/C比通常設定値542を用いて、改質用プロセス水41の流量として更新された通常運転時の流量を用いる。
【0034】
このように構成すると、経時変化などによりプロセス水量調節装置5の水量調節や改質燃料40の流量に誤差が生じて実S/Cが適正な値でなくなった場合でも、S/C比調整部54がS/C比オフセット値544を用いてS/C比通常設定値542を随時更新して、通常運転時のプロセス水量をプロセス水量調節装置5により調節することにより、安定した運転点に自動調整できる。すると、プロセス水量調節装置5が変成触媒部14の温度を制御することにより、改質用プロセス水41の流量が変成触媒部温度バランスを基準として適正に保たれ、適正なS/Cでの運転を保つことができる。一般に変成触媒部温度検出部17にはソリッドステートの素子を用いているので、信頼性が高く経年変化も流量センサに比較すると小さい。
【0035】
図5は本発明による第2の実施の形態である燃料処理装置の模式的ブロック図である。図5において、前記図1と同一作用をするものには同一符号を付して、説明を省略する。燃料処理器1は、燃焼部10、ボイラ16、改質部11、変成部12、並びに選択酸化部15を備えている。選択酸化部15は第2の熱交換部としての選択酸化器熱交換部18、選択酸化触媒部19、選択酸化触媒温度検出部20を有している。選択酸化器熱交換部18は、改質用プロセス水41と選択酸化触媒部19との間で熱交換させるものである。選択酸化触媒温度検出部20は、燃料処理装置運転中、常に選択酸化触媒温度を検出するもので、例えば熱電対が用いられる。
【0036】
このように構成された装置における改質燃料と改質用プロセス水の流れを説明する。燃料処理装置では、改質用プロセス水ポンプ3から供給される改質用プロセス水41をボイラ16で予熱し、改質燃料ブロワ2から供給される改質燃料40と予熱された改質用プロセス水41が混合される。そして、選択酸化器熱交換部18と変成器熱交換部13とで混合流体が加熱されて、気化して原料混合ガス45となる。変成器熱交換部13を出た原料混合ガス45を改質部11で改質ガス44に改質される。改質部11から排出される改質ガス44は、変成部12および選択酸化部15で一酸化炭素濃度を低減されたあとで、燃料ガス42として燃料電池スタック8の燃料極(不図示)に供給する。選択酸化触媒部19と変成触媒部14で発生する反応熱は、選択酸化器熱交換部18と変成器熱交換部13で改質用プロセス水41と改質燃料40の混合流体が吸収する。
【0037】
このように構成された装置の動作を再び図3、図4を参照して説明する。図3に示す時刻t0において、プロセス水量調節装置5は、通常運転時の流量としてS/C比通常設定値542に設定されたS/Cを用いて、改質燃料40の流量から計算される流量の改質用プロセス水41を燃料処理器1に供給している。選択酸化触媒部19の温度は、過昇温しきい値522と過降温しきい値524の中間にあるものとする。
【0038】
燃料処理装置運転中、時刻t1において、選択酸化触媒温度検出部20の温度が過上昇して過昇温しきい値522を超えた場合、プロセス水量調節装置5は、S/C比設定上限値546とS/C比設定下限値548を用いて設定されたS/C範囲内であって、プロセス水供給量演算部56により改質燃料40の流量から計算される流量範囲内で、改質用プロセス水41の流量を最大限増加し、選択酸化触媒部19の冷却を強める。ここでは、S/C比調整部54は、S/C比設定上限値546をS/C比調整部54で算出された最適なS/C比としている。そして、時刻t2において、選択酸化触媒温度検出部20の温度が過昇温しきい値522を下回った時点で、プロセス水量調節装置5は改質用プロセス水41の流量をS/C比通常設定値542で設定されたS/C比を用いて通常運転時の流量に戻す。
【0039】
時刻t3において、選択酸化触媒温度検出部20の温度が過下降して過降温しきい値524を下回った場合、プロセス水量調節装置5は、S/C比設定上限値546とS/C比設定下限値548を用いて設定されたS/C範囲内であって、プロセス水供給量演算部56により改質燃料40の流量から計算される流量範囲内で、改質用プロセス水41の流量を最小限まで減少し、選択酸化触媒部19の冷却を弱める。ここでは、S/C比調整部54は、S/C比設定下限値548をS/C比調整部54で算出された最適なS/C比としている。そして、時刻t4において、選択酸化触媒温度検出部20の温度が過降温しきい値524を上回った時点で、プロセス水量調節装置5は改質用プロセス水41の流量をS/C比通常設定値542で設定されたS/C比を用いて通常運転時の流量に戻す。
【0040】
このように構成すると、プロセス水量調節装置5による改質用プロセス水41の流量制御範囲は、S/C比設定上限値546とS/C比設定下限値548を用いて設定されたS/C範囲内に制約されているため、改質用プロセス水41の改質部11への供給不足による改質触媒炭化を防ぐことができる。また、燃料処理器1では改質用プロセス水41が選択酸化器熱交換部18にて蒸発潜熱により効果的に選択酸化触媒部19の冷却を行うと共に、プロセス水量調節装置5は、S/C比設定上限値546とS/C比設定下限値548を用いて設定されたS/C範囲内で最適なS/C比を用いて、改質用プロセス水41の流量を調整することにより、選択酸化触媒部19の冷却量の調整を速やかに行うことができ、選択酸化触媒部19の温度異常による一酸化炭素の発生を未然に防ぐことができる。
【0041】
次に、図4の時刻t5において、プロセス水量調節装置5は、通常運転時の流量としてS/C比通常設定値542に設定されたS/Cを用いて、改質燃料40の流量から計算される流量の改質用プロセス水41を燃料処理器1に供給している。選択酸化触媒部19の温度は、過昇温しきい値522と過降温しきい値524の中間にあるものとする。
【0042】
燃料処理装置運転中、時刻t6において、選択酸化触媒温度検出部20の温度が過上昇して過昇温しきい値522を超えた場合、プロセス水量調節装置5は、S/C比設定上限値546をS/C比調整部54で算出された最適なS/C比として、プロセス水供給量演算部56により改質燃料40の流量から計算される流量範囲内で、改質用プロセス水41の流量を最大限増加し、選択酸化触媒部19の冷却を強める。そして、時刻t7において、選択酸化触媒温度検出部20の温度が過昇温しきい値522を下回った時点で、S/C比調整部54はS/C比通常設定値542にS/C比オフセット値544で設定されたS/C比を加算して、新たなS/C比通常設定値542を算出する。そして、プロセス水量調節装置5は新たなS/C比通常設定値542を用いて、改質用プロセス水41の流量として更新された通常運転時の流量を用いる。
【0043】
次に、時刻t8において、再び選択酸化触媒温度検出部20の温度が過上昇して過昇温しきい値522を超えた場合、プロセス水量調節装置5は、S/C比設定上限値546をS/C比調整部54で算出された最適なS/C比として、プロセス水供給量演算部56により改質燃料40の流量から計算される流量範囲内で、改質用プロセス水41の流量を最大限増加し、選択酸化触媒部19の冷却を強める。そして、時刻t9において、選択酸化触媒温度検出部20の温度が過昇温しきい値522を下回った時点で、S/C比調整部54は直近のS/C比通常設定値542にS/C比オフセット値544で設定されたS/C比を加算して、新たなS/C比通常設定値542を算出する。そして、プロセス水量調節装置5は新たなS/C比通常設定値542を用いて、改質用プロセス水41の流量として更新された通常運転時の流量を用いる。
【0044】
このように構成すると、経時変化などによりプロセス水量調節装置5の水量調節や改質燃料40の流量に誤差が生じて実S/Cが適正な値でなくなった場合でも、S/C比調整部54がS/C比オフセット値544を用いてS/C比通常設定値542を随時更新して、通常運転時のプロセス水量をプロセス水量調節装置5により調節することにより、安定した運転点に自動調整できる。すると、プロセス水量調節装置5が選択酸化触媒部19の温度を制御することにより、改質用プロセス水41の流量が選択酸化触媒部温度バランスを基準として適正に保たれ、適正なS/Cでの運転を保つことができる。一般に選択酸化触媒温度検出部20にはソリッドステートの素子を用いているので、信頼性が高く経年変化も流量センサに比較すると小さい。
【0045】
なお、上記の実施の形態においては、変成触媒/選択酸化触媒温度判断部に用いる過昇温しきい値と過降温しきい値として固定値を用いているが、例えば変成触媒/選択酸化触媒温度の上昇時と下降時で異なる値としてヒステリシスを持たせてもよい。また、上記の実施の形態においては、S/C比調整部に用いるS/C比通常設定値、S/C比オフセット値、S/C比設定上限値、並びにS/C比設定下限値として固定値を用いているが、例えば直近の過昇温しきい値や過降温しきい値と抵触する頻度に応じて、適切なS/C比で運転されるように変動させてもよい。
【0046】
また、上記第1及び第2の実施の形態においては、燃料処理器の内部にて、改質燃料と改質用プロセス水が混合されて混合流体となる場合を示しているが、本発明はこれに限定されるものではなく、混合流体は燃料処理器の外部で生成されて、混合された混合流体を燃料処理器内部の改質部に供給する構成としてもよい。燃料処理器の外部で混合流体を生成すると、改質部での改質条件に適合した物性の混合流体を燃料処理器に供給できる。この場合、改質用プロセス水を供給するプロセス水供給系統は、混合流体の供給系統とは別に設けられた、プロセス水量調節装置により給水量の制御される給水系統でもよく、また混合流体への改質用プロセス水の供給系統でもよい。
【0047】
【発明の効果】
本発明によれば、炭化水素系原料を処理して水素を主成分とする燃料ガスに改質する燃料処理装置において、前記炭化水素系原料を水素と一酸化炭素とを主成分とする改質ガスに改質する改質部と、前記改質部に改質用プロセス水を供給するプロセス水供給系統と、前記改質ガスを変成して、該改質ガス中の一酸化炭素含有量を減少させる変成触媒部、並びに前記改質用プロセス水と前記変成触媒部との間で熱交換させる第1の熱交換部を有する変成部と、前記変成触媒部の温度を検出する温度検出器と、前記温度検出器で検出される温度に基いて、前記改質用プロセス水の供給量を調節するプロセス水量調節装置を備える構成としているので、第1の熱交換部にて改質用プロセス水の蒸発潜熱により効果的に変成触媒部の冷却を行えるため、プロセス水量調節装置が改質用プロセス水の流量を調整することにより変成触媒部の冷却量の調整を速やかに行うことができ、変成触媒部の温度異常による一酸化炭素の発生を未然に防ぐことができる。また、プロセス水量調節装置の改質用プロセス水の流量制御範囲をあらかじめ設定されたS/C範囲によって制約しているため、改質用プロセス水の改質部への供給不足による改質触媒炭化を防ぐことができる。
【0048】
また、本発明の燃料処理装置と、従来装置として説明した燃料電池スタック冷却水などで外部から変成触媒部を冷却する形式と比較すると、改質用プロセス水自体を変成触媒部の冷却に用いているので、燃料処理装置の熱効率が高く、また機器点数が少なくなり製造コストを低減することができる。
【0049】
本発明によれば、炭化水素系原料を処理して水素を主成分とする燃料ガスに改質する燃料処理装置において、前記炭化水素系原料を水素と一酸化炭素とを主成分とする改質ガスに改質する改質部と、前記改質部に改質用プロセス水を供給するプロセス水供給系統と、前記改質ガスを変成して、該改質ガス中の一酸化炭素含有量を減少させる変成触媒部と、前記変成触媒部で変成された改質ガスを選択酸化する選択酸化触媒部、並びに前記改質用プロセス水と前記選択酸化触媒部との間で熱交換させる第2の熱交換部を有する選択酸化部と、前記選択酸化触媒部の温度を検出する温度検出器と、前記温度検出器で検出される温度に基いて、前記改質用プロセス水の供給量を調節するプロセス水量調節装置を備える構成としているので、第2の熱交換部にて改質用プロセス水の蒸発潜熱により効果的に選択酸化触媒部の冷却を行えるため、プロセス水量調節装置が改質用プロセス水の流量を調整することにより選択酸化触媒部の冷却量の調整を速やかに行うことができ、選択酸化触媒部の温度異常による一酸化炭素の発生を未然に防ぐことができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態である燃料処理装置の模式的ブロック図である。
【図2】プロセス水量調節装置の詳細を説明する構成ブロック図である
【図3】変成触媒部温度(又は選択酸化触媒温度検出部)とプロセス水量調節装置の選定するS/Cの推移を示した図である。
【図4】変成触媒部温度(又は選択酸化触媒温度検出部)とプロセス水量調節装置の選定するS/Cの推移を示した図である。
【図5】本発明の第2の実施の形態である燃料処理装置の模式的ブロック図である。
【符号の説明】
1 燃料処理器
2 改質燃料ブロワ
3 プロセス水ポンプ
5 プロセス水調節装置
8 燃料電池スタック
10 燃焼部
11 改質部
12 変成部
13 変成器熱交換部(第1の熱交換部)
14 変成触媒部
15 選択酸化触媒部
16 ボイラ
17 変成触媒温度検出部
18 選択酸化器熱交換部(第2の熱交換部)
19 選択酸化触媒部
20 選択酸化触媒温度検出部
30 空気
31 燃料極出口ガス
32 燃焼燃料
33 燃焼排ガス
40 改質燃料
41 改質用プロセス水
42 燃料ガス
43 変成ガス
44 改質ガス
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel processing apparatus for generating a hydrogen-rich gas suitable for use in a fuel cell power generation system, and more particularly to a fuel processing apparatus having a stable carbon monoxide removal capability even when the load of the fuel cell power generation system fluctuates. The present invention also relates to a fuel cell power generation system capable of exhibiting stable power generation capability even when the load of the fuel cell power generation system fluctuates.
[0002]
[Prior art]
The polymer electrolyte fuel cell power generation system uses, for example, a city gas, LPG (liquefied petroleum gas), digestive gas generated from sewage sludge, and a raw material fuel such as methanol or kerosene by a steam reforming method using a fuel processor. The fuel gas is reformed into a fuel gas rich in hydrogen gas, and the reformed fuel gas is supplied to the fuel electrode of the fuel cell stack. The fuel gas of the polymer electrolyte fuel cell power generation system generally needs to have a carbon monoxide content of about 10 ppm or less in order to maintain the power generation performance of the fuel cell stack. Therefore, in order to reduce the carbon monoxide content in the fuel gas to 10 ppm or less, it is common to have a carbon monoxide converter and a carbon monoxide selective oxidizer in the fuel processor in addition to the reformer.
[0003]
Incidentally, the thermodynamic properties of the reactions in the carbon monoxide converter and the carbon monoxide selective oxidizer are classified into exothermic reactions. Further, in order to maintain stable carbon monoxide removal performance, it is necessary to maintain the reaction temperature within a certain temperature range in the carbon monoxide converter and the carbon monoxide selective oxidizer. This temperature range is, for example, about 200 to 350 ° C. for the carbon monoxide converter and about 100 to 200 ° C. for the carbon monoxide selective oxidizer. In a fuel cell power generation system having a small power generation capacity, such as for home use, an integrated fuel processor including a reforming unit, a shift unit, a selective oxidation unit, and the like may be used in order to reduce the volume of the entire system. Many. In an integrated fuel processor, the reforming section is usually located near the combustion section, and the reforming section temperature can often be controlled relatively easily from the combustion section temperature. Further, since the temperature of the shift section is several hundred degrees lower than the temperature of the reforming section, the shift section often has a structure in which the shift section is sandwiched between the shift section and the combustion section. Therefore, in many cases, the temperature of the shift portion in the integrated fuel processor is indirectly controlled by controlling the temperature of the combustion portion.
[0004]
On the other hand, in a fuel processing apparatus using the steam reforming method, it is necessary to supply the process water for reforming within a certain set ratio (S / C) according to the amount of the raw fuel. Here, S / C is the ratio between the number of moles of water vapor and the number of moles of carbon in the fuel. This reforming process water is used as a raw material for the steam reforming process, and is also used to convert the process water for reforming to latent heat generated in the heat exchanger of the shift section provided in the fuel processor. It can have a role of cooling the carbon shift catalyst unit.
[0005]
[Problems to be solved by the invention]
The above-mentioned integrated fuel processor has the following problems.
{Circle around (1)} In the case of a fuel processor of the type in which the fuel electrode outlet gas is returned to the combustion section and burned, when the load of the fuel cell power generation system increases or the load fluctuates, the fuel of the fuel cell with respect to the combustion section The pole outlet gas supply varies. Then, when the supply amount of the fuel electrode outlet gas is excessive, the reforming process water of the shift unit heat exchanger may completely evaporate, and the temperature of the shift catalyst unit may rise excessively. Then, the function of the shift catalyst unit as a catalyst may become unstable. The same applies to the selective oxidation catalyst section, where the action as a catalyst becomes unstable if the temperature of the selective oxidation catalyst section rises excessively.
(2) Regarding the temperature control of the carbon monoxide shift converter and the carbon monoxide selective oxidizer, the amount of the raw material fuel supplied to the combustion unit is controlled, and the temperature is secondarily controlled by the heat transfer from the reforming unit temperature. With this configuration, the time constant for the control operation becomes large, the response is slow, and the control cannot be performed in many cases. Then, the temperature falls outside the temperature range in which the shift catalyst can sufficiently remove carbon monoxide, and the carbon monoxide removal performance temporarily decreases. Then, the content of carbon monoxide contained in the fuel gas supplied to the fuel cell stack increases, and as a result, the power generation output of the fuel cell stack decreases and the life of the fuel cell stack shortens.
(3) It is also possible to use a configuration in which the metamorphic catalyst section is cooled from the outside with the fuel cell stack cooling water or the like, and the flow rate of the cooling water responds to a temporary temperature change such as a load change of the fuel cell power generation system. . However, since the number of components in the entire system increases, the manufacturing cost of the fuel cell power generation system increases, and the heat generated by the shift catalyst unit cannot be taken into the fuel processor, and the fuel processing efficiency decreases.
[0006]
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a fuel processing apparatus which has a simple structure and has a stable carbon monoxide removal ability even when the load of a fuel cell power generation system fluctuates. I do. Another object of the present invention is to provide a fuel cell power generation system capable of maintaining a stable electric output even when a load fluctuates.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the fuel processing apparatus according to the present invention processes, for example, as shown in FIG. 1, a hydrocarbon-based raw material (40, 40a) to reform it into a fuel gas 42 containing hydrogen as a main component. In the fuel processing apparatus, a reforming section 11 for reforming a hydrocarbon-based raw material (40, 40a) into a reformed gas 44 containing hydrogen and carbon monoxide as main components; A process water supply system 3 for supplying the reformed gas 41; a reforming catalyst section 14 for transforming the reformed gas 44 to reduce the carbon monoxide content in the reformed gas 44; A shift unit 12 having a first heat exchange unit 13 for exchanging heat with the temperature control unit 14, a temperature detector 17 for detecting the temperature of the shift catalyst unit 14, and a temperature detected by the temperature detector 17. Process for adjusting supply amount of reforming process water 41 A configuration in which the amount of the process water adjusting device 5 is increased or decreased within a flow rate range calculated from the hydrocarbon-based raw material flow rate and a preset S / C range. And
[0008]
With this configuration, the first heat exchange unit 13 can effectively cool the shift catalyst unit 14 by the latent heat of vaporization of the reforming process water 41, so that the flow rate of the reforming process water 41 can be adjusted. Accordingly, the cooling amount of the shift catalyst unit 14 can be quickly adjusted, and generation of carbon monoxide due to abnormal temperature of the shift catalyst unit 14 can be prevented. Further, since the flow rate control range of the reforming process water 41 of the process water amount adjusting device 5 is restricted by the preset S / C range, the supply of the reforming process water 41 to the reforming unit 11 is insufficient. The reforming catalyst carbonization can be prevented.
[0009]
Preferably, the fuel processing apparatus according to the present invention further includes, as shown in FIG. 1, a combustion unit 10 that further burns at least one of the fuel electrode outlet gas 31 and the combustion fuel 32, and a reformed fuel 40 formed in the reforming unit 11. It is preferable to provide a reformed fuel blower 2 to be supplied and a combustion fuel amount control device 7. The combustion fuel amount control device 7 controls the supply amount of the fuel electrode outlet gas 31 or the combustion fuel 32 supplied to the combustion unit 10 and the air amount required for combustion so that the reforming catalyst temperature of the reforming unit 11 becomes constant. Is controlling.
[0010]
Preferably, the hydrocarbon-based raw material (40, 40a) supplies the reformed fuel 40 to the fuel processor 1, and a mixed fluid 40a of the reformed fuel 40 and the reforming process water 41 inside the fuel processor 1. Alternatively, a mixed fluid 40a of the reformed fuel 40 and the reforming process water 41 is generated outside the fuel processing apparatus 1, and the mixed fluid 40a is supplied to the fuel processing apparatus 1 to perform reforming. It may be modified in the part 11. Here, the reformed fuel 40 may be directly supplied to the reforming unit 11 without passing through the first heat exchange unit 13 in the shift unit 12, or a mixed fluid of the reformed fuel 40 and the process water 41 for reforming may be used. May be supplied to the reforming section 11 after passing through the first heat exchange section 13. Further, the reforming process water 41 and the first heat exchange section 13 of the shift section 12 are provided in a separate system. A third heat exchange unit for exchanging heat between the reformed fuel 40 and the shift unit 12 may be provided. Further, the shift catalyst temperature detecting section 17 may directly detect the temperature of the shift catalyst section 14 or may detect the temperature of the shift gas 43 at the outlet of the shift catalyst section 14.
[0011]
Further, the flow rate control of the reforming process water 41 by the process water amount adjusting device 5 may be a method of adjusting the number of revolutions of the reforming process water pump 3, or a control valve is provided downstream of the reforming process water pump 3. (Not shown), the opening may be adjusted. The flow rate of the initial reforming process water 41 during the operation of the fuel processor is a quantity calculated from the supply flow rate of the reformed fuel 40 and a preset S / C value at the time of the initial operation. If the temperature of the shift catalyst temperature detecting unit 17 rises above the excessive temperature rising threshold during the operation of the fuel processor, the process water amount controller 5 sets the S / C range and the reforming fuel 40 in advance. By increasing the flow rate of the reforming process water 41 within the flow rate range calculated from the flow rate, the cooling of the shift catalyst unit 14 is enhanced. On the other hand, if the temperature of the shift catalyst temperature detecting unit 17 falls below the excessive temperature drop threshold during the operation of the fuel processor, the process water amount controller 5 sets the S / C range and the flow rate of the reformed fuel 40 in advance. The flow rate of the reforming process water 41 is reduced within the flow rate range calculated from the above to weaken the cooling of the shift catalyst unit 14.
[0012]
In order to achieve the above object, for example, as shown in FIG. 5, a fuel processing apparatus according to the present invention processes a hydrocarbon-based raw material (40, 40a) to reform it into a fuel gas 42 containing hydrogen as a main component. Reforming unit 11 for reforming a hydrocarbon-based raw material (40, 40a) into a reformed gas 44 containing hydrogen and carbon monoxide as main components; A process water supply system 3 for supplying water 41; a conversion catalyst unit 14 for converting the reformed gas 44 to reduce the carbon monoxide content in the reformed gas 44; And a selective oxidation catalyst unit having a second heat exchange unit 18 for exchanging heat between the process water 41 for reforming and the selective oxidation catalyst unit 19. A temperature detector 20 for detecting the temperature of the A process water amount controller 5 for adjusting the supply amount of the reforming process water 41 based on the temperature detected by the reactor 20 is provided. The supply amount of the reforming process water 41 is increased or decreased within the flow rate range calculated from the C range.
[0013]
With this configuration, the selective oxidation catalyst unit 19 can be effectively cooled by the latent heat of vaporization of the reforming process water 41 in the second heat exchange unit 18, so that the flow rate of the reforming process water 41 is adjusted. Thus, the cooling amount of the selective oxidation catalyst unit 19 can be quickly adjusted, and generation of carbon monoxide due to abnormal temperature of the selective oxidation catalyst unit 19 can be prevented. Further, since the flow rate control range of the reforming process water 41 of the process water amount adjusting device 5 is restricted by the preset S / C range, the supply of the reforming process water 41 to the reforming unit 11 is insufficient. The reforming catalyst carbonization can be prevented.
[0014]
Preferably, the hydrocarbon-based raw material (40, 40a) is used as the reforming fuel 40, and is not directly passed through the second heat exchange unit 18 in the selective oxidizing unit 15, but directly into the reforming unit 11 or the shift unit 12. May be supplied. Further, after passing the hydrocarbon-based raw material (40, 40a) as the mixed fluid 40a of the reforming fuel 40 and the reforming process water 41 through the second heat exchange unit 18, the hydrocarbon-based raw material (40, 40a) is supplied to the reforming unit 11 or the shift unit 12. A hydrocarbon-based raw material may be supplied. Further, the hydrocarbon-based raw material (40, 40a) is used as the reforming fuel 40, and the hydrocarbon-based raw material 40 is selected separately from the reforming process water 41 and the second heat exchange unit 18 of the selective oxidizing unit 15. A fourth heat exchange unit that exchanges heat with the oxidizing unit 15 may be provided. The selective oxidation catalyst temperature detection section 20 may directly detect the temperature of the selective oxidation catalyst section 19, or may detect the temperature of the fuel gas 42 at the exit of the selective oxidation catalyst section 19.
[0015]
If the temperature of the selective oxidation catalyst temperature detector 20 rises above the excessive temperature rise threshold during the operation of the fuel processor, the process water amount controller 5 sets the S / C range and reformed fuel 40 By increasing the flow rate of the reforming process water 41 within the flow rate range calculated from the flow rate of the above, the cooling of the selective oxidation catalyst unit 19 is enhanced. On the other hand, if the temperature of the selective oxidation catalyst temperature detecting section 20 falls below the excessively low temperature threshold during the operation of the fuel processing apparatus, the process water amount adjusting apparatus 5 sets the S / C range and the reforming fuel 40 in advance. By reducing the flow rate of the reforming process water 41 within the flow rate range calculated from the flow rate, the cooling of the selective oxidation catalyst unit 19 is weakened.
[0016]
In order to achieve the above object, a fuel cell power generation system according to the present invention uses, as shown in, for example, FIG. 1 or FIG. A fuel cell stack 8 for generating power using oxygen as an oxidant is provided.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIGS. 1 to 3 show an example of an embodiment of the present invention. In the drawings, portions denoted by the same or similar reference numerals as those in the drawings represent the same or corresponding components, and redundant description will be omitted. FIG. 1 is a schematic block diagram of a fuel processor according to a first embodiment of the present invention. In the figure, a fuel processor includes a fuel processor 1, a reformed fuel blower 2 as a reformed fuel supply system, a reforming process water pump 3 as a process water supply system, a process water amount regulator 5, a reformed fuel flow rate. A sensor 6 and a combustion fuel amount control device 7 are provided. Here, the fuel processor 1 includes a combustion unit 10, a boiler 16, a reforming unit 11, a shift unit 12, and a selective oxidizing unit 15. The fuel cell power generation system includes a fuel processor and a fuel cell stack 8.
[0018]
The combustion unit 10 burns at least one of the fuel electrode outlet gas 31 and the combustion fuel 32 together with the air 30 to heat the entire fuel processor 1 and to maintain the reforming unit 11 particularly at the reaction temperature of the reforming catalyst. . The reforming section 11 reforms the reformed fuel 40 as a hydrocarbon-based raw material into a reformed gas 44 containing hydrogen and carbon monoxide as main components. For example, a reforming catalyst is used. The reformed fuel 40 includes gas at room temperature, such as city gas, LPG (liquefied petroleum gas), and digestive gas generated from sewage sludge, and liquid at room temperature, such as methanol and kerosene.
[0019]
The shift unit 12 includes a shift unit heat exchange unit 13 as a first heat exchange unit, a shift catalyst unit 14, and a shift catalyst temperature detector 17. The transformer heat exchange unit 13 causes heat exchange between the reforming process water 41 and the shift catalyst unit 14, and heat exchange in which two fluids flow in countercurrent or parallel flow across the heat transfer plate. A heat exchanger, a coil heat exchanger, a plate heat exchanger and the like are used. The shift catalyst unit 14 shifts the reformed gas 44 to reduce the carbon monoxide content in the reformed gas 44. The shift catalyst temperature detector 17 always detects the temperature of the shift catalyst unit 14 during operation of the fuel processor, and for example, a thermocouple, a thermistor, a radiation thermometer, or the like is used. The selective oxidation unit 15 selectively oxidizes carbon monoxide contained in the metamorphic gas 43 using the air 30 a as an oxidant using a selective oxidation catalyst, and supplies the fuel gas 42 to the fuel cell stack 8.
[0020]
The reformed fuel blower 2 supplies the reformed fuel 40 to the reforming section 11. The process water supply system 3 supplies the reforming process water 41 to the reforming unit 11. Here, at the inlet of the reforming section 11, the mixed fluid 40a is obtained by mixing the reformed fuel 40 and the process water 41 for reforming. Since the mixed fluid 40a is generated inside the fuel processor 1, the boiler 16 can be housed inside the fuel processor 1 to improve the thermal efficiency. The process water amount adjustment device 5 adjusts the supply amount of the reforming process water 41 based on the temperature detected by the temperature detector 17. The reformed fuel flow rate sensor 6 measures the flow rate of the reformed fuel 40 supplied to the reforming unit 11 by the reformed fuel blower 2, and a differential pressure type or Doppler type instrument is used, for example. The combustion fuel amount control device 7 controls the supply amount of the fuel electrode outlet gas 31 or the combustion fuel 32 supplied to the combustion unit 10 so that the reforming catalyst temperature of the reforming unit 11 becomes constant, and the air required for combustion. Controlling the quantity. The fuel cell stack 8 uses the fuel gas 42 obtained by the fuel processor as a fuel and generates power using oxygen in the air as an oxidant. For example, a polymer electrolyte fuel cell is used.
[0021]
The flow of the reformed fuel and the reforming process water in the apparatus configured as described above will be described. In the fuel processor, the reforming process water 41 supplied from the reforming process water pump 3 is preheated by the boiler 16, and the reforming fuel 40 supplied from the reforming fuel blower 2 and the preheated reforming process The water 41 is mixed to form a mixed fluid 40a. Then, the mixed fluid 40a is heated in the transformer heat exchange unit 13 of the reforming unit 11 and is vaporized to become the raw material mixed gas 45. The raw material mixed gas 45 that has exited the transformer heat exchange section 13 is reformed into a reformed gas 44 in the reforming section 11. The reformed gas 44 discharged from the reforming unit 11 is supplied to the fuel electrode (not shown) of the fuel cell stack 8 as the fuel gas 42 after the carbon monoxide concentration is reduced in the shift unit 12 and the selective oxidation unit 15. Supplied. The reaction heat generated in the shift catalyst unit 14 is absorbed by the mixed fluid of the reforming process water 41 and the reformed fuel 40 in the shift converter heat exchange unit 13.
[0022]
The combustion unit 10 is supplied with the fuel electrode outlet gas 31 and the air 30 of the fuel cell stack 8 and serves as a heat source for the reforming reaction in the reforming unit 11. When the heat source of the reforming reaction in the reforming section 11 is insufficient, the combustion fuel 32 can be supplied to the combustion section 10 to increase the heat supply amount. As the combustion fuel 32, a hydrocarbon-based raw material 40 may be used, but a lower-grade fuel that generates carbon monoxide and cannot be used as the hydrocarbon-based raw material 40 may be used. Air 30 a is supplied to the selective oxidation section 15 as an oxidizing agent for selective oxidation in accordance with the flow rate of the reformed fuel 40.
[0023]
Next, details of the process water amount adjusting device 5 will be described. FIG. 2 is a configuration block diagram illustrating details of the process water amount adjustment device. The process water amount adjustment device 5 includes a shift catalyst / selective oxidation catalyst temperature determination unit 52, an S / C ratio adjustment unit 54, a process water supply amount calculation unit 56, and a process water supply amount controller 58. The shift catalyst / selective oxidation catalyst temperature determination section 52 is provided with registers for an over-temperature threshold 522 and an over-temperature threshold 524. The S / C ratio adjustment unit 54 is provided with registers for an S / C ratio normal setting value 542, an S / C ratio offset value 544, an S / C ratio setting upper limit value 546, and an S / C ratio setting lower limit value 548. I have. Here, by simultaneously taking up the shift catalyst temperature detector 17 and the selective oxidation catalyst temperature detector 20, both the first embodiment shown in FIG. 1 and the second embodiment shown in FIG. 5 are dealt with. FIG.
[0024]
The shift catalyst / selective oxidation catalyst temperature determination section 52 receives the temperature detection signal of the shift catalyst temperature detector 17 or the selective oxidation catalyst temperature detection section 20 and compares the temperature detection signal with the over-temperature threshold 522 and the over-temperature threshold 524. I do. The overheating threshold 522 is determined based on the upper limit operating temperature of the catalyst, and is, for example, 220 ° C. to 230 ° C. for the shift catalyst unit 14 and 190 ° C. to 230 ° C. for the selective oxidation catalyst unit 19, for example. 200 ° C. The excessive temperature drop threshold value 524 is determined on the basis of the lower limit temperature of operation as a catalyst. ° C.
[0025]
The S / C ratio adjustment unit 54 sets the S / C ratio set at the S / C ratio setting upper limit 546, for example, 5.0, and the S / C ratio set at the S / C ratio setting lower limit 548, for example, Between 2.5, the optimum S / C ratio according to the catalyst temperature of the shift catalyst / selective oxidation catalyst temperature determination unit 52 is calculated. The S / C ratio normal set value 542 is set to an optimum value suitable for the case where the fuel processor 1 is operating normally, for example, 3.0. The S / C ratio offset value 544 allows the fuel processor 1 to operate properly even when various sensors such as a flow meter and a pressure gauge provided inside the fuel processor 1 have measurement errors. , An offset value suitable for finely adjusting the S / C ratio normal setting value 542 is set. The offset value is set to, for example, 0.05. The S / C ratio setting upper limit 546 and the S / C ratio setting lower limit 548 set the upper and lower S / C ratios at which the fuel processor 1 can operate without failure.
[0026]
The process water supply amount calculation unit 56 determines a process to be supplied based on the optimum S / C ratio calculated by the S / C ratio adjustment unit 54 and the flow rate of the reformed fuel 40 measured by the reformed fuel flow rate sensor 6. Calculate the water supply. The process water supply amount controller 58 adjusts the number of revolutions of the reforming process water pump 3 so that the supply amount of the process water calculated by the process water supply The valve opening of a control valve (not shown) installed downstream of the water pump 3 is adjusted.
[0027]
The operation of the device configured as described above will now be described. FIG. 3 is a diagram showing the transition of the shift catalyst portion temperature (or the selective oxidation catalyst temperature detecting portion) and the S / C to be selected by the process water amount adjusting device, in which the S / C ratio offset value 544 is not used. . At time t0, the process water amount adjustment device 5 reforms the flow rate calculated from the flow rate of the reformed fuel 40 using the S / C set to the S / C ratio normal set value 542 as the flow rate during normal operation. The process water 41 is supplied to the fuel processor 1. It is assumed that the temperature of the shift catalyst unit 14 is intermediate between the excessively high temperature threshold 522 and the excessively low temperature threshold 524.
[0028]
If the temperature of the shift catalyst temperature detecting unit 17 rises excessively and exceeds the excessive temperature rising threshold value 522 at time t1 during the operation of the fuel processor, the process water amount adjusting device 5 sets the S / C ratio setting upper limit value 546. Within the S / C range set using the S / C ratio setting lower limit value 548 and the flow rate calculated from the flow rate of the reformed fuel 40 by the process water supply amount calculation unit 56, The flow rate of the process water 41 is increased to the maximum and the cooling of the shift catalyst unit 14 is enhanced. Here, the S / C ratio adjustment unit 54 sets the S / C ratio setting upper limit value 546 as the optimum S / C ratio calculated by the S / C ratio adjustment unit 54. Then, at time t2, when the temperature of the shift catalyst temperature detecting unit 17 falls below the excessive temperature rising threshold 522, the process water amount adjusting device 5 sets the flow rate of the reforming process water 41 to the S / C ratio normal set value. Using the S / C ratio set in 542, the flow rate is returned to the normal operation flow rate.
[0029]
At time t3, when the temperature of the shift catalyst temperature detecting unit 17 drops excessively and falls below the excessive temperature drop threshold value 524, the process water amount adjusting device 5 sets the S / C ratio setting upper limit value 546 and the S / C ratio setting lower limit. The flow rate of the reforming process water 41 is minimized within the S / C range set using the value 548 and within the flow rate range calculated from the flow rate of the reformed fuel 40 by the process water supply amount calculation unit 56. And the cooling of the shift catalyst unit 14 is weakened. Here, the S / C ratio adjustment unit 54 sets the S / C ratio setting lower limit value 548 as the optimum S / C ratio calculated by the S / C ratio adjustment unit 54. Then, at time t4, when the temperature of the shift catalyst temperature detecting unit 17 exceeds the excessive temperature drop threshold 524, the process water amount adjusting device 5 sets the flow rate of the reforming process water 41 to the S / C ratio normal set value 542. Using the S / C ratio set in the above, the flow rate is returned to the normal operation flow rate.
[0030]
With this configuration, the flow rate control range of the reforming process water 41 by the process water amount control device 5 is set by using the S / C ratio setting upper limit value 546 and the S / C ratio setting lower limit value 548. Since it is restricted within the range, it is possible to prevent reforming catalyst carbonization due to insufficient supply of the reforming process water 41 to the reforming section 11. In the fuel processor 1, the reforming process water 41 effectively cools the shift catalyst unit 14 by latent heat of vaporization in the shifter heat exchange unit 13, and the process water amount adjusting device 5 sets the S / C ratio. By adjusting the flow rate of the reforming process water 41 using the optimum S / C ratio within the S / C range set by using the upper limit value 546 and the S / C ratio setting lower limit value 548, the conversion catalyst The amount of cooling of the unit 14 can be quickly adjusted, and generation of carbon monoxide due to abnormal temperature of the shift catalyst unit 14 can be prevented. Here, the optimum S / C ratio is an optimum value for keeping the temperature of the shift catalyst section constant or an optimum temperature for the reforming reaction by controlling the heat balance even when the error of the thermometer increases. Value that is optimal to hold
[0031]
FIG. 4 is a diagram showing the transition of the temperature of the shift catalyst unit (or the temperature of the selective oxidation catalyst) and the S / C to be selected by the process water amount adjusting device, in which the S / C ratio offset value 544 is used. At time t5, the process water amount adjustment device 5 reforms the flow rate calculated from the flow rate of the reformed fuel 40 using the S / C set at the S / C ratio normal set value 542 as the flow rate during normal operation. The process water 41 is supplied to the fuel processor 1.
[0032]
If the temperature of the shift catalyst temperature detecting unit 17 excessively rises and exceeds the excessive temperature rising threshold 522 at time t6 during the operation of the fuel processor, the process water amount adjusting device 5 sets the S / C ratio setting upper limit 546. As the optimum S / C ratio calculated by the S / C ratio adjustment unit 54 within the flow rate range calculated from the flow rate of the reformed fuel 40 by the process water supply amount calculation unit 56. The flow rate is increased to the maximum and the cooling of the shift catalyst unit 14 is enhanced. Then, at time t7, when the temperature of the shift catalyst temperature detecting unit 17 falls below the excessive temperature rising threshold 522, the S / C ratio adjusting unit 54 sets the S / C ratio normal setting value 542 to the S / C ratio offset. The S / C ratio set by the value 544 is added to calculate a new S / C ratio normal set value 542. Then, the process water amount adjusting device 5 uses the updated flow rate in the normal operation as the flow rate of the reforming process water 41 using the new S / C ratio normal setting value 542.
[0033]
Next, at time t8, if the temperature of the shift catalyst temperature detecting unit 17 rises again and exceeds the overheating threshold 522, the process water amount adjusting device 5 sets the S / C ratio setting upper limit 546 to S The flow rate of the reforming process water 41 within the flow rate range calculated from the flow rate of the reforming fuel 40 by the process water supply amount calculating section 56 is set as the optimum S / C ratio calculated by the / C ratio adjusting section 54. The maximum is increased, and the cooling of the shift catalyst unit 14 is enhanced. Then, at time t9, when the temperature of the shift catalyst temperature detecting unit 17 falls below the excessive temperature rising threshold 522, the S / C ratio adjusting unit 54 changes the S / C ratio to the nearest S / C ratio normal setting value 542. The S / C ratio set by the ratio offset value 544 is added to calculate a new S / C ratio normal setting value 542. Then, the process water amount adjusting device 5 uses the updated flow rate in the normal operation as the flow rate of the reforming process water 41 using the new S / C ratio normal setting value 542.
[0034]
With this configuration, even when an error occurs in the water amount adjustment of the process water amount adjustment device 5 or the flow rate of the reformed fuel 40 due to a change over time or the like, and the actual S / C is not an appropriate value, the S / C ratio adjustment unit is used. 54 updates the S / C ratio normal set value 542 at any time using the S / C ratio offset value 544, and adjusts the process water amount during normal operation by the process water amount adjustment device 5, thereby automatically setting a stable operation point. Can be adjusted. Then, the process water amount adjusting device 5 controls the temperature of the shift catalyst unit 14 so that the flow rate of the reforming process water 41 is properly maintained based on the shift catalyst unit temperature balance, and the operation at an appropriate S / C is performed. Can be kept. In general, since a solid-state element is used for the shift catalyst temperature detection unit 17, the reliability is high and the aging is small compared to the flow rate sensor.
[0035]
FIG. 5 is a schematic block diagram of a fuel processor according to a second embodiment of the present invention. 5, components having the same functions as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. The fuel processor 1 includes a combustion unit 10, a boiler 16, a reforming unit 11, a shift unit 12, and a selective oxidation unit 15. The selective oxidizing section 15 has a selective oxidizer heat exchanging section 18 as a second heat exchanging section, a selective oxidizing catalyst section 19, and a selective oxidizing catalyst temperature detecting section 20. The selective oxidizer heat exchange section 18 is for exchanging heat between the reforming process water 41 and the selective oxidation catalyst section 19. The selective oxidation catalyst temperature detector 20 always detects the temperature of the selective oxidation catalyst during operation of the fuel processor, and uses, for example, a thermocouple.
[0036]
The flow of the reformed fuel and the reforming process water in the apparatus configured as described above will be described. In the fuel processor, the reforming process water 41 supplied from the reforming process water pump 3 is preheated by the boiler 16, and the reforming fuel 40 supplied from the reforming fuel blower 2 and the preheated reforming process Water 41 is mixed. Then, the mixed fluid is heated by the selective oxidizer heat exchanging section 18 and the transformer heat exchanging section 13 and is vaporized to become the raw material mixed gas 45. The raw material mixed gas 45 exiting the transformer heat exchange unit 13 is reformed into the reformed gas 44 in the reforming unit 11. After the reformed gas 44 discharged from the reforming unit 11 is reduced in carbon monoxide concentration in the shift unit 12 and the selective oxidizing unit 15, the reformed gas 44 is supplied to a fuel electrode (not shown) of the fuel cell stack 8 as a fuel gas 42. Supply. Reaction heat generated in the selective oxidation catalyst section 19 and the shift catalyst section 14 is absorbed by the mixed fluid of the reforming process water 41 and the reformed fuel 40 in the selective oxidizer heat exchange section 18 and the shift converter heat exchange section 13.
[0037]
The operation of the device configured as described above will be described again with reference to FIGS. At time t0 shown in FIG. 3, the process water control device 5 calculates the flow rate of the reformed fuel 40 from the flow rate of the reformed fuel 40 using the S / C set to the S / C ratio normal set value 542 as the flow rate during normal operation. A flow rate of the reforming process water 41 is supplied to the fuel processor 1. It is assumed that the temperature of the selective oxidation catalyst unit 19 is between the excessively high temperature threshold 522 and the excessively low temperature threshold 524.
[0038]
If the temperature of the selective oxidation catalyst temperature detector 20 excessively rises and exceeds the excessive temperature rise threshold 522 at time t1 during the operation of the fuel processor, the process water amount regulator 5 sets the S / C ratio setting upper limit value. 546 within the S / C range set using the S / C ratio setting lower limit value 548 and the flow rate range calculated from the flow rate of the reformed fuel 40 by the process water supply amount calculation unit 56. The flow rate of the process water 41 is increased to the maximum and the cooling of the selective oxidation catalyst section 19 is enhanced. Here, the S / C ratio adjustment unit 54 sets the S / C ratio setting upper limit value 546 as the optimum S / C ratio calculated by the S / C ratio adjustment unit 54. Then, at time t2, when the temperature of the selective oxidation catalyst temperature detection unit 20 falls below the excessive temperature rise threshold value 522, the process water amount adjusting device 5 sets the flow rate of the reforming process water 41 to the S / C ratio normally. Using the S / C ratio set by the value 542, the flow rate is returned to the flow rate in the normal operation.
[0039]
At time t3, when the temperature of the selective oxidation catalyst temperature detecting section 20 drops excessively and falls below the excessive temperature drop threshold 524, the process water amount adjusting device 5 sets the S / C ratio setting upper limit value 546 and the S / C ratio setting. The flow rate of the reforming process water 41 is set within the S / C range set using the lower limit value 548 and within the flow rate range calculated from the flow rate of the reformed fuel 40 by the process water supply amount calculation unit 56. It is reduced to the minimum, and the cooling of the selective oxidation catalyst unit 19 is weakened. Here, the S / C ratio adjustment unit 54 sets the S / C ratio setting lower limit value 548 as the optimum S / C ratio calculated by the S / C ratio adjustment unit 54. Then, at time t4, when the temperature of the selective oxidation catalyst temperature detection unit 20 exceeds the excessive temperature drop threshold 524, the process water amount adjusting device 5 sets the flow rate of the reforming process water 41 to the S / C ratio normal set value. Using the S / C ratio set in 542, the flow rate is returned to the normal operation flow rate.
[0040]
With this configuration, the flow rate control range of the reforming process water 41 by the process water amount control device 5 is set by using the S / C ratio setting upper limit value 546 and the S / C ratio setting lower limit value 548. Since it is restricted within the range, it is possible to prevent reforming catalyst carbonization due to insufficient supply of the reforming process water 41 to the reforming section 11. Further, in the fuel processor 1, the process water 41 for reforming effectively cools the selective oxidation catalyst section 19 by latent heat of vaporization in the selective oxidizer heat exchange section 18, and the process water amount adjusting device 5 By adjusting the flow rate of the reforming process water 41 by using the optimum S / C ratio within the S / C range set using the ratio setting upper limit value 546 and the S / C ratio setting lower limit value 548, The cooling amount of the selective oxidation catalyst section 19 can be quickly adjusted, and the generation of carbon monoxide due to the temperature abnormality of the selective oxidation catalyst section 19 can be prevented.
[0041]
Next, at time t5 in FIG. 4, the process water amount adjustment device 5 calculates the flow rate of the reformed fuel 40 from the flow rate of the reformed fuel 40 using the S / C set at the S / C ratio normal set value 542 as the flow rate in the normal operation. The flow rate of the reforming process water 41 is supplied to the fuel processor 1. It is assumed that the temperature of the selective oxidation catalyst unit 19 is between the excessively high temperature threshold 522 and the excessively low temperature threshold 524.
[0042]
If the temperature of the selective oxidation catalyst temperature detector 20 excessively rises and exceeds the excessive temperature rise threshold 522 at time t6 during the operation of the fuel processor, the process water amount regulator 5 sets the S / C ratio setting upper limit value. 546 is set as the optimum S / C ratio calculated by the S / C ratio adjustment unit 54 within the flow rate range calculated from the flow rate of the reformed fuel 40 by the process water supply amount calculation unit 56. Is increased to the maximum and the cooling of the selective oxidation catalyst section 19 is enhanced. Then, at time t7, when the temperature of the selective oxidation catalyst temperature detecting section 20 falls below the excessive temperature rising threshold 522, the S / C ratio adjusting section 54 sets the S / C ratio normal setting value 542 to the S / C ratio. The S / C ratio set by the offset value 544 is added to calculate a new S / C ratio normal setting value 542. Then, the process water amount adjusting device 5 uses the updated flow rate in the normal operation as the flow rate of the reforming process water 41 using the new S / C ratio normal setting value 542.
[0043]
Next, at time t8, when the temperature of the selective oxidation catalyst temperature detecting section 20 rises again and exceeds the excessive temperature rising threshold value 522, the process water amount adjusting device 5 sets the S / C ratio setting upper limit value 546 to the upper limit value 546. The flow rate of the reforming process water 41 within the flow rate range calculated from the flow rate of the reforming fuel 40 by the process water supply amount calculating unit 56 as the optimum S / C ratio calculated by the S / C ratio adjusting unit 54 And the cooling of the selective oxidation catalyst section 19 is increased. Then, at time t9, when the temperature of the selective oxidation catalyst temperature detection unit 20 falls below the excessive temperature rise threshold value 522, the S / C ratio adjustment unit 54 sets the S / C ratio normal setting value 542 to the latest S / C ratio normal setting value 542. The S / C ratio set by the C ratio offset value 544 is added to calculate a new S / C ratio normal setting value 542. Then, the process water amount adjusting device 5 uses the updated flow rate in the normal operation as the flow rate of the reforming process water 41 using the new S / C ratio normal setting value 542.
[0044]
With this configuration, even when an error occurs in the water amount adjustment of the process water amount adjustment device 5 or the flow rate of the reformed fuel 40 due to a change over time or the like, and the actual S / C is not an appropriate value, the S / C ratio adjustment unit is used. 54 updates the S / C ratio normal set value 542 at any time using the S / C ratio offset value 544, and adjusts the process water amount during normal operation by the process water amount adjustment device 5, thereby automatically setting a stable operation point. Can be adjusted. Then, the process water amount adjusting device 5 controls the temperature of the selective oxidation catalyst unit 19, whereby the flow rate of the reforming process water 41 is appropriately maintained based on the selective oxidation catalyst unit temperature balance, and the S / C is properly adjusted. Can keep driving. Generally, since a solid-state element is used for the selective oxidation catalyst temperature detection unit 20, the reliability is high and the aging is small compared to the flow rate sensor.
[0045]
In the above embodiment, fixed values are used as the overheating threshold and the overcooling threshold used in the shift catalyst / selective oxidation catalyst temperature determination unit. Hysteresis may be provided as a different value between the time when the value rises and the time when the value falls. In the above-described embodiment, the S / C ratio normal setting value, the S / C ratio offset value, the S / C ratio setting upper limit value, and the S / C ratio setting lower limit value used in the S / C ratio adjusting unit are set as the values. Although the fixed value is used, it may be changed so as to operate at an appropriate S / C ratio, for example, according to the frequency of conflict with the most recent overheating threshold or overheating threshold.
[0046]
Also, in the first and second embodiments, the case where the reformed fuel and the process water for reforming are mixed to form a mixed fluid inside the fuel processor is shown. However, the present invention is not limited to this. The mixed fluid may be generated outside the fuel processor, and the mixed fluid may be supplied to the reforming unit inside the fuel processor. When the mixed fluid is generated outside the fuel processor, a mixed fluid having physical properties suitable for the reforming conditions in the reforming section can be supplied to the fuel processor. In this case, the process water supply system that supplies the process water for reforming may be a water supply system that is provided separately from the supply system of the mixed fluid and whose supply amount is controlled by a process water amount adjustment device. A supply system for the process water for reforming may be used.
[0047]
【The invention's effect】
According to the present invention, in a fuel processing apparatus for processing a hydrocarbon-based raw material to reform a fuel gas containing hydrogen as a main component, the hydrocarbon-based raw material is reformed based on hydrogen and carbon monoxide. A reforming section for reforming to gas, a process water supply system for supplying process water for reforming to the reforming section, and converting the reformed gas to reduce a carbon monoxide content in the reformed gas. A shift catalyst unit for reducing, and a shift unit having a first heat exchange unit for exchanging heat between the reforming process water and the shift catalyst unit; and a temperature detector for detecting a temperature of the shift catalyst unit. And a process water amount adjusting device for adjusting the supply amount of the reforming process water based on the temperature detected by the temperature detector. To effectively cool the shift catalyst section by the latent heat of vaporization By adjusting the flow rate of the reforming process water by the process water regulator, it is possible to quickly adjust the cooling amount of the shift catalyst section, and to prevent the occurrence of carbon monoxide due to abnormal temperature of the shift catalyst section. Can be. Further, since the flow rate control range of the reforming process water of the process water amount controller is restricted by a preset S / C range, the reforming catalyst carbonization due to insufficient supply of the reforming process water to the reforming section. Can be prevented.
[0048]
Further, when comparing the fuel processing apparatus of the present invention with a type in which the metamorphic catalyst section is externally cooled with the fuel cell stack cooling water described as a conventional apparatus, the reforming process water itself is used for cooling the metamorphic catalyst section. Therefore, the thermal efficiency of the fuel processor is high, and the number of devices is reduced, so that the manufacturing cost can be reduced.
[0049]
According to the present invention, in a fuel processing apparatus for processing a hydrocarbon-based raw material to reform a fuel gas containing hydrogen as a main component, the hydrocarbon-based raw material is reformed based on hydrogen and carbon monoxide. A reforming section for reforming to gas, a process water supply system for supplying process water for reforming to the reforming section, and converting the reformed gas to reduce a carbon monoxide content in the reformed gas. A shift conversion catalyst section to be reduced, a selective oxidation catalyst section for selectively oxidizing the reformed gas converted in the shift conversion catalyst section, and a second heat exchange between the process water for reforming and the selective oxidation catalyst section. A selective oxidation unit having a heat exchange unit, a temperature detector for detecting the temperature of the selective oxidation catalyst unit, and a supply amount of the reforming process water based on the temperature detected by the temperature detector. Since it is configured to include a process water flow control device, the second heat Since the selective oxidation catalyst section can be cooled effectively by the latent heat of vaporization of the process water for reforming in the conversion section, the cooling amount of the selective oxidation catalyst section is adjusted by the process water amount controller by adjusting the flow rate of the process water for reforming. Can be promptly adjusted, and generation of carbon monoxide due to abnormal temperature of the selective oxidation catalyst section can be prevented.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram of a fuel processing apparatus according to a first embodiment of the present invention.
FIG. 2 is a configuration block diagram illustrating details of a process water amount adjustment device.
FIG. 3 is a diagram showing transition of a shift catalyst portion temperature (or a selective oxidation catalyst temperature detecting portion) and S / C to be selected by a process water amount adjusting device.
FIG. 4 is a diagram showing transition of a shift catalyst section temperature (or a selective oxidation catalyst temperature detecting section) and S / C to be selected by a process water amount adjusting device.
FIG. 5 is a schematic block diagram of a fuel processor according to a second embodiment of the present invention.
[Explanation of symbols]
1 fuel processor
2 reformed fuel blower
3 Process water pump
5 Process water regulator
8 Fuel cell stack
10 Burning part
11 Reforming unit
12 Metamorphosis
13 Transformer heat exchange section (first heat exchange section)
14 Metamorphic catalyst section
15 Selective oxidation catalyst section
16 Boiler
17 Metamorphic catalyst temperature detector
18 Selective oxidizer heat exchange section (second heat exchange section)
19 Selective oxidation catalyst section
20 Selective oxidation catalyst temperature detector
30 air
31 Fuel electrode outlet gas
32 Combustion fuel
33 Combustion exhaust gas
40 reformed fuel
41 Process water for reforming
42 Fuel gas
43 Metamorphic gas
44 Reformed gas

Claims (3)

炭化水素系原料を処理して水素を主成分とする燃料ガスに改質する燃料処理装置において;
前記炭化水素系原料を水素と一酸化炭素とを主成分とする改質ガスに改質する改質部と;
前記改質部に改質用プロセス水を供給するプロセス水供給系統と;
前記改質ガスを変成して、該改質ガス中の一酸化炭素含有量を減少させる変成触媒部、並びに前記改質用プロセス水と前記変成触媒部との間で熱交換させる第1の熱交換部を有する変成部と;
前記変成触媒部の温度を検出する温度検出器と;
前記温度検出器で検出される温度に基いて、前記改質用プロセス水の供給量を調節するプロセス水量調節装置を備え;
前記プロセス水量調節装置は前記炭化水素系原料流量とあらかじめ設定されたS/C範囲とから算出される流量範囲内で前記プロセス水の供給量を増減する;
燃料処理装置。
A fuel processing apparatus for processing a hydrocarbon-based material to reform a fuel gas containing hydrogen as a main component;
A reformer for reforming the hydrocarbon-based raw material into a reformed gas containing hydrogen and carbon monoxide as main components;
A process water supply system for supplying reforming process water to the reforming section;
A conversion catalyst section for converting the reformed gas to reduce the carbon monoxide content in the reformed gas; and a first heat for heat exchange between the reforming process water and the conversion catalyst section. A metamorphic unit having an exchange unit;
A temperature detector for detecting a temperature of the shift catalyst unit;
A process water amount adjusting device that adjusts a supply amount of the reforming process water based on a temperature detected by the temperature detector;
The process water flow control device increases or decreases the supply amount of the process water within a flow range calculated from the hydrocarbon raw material flow rate and a preset S / C range;
Fuel processor.
炭化水素系原料を処理して水素を主成分とする燃料ガスに改質する燃料処理装置において;
前記炭化水素系原料を水素と一酸化炭素とを主成分とする改質ガスに改質する改質部と;
前記改質部に改質用プロセス水を供給するプロセス水供給系統と;
前記改質ガスを変成して、該改質ガス中の一酸化炭素含有量を減少させる変成触媒部と;
前記変成触媒部で変成された改質ガスを選択酸化する選択酸化触媒部、並びに前記改質用プロセス水と前記選択酸化触媒部との間で熱交換させる第2の熱交換部を有する選択酸化部と;
前記選択酸化触媒部の温度を検出する温度検出器と;
前記温度検出器で検出される温度に基いて、前記改質用プロセス水の供給量を調節するプロセス水量調節装置を備え;
前記プロセス水量調節装置は前記炭化水素系原料流量とあらかじめ設定されたS/C範囲とから算出される流量範囲内で前記改質用プロセス水の供給量を増減する;
燃料処理装置。
A fuel processing apparatus for processing a hydrocarbon-based material to reform a fuel gas containing hydrogen as a main component;
A reformer for reforming the hydrocarbon-based raw material into a reformed gas containing hydrogen and carbon monoxide as main components;
A process water supply system for supplying reforming process water to the reforming section;
A shift catalyst unit that shifts the reformed gas to reduce the carbon monoxide content in the reformed gas;
A selective oxidation catalyst unit for selectively oxidizing the reformed gas converted in the shift catalyst unit; and a selective oxidation unit having a second heat exchange unit for exchanging heat between the process water for reforming and the selective oxidation catalyst unit. Department and;
A temperature detector for detecting a temperature of the selective oxidation catalyst section;
A process water amount adjusting device that adjusts a supply amount of the reforming process water based on a temperature detected by the temperature detector;
The process water amount controller increases or decreases the supply amount of the reforming process water within a flow rate range calculated from the hydrocarbon raw material flow rate and a preset S / C range;
Fuel processor.
請求項1乃至請求項2のいずれか1項に記載の燃料処理装置と;
前記燃料処理装置で得られた燃料ガスを燃料とし、空気中の酸素を酸化剤として発電を行う燃料電池スタックを備える;
燃料電池発電システム。
A fuel processor according to any one of claims 1 to 2, and
A fuel cell stack that uses the fuel gas obtained by the fuel processing device as a fuel and generates power using oxygen in the air as an oxidant;
Fuel cell power generation system.
JP2002159433A 2002-05-31 2002-05-31 Fuel treating equipment and fuel cell power generation system Pending JP2004006093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002159433A JP2004006093A (en) 2002-05-31 2002-05-31 Fuel treating equipment and fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002159433A JP2004006093A (en) 2002-05-31 2002-05-31 Fuel treating equipment and fuel cell power generation system

Publications (1)

Publication Number Publication Date
JP2004006093A true JP2004006093A (en) 2004-01-08

Family

ID=30429211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002159433A Pending JP2004006093A (en) 2002-05-31 2002-05-31 Fuel treating equipment and fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP2004006093A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093345A (en) * 2003-09-19 2005-04-07 Aisin Seiki Co Ltd Fuel cell system
JP2006273619A (en) * 2005-03-28 2006-10-12 Aisin Seiki Co Ltd Reformer
JP2007055820A (en) * 2005-08-22 2007-03-08 Fuji Electric Holdings Co Ltd Hydrocarbon reforming apparatus
JP2007120306A (en) * 2005-10-25 2007-05-17 Mikuni Corp Water supply pump device in fuel cell system and its control method
JP2008019159A (en) * 2006-06-12 2008-01-31 Matsushita Electric Ind Co Ltd Hydrogen generating apparatus and fuel battery system equipped with the same
JP2008037692A (en) * 2006-08-04 2008-02-21 Toshiba Corp Carbon monoxide reduction apparatus, carbon monoxide reduction method, hydrogen production apparatus, and fuel cell power generating system
JP2008050254A (en) * 2006-07-28 2008-03-06 Fuji Electric Holdings Co Ltd Reformer
JP2008247698A (en) * 2007-03-30 2008-10-16 Osaka Gas Co Ltd Hydrogen-containing gas producing apparatus
JP2008273822A (en) * 2007-04-06 2008-11-13 Panasonic Corp Hydrogen forming apparatus, fuel cell system, and method of controlling hydrogen forming apparatus
JP2009091187A (en) * 2007-10-05 2009-04-30 Nippon Oil Corp Hydrogen producing apparatus
JP2009209011A (en) * 2008-03-05 2009-09-17 Aisin Seiki Co Ltd Reformer for fuel cell
JP2010100494A (en) * 2008-10-24 2010-05-06 Renaissance Energy Research:Kk Hydrogen production apparatus
WO2010125731A1 (en) * 2009-04-28 2010-11-04 株式会社Eneosセルテック Reformer for fuel cell
JP2011081972A (en) * 2009-10-05 2011-04-21 Toyota Motor Corp Fuel cell system and method for operating the system
JP2013105735A (en) * 2011-11-17 2013-05-30 Panasonic Corp Fuel cell system
WO2013136761A1 (en) * 2012-03-12 2013-09-19 アイシン精機株式会社 Fuel cell system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093345A (en) * 2003-09-19 2005-04-07 Aisin Seiki Co Ltd Fuel cell system
JP2006273619A (en) * 2005-03-28 2006-10-12 Aisin Seiki Co Ltd Reformer
JP2007055820A (en) * 2005-08-22 2007-03-08 Fuji Electric Holdings Co Ltd Hydrocarbon reforming apparatus
JP2007120306A (en) * 2005-10-25 2007-05-17 Mikuni Corp Water supply pump device in fuel cell system and its control method
JP2008019159A (en) * 2006-06-12 2008-01-31 Matsushita Electric Ind Co Ltd Hydrogen generating apparatus and fuel battery system equipped with the same
JP2008050254A (en) * 2006-07-28 2008-03-06 Fuji Electric Holdings Co Ltd Reformer
JP2008037692A (en) * 2006-08-04 2008-02-21 Toshiba Corp Carbon monoxide reduction apparatus, carbon monoxide reduction method, hydrogen production apparatus, and fuel cell power generating system
JP2008247698A (en) * 2007-03-30 2008-10-16 Osaka Gas Co Ltd Hydrogen-containing gas producing apparatus
US8287609B2 (en) 2007-04-06 2012-10-16 Panasonic Corporation Hydrogen forming apparatus, fuel cell system and method of controlling hydrogen forming apparatus
JP2008273822A (en) * 2007-04-06 2008-11-13 Panasonic Corp Hydrogen forming apparatus, fuel cell system, and method of controlling hydrogen forming apparatus
JP2013075821A (en) * 2007-04-06 2013-04-25 Panasonic Corp Method for operating hydrogen generating apparatus, and method for operating fuel cell system
JP2009091187A (en) * 2007-10-05 2009-04-30 Nippon Oil Corp Hydrogen producing apparatus
JP2009209011A (en) * 2008-03-05 2009-09-17 Aisin Seiki Co Ltd Reformer for fuel cell
JP2010100494A (en) * 2008-10-24 2010-05-06 Renaissance Energy Research:Kk Hydrogen production apparatus
WO2010125731A1 (en) * 2009-04-28 2010-11-04 株式会社Eneosセルテック Reformer for fuel cell
JP2010257915A (en) * 2009-04-28 2010-11-11 Eneos Celltech Co Ltd Reforming device for fuel cell
JP2011081972A (en) * 2009-10-05 2011-04-21 Toyota Motor Corp Fuel cell system and method for operating the system
JP2013105735A (en) * 2011-11-17 2013-05-30 Panasonic Corp Fuel cell system
WO2013136761A1 (en) * 2012-03-12 2013-09-19 アイシン精機株式会社 Fuel cell system
US9559371B2 (en) 2012-03-12 2017-01-31 Aisin Sieki Kabushiki Kaisha Fuel cell system

Similar Documents

Publication Publication Date Title
JP3678118B2 (en) Fuel reforming system
JP4105758B2 (en) Fuel cell system
US8574775B2 (en) Fuel cell system and method for starting up the same
JP2004006093A (en) Fuel treating equipment and fuel cell power generation system
US20100279185A1 (en) Fuel cell system and method for starting up the same
JP2009099264A (en) Solid oxide fuel cell power generation system and its starting method
WO2007145218A1 (en) Hydrogen generation device and fuel cell system equipped with it
JP2005100873A (en) Fuel cell system
JP2006273619A (en) Reformer
JP4147659B2 (en) Control device for reformer
RU2443040C2 (en) Fuel elements system
US8709668B2 (en) Hydrogen generation device and fuel cell system
JP4204291B2 (en) Reformer
JP2008103278A (en) Fuel cell system
JP5162989B2 (en) Reformer
JP4799827B2 (en) Fuel cell system
JP2004175637A (en) Co remover and hydrogen production apparatus
JP4135243B2 (en) Control device for reformer
JP2001206701A (en) Fuel reforming device and starting-up method
JP2009093966A (en) Fuel cell system
US7717970B2 (en) Fuel reforming device
JP2010262747A (en) Reforming device for fuel cell
JP2004315284A (en) Reformer, and system using reformer
JP2007518664A (en) Reformate cooling system for use in subsystems for fuel processing
JP2020013720A (en) Fuel cell system, flow measuring method of material gas, and gas type specification method of material gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080722