JP4204291B2 - Reformer - Google Patents

Reformer Download PDF

Info

Publication number
JP4204291B2
JP4204291B2 JP2002281713A JP2002281713A JP4204291B2 JP 4204291 B2 JP4204291 B2 JP 4204291B2 JP 2002281713 A JP2002281713 A JP 2002281713A JP 2002281713 A JP2002281713 A JP 2002281713A JP 4204291 B2 JP4204291 B2 JP 4204291B2
Authority
JP
Japan
Prior art keywords
gas
unit
reforming
steam
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002281713A
Other languages
Japanese (ja)
Other versions
JP2004115321A (en
Inventor
貴史 石川
孝一 桑葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2002281713A priority Critical patent/JP4204291B2/en
Publication of JP2004115321A publication Critical patent/JP2004115321A/en
Application granted granted Critical
Publication of JP4204291B2 publication Critical patent/JP4204291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料と水蒸気とから改質ガスを生成する改質部と、改質ガスに含まれる一酸化炭素を水蒸気と反応させて二酸化炭素ガスと水素ガスに変成するシフト部と、シフト部を通過した改質ガスに残存する一酸化炭素ガスを空気と反応させて二酸化炭素ガスに酸化するCO浄化部を備えた改質装置に関する。
【0002】
【従来の技術】
燃料と改質水を水蒸気改質反応させて水素リッチな改質ガスを生成する改質部と、該改質ガスに含有する一酸化炭素ガスを水蒸気と反応させて低減させるシフト部と、該シフト部を通過した改質ガスに残存する一酸化炭素ガスを空気により酸化させるCO浄化部と、前記改質部に燃焼ガスを供給する燃焼部を備えた改質装置において、改質水が蒸発器で前記燃焼部から供給される燃焼ガスにより気液混合水蒸気に蒸発され、該気液混合水蒸気がCO浄化部を冷却した後に、改質ガスとの間で熱交換して加熱され、改質部に供給される改質装置が特開2001−163601号公報に記載されている。
【0003】
【特許文献1】
特開2001−163601号公報(第3,4頁、図4)
【0004】
【発明が解決しようとする課題】
上記従来の改質装置では、CO浄化部を冷却した気液混合水蒸気が改質ガスとの間で熱交換し、改質ガスがシフト部触媒の活性温度域に冷却されてシフト部に供給され、且つ水蒸気が改質部触媒の活性温度域に加熱されて改質部に供給されるような熱バランスが取られていないので、水で温度制御した燃焼ガスをシフト部に供給してシフト部の温度を調整しなければならなかった。また、燃料が水蒸気とは別に改質部に供給されるので、燃料は改質ガスにより加熱されずに燃焼ガスにより加熱しなければならず、その分熱エネルギーが効率的に利用されない不具合があった。
【0005】
本発明は、係る従来の不具合を解消するためになされたもので、CO浄化部の改質ガスの温度、シフト部に流入する改質ガスの温度および改質部に供給される水蒸気の温度が各触媒の活性温度域となるように装置全体の熱バランスが取られた状態で改質ガスと水蒸気との間で熱交換することである。
【0006】
【課題を解決するための手段】
上記の課題を解決するため、請求項1に係る発明の構成上の特徴は、改質水を気液混合水蒸気に蒸発させる蒸発器と、燃焼部で生成された燃焼ガスにより活性温度域に加熱された改質部触媒により燃料と水蒸気とを改質ガスに改質する改質部と、該改質部で生成された改質ガスと前記気液混合水蒸気との間で熱交換し、前記改質ガスをシフト部触媒の活性温度域に冷却してシフト部に供給し、前記水蒸気を改質部触媒の活性温度域に加熱して前記改質部に供給する主熱交換器と、該主熱交換器で冷却された改質ガスに含まれる一酸化炭素ガスと水蒸気とをシフト部触媒により水素ガスと二酸化炭素ガスに変成させるシフト部と、前記シフト部から導出された改質ガスに含まれる一酸化炭素ガスをCO浄化部触媒により空気と反応させて二酸化炭素ガスに酸化するCO浄化部と、前記蒸発器と前記主熱交換器との間に接続され前記気液混合水蒸気により前記CO浄化部を流れる改質ガスの温度をCO浄化部触媒の活性温度域に低下させるCO浄化部熱交換器を備えたことである。
【0007】
請求項2に係る発明の構成上の特徴は、改質水を気液混合水蒸気に蒸発させる蒸発器と、該蒸発器で生成された気液混合水蒸気に燃料を混合する混合部と、燃焼部で生成された燃焼ガスにより活性温度域に加熱された改質触媒により燃料と水蒸気とを改質ガスに改質する改質部と、該改質部で生成された改質ガスと前記混合部で燃料が混合された気液混合水蒸気との間で熱交換し、前記改質ガスをシフト部触媒の活性温度域に冷却してシフト部に供給し、前記混合された水蒸気と燃料とを改質部触媒の活性温度域に加熱して前記改質部に供給する主熱交換器と、該主熱交換器で冷却された改質ガスに含まれる一酸化炭素ガスと水蒸気とをシフト部触媒により水素ガスと二酸化炭素ガスに変成させるシフト部と、前記シフト部から導出された改質ガスに含まれる一酸化炭素ガスをCO浄化部触媒により空気と反応させて二酸化炭素ガスにするCO浄化部と、前記蒸発器と前記主熱交換器との間に前記混合部の前または後で接続され前記気液混合水蒸気により前記CO浄化部を流れる改質ガスの温度をCO浄化部触媒の活性温度域に低下させるCO浄化部熱交換器を備えたことである。
【0008】
請求項3に係る発明の構成上の特徴は、請求項2において、前記主熱交換器の気液混合水蒸気の流入口と前記CO浄化部熱交換器の気液混合水蒸気の流出口とを接近して配置し、該気液混合水蒸気の流入口と流出口との間に前記混合部を設けたことである。
【0009】
請求項4に係る発明の構成上の特徴は、請求項1乃至3のいずれかにおいて、前記シフト部の温度を測定する測定装置と、該測定装置により測定されたシフト部の温度が低温しきい値より低い場合、前記改質水量を減少し、前記CO浄化部に供給する空気量を増加し、シフト部の温度が高温しきい値より高い場合、前記改質水量を増加し、前記CO浄化部に供給する空気量を増加する制御装置を備えたことである。
【0010】
請求項5に係る発明の構成上の特徴は、請求項4において、前記制御装置は、前記シフト部の温度が低温しきい値より低いときに前記改質水量を減少し、前記CO浄化部に供給する空気量を増加しても、前記シフト部の温度が下限値より低下した場合、または前記シフト部の温度が高温しきい値より高いときに前記改質水量を増加し、前記CO浄化部に供給する空気量を増加しても前記シフト部の温度が上限値より上昇した場合、異常処置を行うことである。
【0011】
【発明の作用・効果】
上記のように構成した請求項1に係る発明においては、燃焼部で生成された燃焼ガスにより改質部触媒が活性温度域に加熱され燃料と水蒸気とが改質ガスに改質される。改質部で生成された改質ガスが、蒸発器で生成された気液混合水蒸気と主熱交換器で熱交換し、改質ガスがシフト部触媒の活性温度域に冷却されてシフト部に供給され、水蒸気が改質部触媒の活性温度域に加熱されて改質部に供給される。冷却された改質ガスに含まれる一酸化炭素ガスと水蒸気とがシフト部で触媒により水素ガスと二酸化炭素ガスに変成される。シフト部から導出された改質ガスに含まれる一酸化炭素ガスがCO浄化部で触媒により空気と反応して二酸化炭素に酸化される。CO浄化部を流れる改質ガスの温度が、蒸発器と主熱交換器との間に接続されたCO浄化部熱交換器で気液混合水蒸気によりCO浄化部触媒の活性温度域に低下される。
【0012】
このように、水蒸気を熱バランスが取られた状態で循環することによりCO浄化部の改質ガスの温度、シフト部に流入する改質ガスの温度および改質部に供給される水蒸気の温度を各部の触媒の活性温度域に制御することができ、外部に排出する熱エネルギーを低減し、改質効率の高い改質装置を提供することができる。また、シフト部の温度制御を行うための熱交換器に改質水を分流して供給する必要が無く、そのために必要なポンプ、バルブ等が不要になり動力が低減して効率が向上し、補機点数が減少して設備コストを低減することができる。さらに、CO浄化部を流れる改質ガスを気液混合水蒸気により沸騰冷却することにより改質ガスの温度を温度制御がシビアなCO浄化部触媒の活性温度域に良好に保つことができる。
【0013】
上記のように構成した請求項2に係る発明においては、蒸発器で生成された気液混合水蒸気に燃料が混合される。燃焼部で生成された燃焼ガスにより改質部の触媒が活性温度域に加熱され燃料と水蒸気とが改質ガスに改質される。改質部で生成された改質ガスが、燃料が混合された気液混合水蒸気と主熱交換器で熱交換し、改質ガスがシフト部触媒の活性温度域に冷却されてシフト部に供給され、燃料が混合された水蒸気が改質部触媒の活性温度域に加熱されて改質部に供給される。冷却された改質ガスに含まれる一酸化炭素ガスと水蒸気とがシフト部で触媒により水素ガスと二酸化炭素ガスに変成される。シフト部から導出された改質ガスに含まれる一酸化炭素ガスがCO浄化部で触媒により空気と反応して二酸化炭素に酸化される。CO浄化部を流れる改質ガスの温度が、蒸発器と主熱交換器との間に接続されたCO浄化部熱交換器で気液混合水蒸気によりCO浄化部触媒の活性温度域に低下される。これにより、請求項1に記載の発明の効果に加え、燃料が水蒸気と共に改質ガスにより改質部触媒の活性温度域に加熱されて改質部に供給されるので、熱エネルギーを一層有効に利用して改質効率を高めることができる。
【0014】
上記のように構成した請求項3に係る発明においては、主熱交換器の気液混合水蒸気の流入口とCO浄化部熱交換器の気液混合水蒸気の流出口とを接近して配置し、該気液混合水蒸気の流入口と流出口との間で気液混合水蒸気に燃料を混合するので、気液混合水蒸気がCO浄化部の温度を正確に制御した後に、冷却することなくCO浄化部熱交換器から主熱交換器に流入することができる。
【0015】
上記のように構成した請求項4に係る発明においては、測定装置により測定されたシフト部の温度が低温しきい値より低い場合、改質水量を減少し、CO浄化部に供給する空気量を増加する。高温しきい値より高い場合、改質水量を増加し、CO浄化部に供給する空気量を増加する。これにより、熱バランスが若干崩れた場合にも、CO浄化部、シフト部、改質部の温度を各触媒の活性温度域に維持することができる。
【0016】
上記のように構成した請求項5に係る発明においては、測定装置により測定されたシフト部の温度が低温しきい値より低いときに改質水量を減少し、且つCO浄化部に供給する空気量を増加しても、シフト部の温度が下限値より低下した場合、またはシフト部の温度が高温しきい値より高いときに改質水量を増加し、且つCO浄化部に供給する空気量を増加しても、シフト部の温度が上限値より上昇した場合、異常処置を行うので、熱バランスが崩れて改質ガスが各触媒の活性温度域から外れた状態で運転が継続されることを防止することができる。
【0017】
【発明の実施の形態】
以下、本発明に係る改質装置の実施の形態について説明する。図1はこの改質装置20を使用した燃料電池システムの概要を示す概要図である。この燃料電池システムは燃料電池10と燃料電池10に必要な一酸化炭素濃度が極めて低い水素リッチな改質ガスを生成する改質装置20とを備えている。改質装置20は、都市ガス、LPG、灯油などの燃料と水蒸気とを水蒸気改質反応させて水素リッチな改質ガスを生成する改質部30と、改質ガスに含まれる一酸化炭素ガスを一酸化炭素シフト反応させて低減するシフト部40と、シフト部40から導出された改質ガスに含まれる一酸化炭素を選択的に酸化してさらに減少させるCO浄化部60から構成されている。即ち、改質部30では、供給された燃料と水蒸気が触媒により反応して水素リッチな改質ガスが生成される。改質部30の反応室31に充填された改質部触媒31aは、燃焼部36から供給される燃焼ガスにより、改質部30での反応を促進する改質部触媒31aの活性温度域(550〜700℃)に加熱される。改質部30から導出された改質ガスに含まれる一酸化炭素ガスは、シフト部40でシフト部触媒40aにより水蒸気と反応して水素ガスと二酸化炭素ガスに変成される。改質部30から流出した高温の改質ガスは、シフト部40での一酸化炭素シフト反応を促進するシフト部触媒40aの活性温度域(200〜300℃)に主熱交換器34により低下される。シフト部40から導出された改質ガスに含まれる一酸化炭素ガスは、CO浄化部60でCO浄化部触媒60aにより空気中の酸素と反応して二酸化炭素に酸化される。CO浄化部60を流れる改質ガスは、CO浄化部60に設けられたCO浄化部熱交換器70によりCO浄化部触媒60aの活性温度域(100〜200℃)に低下される。この改質装置20により生成された改質ガスを供給された燃料電池10は、改質ガスの水素ガスと酸素ガスとの反応により発電する。なお、本実施の形態において使用する燃料は都市ガス(メタンガスを主成分とする)である。
【0018】
改質部30は、改質反応を促進する改質部触媒31aが充填された反応室31と、この反応室31に密接して設けられて反応室31を加熱する加熱室32とから構成され、加熱室32には燃焼部36で生成された燃焼ガスが供給されて改質部触媒31aを活性温度域(550〜700℃)に加熱する。反応室31に充填された改質部触媒31aは、ほぼ一定の大きさの粒状のものであり、例えばルテニウム、ニッケルなどの金属をセラミックス製の球体に担持させたものである。燃焼部36は燃焼用燃料、燃料電池10からのオフガス、燃焼空気が供給され、高温の燃焼ガスを加熱室32に供給するバーナ33等から構成されている。
【0019】
反応室31には、燃料(メタンガス)が混合された水蒸気が改質部触媒31aの活性温度域に加熱されて供給され、燃料は下記化1に示すように、触媒31aにより水蒸気と反応し改質されて水素ガスと一酸化炭素ガスが生成される(いわゆる水蒸気改質反応)。これと同時に反応室31内では、下記化2に示すように、水蒸気改質反応にて生成された一酸化炭素ガスが水蒸気と反応して水素ガスと二酸化炭素ガスとに変成するいわゆる一酸化炭素シフト反応が生じている。水素リッチな改質ガスがこのようにして改質部30で生成される。
【0020】
【化1】
CH+HO → 3H+CO
【0021】
【化2】
CO+HO → H+CO
【0022】
上述した水蒸気改質反応は吸熱反応であるため、改質部触媒31aをバーナ33により加熱するようになっている。バーナ33には、燃料電池10に接続されたオフガス供給管33aが接続されており燃料電池10にて反応に使われなかった水素ガス(オフガス)が供給される。また、改質装置の起動時等の必要時には、燃料供給源に接続された燃焼用燃料供給管33bが接続され、燃焼用燃料が供給されるようになっている。さらにバーナ33にはこれら供給されたオフガスまたは燃焼用燃料を燃焼させるための燃焼用空気を供給する燃焼用空気供給管33cが接続されている。バーナ33にてオフガスまたは燃焼用燃料が燃焼されて高温の燃焼ガスが発生され、この燃焼ガスが加熱室32に供給されて反応室31が加熱されることにより改質部触媒31aが活性温度域に加熱される。
【0023】
加熱室32の燃焼ガスは、排気管32aにより蒸発器35に供給された後に排気ガスとして外部に排気される。蒸発器35では、給水源から給水管35bを通って供給された改質水が排気管32aから供給される高温の燃焼ガスにより加熱され気液が混合した飽和状態の気液混合水蒸気となって水蒸気供給管35aに導出される。なお、給水管35bは加熱室32の外周に巻きつけられており、給水源から供給された水は加熱室32により予熱される。水蒸気供給管35aはCO浄化部熱交換器70の流入口に接続され、気液混合水蒸気はCO浄化部60を流れる改質ガスの温度をCO浄化部熱交換器70によりCO浄化部触媒60aの活性温度域に冷却する。CO浄化部熱交換器70の流出口は、改質部30とシフト部40との間に設けられた主熱交換機34の流入口に接近して配置され、これら流出口と流入口とを接続する水蒸気供給管35aに燃料供給管37が混合部71で接続され、蒸発器35で生成された気液混合水蒸気に燃料が混合されるようになっている。主熱交換器34は改質部30で生成された改質ガスと混合部71で燃料が混合された気液混合水蒸気との間で熱交換し、高温の改質ガスをシフト部触媒40aの活性温度域に冷却してシフト部40に供給し、混合された水蒸気と燃料とを改質部触媒31aの活性温度域に加熱して改質部30の反応室31に供給する。この場合、燃料が混合された気液混合水蒸気の加熱温度は、改質部触媒31aの活性温度域より若干低くてもよく、実質的に改質部触媒31aの活性温度域に加熱されればよい。
【0024】
シフト部40内に充填されたシフト部触媒40aは例えば銅、亜鉛などの酸化物からなるほぼ一定の大きさの粒状のもので、円柱状に成型されている。この触媒40aは、主熱交換器34から導入された改質ガスに含まれる一酸化炭素と水蒸気とを一酸化炭素シフト反応(下記化3参照)させて水素ガスと二酸化炭素ガスとに変成し、一酸化炭素濃度を低減させる。このシフト部触媒40aは、活性温度域が200〜300℃で、熱伝導性のよいものである。なお、一酸化炭素シフト反応は発熱反応である。
【0025】
【化3】
CO+HO → H+CO
【0026】
上述したシフト部40から導出された一酸化炭素濃度が低減された改質ガスは、CO浄化部60に供給される。供給された改質ガスに残留している一酸化炭素は、下記化4に示すように、供給されたCO酸化空気とCO浄化部触媒60aの作用により酸化反応して二酸化炭素になる。CO浄化部触媒60aは、例えば白金、等をアルミナやジルコニア等からなる担持体に担持させたもので、活性温度域は、100〜200℃である。CO浄化部60からは一酸化炭素濃度が10ppm以下である改質ガスが導出され、この一酸化炭素濃度が極めて低い水素リッチな改質ガスが燃料電池10に供給される。
【0027】
【化4】
CO+1/2O → CO
【0028】
CO浄化部60は改質ガス供給管61を介して燃料電池10の燃料極に接続されている。改質ガス供給管61にはオフガス燃焼器(図示省略)に接続されたバイパス管63が接続された切換装置62が設けられており、切換装置62は改質装置20の起動時にはCO浄化部60をオフガス燃焼器に接続し、定常時にはCO浄化部60を燃料電池10に接続するようになっている。燃料電池10はその燃料極および空気極にそれぞれ改質ガスおよび空気が供給されると、所定の反応を起こして発電する。このとき、燃料電池10の燃料極および空気極からはそれぞれオフガスおよび水(気体)が導出される。
【0029】
次に、上述した改質装置20の作動について説明する。改質装置20を起動する際には、切換装置62によりCO浄化部60をオフガス燃焼器に接続するとともに改質部30のバーナ33に燃焼用燃料を供給して燃焼させる。これにより、改質部30内の触媒31aおよび蒸発器35が加熱される。蒸発器35が所定温度まで加熱されると蒸発器35への改質水の供給が開始され、蒸発器35にて生成された気液混合水蒸気が、CO浄化部熱交換器70、主熱交換器34を介して改質部30に供給される。その後、混合部71への燃料の供給が開始され、改質部30では上述した水蒸気改質反応および一酸化炭素シフト反応が生じる。そして、改質部30から導出された改質ガスはシフト部40およびCO浄化部60により一酸化炭素ガスを低減されてCO浄化部60から導出される。その後、導出された改質ガス中の一酸化炭素濃度が所定値以下となれば、切換装置62によりCO浄化部60を燃料電池10に接続して、起動運転を終了して定常運転を開始する。
【0030】
この定常運転時においては、改質装置20全体の熱バランスが取られた状態となり、図2に示すように、蒸発器35で生成された乾き度0.6の気液混合水蒸気は、CO浄化部熱交換器70でCO浄化部60を流れる改質ガスを約250℃から約100℃に沸騰冷却して乾き度0.9の水蒸気となる。気液混合水蒸気は、凝縮熱伝導率が大きいので、改質ガスの温度をCO浄化部触媒60aの活性温度域に正確に良好に低下して残留する一酸化炭素ガスを酸化して二酸化炭素ガスにすることができる。
【0031】
CO浄化部熱交換器70から流出し、混合部71で燃料が混合された気液混合水蒸気は、短い水蒸気管35aを通って殆ど熱エネルギーを放出することなく主熱交換器34に流入する。燃料が混合された気液混合水蒸気は、主熱交換器34において改質部30で生成された改質ガスを約650℃から約200℃に冷却し、自らは約100℃から約550℃に加熱されて改質部30に供給される。改質部30では、混合された燃料と水蒸気が燃焼ガスにより加熱された改質部触媒31aから反応熱を供給されて水蒸気改質反応するとともに、一酸化炭素シフト反応し、水素リッチな改質ガスを生成する。
【0032】
主熱交換器34で約200℃に冷却されてシフト部40に送られた改質ガスは、シフト部40で触媒40aの作用により改質ガスに含まれる一酸化炭素ガスと水蒸気とが一酸化炭素シフト反応して水素ガスと二酸化炭素ガスに変成され約250℃に温度上昇する。シフト部40で約250℃に温度上昇してCO浄化部60送られた改質ガスはCO浄化部熱交換器70により約100℃に冷却され、CO浄化部60で触媒60aの作用により改質ガスに含まれる一酸化炭素ガスが供給されたCO酸化空気と反応して二酸化炭素ガスに酸化され、CO浄化部60からは一酸化炭素濃度が10ppm以下の改質ガスが導出され、この水素リッチな改質ガスが燃料電池10に供給される。
【0033】
改質装置20が全体として熱バランスがとれた状態で運転されている場合における改質ガスの熱収支、改質水の受熱量、燃焼ガスの与熱量の一例を示す。改質装置20の運転条件は、燃料として都市ガスを1.5mol/min、改質水を5.13mol/min(スチームカーボン比2.85)、CO酸化空気を9NL/min、燃焼ガスとして都市ガスを13NL/min供給し、10kWの電気を燃料電池10が出力している場合である。改質ガスの熱収支は、改質部30では供給された燃料が転化率85%で改質されて4.4kW吸熱し、主熱交換器34では650℃から200℃に冷却されて2.5kW放熱し、シフト部では一酸化炭素ガスの含有率が11%から0.5%に減少して0.5kW放熱し、CO浄化部60では出口温度が100℃に冷却されて0.7kW放熱する。改質水の受熱量は、主熱交換器34では100℃から550℃に加熱されて2.3kW受熱し、CO浄化部熱交換器70では沸騰冷却して0.6kW受熱し、蒸発器35では2.4kW受熱する。なお、沸騰開始までの改質水の受熱量は、0.55kW、蒸発潜熱としての受熱量は3.48kW、沸騰終了から550℃までの受熱量は1.39kWである。燃焼ガスの与熱量は、改質部30では燃焼ガスの温度が1000℃から580℃になって5.1kW与熱し、蒸発器35では580℃から100℃になって2.65kW与熱し、100℃の燃焼ガスが排気されて1.25kW排熱される。
【0034】
次に、改質装置20が全体として熱バランスを崩した場合の制御について説明する。72はシフト部40に貼付された熱電対で、シフト部40の温度を測定する測定装置として機能する。熱電対72により測定されたシフト部40の温度が低温しきい値、例えば190℃と高温しきい値、例えば280℃の間にあるときは、改質装置20は全体として熱バランス状態にあることが実験により確認された。そして、図3に示すように、シフト部40の温度が低温しきい値より低下したとき、改質水の流量を10%程度減少してスチームカーボン比を3から2.7にし、CO浄化部60に供給するCO酸化空気量を20%程度増加して酸素と一酸化炭素との比を3から3.6にするとシフト部40の温度が上昇し、改質装置20の熱バランスが回復することが経験的に認識され、実験により確認された。図4に示すように、シフト部40の温度が高温しきい値より上昇したとき、改質水の流量を10%程度増加してスチームカーボン比を3から3.3にし、CO浄化部60に供給するCO酸化空気量を20%程度増加して酸素と一酸化炭素との比を3から3.6にするとシフト部40の温度が下降し、改質装置20の熱バランスが回復することが経験的に認識され、実験により確認された。
【0035】
制御装置73は、熱電対72からシフト部40の温度を取り込み、図5,6に示すプログラムを実行してシフト部40の温度に応じて改質水量、CO酸化空気量を制御する流量制御バルブ74、75を制御する。図5において、シフト部40の温度Tsが低温しきい値TL1、例えば190℃より低いことが判定されると(ステップ81)、流量制御バルブ74を絞って改質水量を10%減少して(ステップ82)、主熱交換器34での冷却量を減らす。シフト部40での温度低下によるシフト部触媒42aの活性低下、および水蒸気量の減少により平行組成が移動して一酸化炭素濃度が増加することを見込んで、流量制御バルブ75を開いてCO酸化空気量を20%増加する(ステップ83)。シフト部40の温度Tsが低温しきい値TL1以上に戻ったか否か判定され(ステップ84)、低温しきい値TL1以上になると改質水量を定格に戻す(ステップ85)。水蒸気の発生に遅れが生じるため2分程度の間はCO酸化空気量を増加したままとし、2分経過後に(ステップ86)、CO酸化空気量も定格に戻して(ステップ87)、定常運転状態にする。温度Tsが低温しきい値TL1以上に戻らない場合、下限値TL2、例えば175℃より低下したか否か判定され(ステップ88)、下限値より低下すると改質装置20から燃料電池10への改質ガスの供給停止、警報ランプの点灯等の異常処置が行われる(ステップ89)。
【0036】
図6において、シフト部40の温度Tsが高温しきい値TH1、例えば280℃より高いことが判定されると(ステップ91)、流量制御バルブ74を開いて改質水量を10%増加して(ステップ92)主熱交換器34での冷却量を増加する。シフト部40の温度上昇により平衡組成が移動して一酸化炭素濃度が増加することを見込んで、流量制御バルブ75を開いてCO酸化空気量を20%増加する(ステップ93)。シフト部40の温度Tsが高温しきい値TH1以下に戻ったか否か判定され(ステップ94)、高温しきい値TH1以下になると改質水量を定格に戻し(ステップ95)、CO酸化空気量も定格に戻し(ステップ96)、定常運転状態になる。シフト部40の温度Tsが高温しきい値TH1以下に戻らない場合、シフト部40の温度が上限値TH2、例えば295℃より上昇したか否か判定され(ステップ97)、上限値より上昇すると改質装置20から燃料電池10への改質ガスの供給停止、警報ランプの点灯等の異常処置が行われる(ステップ98)。
【0037】
上記実施の形態においては、気液混合水蒸気がCO浄化部熱交換器70を通過した後で、燃料を気液混合水蒸気に混合しているが、CO浄化部熱交換器70の前で燃料を気液混合水蒸気に混合してもよい。また、燃料を水蒸気とは別に改質部30の反応室31に直接供給するようにしてもよい。
【図面の簡単な説明】
【図1】 本発明に係る改質装置の実施の形態を示す概要図。
【図2】 改質ガスおよび水蒸気の改質装置各部での温度変化を示す図。
【図3】 シフト部の温度が低温しきい値より低くなった場合の対応を示す図。
【図4】 シフト部の温度が高温しきい値より高くなった場合の対応を示す図。
【図5】 シフト部の温度が低温しきい値より低くなった場合の対応プログラムを示す図。
【図6】 シフト部の温度が高温しきい値より高くなった場合の対応プログラムを示す図。
【符号の説明】
10…燃料電池、20…改質装置、30…改質部、34…主熱交換器、35…蒸発器、36…燃焼部、40…シフト部、60…CO浄化部、70…CO浄化部熱交換器、71…混合部、72…測定装置、73…制御装置、74,75…流量制御バルブ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reforming unit that generates reformed gas from fuel and water vapor, a shift unit that reacts carbon monoxide contained in the reformed gas with water vapor to convert it into carbon dioxide gas and hydrogen gas, and a shift unit. It is related with the reformer provided with the CO purification part which reacts with the air the carbon monoxide gas which remains in the reformed gas which passed through, and oxidizes to carbon dioxide gas.
[0002]
[Prior art]
A reforming section that generates a hydrogen-rich reformed gas by reacting fuel and reformed water with a steam reforming reaction; a shift section that reacts and reduces the carbon monoxide gas contained in the reformed gas with steam; and The reforming water evaporates in a reforming apparatus including a CO purifying unit that oxidizes carbon monoxide gas remaining in the reformed gas that has passed through the shift unit with air, and a combustion unit that supplies combustion gas to the reforming unit. The gas is vaporized into the gas-liquid mixed steam by the combustion gas supplied from the combustion section in the cooler, and after the gas-liquid mixed steam cools the CO purifying section, the heat is exchanged with the reformed gas and heated. Japanese Patent Application Laid-Open No. 2001-163601 describes a reformer supplied to the section.
[0003]
[Patent Document 1]
Japanese Patent Laying-Open No. 2001-163601 (pages 3, 4 and FIG. 4)
[0004]
[Problems to be solved by the invention]
In the above conventional reformer, the gas-liquid mixed steam that has cooled the CO purification section exchanges heat with the reformed gas, and the reformed gas is cooled to the activation temperature range of the shift section catalyst and supplied to the shift section. In addition, since the heat balance is not taken so that the steam is heated to the reforming section activation temperature range and supplied to the reforming section, the combustion gas temperature-controlled with water is supplied to the shifting section. Had to adjust the temperature. In addition, since the fuel is supplied to the reforming unit separately from the steam, the fuel must be heated by the combustion gas without being heated by the reformed gas, and there is a problem that the heat energy is not efficiently used. It was.
[0005]
The present invention has been made in order to solve the conventional problems, and the temperature of the reformed gas in the CO purification unit, the temperature of the reformed gas flowing into the shift unit, and the temperature of the steam supplied to the reforming unit are The heat exchange is performed between the reformed gas and the steam in a state where the heat balance of the entire apparatus is taken so as to be in the active temperature range of each catalyst.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the structural feature of the invention according to claim 1 is that the reforming water is evaporated to gas-liquid mixed water vapor and heated to the activation temperature range by the combustion gas generated in the combustion section. Heat exchange between the reformed part that reforms fuel and steam into reformed gas by the reformed part catalyst, the reformed gas generated in the reformed part and the gas-liquid mixed steam, A main heat exchanger that cools the reformed gas to the active temperature region of the shift unit catalyst and supplies the gas to the shift unit, heats the steam to the active temperature region of the reformer unit catalyst, and supplies the steam to the reforming unit; The shift unit converts carbon monoxide gas and water vapor contained in the reformed gas cooled by the main heat exchanger into hydrogen gas and carbon dioxide gas by the shift unit catalyst, and the reformed gas derived from the shift unit Carbon monoxide gas contained in the catalyst is reacted with air by a CO purification unit catalyst to produce carbon dioxide. A temperature of the reformed gas that is connected between the evaporator and the main heat exchanger and that flows between the CO purifying unit by the gas-liquid mixed water vapor and that is an active temperature of the CO purifying unit catalyst. A CO purification section heat exchanger that lowers the temperature to the region.
[0007]
  The structural features of the invention according to claim 2 are: an evaporator for evaporating the reformed water into gas-liquid mixed steam; a mixing section for mixing fuel with the gas-liquid mixed steam generated by the evaporator; and a combustion section A reforming section for reforming fuel and water vapor into a reformed gas by a reforming catalyst heated to an activation temperature range by the combustion gas generated in step 1, and the reformed gas generated in the reforming section and the mixing section Heat-exchanged with the gas-liquid mixed steam mixed with the fuel in the step, the reformed gas is cooled to the active temperature range of the shift section catalyst and supplied to the shift section, and the mixed steam and fuel are modified. A main heat exchanger that is heated to an active temperature range of the mass catalyst and supplied to the reforming section, and a carbon monoxide gas and water vapor contained in the reformed gas cooled by the main heat exchanger are shifted to the shift section catalyst. A shift unit that converts the gas into hydrogen gas and carbon dioxide gas, and a modification derived from the shift unit. The carbon monoxide gas contained in the gas is reacted with air by CO purification unit catalyst and CO purification unit to the carbon dioxide gas, between the main heat exchanger and the evaporatorBefore or after the mixing sectionA CO purification unit heat exchanger is provided which is connected and reduces the temperature of the reformed gas flowing through the CO purification unit by the gas-liquid mixed water vapor to the activation temperature range of the CO purification unit catalyst.
[0008]
    The structural feature of the invention according to claim 3 is that in claim 2, the main heat exchanger isGas-liquid mixed steamOf the inlet and the CO purification section heat exchangerGas-liquid mixed steamAnd close the outletGas-liquid mixed steamThe mixing portion is provided between the inflow port and the outflow port.
[0009]
The structural feature of the invention according to claim 4 is that in any one of claims 1 to 3, the measuring device for measuring the temperature of the shift unit, and the temperature of the shift unit measured by the measuring device is a low threshold. When the temperature is lower than the value, the amount of reforming water is decreased, the amount of air supplied to the CO purification unit is increased, and when the temperature of the shift unit is higher than a high temperature threshold, the amount of reforming water is increased and the CO purification is performed. A control device for increasing the amount of air supplied to the unit.
[0010]
A structural feature of the invention according to claim 5 is that, in claim 4, the control device reduces the amount of the reformed water when the temperature of the shift unit is lower than a low temperature threshold, and causes the CO purification unit to Even if the amount of air supplied is increased, the amount of reforming water is increased when the temperature of the shift unit falls below a lower limit value or when the temperature of the shift unit is higher than a high temperature threshold, and the CO purification unit If the temperature of the shift part rises above the upper limit value even if the amount of air supplied to is increased, an abnormality treatment is performed.
[0011]
[Operation and effect of the invention]
In the invention according to claim 1 configured as described above, the reforming section catalyst is heated to the active temperature range by the combustion gas generated in the combustion section, and the fuel and the steam are reformed into the reformed gas. The reformed gas generated in the reforming section exchanges heat with the gas-liquid mixed steam generated in the evaporator in the main heat exchanger, and the reformed gas is cooled to the activation temperature range of the shift section catalyst and is transferred to the shift section. Then, the steam is heated to the activation temperature range of the reforming part catalyst and supplied to the reforming part. Carbon monoxide gas and water vapor contained in the cooled reformed gas are converted into hydrogen gas and carbon dioxide gas by the catalyst in the shift section. Carbon monoxide gas contained in the reformed gas derived from the shift unit reacts with air by the catalyst in the CO purification unit and is oxidized to carbon dioxide. The temperature of the reformed gas flowing through the CO purification unit is lowered to the activation temperature range of the CO purification unit catalyst by the gas-liquid mixed steam in the CO purification unit heat exchanger connected between the evaporator and the main heat exchanger. .
[0012]
In this way, the temperature of the reformed gas in the CO purifying unit, the temperature of the reformed gas flowing into the shift unit, and the temperature of the steam supplied to the reforming unit are circulated by circulating the steam in a heat balanced state. It is possible to control the activation temperature range of the catalyst in each part, to reduce the heat energy discharged to the outside, and to provide a reformer with high reforming efficiency. In addition, it is not necessary to divert and supply the reforming water to the heat exchanger for controlling the temperature of the shift unit, so that the necessary pumps, valves, etc. are no longer required and the power is reduced and the efficiency is improved. Equipment costs can be reduced by reducing the number of auxiliary equipment. Furthermore, the reformed gas flowing through the CO purifying section is boiled and cooled with gas-liquid mixed steam, whereby the temperature of the reformed gas can be kept well in the active temperature range of the CO purifying section catalyst whose temperature control is severe.
[0013]
In the invention which concerns on Claim 2 comprised as mentioned above, a fuel is mixed with the gas-liquid mixing water vapor | steam produced | generated with the evaporator. The combustion gas generated in the combustion section heats the catalyst in the reforming section to the active temperature range, and the fuel and water vapor are reformed into the reformed gas. The reformed gas generated in the reforming section exchanges heat with the gas-liquid steam mixed with fuel in the main heat exchanger, and the reformed gas is cooled to the activation temperature range of the shift section catalyst and supplied to the shift section. The steam mixed with the fuel is heated to the activation temperature range of the reforming section catalyst and supplied to the reforming section. Carbon monoxide gas and water vapor contained in the cooled reformed gas are converted into hydrogen gas and carbon dioxide gas by the catalyst in the shift section. Carbon monoxide gas contained in the reformed gas derived from the shift unit reacts with air by the catalyst in the CO purification unit and is oxidized to carbon dioxide. The temperature of the reformed gas flowing through the CO purification unit is lowered to the activation temperature range of the CO purification unit catalyst by the gas-liquid mixed steam in the CO purification unit heat exchanger connected between the evaporator and the main heat exchanger. . Thereby, in addition to the effect of the invention of claim 1, the fuel is heated to the activation temperature region of the reforming catalyst by the reformed gas together with the steam and is supplied to the reforming section, so that the thermal energy can be made more effective. It can be used to improve the reforming efficiency.
[0014]
  In the invention according to claim 3 configured as described above, the main heat exchangerGas-liquid mixed steamInlet and CO purification section heat exchangerGas-liquid mixed steamAnd close the outletGas-liquid mixed steamSince the fuel is mixed with the gas-liquid mixed steam between the inlet and the outlet, the gas-liquid mixed steam accurately controls the temperature of the CO purification section and then the main heat from the CO purification section heat exchanger without cooling. It can flow into the exchanger.
[0015]
In the invention according to claim 4 configured as described above, when the temperature of the shift unit measured by the measuring device is lower than the low temperature threshold, the amount of reformed water is reduced and the amount of air supplied to the CO purification unit is reduced. To increase. When the temperature is higher than the high temperature threshold, the amount of reforming water is increased and the amount of air supplied to the CO purification unit is increased. Thereby, even when the heat balance is slightly lost, the temperatures of the CO purification unit, the shift unit, and the reforming unit can be maintained within the activation temperature range of each catalyst.
[0016]
In the invention which concerns on Claim 5 comprised as mentioned above, when the temperature of the shift part measured by the measuring apparatus is lower than a low temperature threshold value, the amount of reforming water is decreased, and the air quantity supplied to the CO purification part Even when the temperature of the shift unit falls below the lower limit even when the value is increased, or when the temperature of the shift unit is higher than the high temperature threshold, the amount of reforming water is increased and the amount of air supplied to the CO purification unit is increased. However, if the temperature of the shift section rises above the upper limit value, abnormal treatment is performed, preventing the operation from being continued in a state where the heat balance is lost and the reformed gas deviates from the activation temperature range of each catalyst. can do.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the reformer according to the present invention will be described. FIG. 1 is a schematic diagram showing an outline of a fuel cell system using the reformer 20. This fuel cell system includes a fuel cell 10 and a reformer 20 that generates a hydrogen-rich reformed gas having a very low carbon monoxide concentration necessary for the fuel cell 10. The reformer 20 includes a reforming unit 30 that generates a hydrogen-rich reformed gas by performing a steam reforming reaction between city gas, LPG, kerosene, and other fuel and steam, and carbon monoxide gas contained in the reformed gas. The carbon monoxide is subjected to a carbon monoxide shift reaction, and a shift unit 40 and a CO purification unit 60 that selectively oxidizes carbon monoxide contained in the reformed gas derived from the shift unit 40 to further reduce the carbon monoxide. . That is, in the reforming unit 30, the supplied fuel and water vapor react with each other by the catalyst to generate hydrogen-rich reformed gas. The reforming section catalyst 31a filled in the reaction chamber 31 of the reforming section 30 is activated by the combustion gas supplied from the combustion section 36 to activate the reforming section catalyst 31a that promotes the reaction in the reforming section 30 (see FIG. 550-700 ° C). The carbon monoxide gas contained in the reformed gas derived from the reforming unit 30 reacts with water vapor by the shift unit catalyst 40a in the shift unit 40 to be converted into hydrogen gas and carbon dioxide gas. The high-temperature reformed gas flowing out from the reforming unit 30 is lowered by the main heat exchanger 34 to the activation temperature range (200 to 300 ° C.) of the shift unit catalyst 40a that promotes the carbon monoxide shift reaction in the shift unit 40. The The carbon monoxide gas contained in the reformed gas derived from the shift unit 40 reacts with oxygen in the air by the CO purification unit catalyst 60a in the CO purification unit 60 and is oxidized to carbon dioxide. The reformed gas flowing through the CO purification unit 60 is lowered to the activation temperature range (100 to 200 ° C.) of the CO purification unit catalyst 60 a by the CO purification unit heat exchanger 70 provided in the CO purification unit 60. The fuel cell 10 supplied with the reformed gas generated by the reformer 20 generates electric power by reaction of hydrogen gas and oxygen gas of the reformed gas. In addition, the fuel used in this Embodiment is city gas (Methane gas is the main component).
[0018]
The reforming unit 30 includes a reaction chamber 31 filled with a reforming unit catalyst 31 a that promotes a reforming reaction, and a heating chamber 32 that is provided in close contact with the reaction chamber 31 and heats the reaction chamber 31. The combustion chamber 32 is supplied with the combustion gas generated in the combustion section 36 to heat the reforming section catalyst 31a to the activation temperature range (550 to 700 ° C.). The reforming section catalyst 31a filled in the reaction chamber 31 is a granular material having a substantially constant size, and is formed by, for example, supporting a metal such as ruthenium or nickel on a ceramic sphere. The combustion unit 36 includes a burner 33 that is supplied with combustion fuel, off-gas from the fuel cell 10, and combustion air, and supplies high-temperature combustion gas to the heating chamber 32.
[0019]
The reaction chamber 31 is supplied with steam mixed with fuel (methane gas) heated to the activation temperature region of the reforming part catalyst 31a, and the fuel reacts with the steam by the catalyst 31a as shown in the following chemical formula 1 and reforms. To produce hydrogen gas and carbon monoxide gas (so-called steam reforming reaction). At the same time, in the reaction chamber 31, as shown in the chemical formula 2 below, so-called carbon monoxide in which the carbon monoxide gas generated by the steam reforming reaction reacts with the steam and is converted into hydrogen gas and carbon dioxide gas. A shift reaction has occurred. The hydrogen-rich reformed gas is generated in the reforming unit 30 in this way.
[0020]
[Chemical 1]
CH4+ H2O → 3H2+ CO
[0021]
[Chemical formula 2]
CO + H2O → H2+ CO2
[0022]
Since the steam reforming reaction described above is an endothermic reaction, the reforming part catalyst 31a is heated by the burner 33. The burner 33 is connected to an off gas supply pipe 33 a connected to the fuel cell 10, and is supplied with hydrogen gas (off gas) that has not been used for the reaction in the fuel cell 10. Further, when necessary such as when the reformer is started, a combustion fuel supply pipe 33b connected to a fuel supply source is connected to supply combustion fuel. Further, the burner 33 is connected to a combustion air supply pipe 33c for supplying combustion air for burning the supplied off gas or combustion fuel. The off-gas or combustion fuel is burned in the burner 33 to generate high-temperature combustion gas. The combustion gas is supplied to the heating chamber 32 and the reaction chamber 31 is heated, so that the reforming catalyst 31a is activated. To be heated.
[0023]
The combustion gas in the heating chamber 32 is supplied to the evaporator 35 through the exhaust pipe 32a and then exhausted to the outside as exhaust gas. In the evaporator 35, the reformed water supplied from the water supply source through the water supply pipe 35b is heated by the high-temperature combustion gas supplied from the exhaust pipe 32a to become a gas-liquid mixed steam in a saturated state in which the gas and liquid are mixed. It leads to the water vapor supply pipe 35a. The water supply pipe 35 b is wound around the outer periphery of the heating chamber 32, and the water supplied from the water supply source is preheated by the heating chamber 32. The water vapor supply pipe 35a is connected to the inlet of the CO purification unit heat exchanger 70, and the gas-liquid mixed water vapor converts the temperature of the reformed gas flowing through the CO purification unit 60 to the CO purification unit catalyst 60a by the CO purification unit heat exchanger 70. Cool to the active temperature range. The outlet of the CO purification unit heat exchanger 70 is disposed close to the inlet of the main heat exchanger 34 provided between the reforming unit 30 and the shift unit 40, and connects the outlet and the inlet. A fuel supply pipe 37 is connected to the steam supply pipe 35 a that is connected by a mixing unit 71, and fuel is mixed with the gas-liquid mixed steam generated by the evaporator 35. The main heat exchanger 34 exchanges heat between the reformed gas generated in the reforming unit 30 and the gas-liquid mixed steam mixed with fuel in the mixing unit 71, and the high-temperature reformed gas is transferred to the shift unit catalyst 40a. After cooling to the active temperature range and supplying to the shift unit 40, the mixed steam and fuel are heated to the active temperature range of the reforming unit catalyst 31 a and supplied to the reaction chamber 31 of the reforming unit 30. In this case, the heating temperature of the gas-liquid mixed steam mixed with the fuel may be slightly lower than the activation temperature range of the reforming part catalyst 31a, and if heated to the activation temperature range of the reforming part catalyst 31a substantially. Good.
[0024]
The shift unit catalyst 40a filled in the shift unit 40 is a granular material having a substantially constant size made of an oxide such as copper or zinc, and is formed in a cylindrical shape. The catalyst 40a is converted into hydrogen gas and carbon dioxide gas by a carbon monoxide shift reaction (see Chemical Formula 3 below) of carbon monoxide and water vapor contained in the reformed gas introduced from the main heat exchanger 34. , Reduce the carbon monoxide concentration. This shift part catalyst 40a has an active temperature range of 200 to 300 ° C. and good thermal conductivity. The carbon monoxide shift reaction is an exothermic reaction.
[0025]
[Chemical 3]
CO + H2O → H2+ CO2
[0026]
The reformed gas having a reduced carbon monoxide concentration derived from the shift unit 40 described above is supplied to the CO purification unit 60. The carbon monoxide remaining in the supplied reformed gas is oxidized into carbon dioxide by the action of the supplied CO oxidized air and the CO purification unit catalyst 60a as shown in the following chemical formula 4. The CO purification unit catalyst 60a is obtained by, for example, supporting platinum or the like on a support made of alumina, zirconia, or the like, and the activation temperature range is 100 to 200 ° C. A reformed gas having a carbon monoxide concentration of 10 ppm or less is derived from the CO purification unit 60, and a hydrogen-rich reformed gas having an extremely low carbon monoxide concentration is supplied to the fuel cell 10.
[0027]
[Formula 4]
CO + 1 / 2O2 → CO2
[0028]
The CO purification unit 60 is connected to the fuel electrode of the fuel cell 10 via the reformed gas supply pipe 61. The reformed gas supply pipe 61 is provided with a switching device 62 to which a bypass pipe 63 connected to an off-gas combustor (not shown) is connected. Is connected to the off-gas combustor, and the CO purification unit 60 is connected to the fuel cell 10 in a steady state. When the reformed gas and air are supplied to the fuel electrode and the air electrode, respectively, the fuel cell 10 generates a predetermined reaction to generate electric power. At this time, off-gas and water (gas) are derived from the fuel electrode and the air electrode of the fuel cell 10, respectively.
[0029]
Next, the operation of the above-described reformer 20 will be described. When the reformer 20 is started, the CO purifier 60 is connected to the off-gas combustor by the switching device 62 and combustion fuel is supplied to the burner 33 of the reformer 30 to be burned. Thereby, the catalyst 31a and the evaporator 35 in the reforming unit 30 are heated. When the evaporator 35 is heated to a predetermined temperature, the supply of reforming water to the evaporator 35 is started, and the gas-liquid mixed steam generated in the evaporator 35 is converted into the CO purification unit heat exchanger 70 and the main heat exchange. It is supplied to the reforming unit 30 via the vessel 34. Thereafter, the supply of fuel to the mixing unit 71 is started, and the steam reforming reaction and the carbon monoxide shift reaction described above occur in the reforming unit 30. The reformed gas derived from the reforming unit 30 is derived from the CO purifying unit 60 after the carbon monoxide gas is reduced by the shift unit 40 and the CO purifying unit 60. After that, when the carbon monoxide concentration in the derived reformed gas becomes a predetermined value or less, the CO purifier 60 is connected to the fuel cell 10 by the switching device 62, the start-up operation is terminated, and the steady operation is started. .
[0030]
During this steady operation, the heat reforming apparatus 20 as a whole is in a heat balance state, and as shown in FIG. 2, the gas-liquid mixed steam with a dryness of 0.6 generated by the evaporator 35 is subjected to CO purification. The reformed gas flowing through the CO purification unit 60 in the partial heat exchanger 70 is boiled and cooled from about 250 ° C. to about 100 ° C. to be steam having a dryness of 0.9. Since the gas-liquid mixed water vapor has a high condensation heat conductivity, the temperature of the reformed gas is accurately and well lowered to the activation temperature range of the CO purification unit catalyst 60a to oxidize the remaining carbon monoxide gas to oxidize the carbon dioxide gas. Can be.
[0031]
The gas-liquid mixed water vapor flowing out from the CO purification unit heat exchanger 70 and mixed with the fuel in the mixing unit 71 flows into the main heat exchanger 34 through the short water vapor pipe 35a with almost no heat energy. The gas-liquid mixed steam mixed with the fuel cools the reformed gas generated in the reforming section 30 in the main heat exchanger 34 from about 650 ° C. to about 200 ° C., and itself increases from about 100 ° C. to about 550 ° C. It is heated and supplied to the reforming unit 30. The reforming unit 30 is supplied with reaction heat from the reforming unit catalyst 31a in which the mixed fuel and water vapor are heated by the combustion gas to perform a steam reforming reaction, and a carbon monoxide shift reaction to perform a hydrogen rich reforming. Generate gas.
[0032]
The reformed gas cooled to about 200 ° C. by the main heat exchanger 34 and sent to the shift unit 40 is converted into carbon monoxide gas and water vapor contained in the reformed gas by the action of the catalyst 40a in the shift unit 40. It undergoes a carbon shift reaction and is transformed into hydrogen gas and carbon dioxide gas, and the temperature rises to about 250 ° C. The reformed gas that has been raised to about 250 ° C. by the shift unit 40 and sent to the CO purification unit 60 is cooled to about 100 ° C. by the CO purification unit heat exchanger 70 and reformed by the action of the catalyst 60a in the CO purification unit 60. The carbon monoxide gas contained in the gas reacts with the CO-oxidized air supplied to be oxidized to carbon dioxide gas, and a reformed gas having a carbon monoxide concentration of 10 ppm or less is derived from the CO purification unit 60, and this hydrogen rich A reformed gas is supplied to the fuel cell 10.
[0033]
An example of the heat balance of the reformed gas, the amount of heat received by the reforming water, and the amount of heat applied to the combustion gas when the reformer 20 is operated in a state where the heat balance is achieved as a whole is shown. The operating conditions of the reformer 20 are: city gas as fuel, 1.5 mol / min, reformed water, 5.13 mol / min (steam carbon ratio, 2.85), CO oxidant air, 9 NL / min, and city as combustion gas. This is the case where gas is supplied at 13 NL / min and the fuel cell 10 outputs 10 kW of electricity. The reformed gas has a heat balance in which the supplied fuel is reformed at a conversion rate of 85% and absorbs 4.4 kW, and the main heat exchanger 34 is cooled from 650 ° C. to 200 ° C. Dissipates 5 kW, shifts the content of carbon monoxide gas from 11% to 0.5% and dissipates 0.5 kW, and CO purifier 60 cools the outlet temperature to 100 ° C and dissipates 0.7 kW To do. The amount of heat received from the reformed water is heated from 100 ° C. to 550 ° C. in the main heat exchanger 34 to receive 2.3 kW, and the CO purification section heat exchanger 70 is boiled and cooled to receive 0.6 kW. Then, it receives 2.4kW. The amount of heat received from the reformed water until the start of boiling is 0.55 kW, the amount of heat received as latent heat of evaporation is 3.48 kW, and the amount of heat received from the end of boiling to 550 ° C. is 1.39 kW. The heating amount of the combustion gas is 5.1 kW when the temperature of the combustion gas is changed from 1000 ° C. to 580 ° C. in the reforming unit 30, and 2.65 kW is heated from 580 ° C. to 100 ° C. in the evaporator 35. The combustion gas at ℃ is exhausted and 1.25 kW is exhausted.
[0034]
Next, the control when the reformer 20 loses the heat balance as a whole will be described. Reference numeral 72 denotes a thermocouple attached to the shift unit 40 and functions as a measuring device for measuring the temperature of the shift unit 40. When the temperature of the shift unit 40 measured by the thermocouple 72 is between a low temperature threshold value, for example, 190 ° C. and a high temperature threshold value, for example, 280 ° C., the reformer 20 is in a heat balance state as a whole. Was confirmed by experiments. As shown in FIG. 3, when the temperature of the shift unit 40 falls below the low temperature threshold, the flow rate of the reforming water is reduced by about 10% to change the steam carbon ratio from 3 to 2.7, and the CO purification unit When the amount of CO oxidation air supplied to 60 is increased by about 20% and the ratio of oxygen to carbon monoxide is changed from 3 to 3.6, the temperature of the shift unit 40 rises and the heat balance of the reformer 20 is restored. This was empirically recognized and confirmed by experiments. As shown in FIG. 4, when the temperature of the shift unit 40 rises above the high temperature threshold, the flow rate of reforming water is increased by about 10% to change the steam carbon ratio from 3 to 3.3. If the amount of the oxidized CO air to be supplied is increased by about 20% and the ratio of oxygen to carbon monoxide is changed from 3 to 3.6, the temperature of the shift unit 40 decreases and the heat balance of the reformer 20 can be restored. It was recognized empirically and confirmed by experiments.
[0035]
The control device 73 takes in the temperature of the shift unit 40 from the thermocouple 72 and executes a program shown in FIGS. 5 and 6 to control the amount of reforming water and the amount of CO oxidized air in accordance with the temperature of the shift unit 40. 74 and 75 are controlled. In FIG. 5, when it is determined that the temperature Ts of the shift unit 40 is lower than the low temperature threshold TL1, for example, 190 ° C. (step 81), the flow rate control valve 74 is throttled to reduce the amount of reforming water by 10% ( Step 82), the amount of cooling in the main heat exchanger 34 is reduced. The flow rate control valve 75 is opened and CO oxidized air in anticipation that the parallel composition moves and the carbon monoxide concentration increases due to the decrease in the activity of the shift unit catalyst 42a due to the temperature decrease in the shift unit 40 and the decrease in the amount of water vapor. The amount is increased by 20% (step 83). It is determined whether or not the temperature Ts of the shift unit 40 has returned to the low temperature threshold TL1 or more (step 84). When the temperature Ts becomes equal to or higher than the low temperature threshold TL1, the amount of reforming water is returned to the rated value (step 85). Since the generation of water vapor is delayed, the amount of CO oxidized air remains increased for about 2 minutes, and after 2 minutes (step 86), the amount of CO oxidized air is returned to the rated value (step 87), and the steady operation state is reached. To. If the temperature Ts does not return to the low temperature threshold value TL1 or more, it is determined whether or not the temperature Ts has fallen below a lower limit value TL2, for example, 175 ° C. (step 88). Abnormal treatments such as stopping the supply of quality gas and turning on the alarm lamp are performed (step 89).
[0036]
In FIG. 6, when it is determined that the temperature Ts of the shift unit 40 is higher than the high temperature threshold TH1, for example, 280 ° C. (step 91), the flow control valve 74 is opened to increase the amount of reforming water by 10% ( Step 92) The cooling amount in the main heat exchanger 34 is increased. Assuming that the equilibrium composition moves and the carbon monoxide concentration increases due to the temperature rise of the shift unit 40, the flow control valve 75 is opened to increase the amount of CO oxidized air by 20% (step 93). It is determined whether or not the temperature Ts of the shift unit 40 has returned to the high temperature threshold value TH1 or less (step 94). When the temperature Ts becomes equal to or lower than the high temperature threshold value TH1, the amount of reforming water is returned to the rated value (step 95). It returns to the rated value (step 96) and enters a steady operation state. If the temperature Ts of the shift unit 40 does not return below the high temperature threshold TH1, it is determined whether or not the temperature of the shift unit 40 has risen above an upper limit value TH2, for example, 295 ° C. (step 97). Abnormal measures such as stopping the supply of reformed gas from the quality device 20 to the fuel cell 10 and turning on the alarm lamp are performed (step 98).
[0037]
In the above embodiment, after the gas-liquid mixed water vapor passes through the CO purification unit heat exchanger 70, the fuel is mixed with the gas-liquid mixed water vapor, but the fuel is mixed before the CO purification unit heat exchanger 70. You may mix with gas-liquid mixed steam. Further, the fuel may be directly supplied to the reaction chamber 31 of the reforming unit 30 separately from the steam.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an embodiment of a reformer according to the present invention.
FIG. 2 is a view showing temperature changes in each part of the reformer for reformed gas and steam.
FIG. 3 is a diagram illustrating a response when the temperature of the shift unit becomes lower than a low temperature threshold value.
FIG. 4 is a diagram showing correspondence when the temperature of the shift unit becomes higher than a high temperature threshold value.
FIG. 5 is a diagram showing a corresponding program when the temperature of the shift unit becomes lower than a low temperature threshold value.
FIG. 6 is a diagram showing a corresponding program when the temperature of the shift unit becomes higher than a high temperature threshold value.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Fuel cell, 20 ... Reformer, 30 ... Reforming part, 34 ... Main heat exchanger, 35 ... Evaporator, 36 ... Combustion part, 40 ... Shift part, 60 ... CO purification part, 70 ... CO purification part Heat exchanger, 71 ... mixing section, 72 ... measuring device, 73 ... control device, 74, 75 ... flow control valve.

Claims (5)

改質水を気液混合水蒸気に蒸発させる蒸発器と、燃焼部で生成された燃焼ガスにより活性温度域に加熱された改質部触媒により燃料と水蒸気とを改質ガスに改質する改質部と、該改質部で生成された改質ガスと前記気液混合水蒸気との間で熱交換し、前記改質ガスをシフト部触媒の活性温度域に冷却してシフト部に供給し、前記水蒸気を改質部触媒の活性温度域に加熱して前記改質部に供給する主熱交換器と、該主熱交換器で冷却された改質ガスに含まれる一酸化炭素ガスと水蒸気とをシフト部触媒により水素ガスと二酸化炭素ガスに変成させるシフト部と、前記シフト部から導出された改質ガスに含まれる一酸化炭素ガスをCO浄化部触媒により空気と反応させて二酸化炭素ガスに酸化するCO浄化部と、前記蒸発器と前記主熱交換器との間に接続され前記気液混合水蒸気により前記CO浄化部を流れる改質ガスの温度をCO浄化部触媒の活性温度域に低下させるCO浄化部熱交換器を備えたことを特徴とする改質装置。  Reformation that reforms fuel and steam into reformed gas by an evaporator that evaporates the reformed water into gas-liquid mixed steam and a reforming section catalyst heated to the active temperature range by the combustion gas generated in the combustion section And heat exchange between the reformed gas generated in the reforming section and the gas-liquid mixed steam, and the reformed gas is cooled to the active temperature range of the shift section catalyst and supplied to the shift section, A main heat exchanger for heating the steam to an activation temperature range of the reforming section catalyst and supplying the steam to the reforming section; a carbon monoxide gas and steam contained in the reformed gas cooled by the main heat exchanger; Is converted into hydrogen gas and carbon dioxide gas by the shift unit catalyst, and carbon monoxide gas contained in the reformed gas derived from the shift unit is reacted with air by the CO purification unit catalyst to form carbon dioxide gas. A CO purification unit that oxidizes, and the evaporator and the main heat exchanger. Reformer, wherein the connected the gas-liquid mixing steam it with a CO purification unit heat exchanger to lower the temperature of the reformed gas flowing through the CO purification unit to the active temperature range of the CO purification unit catalyst. 改質水を気液混合水蒸気に蒸発させる蒸発器と、該蒸発器で生成された気液混合水蒸気に燃料を混合する混合部と、燃焼部で生成された燃焼ガスにより活性温度域に加熱された改質触媒により燃料と水蒸気とを改質ガスに改質する改質部と、該改質部で生成された改質ガスと前記混合部で燃料が混合された気液混合水蒸気との間で熱交換し、前記改質ガスをシフト部触媒の活性温度域に冷却してシフト部に供給し、前記混合された水蒸気と燃料とを改質部触媒の活性温度域に加熱して前記改質部に供給する主熱交換器と、該主熱交換器で冷却された改質ガスに含まれる一酸化炭素ガスと水蒸気とをシフト部触媒により水素ガスと二酸化炭素ガスに変成させるシフト部と、前記シフト部から導出された改質ガスに含まれる一酸化炭素ガスをCO浄化部触媒により空気と反応させて二酸化炭素ガスにするCO浄化部と、前記蒸発器と前記主熱交換器との間に前記混合部の前または後で接続され前記気液混合水蒸気により前記CO浄化部を流れる改質ガスの温度をCO浄化部触媒の活性温度域に低下させるCO浄化部熱交換器を備えたことを特徴とする改質装置。An evaporator that evaporates the reformed water into gas-liquid mixed water vapor, a mixing unit that mixes fuel with the gas-liquid mixed water vapor generated by the evaporator, and a combustion gas generated in the combustion unit are heated to the active temperature range. A reforming unit that reforms fuel and steam into reformed gas using the reforming catalyst, and a reformed gas generated in the reforming unit and a gas-liquid mixed steam in which fuel is mixed in the mixing unit. The reformed gas is cooled to the active temperature range of the shift unit catalyst and supplied to the shift unit, and the mixed steam and fuel are heated to the active temperature range of the reformer unit catalyst to improve the reformed gas. A main heat exchanger to be supplied to the mass part, and a shift unit for converting carbon monoxide gas and water vapor contained in the reformed gas cooled by the main heat exchanger into hydrogen gas and carbon dioxide gas by the shift unit catalyst, , Carbon monoxide gas contained in the reformed gas derived from the shift unit is converted into CO. A CO purification unit to the carbon dioxide gas is reacted with air by unit catalyst, said by the gas-liquid mixing steam before or connected later in the mixing section between the main heat exchanger and the evaporator CO A reforming apparatus comprising a CO purification unit heat exchanger that lowers the temperature of the reformed gas flowing through the purification unit to an activation temperature range of the CO purification unit catalyst. 請求項2において、前記主熱交換器の気液混合水蒸気の流入口と前記CO浄化部熱交換器の気液混合水蒸気の流出口とを接近して配置し、該気液混合水蒸気の流入口と流出口との間に前記混合部を設けたことを特徴とする改質装置。In claim 2, the main the heat exchanger inlet of the gas-liquid mixing steam close the CO purification unit heat exchanger outlet of the gas-liquid mixing steam disposed, the inlet of the gas-liquid mixing steam The reformer is provided with the mixing section between the outlet and the outlet. 請求項1乃至3のいずれかにおいて、前記シフト部の温度を測定する測定装置と、該測定装置により測定されたシフト部の温度が低温しきい値より低い場合、前記改質水量を減少し、前記CO浄化部に供給する空気量を増加し、シフト部の温度が高温しきい値より高い場合、前記改質水量を増加し、前記CO浄化部に供給する空気量を増加する制御装置を備えたことを特徴とする改質装置。  In any one of Claims 1 thru | or 3, When the temperature of the shift part measured by this measuring device and the temperature of the shift part measured by this measuring device is lower than a low temperature threshold, the amount of the reforming water is decreased, A controller for increasing the amount of air supplied to the CO purification unit and increasing the amount of reformed water and increasing the amount of air supplied to the CO purification unit when the temperature of the shift unit is higher than a high temperature threshold; A reformer characterized by that. 請求項4において、前記制御装置は、前記シフト部の温度が低温しきい値より低いときに前記改質水量を減少し、前記CO浄化部に供給する空気量を増加しても、前記シフト部の温度が下限値より低下した場合、または前記シフト部の温度が高温しきい値より高いときに前記改質水量を増加し、前記CO浄化部に供給する空気量を増加しても前記シフト部の温度が上限値より上昇した場合、異常処置を行うことを特徴とする改質装置。  5. The control device according to claim 4, wherein the control unit reduces the amount of reforming water when the temperature of the shift unit is lower than a low temperature threshold and increases the amount of air supplied to the CO purification unit. Even when the temperature of the shift unit is lower than a lower limit value or when the temperature of the shift unit is higher than a high temperature threshold, the amount of reforming water is increased and the amount of air supplied to the CO purification unit is increased. A reformer characterized in that an abnormal treatment is performed when the temperature of the gas rises above an upper limit value.
JP2002281713A 2002-09-26 2002-09-26 Reformer Expired - Fee Related JP4204291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002281713A JP4204291B2 (en) 2002-09-26 2002-09-26 Reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002281713A JP4204291B2 (en) 2002-09-26 2002-09-26 Reformer

Publications (2)

Publication Number Publication Date
JP2004115321A JP2004115321A (en) 2004-04-15
JP4204291B2 true JP4204291B2 (en) 2009-01-07

Family

ID=32276091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002281713A Expired - Fee Related JP4204291B2 (en) 2002-09-26 2002-09-26 Reformer

Country Status (1)

Country Link
JP (1) JP4204291B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4784047B2 (en) * 2004-06-09 2011-09-28 トヨタ自動車株式会社 Fuel cell system
JP4713260B2 (en) * 2004-07-20 2011-06-29 パナソニック株式会社 Hydrogen generator, operating method thereof, and fuel cell system
US20090142631A1 (en) * 2004-07-28 2009-06-04 Ceramic Fuel Cells Limited Fuel cell system
JP4009285B2 (en) 2004-11-24 2007-11-14 アイシン精機株式会社 Reformer
KR101126210B1 (en) 2004-12-10 2012-03-23 삼성에스디아이 주식회사 Cooling apparatus for carbon monoxide remover and fuel cell system
JP4912742B2 (en) * 2006-05-18 2012-04-11 パナソニック株式会社 Hydrogen generator and fuel cell system
JP5138986B2 (en) * 2006-06-12 2013-02-06 富士電機株式会社 Hydrogen generator and fuel cell system including the same
JP2008074688A (en) * 2006-09-25 2008-04-03 Aisin Seiki Co Ltd Reforming apparatus
KR100859940B1 (en) * 2006-11-02 2008-09-23 삼성에스디아이 주식회사 Reformer of fuel cell system

Also Published As

Publication number Publication date
JP2004115321A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
EP0985635B1 (en) Hydrogen generating apparatus
JP4105758B2 (en) Fuel cell system
US6797420B2 (en) Power generation device and operation method therefor
JP2003197243A (en) Unified fuel processing equipment for rapid starting and operation control
JP2009123488A (en) Fuel cell system
JP2003226507A (en) Staged lean combustion for rapid start of fuel processor
JP2006273619A (en) Reformer
JP4204291B2 (en) Reformer
TWI385845B (en) Solid oxide fuel cell (sofc) system and its operation method
JP2004006093A (en) Fuel treating equipment and fuel cell power generation system
JP2003187848A (en) Fuel cell system
JP2006219328A (en) Hydrogen generation apparatus and fuel cell system using the same
JP2001313053A (en) Fuel cell system
JP4531320B2 (en) Operation control method for hydrogen-containing gas generator
JP4624382B2 (en) Operation control method for hydrogen-containing gas generator
US20040011703A1 (en) Warm-up device for catalytic reactor
JP2005353347A (en) Fuel cell system
JP4660910B2 (en) Fuel cell power generation apparatus and starting method thereof
WO2012032744A1 (en) Fuel cell system
JP2005216615A (en) Fuel processing device and fuel cell power generation system
JP5274003B2 (en) Fuel cell system
JPH0881202A (en) Methanol reformer for fuel cell
JP2004119214A (en) Fuel cell system
JP2001163601A (en) Reforming device
JP2004103358A (en) Hydrogen-supply system for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees