JP2005306658A - Hydrogen producing apparatus - Google Patents

Hydrogen producing apparatus Download PDF

Info

Publication number
JP2005306658A
JP2005306658A JP2004125264A JP2004125264A JP2005306658A JP 2005306658 A JP2005306658 A JP 2005306658A JP 2004125264 A JP2004125264 A JP 2004125264A JP 2004125264 A JP2004125264 A JP 2004125264A JP 2005306658 A JP2005306658 A JP 2005306658A
Authority
JP
Japan
Prior art keywords
gas
water
catalyst body
combustion
cylindrical wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004125264A
Other languages
Japanese (ja)
Inventor
Akira Maenishi
晃 前西
Yuji Mukai
裕二 向井
Kunihiro Ukai
邦弘 鵜飼
Tomomichi Asou
智倫 麻生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004125264A priority Critical patent/JP2005306658A/en
Publication of JP2005306658A publication Critical patent/JP2005306658A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen producing apparatus capable of effectively heating water accumulated in a water-vaporization section while simplifying a configuration of gas-flow channels. <P>SOLUTION: This hydrogen producing apparatus 10 is equipped with a first cylindrical wall member 11, a second cylindrical wall member 12 disposed outside the first cylindrical wall member 11 coaxially therewith, a cylindrical water-vaporization section 13 and a cylindrical reforming catalyst body 14 both arranged so as to be lined up in the axial direction of the first and second cylindrical wall members 11, 12 in a first cylindrical space between the first cylindrical wall member 11 and the second cylindrical wall member 12, a burner 15 generating a combustion gas through combustion of a combustible gas, a third cylindrical wall member 16 disposed inside the first cylindrical wall member 11 and arranged coaxially therewith to form a second cylindrical space to flow the combustion gas between itself and the first cylindrical wall member 11, and a heater arranged inside the second cylindrical space. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は水素生成装置に関し、特に水蒸発部に溜まった水を効率的に蒸発することを可能にする水素生成装置に関する。   The present invention relates to a hydrogen generation apparatus, and more particularly to a hydrogen generation apparatus that enables water accumulated in a water evaporation section to be efficiently evaporated.

燃料電池システムは、燃料電池のアノードに水素リッチなガス(改質ガス)を供給し、燃料電池のカソードに酸化剤ガスを供給してこれらのガスを燃料電池の内部で電気化学的に反応させて電気と熱を同時に発生させるものである。   The fuel cell system supplies a hydrogen-rich gas (reformed gas) to the anode of the fuel cell, supplies an oxidant gas to the cathode of the fuel cell, and causes these gases to react electrochemically inside the fuel cell. It generates electricity and heat at the same time.

ここで改質ガスの生成法としては、原料ガス(例えば、天然ガスや都市ガス)と水蒸気から水蒸気改質反応によって水素ガスを製造する水素生成装置が使用されており、この水蒸気改質反応において、水を蒸発させる蒸発熱や改質反応を進める反応熱を加熱用バーナーの高温の燃焼ガスから受け取ることが必要であり、水および改質触媒体に対して燃焼ガスと効率良く熱交換させることが熱エネルギーの有効活用の観点から重要な課題になっている。   Here, as a method for generating the reformed gas, a hydrogen generator for producing hydrogen gas from a raw material gas (for example, natural gas or city gas) and steam by a steam reforming reaction is used. It is necessary to receive the heat of evaporation that evaporates water and the heat of reaction that promotes the reforming reaction from the high-temperature combustion gas of the heating burner, so that water and the reforming catalyst body can efficiently exchange heat with the combustion gas. However, it is an important issue from the viewpoint of effective use of thermal energy.

この課題に関連する一報告例として、改質触媒体を内蔵する筒状の改質部の周囲を、燃焼ガス流路を挟んで周方向に覆うようにして水蒸発部を配置させた水素生成装置が提案され(例えば、従来例としての特許文献1参照)、この水素生成装置においては、燃焼ガス流路および改質部(改質触媒体)を水蒸発部で覆うことによって燃焼ガス流路を流れる高温の燃焼ガスの放熱量および高温に保たれた改質触媒体の放熱量を少なくして水素生成装置の熱効率を改善させている。
特開2003−252604号公報
As a report example related to this problem, hydrogen generation in which a water evaporation part is arranged so as to cover the periphery of the cylindrical reforming part containing the reforming catalyst body in the circumferential direction with the combustion gas flow path interposed therebetween An apparatus has been proposed (for example, see Patent Document 1 as a conventional example). In this hydrogen generator, a combustion gas flow path is formed by covering a combustion gas flow path and a reforming section (reforming catalyst body) with a water evaporation section. The amount of heat released from the high-temperature combustion gas flowing through the gas and the amount of heat released from the reforming catalyst body maintained at a high temperature are reduced to improve the thermal efficiency of the hydrogen generator.
JP 2003-252604 A

しかし、前述した従来例の水素生成装置では、水素生成装置の熱効率の改善を優先させたため、原料ガスおよび水蒸気を含む混合ガスを水蒸発部から改質部に向けて流出させる際、この混合ガスの流れの向きを水蒸発部の軸方向から周方向に変更させることに起因して混合ガス流路の構成を複雑化させている。例えば、水蒸発部の混合ガス出口と改質部の混合ガス入口を連結する混合ガス供給パイプは径方向に延び、この混合ガス供給パイプと軸方向に延びる改質部との接続箇所においては、溶接等の配管施工を施すことが必要であり、この混合ガス流路の配管施工は、水素生成装置のコストアップや構造体の複雑化に伴う構造体耐久性能の劣化をもたらす可能性がある。   However, in the above-described conventional hydrogen generator, priority has been given to improving the thermal efficiency of the hydrogen generator, so when the mixed gas containing the raw material gas and water vapor flows out from the water evaporation section toward the reforming section, this mixed gas The configuration of the mixed gas flow path is complicated by changing the flow direction from the axial direction of the water evaporation section to the circumferential direction. For example, the mixed gas supply pipe that connects the mixed gas outlet of the water evaporation section and the mixed gas inlet of the reforming section extends in the radial direction, and at the connection point between the mixed gas supply pipe and the reforming section that extends in the axial direction, It is necessary to perform piping construction such as welding, and this piping construction of the mixed gas flow path may lead to deterioration of the structure durability performance due to the cost increase of the hydrogen generator and the complexity of the structure.

このような構成に対して、同一軸方向に筒状の水蒸発部と改質触媒体を並べて配置させ、混合ガスの流れを軸方向に沿って水蒸発部から改質触媒体に向けてスムーズに上昇できれば、混合ガス流路の簡素化を図ることが可能であり、上記のような問題を解消して望ましい混合ガス流路の構成を実現することができる。   For such a configuration, the cylindrical water evaporation section and the reforming catalyst body are arranged side by side in the same axial direction, and the flow of the mixed gas is smoothly directed from the water evaporation section to the reforming catalyst body along the axial direction. Can be simplified, the mixed gas flow path can be simplified, and the above-described problems can be solved and a desirable mixed gas flow path configuration can be realized.

ところが、水蒸発部において軸方向に混合ガス(水蒸気)を流すような構成では、水素生成装置の起動時に水蒸発部の下端に溜まった水に対して蒸発熱を速やかに供給できず、このような溜まった水を蒸発に必要な所定温度にまで加熱するのに時間を要して、水素生成装置の起動動作が緩慢になってしまうという問題がある。   However, in the configuration in which the mixed gas (water vapor) flows in the axial direction in the water evaporation unit, the heat of evaporation cannot be quickly supplied to the water accumulated at the lower end of the water evaporation unit when the hydrogen generator is started. There is a problem that it takes time to heat the accumulated water to a predetermined temperature required for evaporation, and the start-up operation of the hydrogen generator becomes slow.

本発明は、斯かる事情に鑑みてなされたものであり、その目的は、混合ガス流路の構成の簡素化を図ると共に、水素生成装置の起動時に水蒸発部に溜まった水を効率的に加熱することを可能にする水素生成装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to simplify the configuration of the mixed gas flow path and to efficiently collect water accumulated in the water evaporation section when the hydrogen generator is activated. An object of the present invention is to provide a hydrogen generator that can be heated.

上記の課題を解決するため、本発明に係る水素生成装置は、第一の筒状壁部材と、前記第一の筒状壁部材の外側に前記第一の筒状壁部材と同軸状に配置した第二の筒状壁部材と、前記第一の筒状壁部材と前記第二の筒状壁部材との間の第一の筒状空間において前記第一及び第二の筒状壁部材の軸方向に並ぶように設けられた筒状の水蒸発部および筒状の改質触媒体と、可燃ガスの燃焼によって燃焼ガスを生成するバーナーと、前記第一の筒状壁部材の内側に前記第一の筒状壁部材と同軸状に配置して、前記燃焼ガスを流すための第二の筒状空間を前記第一の筒状壁部材との間で形成する第三の筒状壁部材と、前記第二の筒状空間の内部に配置した発熱体と、を備えており、前記水蒸発部の水入口を通して流入する水を前記水蒸発部の内部において水蒸気に蒸発させると共に、前記水蒸発部の原料ガス入口を通して流入する原料ガスを前記水蒸気とを混合させ、前記原料ガスおよび前記水蒸発部を含む混合ガスを前記水蒸発部から前記改質触媒体に流入させ、前記流入した混合ガスを、前記改質触媒体を通過させながら改質反応によって水素リッチな改質ガスに改質するものである。   In order to solve the above-described problems, a hydrogen generator according to the present invention includes a first cylindrical wall member and a coaxial arrangement with the first cylindrical wall member outside the first cylindrical wall member. In the first cylindrical space between the second cylindrical wall member and the first cylindrical wall member and the second cylindrical wall member. A cylindrical water evaporation portion and a cylindrical reforming catalyst body provided so as to be aligned in the axial direction, a burner that generates combustion gas by combustion of combustible gas, and the inside of the first cylindrical wall member A third cylindrical wall member disposed coaxially with the first cylindrical wall member and forming a second cylindrical space for flowing the combustion gas with the first cylindrical wall member And a heating element disposed inside the second cylindrical space, and the water flowing in through the water inlet of the water evaporation unit is introduced into the water evaporation unit. The raw material gas flowing in through the raw material gas inlet of the water evaporation unit is mixed with the water vapor, and the mixed gas including the raw material gas and the water evaporation unit is supplied from the water evaporation unit to the reforming catalyst. The mixed gas that has flowed into the medium is reformed into a hydrogen-rich reformed gas by a reforming reaction while passing through the reforming catalyst body.

前記発熱体は、例えば、通電加熱用のヒータ及び/又はガス燃焼触媒体である。   The heating element is, for example, a heater for electric heating and / or a gas combustion catalyst body.

そして、前記水蒸発部の水入口を通して前記水蒸発部の内部に流入する水を、前記発熱体によって加熱して水蒸気に蒸発するように構成されている。   The water flowing into the water evaporation unit through the water inlet of the water evaporation unit is heated by the heating element to evaporate into water vapor.

これにより、混合ガス流路の構成の簡素化を図ると共に、水素生成装置の起動時に水蒸発部に溜まった水を発熱体によって効率的に加熱し得る水素生成装置が得られる。   Thereby, while simplifying the structure of a mixed gas flow path, the hydrogen generator which can heat the water collected in the water evaporation part at the time of starting of a hydrogen generator efficiently with a heat generating body is obtained.

更に、前記水蒸発部の内部の温度を検知する水蒸発部温度測定手段と、ヒータ制御部とを備えて、前記ヒータ制御部は、前記水蒸発部温度検知手段により検知される温度に基づいて前記ヒータの前記水への加熱を制御するように構成しても良い。   Furthermore, a water evaporation part temperature measuring means for detecting the temperature inside the water evaporation part and a heater control part are provided, and the heater control part is based on the temperature detected by the water evaporation part temperature detection means. You may comprise so that the heating to the said water of the said heater may be controlled.

これにより、水素生成装置の起動時に、水蒸発部の内部の温度を水蒸発部温度測定手段により検知して、この検知温度に基づいてヒータ制御部が、適切にヒータの水への加熱動作を制御できる。   Thus, when the hydrogen generator is started, the temperature inside the water evaporation unit is detected by the water evaporation unit temperature measuring means, and the heater control unit appropriately performs the heating operation of the heater to the water based on the detected temperature. Can be controlled.

そして、前記水蒸発部温度測定手段により検知される温度が所定温度以上において、前記ヒータ制御部は、前記ヒータの前記水への加熱を停止するようにヒータ加熱動作を制御すれば、無駄なヒータ加熱を止めてエネルギーロスを抑制できる。   If the temperature detected by the water evaporation unit temperature measuring means is equal to or higher than a predetermined temperature, the heater control unit controls a heater heating operation so as to stop the heating of the heater to the useless heater. Heating can be stopped to suppress energy loss.

また、前記ガス燃焼触媒体の一例は、触媒粒子と前記触媒粒子を担持する金属担体とを備えたものである。もしくは、前記ガス燃焼触媒体の他の例は、触媒粒子と前記触媒粒子を担持する筒状のセラミック担体とを備えたものである。   In addition, an example of the gas combustion catalyst body includes catalyst particles and a metal carrier that supports the catalyst particles. Alternatively, another example of the gas combustion catalyst body includes catalyst particles and a cylindrical ceramic carrier that supports the catalyst particles.

触媒粒子の触媒機能を使って未燃ガスをガス燃焼触媒体で簡単に燃焼処理でき、これにより未燃ガスの大気中への放出を防ぐと共に、未燃ガス燃焼によって得られる熱を利用して水蒸発部に溜まった水を加熱できる。   Using the catalytic function of the catalyst particles, the unburned gas can be easily burned with the gas combustion catalyst body, thereby preventing the unburned gas from being released into the atmosphere and utilizing the heat obtained by unburned gas combustion. Water accumulated in the water evaporation section can be heated.

前記金属担体は、例えば、筒状の第一の金属板と前記第一の金属板の側面に接触する突出部を有してコルゲート状に加工される第二の金属板とを備えたものであっても良い。   The metal carrier includes, for example, a cylindrical first metal plate and a second metal plate that has a protruding portion that contacts a side surface of the first metal plate and is processed into a corrugated shape. There may be.

このような金属担体を使用することにより、幅の狭い流路内(例えば、5mm程度)に多孔質部を多層に配置してもこの部分に割れやひび等をきたすことなく、設計自由度の優れたガス燃焼触媒体が得られる。   By using such a metal carrier, even if the porous portion is arranged in multiple layers in a narrow flow path (for example, about 5 mm), the degree of freedom in design can be reduced without causing cracks or cracks in this portion. An excellent gas combustion catalyst body can be obtained.

また、前記セラミック担体には、例えば、軸方向に貫通する複数の孔がハニカム状に形成されているように構成しても良い。   Further, the ceramic carrier may be configured such that, for example, a plurality of holes penetrating in the axial direction are formed in a honeycomb shape.

このようなセラミック担体を使用することにより、安価なガス燃焼触媒体が得られる。   By using such a ceramic carrier, an inexpensive gas combustion catalyst body can be obtained.

前記ガス燃焼触媒体は、前記第一の筒状壁部材の内周面または前記第三の筒状壁部材の外周面に触媒粒子を塗布することにより構成しても構わない。   The gas combustion catalyst body may be configured by applying catalyst particles to the inner peripheral surface of the first cylindrical wall member or the outer peripheral surface of the third cylindrical wall member.

こうして、部品点数を減らして、簡易的にガス燃焼触媒体を形成することも可能である。   Thus, it is possible to easily form a gas combustion catalyst body by reducing the number of parts.

本発明に係る水素生成装置は、中心軸の方向に延びる筒状の水蒸発部と、前記水蒸発部の中心軸の延長線上において前記水蒸発部の中心軸に並行して延びる筒状の改質触媒体と、可燃ガスの燃焼によって燃焼ガスを生成するバーナーと、前記水蒸発部によって囲まれた領域内に前記水蒸発部と同軸状に配置されて前記改質触媒体から流出する改質ガス中に含有する一酸化炭素ガスを除去する触媒体を収納するCOガス除去部と、前記COガス除去部と前記水蒸発部の間の、前記燃焼ガスを流すための筒状の燃焼ガス流路に配置された発熱体と、を備えており、前記水蒸発部の水入口を通して流入する水を前記水蒸発部の内部において水蒸気に蒸発させると共に、前記水蒸発部の原料ガス入口を通して流入する原料ガスを前記水蒸気とを混合させ、前記原料ガスおよび前記水蒸発部を含む混合ガスを前記水蒸発部から前記改質触媒体に流入させ、前記流入した混合ガスを、前記改質触媒体を通過させながら改質反応によって水素リッチな改質ガスに改質するものである。   A hydrogen generator according to the present invention includes a cylindrical water evaporation section extending in the direction of the central axis, and a cylindrical modification extending in parallel with the central axis of the water evaporation section on an extension line of the central axis of the water evaporation section. A reforming catalyst body, a burner that generates combustion gas by combustion of combustible gas, and a reformer that is disposed coaxially with the water evaporation section in a region surrounded by the water evaporation section and flows out of the reforming catalyst body A CO gas removal unit that houses a catalyst body for removing carbon monoxide gas contained in the gas, and a cylindrical combustion gas flow for flowing the combustion gas between the CO gas removal unit and the water evaporation unit A heating element disposed in the path, and evaporates water flowing through the water inlet of the water evaporation section into water vapor inside the water evaporation section and flows through the source gas inlet of the water evaporation section The raw material gas is mixed with the water vapor. The mixed gas containing the raw material gas and the water evaporating part is caused to flow from the water evaporating part into the reforming catalyst body, and the introduced mixed gas is hydrogen-rich by a reforming reaction while passing through the reforming catalyst body. It reforms to a new reformed gas.

前記発熱体は、例えば、通電加熱用のヒータ及び/又はガス燃焼触媒体である。   The heating element is, for example, a heater for electric heating and / or a gas combustion catalyst body.

そして、前記水蒸発部の水入口を通して前記水蒸発部の内部に流入する水を、前記発熱体によって加熱して水蒸気に蒸発するように構成されている。   The water flowing into the water evaporation unit through the water inlet of the water evaporation unit is heated by the heating element to evaporate into water vapor.

これにより、混合ガス流路の構成の簡素化を図ると共に、水素生成装置の起動時に水蒸発部に溜まった水を発熱体によって効率的に加熱し得る水素生成装置が得られる。同時に、水素生成装置の起動時に、COガス除去部に内蔵する触媒体もその触媒反応温度まで迅速かつ効率的に加熱できる。   Thereby, while simplifying the structure of a mixed gas flow path, the hydrogen generator which can heat the water collected in the water evaporation part at the time of starting of a hydrogen generator efficiently with a heat generating body is obtained. At the same time, when the hydrogen generator is started, the catalyst body incorporated in the CO gas removal unit can be quickly and efficiently heated to the catalytic reaction temperature.

更に、前記水蒸発部の内部の温度を検知する水蒸発部温度測定手段と、ヒータ制御部とを備え、前記ヒータ制御部は、前記水蒸発部温度検知手段により検知される温度に基づいて前記ヒータの前記水への加熱を制御するように構成しても良い。   Further, the apparatus includes a water evaporation unit temperature measuring unit that detects a temperature inside the water evaporation unit, and a heater control unit, the heater control unit based on the temperature detected by the water evaporation unit temperature detection unit. You may comprise so that the heating to the said water of a heater may be controlled.

これにより、水素生成装置の起動時に、水蒸発部の内部の温度を水蒸発部温度測定手段により検知して、この検知温度に基づいてヒータ制御部が、適切にヒータの水への加熱動作を制御できる。   Thus, when the hydrogen generator is started, the temperature inside the water evaporation unit is detected by the water evaporation unit temperature measuring means, and the heater control unit appropriately performs the heating operation of the heater to the water based on the detected temperature. Can be controlled.

前記水蒸発部温度測定手段により検知される温度が所定温度以上において、前記ヒータ制御部は、前記ヒータの前記水への加熱を停止するようにヒータ加熱動作を制御すれば、無駄なヒータ加熱を止めてエネルギーロスを抑制できる。   If the temperature detected by the water evaporation section temperature measuring means is equal to or higher than a predetermined temperature, the heater control section controls useless heating of the heater by controlling the heater heating operation so as to stop the heating of the heater to the water. Stops energy loss.

また、前記触媒体の温度を検知する触媒体温度測定手段と、ヒータ制御部とを備え、前記ヒータ制御部は、前記触媒体温度測定手段により検知される温度に基づいて前記ヒータの前記触媒体への加熱を制御するように構成しても良い。   In addition, a catalyst body temperature measuring unit for detecting the temperature of the catalyst body and a heater control unit are provided, and the heater control unit is configured to detect the catalyst body of the heater based on a temperature detected by the catalyst body temperature measuring unit. You may comprise so that the heating to may be controlled.

これにより、水素生成装置の起動時に、触媒体の内部の温度を触媒体温度測定手段により検知して、この検知温度に基づいてヒータ制御部が、適切にヒータの触媒体への加熱動作を制御できる。   As a result, when the hydrogen generator is started, the temperature inside the catalyst body is detected by the catalyst body temperature measuring means, and the heater controller appropriately controls the heating operation of the heater to the catalyst body based on the detected temperature. it can.

前記触媒体は、例えば、前記一酸化炭素ガスをシフト反応する変成触媒体である。   The catalyst body is, for example, a shift catalyst body that shifts the carbon monoxide gas.

この場合、前記水素生成装置の負荷変動時に、前記触媒体温度測定手段により検知される温度が所定温度以下において、前記ヒータ制御部は、前記ヒータの前記変成触媒体への加熱を開始しても良い。負荷変動時に触媒体の温度低下をきたし易く、これを補うため、ヒータにより変成触媒体を加熱することが効果的である。   In this case, when the temperature detected by the catalyst body temperature measuring means is not more than a predetermined temperature when the load of the hydrogen generator is fluctuated, the heater control unit may start heating the shift catalyst body of the heater. good. When the load fluctuates, the temperature of the catalyst body tends to decrease, and in order to compensate for this, it is effective to heat the shift catalyst body with a heater.

なお、前記触媒体は、前記一酸化炭素ガスを選択酸化する選択酸化触媒体であっても良い
前記ガス燃焼触媒体の一例は、触媒粒子と前記触媒粒子を担持する金属担体とを備えものである。前記ガス燃焼触媒体の他の例は、触媒粒子と前記触媒粒子を担持する筒状のセラミック担体とを備えたものである。
The catalyst body may be a selective oxidation catalyst body that selectively oxidizes the carbon monoxide gas. An example of the gas combustion catalyst body includes catalyst particles and a metal carrier that supports the catalyst particles. is there. Another example of the gas combustion catalyst body includes catalyst particles and a cylindrical ceramic carrier that supports the catalyst particles.

触媒粒子の触媒機能を使って未燃ガスをガス燃焼触媒体で簡単に燃焼処理でき、これにより未燃ガスの大気中への放出を防ぐと共に、未燃ガス燃焼によって得られる熱を利用して水蒸発部に溜まった水を加熱できる。   Using the catalytic function of the catalyst particles, the unburned gas can be easily burned with the gas combustion catalyst body, thereby preventing the unburned gas from being released into the atmosphere and utilizing the heat obtained by unburned gas combustion. Water accumulated in the water evaporation section can be heated.

前記金属担体は、筒状の第一の金属板と前記第一の金属板の側面に接触する突出部を有してコルゲート状に加工される第二の金属板とを備えたものであっても良い。   The metal carrier includes a cylindrical first metal plate and a second metal plate that has a protruding portion that contacts a side surface of the first metal plate and is processed into a corrugated shape. Also good.

このような金属担体を使用することにより、幅の狭い流路内(例えば、5mm程度)に多孔質部を多層に配置してもこの部分に割れやひび等をきたすことなく、設計自由度の優れたガス燃焼触媒体が得られる。   By using such a metal carrier, even if the porous portion is arranged in multiple layers in a narrow flow path (for example, about 5 mm), the degree of freedom in design can be reduced without causing cracks or cracks in this portion. An excellent gas combustion catalyst body can be obtained.

前記セラミック担体には、軸方向に貫通する複数の孔がハニカム状に形成されるように構成しても良い。   The ceramic carrier may be configured such that a plurality of holes penetrating in the axial direction are formed in a honeycomb shape.

このようなセラミック担体を使用することにより、安価なガス燃焼触媒体が得られる。   By using such a ceramic carrier, an inexpensive gas combustion catalyst body can be obtained.

本発明によれば、混合ガス流路の構成の簡素化を図ると共に、水素生成装置の起動時に水蒸発部に溜まった水を効率的に加熱し得る水素生成装置が得られる。   ADVANTAGE OF THE INVENTION According to this invention, while aiming at simplification of the structure of a mixed gas flow path, the hydrogen generator which can heat efficiently the water collected in the water evaporation part at the time of starting of a hydrogen generator is obtained.

以下、図面を参照して本発明の実施の形態を説明する。なお、図中に「上」と記した側を上方とし、「下」と記した側を下方として、更に、円筒状の水素生成装置10の上下の方向を軸方向とし、水素生成装置10の第一の中心軸110を中心にして描く円周に沿った方向を周方向とし、その円周の半径に沿った方向を径方向として各実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings. In the figure, the side marked “upper” is the upper side, the side marked “lower” is the lower side, and the vertical direction of the cylindrical hydrogen generator 10 is the axial direction. Each embodiment will be described with the direction along the circumference drawn around the first central axis 110 as the circumferential direction and the direction along the radius of the circumference as the radial direction.

(実施の形態1)
図1は、本発明の実施の形態1に係る水素生成装置の内部構造を示す断面図である。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing the internal structure of the hydrogen generator according to Embodiment 1 of the present invention.

最初に、図1に示す水素生成装置10の全体構成の概略を説明する。   First, an outline of the overall configuration of the hydrogen generator 10 shown in FIG. 1 will be described.

水素生成装置10は主として、第一の中心軸110を共有して二重管を形成する円筒状のシームレス金属製(ステンレス製)の第一の筒状壁部材11および第二の筒状壁部材12と、第一および第二の筒状壁部材11、12によって区画された円筒状の領域に形成され、第一および第二の筒状壁部材11、12の第一の中心軸110の方向に延びる円筒状の水蒸発部13と、この第一の中心軸110の方向に水蒸発部13に並んで配置され、第一および第二の筒状壁部材11、12によって区画された領域に配置された円筒状の白金系改質触媒体14と、第一の筒状壁部材11の下端からその内部の上端付近まで挿入して配置され、第一の筒状壁部材11との間で同軸の二重管を形成する円筒状のシームレス金属製(ステンレス製)の第三の筒状壁部材16と、第二の筒状壁部材12の上半分を覆って、第二の筒状壁部材12との間で二重管を形成するシームレス金属製(ステンレス製)の円筒状カバー22と、を有している。   The hydrogen generator 10 mainly includes a first cylindrical wall member 11 and a second cylindrical wall member made of cylindrical seamless metal (stainless steel) that share a first central axis 110 to form a double pipe. 12 and the first central axis 110 of the first and second cylindrical wall members 11, 12 formed in a cylindrical region defined by the first and second cylindrical wall members 11, 12. In a region partitioned by the first and second cylindrical wall members 11 and 12, and arranged in the direction of the first central axis 110 along the water evaporation unit 13. Between the arranged cylindrical platinum-based reforming catalyst body 14 and the lower end of the first cylindrical wall member 11 to the vicinity of the upper end inside the first cylindrical wall member 11, and between the first cylindrical wall member 11 Third cylindrical seamless metal (stainless steel) forming a coaxial double tube A seamless metal (stainless steel) cylindrical cover that covers the upper half of the cylindrical wall member 16 and the second cylindrical wall member 12 and forms a double tube with the second cylindrical wall member 12 22.

ここで、水蒸発部13に溜まった水に対する加熱用のヒータ装置は、水蒸発部13の下端13dの近傍において、第三の筒状壁部材16との間で隙間を有するようにして第一の筒状壁部材11の内周面に取り付けられた発熱体としての円筒状のヒータ131と、水蒸発部13の水溜り部38の上方位置に第二の筒状壁部材12に設置され、水蒸発部13の内部の温度を測定する水蒸発部温度測定手段64(例えば、熱電対)と、水蒸発部温度測定手段64により検知した温度に基づいてヒータ131への出力を制御するヒータ制御部130と、によって構成されている。なおここで、ヒータ131の例としては、通電用の発熱線により構成される発熱体がある。   Here, the heater device for heating the water accumulated in the water evaporating unit 13 has a gap with the third cylindrical wall member 16 in the vicinity of the lower end 13 d of the water evaporating unit 13. A cylindrical heater 131 as a heating element attached to the inner peripheral surface of the cylindrical wall member 11, and the second cylindrical wall member 12 at a position above the water reservoir 38 of the water evaporation unit 13, A water evaporator temperature measuring means 64 (for example, a thermocouple) that measures the temperature inside the water evaporator 13 and a heater control that controls output to the heater 131 based on the temperature detected by the water evaporator temperature measuring means 64. Part 130. Here, as an example of the heater 131, there is a heating element constituted by a heating wire for energization.

また図1によれば、バーナー15の火炎が下方に向かうようにバーナー15が第一の筒状壁部材11の上端に配置されている。   Moreover, according to FIG. 1, the burner 15 is arrange | positioned at the upper end of the 1st cylindrical wall member 11 so that the flame of the burner 15 may go below.

より詳しくは、第三の筒状壁部材16の内部にその上端から燃焼筒50が挿入され、燃焼筒50の下端50Aは、第一の筒状壁部材11(第三の筒状壁部材16)の軸方向の中央付近(改質触媒体14の下端14dの近傍)に位置している。   More specifically, the combustion cylinder 50 is inserted into the third cylindrical wall member 16 from the upper end thereof, and the lower end 50A of the combustion cylinder 50 is connected to the first cylindrical wall member 11 (third cylindrical wall member 16). ) In the axial center (near the lower end 14d of the reforming catalyst body 14).

ここで、燃焼筒50の上端50Bに設けられた環状の鍔部50Sを、第一の筒状壁部材11および円筒状カバー22の上端に当接させて燃焼筒50の軸方向に対する位置決めを行っている。併せて、燃焼筒50の内部領域を除き、この鍔部50Sによって円筒状カバー22に囲まれた水素生成装置10の上端を覆っており、鍔部50Sが蓋部材の役割(第一、第二および第三の筒状壁部材11、12、16の上方に設けられた蓋部材としての役割)を果たしている。そして、この鍔部50Sにバーナー15が接続されている。   Here, the annular flange 50S provided at the upper end 50B of the combustion cylinder 50 is brought into contact with the upper ends of the first cylindrical wall member 11 and the cylindrical cover 22 to position the combustion cylinder 50 in the axial direction. ing. At the same time, the upper end of the hydrogen generator 10 surrounded by the cylindrical cover 22 is covered by the flange 50S except for the inner region of the combustion cylinder 50, and the flange 50S serves as a lid member (first and second). And a role as a lid member provided above the third cylindrical wall members 11, 12, and 16). And the burner 15 is connected to this collar part 50S.

更に、円盤状の仕切り部材51が、燃焼筒50の下端50Aの近傍において、燃焼筒50の下端50Aと対向すると共に燃焼筒50の下方を遮って第三の筒状壁部材16の内部を仕切るように配置されている。   Further, a disc-shaped partition member 51 faces the lower end 50A of the combustion cylinder 50 in the vicinity of the lower end 50A of the combustion cylinder 50 and blocks the lower side of the combustion cylinder 50 to partition the inside of the third cylindrical wall member 16. Are arranged as follows.

なお、後ほど詳しく説明するように、燃焼筒50と第三の筒状壁部材16の間の円筒状の空間は、バーナー15からの燃焼ガスを流通させる第二の燃焼ガス流路53として使用され、第三の筒状壁部材16と第一の筒状壁部材11の間の円筒状の空間は第一の燃焼ガス流路30として使用され、第二の筒状壁部材12と円筒状カバー22の間の円筒状の空間は改質ガスを流通させる改質ガス流路45として使用される。そしてヒータ131が、第一の筒状壁部材11の内周面(第一の燃焼ガス流路30を画する面)の周方向全域に亘って環状に延在するようにして、第三の筒状壁部材16と第一の筒状壁部材11の間の第一の燃料ガス流路30に設けられている。   As will be described in detail later, the cylindrical space between the combustion cylinder 50 and the third cylindrical wall member 16 is used as a second combustion gas passage 53 through which the combustion gas from the burner 15 flows. The cylindrical space between the third cylindrical wall member 16 and the first cylindrical wall member 11 is used as the first combustion gas flow path 30, and the second cylindrical wall member 12 and the cylindrical cover are used. The cylindrical space between 22 is used as a reformed gas flow path 45 through which the reformed gas flows. Then, the heater 131 extends in an annular shape over the entire circumferential direction of the inner peripheral surface of the first cylindrical wall member 11 (the surface defining the first combustion gas flow path 30), A first fuel gas flow path 30 between the cylindrical wall member 16 and the first cylindrical wall member 11 is provided.

更に、水蒸発部13の上端13uと改質触媒体14の下端14dの間の境界域に改質触媒体14を支持し、周方向に均等配置された複数の混合ガス噴出孔43hを有する環状の支持部材43が設けられている。   Further, the reforming catalyst body 14 is supported in a boundary region between the upper end 13u of the water evaporation section 13 and the lower end 14d of the reforming catalyst body 14, and has an annular shape having a plurality of mixed gas ejection holes 43h arranged uniformly in the circumferential direction. The support member 43 is provided.

以上に説明したように、図1に示した水素生成装置10によれば、改質触媒体14の第一の中心軸110を水蒸発部13の第一の中心軸110に一致させて、水蒸発部13の内部に存在する混合ガス(原料ガスと水蒸気を含むガス)の流れ方向の下流側に改質触媒体14を並べて配置している。すなわち、改質触媒体14の下方に水蒸発部13を配置している。   As described above, according to the hydrogen generator 10 shown in FIG. 1, the first central axis 110 of the reforming catalyst body 14 is aligned with the first central axis 110 of the water evaporation unit 13, The reforming catalyst bodies 14 are arranged side by side on the downstream side in the flow direction of the mixed gas (gas containing raw material gas and water vapor) existing inside the evaporation section 13. That is, the water evaporation unit 13 is disposed below the reforming catalyst body 14.

水蒸発部13と改質触媒体14の第一の中心軸110の方向を揃えて両者を並べて配置させることによって、水蒸発部13から改質触媒体14に向けて水蒸発部13の内部を上昇する混合ガスを一方向(軸方向)に改質触媒体14にスムーズに流出させることができ、例えば溶接等の配管施工を用いた複雑なガス流路を少なくすることができ、DSS(Daily Start-up & Shut-down)運転による熱サイクルに対する水素生成装置10の耐久性を向上できると共に、ガス流路を簡素化させることによって水素生成装置10の製造コストを低減できる。   By aligning the direction of the first central axis 110 of the water evaporation unit 13 and the reforming catalyst body 14 and arranging them side by side, the inside of the water evaporation unit 13 is directed from the water evaporation unit 13 toward the reforming catalyst body 14. Ascending mixed gas can be smoothly flowed out to the reforming catalyst body 14 in one direction (axial direction), for example, complicated gas flow paths using piping construction such as welding can be reduced, and DSS (Daily It is possible to improve the durability of the hydrogen generator 10 against a thermal cycle by Start-up & Shut-down) and to reduce the manufacturing cost of the hydrogen generator 10 by simplifying the gas flow path.

また、改質触媒体14の下方に水蒸発部13を配置させたため、改質触媒体14に水蒸気のみを供給でき、水蒸発部13の水滴が改質触媒体14に流れ込むことによって改質触媒体14上での水滴蒸発による改質触媒体14の割れなどによる改質触媒体14の劣化することを防止できる。   Further, since the water evaporation unit 13 is disposed below the reforming catalyst body 14, only the water vapor can be supplied to the reforming catalyst body 14, and water droplets from the water evaporation unit 13 flow into the reforming catalyst body 14, so that the reforming catalyst. It is possible to prevent the reforming catalyst body 14 from being deteriorated due to cracking of the reforming catalyst body 14 due to evaporation of water droplets on the medium 14.

続いて、外部装置(図示せず)から水素生成装置10に燃料ガス、原料ガス、空気および水を導く配管構成を述べる。   Subsequently, a piping configuration for introducing fuel gas, raw material gas, air and water from an external device (not shown) to the hydrogen generator 10 will be described.

水蒸発部13には、原料供給手段(図示せず)から供給される原料ガスを水蒸発部13の原料ガス入口40inに導く原料ガス配管40および供給水を水蒸発部13の水入口13inに導く水配管41が接続されている。   In the water evaporation section 13, the source gas pipe 40 that guides the source gas supplied from the source supply means (not shown) to the source gas inlet 40 in of the water evaporation section 13 and the supply water to the water inlet 13 in of the water evaporation section 13. A leading water pipe 41 is connected.

また、バーナー15には、燃料電池(図示せず)のオフガスとして還流される燃料ガスをバーナー15の火炎領域に導く燃料ガス配管17が接続され、かつ空気供給手段(図示せず)から供給される空気をバーナー15の火炎領域に導く空気配管21が、環状の空気バッファ23を介して接続されている。   The burner 15 is connected to a fuel gas pipe 17 that guides the fuel gas that is recirculated as an off gas of a fuel cell (not shown) to the flame region of the burner 15 and is supplied from an air supply means (not shown). An air pipe 21 that guides air to the flame area of the burner 15 is connected via an annular air buffer 23.

次に、燃焼ガス経路に関連する水素生成装置10の構成をより詳しく説明する。
燃焼筒50の内径は、第三の筒状壁部材16の内径よりも小さく、これによって燃焼筒50と第三の筒状壁部材16との間に円筒状の隙間からなる第二の燃焼ガス流路53が形成されている。燃焼筒50は、組み立て時に円筒状の隙間を隔てて第三の筒状壁部材16の上端からその内部に挿入される。燃焼筒50を第三の筒状壁部材16に対して両者の第一の中心軸110の方向を揃えて挿入した状態において、燃焼筒50の下端50Aとの間に環状のギャップを有するようにして円盤状の仕切り部材51が配置されている。そして、このギャップが下部燃焼ガス流入口52に相当する。
Next, the configuration of the hydrogen generator 10 related to the combustion gas path will be described in more detail.
The inner diameter of the combustion cylinder 50 is smaller than the inner diameter of the third cylindrical wall member 16, whereby a second combustion gas comprising a cylindrical gap between the combustion cylinder 50 and the third cylindrical wall member 16. A flow path 53 is formed. The combustion cylinder 50 is inserted into the inside from the upper end of the third cylindrical wall member 16 with a cylindrical gap therebetween at the time of assembly. In a state where the combustion cylinder 50 is inserted into the third cylindrical wall member 16 with the directions of the first central axes 110 aligned, an annular gap is provided between the combustion cylinder 50 and the lower end 50A of the combustion cylinder 50. A disc-shaped partition member 51 is arranged. This gap corresponds to the lower combustion gas inlet 52.

また、第三の筒状壁部材16の内径は、第一の筒状壁部材11の内径よりも小さく、これによって第三の筒状壁部材16と第一の筒状壁部材11との間に円筒状の隙間からなる第一の燃焼ガス流路30が形成されている。第三の筒状壁部材16は、組み立て時に第一の筒状壁部材11との間に円筒状の隙間を形成するようにして第一の筒状壁部材11の下端から第一の筒状壁部材11の内部に挿入される。そして、第三の筒状壁部材16を第一の筒状壁部材11に挿入し両者の第一の中心軸110の方向を揃えて固定させた状態において、第三の筒状壁部材16の上端との間に環状のギャップを有するようにして第一の筒状壁部材11の上端が鍔部50Sによって塞がれる。なお、このギャップが上部燃焼ガス流入口31に相当する。   Further, the inner diameter of the third cylindrical wall member 16 is smaller than the inner diameter of the first cylindrical wall member 11, whereby the third cylindrical wall member 16 and the first cylindrical wall member 11 are interposed. A first combustion gas flow path 30 formed of a cylindrical gap is formed. The third cylindrical wall member 16 is formed with a first cylindrical shape from the lower end of the first cylindrical wall member 11 so as to form a cylindrical gap with the first cylindrical wall member 11 during assembly. It is inserted into the wall member 11. Then, in a state where the third cylindrical wall member 16 is inserted into the first cylindrical wall member 11 and the directions of the first central axes 110 are aligned and fixed, the third cylindrical wall member 16 The upper end of the first cylindrical wall member 11 is closed by the flange portion 50S so as to have an annular gap between the upper end and the upper end. This gap corresponds to the upper combustion gas inlet 31.

また、第三の筒状壁部材16を挿入する際、第三の筒状壁部材16の下端の環状のストッパー部16aを燃焼ガス排気部33の下壁にパッキン(図示せず)を介して当接させて、第三の筒状壁部材16の軸方向の位置決めを行っている。   Further, when the third cylindrical wall member 16 is inserted, the annular stopper portion 16a at the lower end of the third cylindrical wall member 16 is attached to the lower wall of the combustion gas exhaust portion 33 via a packing (not shown). The third cylindrical wall member 16 is positioned in the axial direction by contact.

更に、第一の筒状壁部材11の上端は、鍔部50Sに当接すると共に、その下端部は燃焼ガス排気部33の下壁にパッキン(図示せず)を介して当接させることによって第一の筒状壁部材11が固定される。   Further, the upper end of the first cylindrical wall member 11 abuts against the flange portion 50S, and the lower end portion thereof is brought into contact with the lower wall of the combustion gas exhaust portion 33 via a packing (not shown). One cylindrical wall member 11 is fixed.

また、第一の筒状壁部材11および第三の筒状壁部材16は共に改質触媒体14の上端14uの近傍から水蒸発部13の下端13dの近傍に至るように延在するシームレスな金属パイプであるため、この第一の燃焼ガス流路30も改質触媒体14の上端14uの近傍から水蒸発部13の下端13dの近傍に至るように形成されている。   Both the first cylindrical wall member 11 and the third cylindrical wall member 16 are seamlessly extended from the vicinity of the upper end 14 u of the reforming catalyst body 14 to the vicinity of the lower end 13 d of the water evaporation section 13. Since it is a metal pipe, the first combustion gas flow path 30 is also formed from the vicinity of the upper end 14 u of the reforming catalyst body 14 to the vicinity of the lower end 13 d of the water evaporation section 13.

また、第一の燃焼ガス流路30を流通する燃焼ガスを、第一の筒状壁部材11の下端近傍に形成された燃焼ガス流出口32を通して大気に導くため、第一の筒状壁部材11の下端近傍の周囲には燃焼ガス排気部33が配設され、その燃焼ガス排気部33の所定位置にその径方向外側に突出するように排気口配管34が配設されている。   Moreover, in order to guide the combustion gas flowing through the first combustion gas flow path 30 to the atmosphere through the combustion gas outlet 32 formed in the vicinity of the lower end of the first cylindrical wall member 11, the first cylindrical wall member A combustion gas exhaust part 33 is disposed around the vicinity of the lower end of 11, and an exhaust pipe 34 is disposed at a predetermined position of the combustion gas exhaust part 33 so as to protrude outward in the radial direction.

より詳しくは、第一の筒状壁部材11には、周方向に均等配置された開口としての燃焼ガス流出口32が形成され、この燃焼ガス流出口32を覆って第一の筒状壁部材11に接続され、かつ第一の筒状壁部材11の全周囲に亘るように燃焼ガス排気部33が配設されている。そして、燃焼ガス排気部33の外周からその径方向に突出するように円筒状の排気口配管34が配設されている。   More specifically, the first cylindrical wall member 11 is formed with a combustion gas outlet 32 as an opening that is uniformly arranged in the circumferential direction, and covers the combustion gas outlet 32 so as to cover the first cylindrical wall member. 11 and a combustion gas exhaust part 33 is disposed so as to extend over the entire circumference of the first cylindrical wall member 11. A cylindrical exhaust pipe 34 is disposed so as to protrude in the radial direction from the outer periphery of the combustion gas exhaust part 33.

こうして、図1に示すように、燃焼筒50と第一の筒状壁部材11の間の領域に挿入された第三の筒状壁部材16によって燃焼ガス流路は、第二の燃焼ガス流路53から第一の燃焼ガス流路30に向かって上部燃焼ガス流入口31を境にしてコの字状に折り曲げられている。   Thus, as shown in FIG. 1, the combustion gas flow path is formed by the third cylindrical wall member 16 inserted in the region between the combustion cylinder 50 and the first cylindrical wall member 11 so that the second combustion gas flow. From the passage 53 toward the first combustion gas passage 30, it is bent in a U shape with the upper combustion gas inlet 31 as a boundary.

次に、混合ガス流路および改質ガス経路に関連する水素生成装置10の構成をより詳しく説明する。   Next, the configuration of the hydrogen generator 10 related to the mixed gas flow path and the reformed gas path will be described in more detail.

図1に示すように、水蒸発部13の内部の混合ガスは、水蒸発部13の上端13uと改質触媒体14の下端14dの間の境界域に配置され、改質触媒体14を支持する支持部材(仕切り板)43に形成された複数の混合ガス噴出孔43hを通って改質触媒体14に流出する。なおここで、この支持部材43の混合ガス噴出孔43hは、支持部材43の周方向に所定間隔隔てて複数の丸孔(直径:約1mm)として形成されたものである。これによって、混合ガスを改質触媒体14の周方向に均一に供給することが可能になる。   As shown in FIG. 1, the mixed gas inside the water evaporation unit 13 is disposed in a boundary region between the upper end 13 u of the water evaporation unit 13 and the lower end 14 d of the reforming catalyst body 14 to support the reforming catalyst body 14. It flows out to the reforming catalyst body 14 through a plurality of mixed gas ejection holes 43 h formed in the supporting member (partition plate) 43 to be performed. Here, the mixed gas ejection holes 43 h of the support member 43 are formed as a plurality of round holes (diameter: about 1 mm) at a predetermined interval in the circumferential direction of the support member 43. As a result, the mixed gas can be supplied uniformly in the circumferential direction of the reforming catalyst body 14.

また、この支持部材43の外周は、図1に示すように第二の筒状壁部材12に接続され、支持部材43が片持状態で第二の筒状壁部材12に支持されている。一方、支持部材43の内周と第一の筒状壁部材11の間に環状隙間があり、この環状隙間を通しても混合ガスは水蒸発部13から改質触媒体14に向けて流れる。勿論、支持部材43を第二の筒状壁部材12によって片持させる他、この支持部材43を第一の筒状壁部材11によって片持させても良く、第一および第二の筒状壁部材11、12によって両持させても良い。また、この混合ガス噴出孔43hの形状は丸孔に限定されるものではなく、例えば長円形、楕円形、矩形等、どのような形状であっても構わない。   Moreover, the outer periphery of this support member 43 is connected to the 2nd cylindrical wall member 12 as shown in FIG. 1, and the support member 43 is supported by the 2nd cylindrical wall member 12 in the cantilever state. On the other hand, there is an annular gap between the inner periphery of the support member 43 and the first cylindrical wall member 11, and the mixed gas flows from the water evaporation section 13 toward the reforming catalyst body 14 through this annular gap. Needless to say, the support member 43 can be cantilevered by the second cylindrical wall member 12, and the support member 43 may be cantilevered by the first cylindrical wall member 11. Both members may be supported by the members 11 and 12. The shape of the mixed gas ejection hole 43h is not limited to a round hole, and may be any shape such as an oval, an ellipse, or a rectangle.

なお、この支持部材43の変形例として、支持部材43の周方向に複数の混合ガス噴出孔43hを形成する代わりに、支持部材43の周方向の一箇所にのみ混合ガス噴出孔(図示せず)を設けても良い。このように単一の混合ガス噴出孔を設けることによって、水蒸発部13の内部の原料ガスと水蒸気が改質触媒体14に向けて流出する際、原料ガスと水蒸気はこの混合ガス噴出孔に集まって混合され、混合ガスの混合促進を図ることができる(但し、混合ガスを周方向に均一化させて改質触媒体に供給させる措置が別途必要になる。)。   As a modification of the support member 43, instead of forming a plurality of mixed gas ejection holes 43 h in the circumferential direction of the support member 43, a mixed gas ejection hole (not shown) is provided only at one location in the circumferential direction of the support member 43. ) May be provided. By providing a single mixed gas ejection hole in this way, when the raw material gas and water vapor inside the water evaporation section 13 flow out toward the reforming catalyst body 14, the raw material gas and water vapor enter the mixed gas ejection hole. The mixed gas can be mixed and promoted to be mixed (however, a separate measure for making the mixed gas uniform in the circumferential direction and supplying it to the reforming catalyst body is necessary).

一方、改質触媒体14の軸方向上端から流出する改質ガスは、第二の筒状壁部材12の上端と鍔部50Sとの環状のギャップに相当する改質ガス流入口44を通って第二の筒状壁部材12と円筒状カバー22の間に形成された改質ガス流路45に流出する。より詳しくは、第二の筒状壁部材12の内径は、円筒状カバー22の内径よりも小さく、これによって第二の筒状壁部材12と円筒状カバー22との間に円筒状の隙間からなる改質ガス流路45が形成されている。第二の筒状壁部材12は、組み立て時に円筒状の隙間を隔てて円筒状カバー22の内部に挿入される。そして、第二の筒状壁部材12を円筒状カバー22に両者の第一の中心軸110の方向を揃えて挿入した状態において、第二の筒状壁部材12の上端との間にギャップを有するようにして円筒状カバー22の上端が鍔部50Sによって塞がれる。こうして、改質ガス流入口44としての環状のギャップおよび改質ガス流路45としての円筒状の隙間が形成される。   On the other hand, the reformed gas flowing out from the upper end in the axial direction of the reforming catalyst body 14 passes through the reformed gas inlet 44 corresponding to the annular gap between the upper end of the second cylindrical wall member 12 and the flange portion 50S. It flows out into the reformed gas channel 45 formed between the second cylindrical wall member 12 and the cylindrical cover 22. More specifically, the inner diameter of the second cylindrical wall member 12 is smaller than the inner diameter of the cylindrical cover 22, thereby causing a cylindrical gap between the second cylindrical wall member 12 and the cylindrical cover 22. A reformed gas flow path 45 is formed. The second cylindrical wall member 12 is inserted into the cylindrical cover 22 with a cylindrical gap at the time of assembly. In the state where the second cylindrical wall member 12 is inserted into the cylindrical cover 22 with the directions of the first central axes 110 aligned, a gap is formed between the second cylindrical wall member 12 and the upper end of the second cylindrical wall member 12. Thus, the upper end of the cylindrical cover 22 is closed by the flange portion 50S. Thus, an annular gap as the reformed gas inlet 44 and a cylindrical gap as the reformed gas channel 45 are formed.

また、第二の筒状壁部材12と円筒状カバー22によって区画された隙間には、丸棒46が配置されている。より詳しくは、第二の筒状壁部材12の周囲にらせん状に可とう性の丸棒46を巻きつけて配置し、この丸棒46を第二の筒状壁部材12および円筒状カバー22に当接させて(挟み込んで)改質ガス流路45に改質ガスらせん状流路45A(改質ガス周方向移動手段)が形成されている。   A round bar 46 is disposed in a gap defined by the second cylindrical wall member 12 and the cylindrical cover 22. More specifically, a flexible round bar 46 is spirally wound around the second cylindrical wall member 12, and the round bar 46 is arranged on the second cylindrical wall member 12 and the cylindrical cover 22. A reformed gas spiral channel 45 </ b> A (reformed gas circumferential direction moving means) is formed in the reformed gas channel 45.

また、改質ガス流路45を流通する改質ガスを、円筒状カバー22の下端近傍に形成された改質ガス流出口47を通して下流側に導くため、円筒状カバー22の所定位置には、その径方向外側に突出するように改質ガス排気配管48が配設されている。   Further, in order to guide the reformed gas flowing through the reformed gas channel 45 to the downstream side through the reformed gas outlet 47 formed in the vicinity of the lower end of the cylindrical cover 22, A reformed gas exhaust pipe 48 is disposed so as to protrude outward in the radial direction.

より詳しくは、円筒状カバー22に改質ガス流出口47が形成され、この改質ガス流出口47を覆って円筒状カバー22に接続され、かつその径方向に突出するように円筒状の改質ガス排気配管48が配設されている。   More specifically, a reformed gas outlet 47 is formed in the cylindrical cover 22, the reformed gas outlet 47 is connected to the cylindrical cover 22 so as to cover the reformed gas outlet 47, and the cylindrical modified so as to protrude in the radial direction thereof. A quality gas exhaust pipe 48 is provided.

なお、第一および第二の筒状壁部材11、12および支持部材43並びに燃焼ガス排気部33の上壁によって囲まれた領域が、水蒸発部13を構成し、その内部の混合ガスを封入する空間として機能する。また、第一および第二の筒状壁部材11、12および支持部材43並びに円盤状の鍔部50Sで囲まれた領域が、改質触媒体14を収納する空間として機能する。   The area surrounded by the upper walls of the first and second cylindrical wall members 11 and 12 and the support member 43 and the combustion gas exhaust part 33 constitutes the water evaporation part 13 and encloses the mixed gas therein. It functions as a space to perform. Further, a region surrounded by the first and second cylindrical wall members 11 and 12, the support member 43, and the disc-shaped flange portion 50 </ b> S functions as a space for housing the reforming catalyst body 14.

以上のように構成された水素生成装置10において、そのヒータ131の、水溜り部38に溜まった水への加熱動作を説明する。   In the hydrogen generator 10 configured as described above, the heating operation of the heater 131 to the water accumulated in the water reservoir 38 will be described.

水素生成装置10の起動時のように、水素生成装置10全体の温度が低い場合には、バーナー15での燃焼熱は水蒸発部13に至るまでに熱が奪われ、また水蒸発部13自体も低温化しているため、燃焼熱により水溜り部38の供給水を迅速に加熱し難い。このような不具合を解消するため、第一の筒状壁部材11に取り付けたヒータ131が、水溜り部38に溜まった供給水に対して効率的に熱を供給する。
すなわち、水蒸発部温度測定手段64により検知した水蒸発部13の温度は、ヒータ制御部130に出力される。ヒータ制御部130は、水蒸発部温度測定手段64の出力信号に基づいてヒータ131の供給水への加熱を制御するものであり、例えば、水素生成装置10の起動時に、供給水を第一の筒状壁部材11を介したヒータ131の加熱により速やかに昇温させるようにヒータ制御部130は、ヒータ131の加熱動作を制御すると共に、水蒸発部13の内部を所定温度(例えば、100℃程度)にまで昇温できたら、無駄なヒータ加熱を止めてエネルギーロスを抑えるため、ヒータ131の供給水への加熱を停止するようにヒータ制御部130はヒータ131の加熱動作を制御している。
When the temperature of the entire hydrogen generator 10 is low, such as when the hydrogen generator 10 is activated, the heat of combustion in the burner 15 is deprived before reaching the water evaporator 13, and the water evaporator 13 itself. Since the temperature is also lowered, it is difficult to quickly heat the water supplied to the water reservoir 38 by combustion heat. In order to eliminate such problems, the heater 131 attached to the first cylindrical wall member 11 efficiently supplies heat to the supply water accumulated in the water reservoir 38.
That is, the temperature of the water evaporation unit 13 detected by the water evaporation unit temperature measuring unit 64 is output to the heater control unit 130. The heater control unit 130 controls heating of the heater 131 to the supply water based on the output signal of the water evaporation unit temperature measuring means 64. For example, when the hydrogen generator 10 is started, the supply water is supplied to the first supply water. The heater control unit 130 controls the heating operation of the heater 131 so as to quickly increase the temperature by heating the heater 131 through the cylindrical wall member 11 and the inside of the water evaporation unit 13 is set to a predetermined temperature (for example, 100 ° C.). If the temperature can be raised to a certain degree), the heater control unit 130 controls the heating operation of the heater 131 so as to stop the heating of the heater 131 to the supply water in order to stop the useless heater heating and suppress the energy loss. .

次に、水素生成装置10の燃焼ガスおよび混合ガス並びに改質ガスの流通動作を、順を追って説明する。   Next, the distribution operation of the combustion gas, mixed gas, and reformed gas of the hydrogen generator 10 will be described in order.

燃料ガス(例えば、燃料電池のオフガス)の通路(図示せず)に繋がる燃料ガス入口ポート17inから供給される燃料ガスは、燃料ガス配管17に導かれる。その後、燃料ガスは、燃料ガス配管17を通ってバーナー15の方向に下降する。続いて、燃料ガスは、燃料ガス配管17の下流側端を封止する燃料ガス配管蓋18によってその流れは遮られ、そこから、燃料ガスは、燃料ガス配管蓋18の近傍であって燃料ガス配管17の側面に設けられた複数の燃料ガス噴出孔19からバーナー15の火炎領域に噴出する。   The fuel gas supplied from the fuel gas inlet port 17in connected to the passage (not shown) of the fuel gas (for example, the off gas of the fuel cell) is guided to the fuel gas pipe 17. Thereafter, the fuel gas descends in the direction of the burner 15 through the fuel gas pipe 17. Subsequently, the flow of the fuel gas is blocked by the fuel gas pipe lid 18 that seals the downstream end of the fuel gas pipe 17, and from there, the fuel gas is in the vicinity of the fuel gas pipe lid 18, and the fuel gas The fuel gas is ejected from a plurality of fuel gas ejection holes 19 provided on the side surface of the pipe 17 to the flame region of the burner 15.

一方、空気供給手段(図示せず)に繋がる空気入口ポート21inから供給される燃焼用の空気は、空気配管21を通ってバーナー15の方向に下降して、燃料ガス配管17の下流端近傍においてこの燃料ガス配管17の周囲に設けられ、略中央において凹状に窪んだ環状の中空体からなる空気バッファ23の内部に供給される。そして、凹状の窪んだ部分の内側面に形成された複数の空気噴出孔20から空気バッファ23の空気は、バーナー15の火炎領域に噴出する。こうしてバーナー15の火炎領域に導かれた燃料ガスと空気を含む混合ガス中の可燃ガス濃度が可燃濃度に維持されて可燃ガスが燃焼され、バーナー15の内部において高温の燃焼ガスが生成される。   On the other hand, combustion air supplied from an air inlet port 21in connected to an air supply means (not shown) descends in the direction of the burner 15 through the air pipe 21, and in the vicinity of the downstream end of the fuel gas pipe 17. It is provided around the fuel gas pipe 17 and supplied to the inside of an air buffer 23 formed of an annular hollow body that is recessed in a substantially central shape. Then, the air in the air buffer 23 is ejected from the plurality of air ejection holes 20 formed on the inner surface of the concave concave portion to the flame region of the burner 15. In this way, the combustible gas concentration in the mixed gas containing the fuel gas and the air guided to the flame region of the burner 15 is maintained at the combustible concentration, and the combustible gas is burned, and a high-temperature combustion gas is generated inside the burner 15.

燃焼ガスは、第三の筒状壁部材16および第一の燃焼ガス流路30の内部を図1に示された点線のような経路を通って外部(大気中)に放出される。   The combustion gas is released to the outside (in the atmosphere) through the third cylindrical wall member 16 and the inside of the first combustion gas flow path 30 through a path indicated by a dotted line shown in FIG.

燃焼によって生成した燃焼ガスは、燃焼筒50の内部を下降して、その燃焼ガスは、図1の点線で示すように、下部燃焼ガス流入口52を通って燃焼筒50と第三の筒状壁部材16の間に形成された第二の燃焼ガス流路53並びに上部燃焼ガス流入口31を通って第三の筒状壁部材16と第一の筒状壁部材11の間に形成された第一の燃焼ガス流路30を流通する。   The combustion gas generated by the combustion descends the inside of the combustion cylinder 50, and the combustion gas passes through the lower combustion gas inlet 52 as shown by the dotted line in FIG. It is formed between the third cylindrical wall member 16 and the first cylindrical wall member 11 through the second combustion gas channel 53 and the upper combustion gas inlet 31 formed between the wall members 16. The first combustion gas passage 30 is circulated.

より詳しくは、バーナー15において生成した燃焼ガスは、燃焼筒50の内部を下降して、燃焼筒50の下端50Aとギャップを隔てて配置された仕切り部材51によってその下降が遮られる。この遮られた燃焼ガスは、そこから仕切り部材51の径方向にこの仕切り部材51に沿って拡散して、環状の下部燃焼ガス流入口52を通って円筒状の第二に燃焼ガス流路53の内部に導かれる。その後、高温の燃焼ガスは第二の燃焼ガス流路53を通って上方に導かれる途中に、改質触媒体14に対して第一の筒状壁部材11および第一の燃焼ガス流路30並びに第三の筒状壁部材16を介して燃焼ガスから供給される吸熱改質反応用の反応熱を与える(例えば、燃焼ガスによって加熱された第三の筒状壁部材16の輻射熱伝達によって改質触媒体14は加熱される。)。そして、第二の燃焼ガス流路53の内部を上昇する燃焼ガスは、第三の筒状壁部材16の上端とギャップを隔てて配置された鍔部50Sによってその上昇が遮られる。この遮られた燃焼ガスは、そこから鍔部50Sの径方向にこの鍔部50Sに沿って拡散して、環状の上部燃焼ガス流入口31を通って円筒状の第一の燃焼ガス流路30の内部に導かれる。   More specifically, the combustion gas generated in the burner 15 descends inside the combustion cylinder 50 and is prevented from descending by a partition member 51 arranged with a gap from the lower end 50A of the combustion cylinder 50. The blocked combustion gas diffuses along the partition member 51 in the radial direction of the partition member 51, passes through the annular lower combustion gas inlet 52, and is formed into a cylindrical second combustion gas flow channel 53. Led inside. Thereafter, while the high-temperature combustion gas is guided upward through the second combustion gas flow channel 53, the first cylindrical wall member 11 and the first combustion gas flow channel 30 with respect to the reforming catalyst body 14. In addition, reaction heat for the endothermic reforming reaction supplied from the combustion gas is given through the third cylindrical wall member 16 (for example, the heat is improved by radiant heat transfer of the third cylindrical wall member 16 heated by the combustion gas). The catalyst body 14 is heated.) The combustion gas rising in the second combustion gas flow channel 53 is blocked from rising by the flange portion 50 </ b> S arranged at a distance from the upper end of the third cylindrical wall member 16. The blocked combustion gas diffuses along the flange 50S in the radial direction of the flange 50S from there, passes through the annular upper combustion gas inlet 31, and the cylindrical first combustion gas flow path 30. Led inside.

すなわち、第一および第二の燃焼ガス流路30、53を設けて、第二の燃焼ガス流路53において燃焼ガスを改質触媒体の下端14dの近傍から上端14uの近傍に向けて上昇させると共に、第一の燃焼ガス流路30において燃焼ガスを改質触媒体の上端14uの近傍から下端14dの近傍に向けて下降させる。   That is, the first and second combustion gas passages 30 and 53 are provided, and the combustion gas is raised in the second combustion gas passage 53 from the vicinity of the lower end 14d of the reforming catalyst body toward the vicinity of the upper end 14u. At the same time, the combustion gas is lowered in the first combustion gas flow path 30 from the vicinity of the upper end 14u of the reforming catalyst body toward the vicinity of the lower end 14d.

その後、燃焼ガスは第一の燃焼ガス流路30を通って下方に導かれる途中に、改質触媒体14に対して燃焼ガスから熱交換によって改質反応(吸熱反応)用の反応熱を与えた後、水蒸発部13の内部の水に対して燃焼ガスから熱交換によって蒸発熱を与える。ここで、第三の筒状壁部材16の上半部は、燃焼筒としても機能し、その熱輻射によっても改質触媒体14に熱を与える。水蒸発部13の内部の水と熱交換した燃焼ガスは、燃焼ガス流出口32から燃焼ガス排気部33に流入する。この流入した燃焼ガスは、燃焼ガス排気部33の内部を通って排気口配管34から外部(大気中)に放出される。   Thereafter, the combustion gas gives reaction heat for a reforming reaction (endothermic reaction) by heat exchange from the combustion gas to the reforming catalyst body 14 while being guided downward through the first combustion gas passage 30. After that, evaporating heat is given to the water inside the water evaporation section 13 by heat exchange from the combustion gas. Here, the upper half portion of the third cylindrical wall member 16 also functions as a combustion cylinder, and gives heat to the reforming catalyst body 14 by its thermal radiation. The combustion gas that has exchanged heat with the water inside the water evaporation section 13 flows into the combustion gas exhaust section 33 from the combustion gas outlet 32. The inflowing combustion gas passes through the inside of the combustion gas exhaust unit 33 and is discharged from the exhaust port pipe 34 to the outside (in the atmosphere).

以上に説明したように、バーナー15の火炎を下方に向かって形成することによって、燃料ガスと空気の混合ガスの燃焼によって生成された燃焼生成物(例えば、金属酸化物)を仕切り部材51に堆積させることができ、この燃焼生成物によってバーナー15の空気噴出孔20や燃料ガス噴出孔19を塞ぐことを未然に防止できる。   As described above, by forming the flame of the burner 15 downward, the combustion product (for example, metal oxide) generated by the combustion of the mixed gas of fuel gas and air is deposited on the partition member 51. It is possible to prevent the combustion product from blocking the air ejection hole 20 and the fuel gas ejection hole 19 of the burner 15 in advance.

また、バーナー15を180°反転させて改質触媒体の上方に設置したため、メンテナンス作業時のバーナー15へのアクセスが容易になり、バーナー15のメンテナンス作業性が向上する。   Further, since the burner 15 is inverted 180 ° and installed above the reforming catalyst body, access to the burner 15 at the time of maintenance work becomes easy, and maintenance workability of the burner 15 is improved.

また、燃焼ガスの流路を第一および第二の燃焼ガス流路30、53に分けて燃焼ガスを改質触媒体14の軸方向に沿って上昇させた後、下降させるような燃焼ガス流路を採用したことによって、改質触媒体14の軸方向に対する燃焼ガスの伝熱特性(改質触媒体14の温度勾配)を改善できる。   Further, the combustion gas flow is divided into first and second combustion gas flow passages 30 and 53 so that the combustion gas is raised along the axial direction of the reforming catalyst body 14 and then lowered. By adopting the path, the heat transfer characteristic of the combustion gas with respect to the axial direction of the reforming catalyst body 14 (temperature gradient of the reforming catalyst body 14) can be improved.

具体的には、燃焼ガスの温度は、燃焼筒50から流出する直後(下部燃焼ガス流入口52の近傍)において最も高く、その後、燃焼ガスから改質反応に必要な反応熱を改質触媒体14に供与しながら第一および第二の燃焼ガス経路30、53を通過するに従って、燃焼ガスの温度は低下していく。燃焼ガス温度の変化の一例として、下部燃焼ガス流入口52において燃焼ガスの温度が1000℃であり、上部燃焼ガス流入口31において燃焼ガスの温度が800℃である。このような条件下において、仮に第一の燃焼ガス流路30を無くして、第二の燃焼ガス流路53のみによって改質触媒体14に改質反応に必要な反応熱を与えるような場合を想定すると、上部および下部燃焼ガス流入口31、52における燃焼ガスの温度差(200℃)が、直接に改質触媒体14の上端14uおよび下端14dの温度差に反映されて改質触媒体14の軸方向に燃焼ガスの温度差に起因する温度勾配がもたらされる。   Specifically, the temperature of the combustion gas is highest immediately after flowing out of the combustion cylinder 50 (in the vicinity of the lower combustion gas inlet 52), and thereafter, the reaction heat necessary for the reforming reaction is converted from the combustion gas to the reforming catalyst body. As the gas passes through the first and second combustion gas paths 30 and 53 while being supplied to the fuel gas 14, the temperature of the combustion gas decreases. As an example of the change in the combustion gas temperature, the temperature of the combustion gas is 1000 ° C. at the lower combustion gas inlet 52, and the temperature of the combustion gas is 800 ° C. at the upper combustion gas inlet 31. Under such conditions, the first combustion gas passage 30 may be omitted, and the reaction heat necessary for the reforming reaction may be given to the reforming catalyst body 14 only by the second combustion gas passage 53. Assuming that the temperature difference (200 ° C.) between the combustion gases at the upper and lower combustion gas inlets 31 and 52 is directly reflected in the temperature difference between the upper end 14 u and the lower end 14 d of the reforming catalyst body 14. A temperature gradient is caused in the axial direction due to the temperature difference of the combustion gas.

これに対して、この実施の形態1のように第一および第二の燃焼ガス流路30、53を設けて、第二の燃焼ガス流路53において燃焼ガスを改質触媒体の下端14dから上端14uに向けて上昇させると共に、第一の燃焼ガス流路30において燃焼ガスを改質触媒体の上端14uから下端14dに向けて下降させることによって、先ほど述べた第二の燃焼ガス流路53において発生する改質触媒体14に対する軸方向の温度勾配が、第一の燃焼ガス経路30において発生する改質触媒体14に対する軸方向の温度勾配によって相殺される。すなわち、改質触媒体14の下端14dの近傍においては、第二の燃焼ガス流路53を流れる燃焼ガスの温度は高温側にある一方、第一の燃焼ガス流路30を流れる燃焼ガスの温度は低温側にあり、反面、改質触媒体14の上端14uの近傍においては、第二の燃焼ガス流路53を流れる燃焼ガスの温度は低温側である一方、第一の燃焼ガス流路30を流れる燃焼ガスの温度は高温側にある。そのため、第二の燃焼ガス流路53を流れる燃焼ガス温度差によって、第一の燃焼ガス流路30を流れる燃焼ガス温度差が均一化され、第二の燃焼ガス流路53の流れる燃焼ガスの温度が低い改質触媒体14の上端14uへの伝熱量を、第一の燃料ガス流路30を流れる燃料ガスによって多く供給することになり、温度が高い下端14dへの伝熱量を少なく供給することとなり、改質触媒体14全体の軸方向の温度勾配を小さく均一な温度とすることができる。よって、改質触媒体14を設定したい温度帯(例えば、550℃〜650℃)とすることが容易となり、改質触媒体14全体を有効に使用することが可能となり、改質触媒体14の量の低減や局所的な改質触媒体14の高温化防止により耐久性の向上を実現することができる。   In contrast, the first and second combustion gas passages 30 and 53 are provided as in the first embodiment, and the combustion gas is supplied from the lower end 14d of the reforming catalyst body in the second combustion gas passage 53. While raising toward the upper end 14u and lowering the combustion gas from the upper end 14u to the lower end 14d of the reforming catalyst body in the first combustion gas passage 30, the second combustion gas passage 53 described above. Is offset by the axial temperature gradient with respect to the reforming catalyst body 14 generated in the first combustion gas path 30. That is, in the vicinity of the lower end 14d of the reforming catalyst body 14, the temperature of the combustion gas flowing through the second combustion gas passage 53 is on the high temperature side, while the temperature of the combustion gas flowing through the first combustion gas passage 30 is high. Is on the low temperature side. On the other hand, in the vicinity of the upper end 14u of the reforming catalyst body 14, the temperature of the combustion gas flowing through the second combustion gas channel 53 is on the low temperature side, while the first combustion gas channel 30 The temperature of the combustion gas flowing through is on the high temperature side. Therefore, the difference in the temperature of the combustion gas flowing in the first combustion gas channel 30 is made uniform by the difference in the temperature of the combustion gas flowing in the second combustion gas channel 53, and the combustion gas flowing in the second combustion gas channel 53 A large amount of heat transfer to the upper end 14u of the reforming catalyst body 14 having a low temperature is supplied by the fuel gas flowing through the first fuel gas passage 30, and a small amount of heat transfer to the lower end 14d having a high temperature is supplied. Thus, the temperature gradient in the axial direction of the entire reforming catalyst body 14 can be made small and uniform. Therefore, it becomes easy to set the reforming catalyst body 14 in a desired temperature range (for example, 550 ° C. to 650 ° C.), and the entire reforming catalyst body 14 can be used effectively. Durability can be improved by reducing the amount and preventing the high temperature of the local reforming catalyst body 14.

また、原料ガスと水蒸気を含む混合ガスは、次のようにして水蒸発部13から改質触媒体14に流出する。   Further, the mixed gas containing the raw material gas and the water vapor flows out from the water evaporation section 13 to the reforming catalyst body 14 as follows.

原料供給手段に繋がる原料ガス入口40inに供給される原料ガスは、第一の原料ガス配管40を通して水蒸発部13に導かれ、改質熱交換部60に繋がる水入口13inに供給される供給水は、水配管41を通って水蒸発部13に導かれる。   The source gas supplied to the source gas inlet 40in connected to the source supply means is led to the water evaporation unit 13 through the first source gas pipe 40 and supplied to the water inlet 13in connected to the reforming heat exchange unit 60. Is guided to the water evaporation unit 13 through the water pipe 41.

そして、既に説明したとおり水素生成装置10の起動時には、水蒸発部13の水溜り部38に溜まった供給水を、第一の筒状壁部材11を介したヒータ131の加熱によって速やかに蒸発可能な温度まで昇温した後にヒータ131の供給水への加熱を停止し、その後、この加熱水は第一の筒状壁部材11を介した燃焼ガスとの熱交換により蒸発熱を受け取って水蒸気になるように蒸発させられる。   And as already explained, when the hydrogen generator 10 is started, the water supplied in the water reservoir 38 of the water evaporator 13 can be quickly evaporated by heating the heater 131 via the first cylindrical wall member 11. After heating up to a certain temperature, heating to the supply water of the heater 131 is stopped, and then this heating water receives the heat of evaporation by heat exchange with the combustion gas via the first cylindrical wall member 11 and converts it into water vapor. Is evaporated.

こうして蒸発した水蒸気は原料ガスと水蒸発部13の内部で混合させられ、水蒸発部13の軸方向に上昇し、支持部材(仕切り板)43に形成された複数の混合ガス噴出孔43hを通って改質触媒体14に流出する。そして、混合ガスは、改質触媒体14を通過しながら改質反応によって水素リッチな改質ガスに改質される。   The water vapor thus evaporated is mixed with the raw material gas in the water evaporation section 13, rises in the axial direction of the water evaporation section 13, and passes through a plurality of mixed gas ejection holes 43 h formed in the support member (partition plate) 43. And flows out to the reforming catalyst body 14. The mixed gas is reformed into a hydrogen-rich reformed gas by a reforming reaction while passing through the reforming catalyst body 14.

この改質ガスは、図1に示された細い一点鎖線のように、改質触媒体14から改質ガス流路45を通って下流側に流出する。   The reformed gas flows out from the reforming catalyst body 14 through the reformed gas channel 45 to the downstream side, as indicated by a thin one-dot chain line shown in FIG.

より詳しくは、改質触媒体14において上記のように混合ガスを改質して生成された改質ガスは、改質触媒体14の内部を上昇して、鍔部50Sによってその上昇が遮られる。遮られた改質ガスは、そこから鍔部50Sの径方向にこの鍔部50Sに沿って拡散して、改質ガス流入口44を通って改質ガス流路45に導かれる。その後、改質ガスは改質ガスらせん状流路45Aを通って下方に導かれる途中に、丸棒46(棒状部材)に沿って改質触媒体14の周方向に移動させられる。   More specifically, the reformed gas generated by reforming the mixed gas as described above in the reforming catalyst body 14 rises inside the reforming catalyst body 14 and is prevented from rising by the flange 50S. . The blocked reformed gas diffuses along the flange 50S in the radial direction of the flange 50S from there, and is guided to the reformed gas flow path 45 through the reformed gas inlet 44. Thereafter, the reformed gas is moved in the circumferential direction of the reforming catalyst body 14 along the round bar 46 (bar-shaped member) while being guided downward through the reformed gas spiral channel 45A.

こうして改質ガス流路45を流れる改質ガスは、改質ガス流出口47を通って改質ガス排気配管48に流出する。この流出した改質ガスは、改質ガス排気配管48を通って下流側に流出する。   Thus, the reformed gas flowing through the reformed gas channel 45 flows out to the reformed gas exhaust pipe 48 through the reformed gas outlet 47. The outflowed reformed gas flows out downstream through the reformed gas exhaust pipe 48.

このような水素生成装置10によれば、第一、第二および第三の筒状壁部材11、12、16および円筒状カバー22がいずれも、シンプルな円筒形状であるため、水素生成装置10の耐久性能が向上する。特に、これらの第一、第二および第三の筒状壁部材11、12、16および円筒状カバー22には、配管途中に溶接箇所等のつなぎ目を無くしたシームレスなステンレス製の金属パイプを用いることが可能なため、日毎に起動停止を行うDSS運転に基づく熱サイクルによる溶接部への影響を解消することができる。   According to such a hydrogen generator 10, since the first, second and third cylindrical wall members 11, 12, 16 and the cylindrical cover 22 are all simple cylindrical shapes, the hydrogen generator 10 Durability performance is improved. In particular, the first, second and third cylindrical wall members 11, 12, 16 and the cylindrical cover 22 are made of seamless stainless steel metal pipes having no joints such as welds in the middle of the piping. Therefore, it is possible to eliminate the influence on the weld due to the thermal cycle based on the DSS operation in which the start and stop are performed every day.

また、改質触媒体14の上端14uから下端14dまでの周方向全面を、第一の筒状壁部材11を介して第一の燃焼ガス流路30を流れる燃焼ガスと接触させることができ、改質触媒体14に対して燃焼ガスから改質反応に必要な反応熱を効率的に与えることが可能であると共に、水蒸発部13の上端13uから下端13dまでの周方向全面を、第一の筒状壁部材11を介して第一の燃焼ガス流路30を流れる燃焼ガスと接触させることができ、水蒸発部13の内部の水に対して燃焼ガスから蒸発熱を効率的に与えることが可能である。   Further, the entire circumferential surface from the upper end 14u to the lower end 14d of the reforming catalyst body 14 can be brought into contact with the combustion gas flowing through the first combustion gas flow path 30 via the first cylindrical wall member 11, The reaction heat necessary for the reforming reaction can be efficiently given to the reforming catalyst body 14 from the combustion gas, and the entire surface in the circumferential direction from the upper end 13u to the lower end 13d of the water evaporation section 13 is It is possible to make contact with the combustion gas flowing through the first combustion gas passage 30 via the cylindrical wall member 11, and to efficiently give evaporation heat from the combustion gas to the water inside the water evaporation section 13. Is possible.

また、第一の燃焼ガス流路30を第一の筒状壁部材11の内側に配置できたため、第一の燃焼ガス流路30を流れる燃焼ガスの放熱を抑制することもできる。   In addition, since the first combustion gas channel 30 can be disposed inside the first cylindrical wall member 11, heat radiation of the combustion gas flowing through the first combustion gas channel 30 can be suppressed.

更に、改質ガスを改質触媒体14の周方向に移動させるため、周方向の改質ガス流れの偏りを抑制できて高温に保たれた改質触媒体14の放熱を周方向全域に亘って均一に防止できる。   Further, since the reformed gas is moved in the circumferential direction of the reforming catalyst body 14, the unevenness of the reformed gas flow in the circumferential direction can be suppressed, and the heat release of the reforming catalyst body 14 kept at a high temperature is spread over the entire circumferential direction. Can be prevented evenly.

加えて、水蒸発部13の下端13dの近傍における第一の筒状壁部材11の内周面に環状にヒータ131を取り付けることによって、水素生成装置10の起動時に水溜り部38に溜まった供給水をヒータ131により迅速に加熱でき、水素生成装置10の起動時間の短縮を図ることが可能になる。   In addition, the heater 131 is annularly attached to the inner peripheral surface of the first cylindrical wall member 11 in the vicinity of the lower end 13d of the water evaporation unit 13, so that the supply accumulated in the water reservoir 38 when the hydrogen generator 10 is started up. Water can be quickly heated by the heater 131, and the startup time of the hydrogen generator 10 can be shortened.

ここで、ヒータ131の供給水に対する伝熱特性を更に改善する変形例を、以下に図2を参照して説明する。   Here, the modification which further improves the heat-transfer characteristic with respect to the supply water of the heater 131 is demonstrated with reference to FIG. 2 below.

図2に示すように、この変形例は、水溜り部38に位置する第1の筒状壁部材11の外周面に多孔質物質からなる薄膜37(約0.5mm程度の多孔質体金属膜37)を設けるものである。具体的には、図2は、図1の水蒸発部13の下端13dの近傍の拡大断面図である。水溜り部38の下端から上方に一定距離だけ延びるようにかつ第一の筒状壁部材11の外周面(水蒸発部13を画する面)の周方向全域に亘って多孔質体金属膜37を第一の筒状壁部材11の外周面に設ける。すなわち、多孔質金属膜37は、第一の筒状壁部材11を介してヒータ部131と対向するように配置されている。そしてこの結果、この多孔質体金属膜37と第二の筒状壁部材12の内周面との間に水溜り部38が形成されることになる。   As shown in FIG. 2, in this modification, a thin film 37 (a porous metal film having a thickness of about 0.5 mm) made of a porous material is formed on the outer peripheral surface of the first cylindrical wall member 11 located in the water reservoir 38. 37). Specifically, FIG. 2 is an enlarged cross-sectional view of the vicinity of the lower end 13d of the water evaporation unit 13 in FIG. The porous metal film 37 extends from the lower end of the water reservoir 38 upward by a fixed distance and over the entire circumferential direction of the outer peripheral surface of the first cylindrical wall member 11 (the surface defining the water evaporation portion 13). Is provided on the outer peripheral surface of the first cylindrical wall member 11. That is, the porous metal film 37 is disposed so as to face the heater portion 131 with the first cylindrical wall member 11 interposed therebetween. As a result, a water reservoir 38 is formed between the porous metal film 37 and the inner peripheral surface of the second cylindrical wall member 12.

このような構成によって、水供給手段から供給され水蒸発部13の水溜り部38に溜まった水に多孔質体金属膜37を漬けてこの水を吸い上げることができ、水を吸い上げて水分を含んだ多孔質体金属膜37によって水の蒸発面積を稼ぐことが可能になる。そして、ヒータ131によって多孔質体金属膜37の全面を加熱させ、多孔質体金属膜37に滲みこんだ水を効率的に加熱できる。   With such a configuration, the porous metal film 37 can be soaked in the water supplied from the water supply means and accumulated in the water reservoir 38 of the water evaporation unit 13 to suck up the water. The porous metal film 37 can increase the evaporation area of water. Then, the entire surface of the porous metal film 37 is heated by the heater 131, and the water that has penetrated into the porous metal film 37 can be efficiently heated.

(実施の形態2)
図3は、本発明の実施の形態2に係る水素生成装置の内部構造を示す断面図である。
(Embodiment 2)
FIG. 3 is a cross-sectional view showing the internal structure of the hydrogen generator according to Embodiment 2 of the present invention.

図1(実施の形態1)と比較した図3の主な相違点は、改質触媒体14から流出した改質ガス中に含有する一酸化炭素ガス(COガス)を除去するため、改質触媒体14の改質ガス流れ方向下流に、変成触媒体74およびCOガス除去部100が付加されたことにある。   The main difference between FIG. 3 and FIG. 1 (Embodiment 1) is that the carbon monoxide gas (CO gas) contained in the reformed gas flowing out from the reforming catalyst body 14 is removed. This is because the shift catalyst body 74 and the CO gas removing unit 100 are added downstream of the catalyst body 14 in the reformed gas flow direction.

なお、水蒸発部13によって囲まれた空間(図1に示すデッドスペース)に、COガス除去部100が設けられ、水素生成装置10の全体構成の簡素化が図られている。   Note that a CO gas removing unit 100 is provided in a space surrounded by the water evaporation unit 13 (dead space shown in FIG. 1) to simplify the overall configuration of the hydrogen generator 10.

以下、この相違点を中心にして実施の形態3の構成を説明し、図1と同じ構成および動作については、それらの説明を省略する。   Hereinafter, the configuration of the third embodiment will be described focusing on this difference, and the description of the same configuration and operation as those in FIG. 1 will be omitted.

図3に示すように、水素生成装置10の変成触媒体周辺構造は主として、第一の中心軸110に並行して延びる第二の中心軸120を有する円筒状シームレス金属製(ステンレス製)の変成触媒体配管73と、変成触媒体配管73の内部に配置され、改質ガス中のCOガスをシフト反応によって除去する円柱状の白金系変成触媒体74と、を有している。また、変成触媒体内管73の内部に配置された変成触媒体74の軸方向両端は、改質ガス流通用の多数のパンチ孔76h、77hを形成した円盤状の第一および第二の変成触媒体パンチメタル76、77によって支持されている。更には、変成触媒体内管73の上端近傍の内部が、改質ガス排気配管48を介して改質ガス流出口47に接続されている。また、変成排気配管78を介して変成触媒体配管73の下端と、後で述べるCOガス除去部外管92の下端近傍とが接続され、変成触媒体内管73から流出した改質ガスを、変成排気配管78を介してCOガス除去部100の内部に流入させ得る。   As shown in FIG. 3, the peripheral structure of the shift catalyst body of the hydrogen generator 10 is mainly a cylindrical seamless metal (stainless steel) shift having a second central axis 120 extending in parallel with the first central axis 110. It has a catalyst body pipe 73 and a cylindrical platinum-type shift catalyst body 74 that is arranged inside the shift catalyst body pipe 73 and removes CO gas in the reformed gas by a shift reaction. Further, both ends of the shift catalyst body 74 in the axial direction of the shift catalyst body 74 disposed inside the shift catalyst body pipe 73 are disc-shaped first and second shift contacts in which a large number of punch holes 76h and 77h for the flow of reformed gas are formed. It is supported by medium punch metals 76 and 77. Furthermore, the inside of the shift catalyst internal pipe 73 in the vicinity of the upper end is connected to the reformed gas outlet 47 via the reformed gas exhaust pipe 48. Further, the lower end of the shift catalyst body pipe 73 is connected to the vicinity of the lower end of the CO gas removal portion outer pipe 92 described later via the shift exhaust pipe 78, and the reformed gas flowing out from the shift catalyst body pipe 73 is converted. The gas can be introduced into the CO gas removing unit 100 through the exhaust pipe 78.

COガス除去部100は、第三の筒状壁部材16の内部にその下端から両者の第一の中心軸110を一致させて配置され、それは主として、第一の中心軸110を共有して二重管を形成する円筒状のCOガス除去部内管93およびこのCOガス除去部内管93を覆う円筒状のCOガス除去部外管92と、これらの内外管93、92によって区画された領域に配置される円筒状のCOガス除去部触媒体98と、COガス除去部触媒体98の下端の温度を測定するため、COガス除去部外管92の側壁に配置された触媒体温度測定手段132(例えば、熱電対)と、COガス除去部触媒体98の軸方向両端を支持すると共に多数のパンチ孔96h、97hを有する環状の第一および第二のCOガス除去部パンチメタル96、97と、COガス除去部外管92の軸方向両端を塞ぐCOガス除去部上下蓋95、94と、を有している。そして、COガス除去部下蓋94の中央部を内管93が上下方向に貫通している。   The CO gas removing unit 100 is disposed inside the third cylindrical wall member 16 so that both first central axes 110 coincide with each other from the lower end thereof. A cylindrical CO gas removing unit inner pipe 93 that forms a heavy pipe, a cylindrical CO gas removing unit outer tube 92 that covers the CO gas removing unit inner tube 93, and an area partitioned by these inner and outer tubes 93 and 92 are arranged. In order to measure the temperature of the lower end of the cylindrical CO gas removal portion catalyst body 98 and the CO gas removal portion catalyst body 98, the catalyst body temperature measuring means 132 (located on the side wall of the CO gas removal portion outer pipe 92) For example, a thermocouple), and annular first and second CO gas removal unit punch metals 96, 97 that support both ends in the axial direction of the CO gas removal unit catalyst body 98 and have a number of punch holes 96h, 97h, CO gas removal It has a CO gas removal unit vertical lid 95, 94 for closing the axial ends of the outer tube 92, the. And the inner pipe 93 has penetrated the center part of the CO gas removal part lower cover 94 to the up-down direction.

また、仕切り部材51とCOガス除去部上蓋95(COガス除去部の端壁)の間には、円盤状の第一のCOガス除去部断熱部材90がCOガス除去部上蓋95の表面を覆うように充填され、COガス除去部外管92(COガス除去部の周囲壁)と第三の筒状壁部材16の間には、円筒状の第二のCOガス除去部断熱部材91がCOガス除去部外管92の外周面を覆うように充填されている。こうして、第一のCOガス除去部断熱部材90によってバーナー15の内部の高温(約1000℃)の燃焼ガスによってCOガス除去部100がオーバーヒートすることを防いでいる。また、第二のCOガス除去部断熱部材91の断熱条件を変えることによって、第一の燃焼ガス流路30の燃焼ガス/ヒータ131とCOガス除去部触媒体98との間の熱交換によって授受される熱量を適切に制御でき、COガス除去部触媒体98を望ましい温度に維持できる。   In addition, a disk-shaped first CO gas removal unit heat insulating member 90 covers the surface of the CO gas removal unit upper cover 95 between the partition member 51 and the CO gas removal unit upper cover 95 (the end wall of the CO gas removal unit). The cylindrical second CO gas removal unit heat insulation member 91 is CO between the CO gas removal unit outer tube 92 (the surrounding wall of the CO gas removal unit) and the third cylindrical wall member 16. The gas removal portion outer tube 92 is filled so as to cover the outer peripheral surface. In this way, the first CO gas removal unit heat insulating member 90 prevents the CO gas removal unit 100 from being overheated by the high-temperature (about 1000 ° C.) combustion gas inside the burner 15. In addition, by changing the heat insulation condition of the second CO gas removal section heat insulation member 91, heat exchange between the combustion gas / heater 131 of the first combustion gas flow path 30 and the CO gas removal section catalyst body 98 is performed. The amount of heat generated can be appropriately controlled, and the CO gas removal unit catalyst body 98 can be maintained at a desired temperature.

なお、水蒸発部温度測定手段64により検知した水蒸発部13の温度および触媒体温度測定手段132により検知したCOガス除去部触媒体98の温度は、ヒータ制御部130に出力される。ヒータ制御部130は、これらの温度測定手段64、132の出力信号に基づいてヒータ131の供給水およびCOガス除去部触媒体98への加熱を制御する。例えば、水素生成装置10の起動時に、供給水を第一の筒状壁部材11を介したヒータ131の加熱により速やかに昇温させるようにヒータ制御部130は、ヒータ131の加熱動作を制御すると共に、水蒸発部13の内部を所定温度にまで昇温できたら、ヒータ131の供給水への加熱を停止するようにヒータ制御部130はヒータ131の加熱動作を制御しても良い。   The temperature of the water evaporation section 13 detected by the water evaporation section temperature measuring means 64 and the temperature of the CO gas removal section catalyst body 98 detected by the catalyst body temperature measuring means 132 are output to the heater control section 130. The heater control unit 130 controls the heating of the supply water of the heater 131 and the CO gas removal unit catalyst body 98 based on the output signals of these temperature measuring means 64 and 132. For example, when the hydrogen generator 10 is started, the heater control unit 130 controls the heating operation of the heater 131 so as to quickly raise the temperature of the supplied water by heating the heater 131 via the first cylindrical wall member 11. At the same time, the heater control unit 130 may control the heating operation of the heater 131 so as to stop the heating of the heater 131 to the supply water when the temperature inside the water evaporation unit 13 can be raised to a predetermined temperature.

もしくは、水素生成装置10の起動時に、水溜り部38に溜まった供給水に近接することに起因して燃焼ガスにより加熱し難いCOガス除去部触媒体98の下端部位を、第二のCOガス除去部断熱部材91およびCOガス除去部外管92を介したヒータ131の加熱により速やかに昇温させるようにヒータ制御部130は、ヒータ131の加熱動作を制御すると共に、触媒反応に必要な温度までCOガス除去部触媒体98を昇温できたら、ヒータ131のCOガス除去部触媒体98への加熱を停止するようにヒータ制御部130はヒータ131の加熱動作を制御しても良い。   Alternatively, when the hydrogen generator 10 is started, the second CO gas is provided at the lower end portion of the CO gas removal unit catalyst body 98 that is difficult to be heated by the combustion gas due to proximity to the supply water accumulated in the water reservoir 38. The heater control unit 130 controls the heating operation of the heater 131 so as to quickly increase the temperature by heating the heater 131 via the removal unit heat insulating member 91 and the CO gas removal unit outer tube 92, and also the temperature necessary for the catalytic reaction. When the temperature of the CO gas removal unit catalyst body 98 can be increased, the heater control unit 130 may control the heating operation of the heater 131 so that heating of the CO gas removal unit catalyst body 98 of the heater 131 is stopped.

勿論、ヒータ131により供給水およびCOガス除去部触媒体98を適切な温度に加熱できれば、無駄なヒータ加熱を止めてエネルギーロスを抑えるため、ヒータ131の、供給水およびCOガス除去部触媒体98への加熱を停止して、その後は、この供給水は、第一の筒状壁部材11を介した燃焼ガスとの熱交換により蒸発熱を受け取って水蒸気になるように蒸発させられ、COガス除去部触媒体98は、第二のCOガス除去部断熱部材91およびCOガス除去部外管92を介した燃焼ガスとの熱交換により反応熱を受け取って触媒反応に必要な温度に維持される。   Of course, if the supply water and the CO gas removal unit catalyst body 98 can be heated to an appropriate temperature by the heater 131, the waste water heating is stopped and the energy loss is suppressed, so that the supply water and CO gas removal unit catalyst body 98 of the heater 131 is suppressed. After that, the supply water is evaporated so as to receive the heat of vaporization by the heat exchange with the combustion gas via the first cylindrical wall member 11 so as to become water vapor. The removal portion catalyst body 98 receives reaction heat by heat exchange with the combustion gas via the second CO gas removal portion heat insulating member 91 and the CO gas removal portion outer pipe 92 and is maintained at a temperature necessary for the catalytic reaction. .

このような構成において、改質ガス流出口47から流出する改質ガスは、図3に示された細い一点鎖線の経路のように変成触媒体74の内部を流通する。   In such a configuration, the reformed gas flowing out from the reformed gas outlet 47 circulates inside the shift catalyst body 74 as shown by a thin dashed-dotted path shown in FIG.

改質ガス排気配管48から変成触媒体内管73の内部に導かれた改質ガスは、変成触媒体内管73の上蓋によってその流れを下方に向けられて第一の変成触媒体パンチメタル76のパンチ孔76hを通り、300℃〜350℃に温度維持された変成触媒体74の内部に流入する。そして、改質ガスが変成触媒体74の内部を通過する期間に、この変成触媒体74によって改質ガス中に含有するCOガスと水から二酸化炭素ガスと水素ガスを生成するシフト反応(発熱反応)に基づいてCOガスが除去される。その後、COガス除去後の改質ガスは、第二の変成触媒体パンチメタル77のパンチ孔77hを通って変成排気配管78から下流側に流出する。   The reformed gas guided from the reformed gas exhaust pipe 48 to the inside of the shift catalyst inner pipe 73 is directed downward by the upper lid of the shift catalyst inner pipe 73 to punch the first shift catalyst body punch metal 76. It flows through the hole 76h and flows into the shift catalyst body 74 maintained at a temperature of 300 ° C to 350 ° C. Then, during the period in which the reformed gas passes through the inside of the shift catalyst body 74, a shift reaction (exothermic reaction) that generates carbon dioxide gas and hydrogen gas from the CO gas and water contained in the reformed gas by the shift catalyst body 74. ) To remove CO gas. Thereafter, the reformed gas after the removal of the CO gas flows out from the shift exhaust pipe 78 downstream through the punch holes 77h of the second shift catalyst body punch metal 77.

また、変成触媒体74から変成排気配管78に流出した改質ガス中のCOガスを更に除去するため、改質ガスは、COガス除去部内管92の内部に導かれ、その流れの向きを上方に向かせられる。そして、改質ガスが、第二のCOガス除去部パンチメタル97のパンチ孔97hを通ってCOガス除去部触媒体98の内部を上方に向かって通過する間に、改質ガス中に含有されるCOガスが除去される。   Further, in order to further remove the CO gas in the reformed gas flowing out from the shift catalyst body 74 to the shift exhaust pipe 78, the reformed gas is guided into the CO gas removal section inner pipe 92, and the flow direction is directed upward. To be directed to. The reformed gas is contained in the reformed gas while passing through the inside of the CO gas removing unit catalyst body 98 through the punch hole 97h of the second CO gas removing unit punch metal 97 upward. CO gas is removed.

その後、第一のCOガス除去部パンチメタル96のパンチ孔96hを通過後の改質ガスは、COガス除去部上蓋95によってその流れの向きを下方に向けられ、COガス除去部内管93の内部を下方に向かって流れて下流側に流出する。   After that, the reformed gas after passing through the punch hole 96h of the first CO gas removal unit punch metal 96 is directed downward by the CO gas removal unit upper lid 95, and the inside of the CO gas removal unit inner pipe 93 Flows downward and flows downstream.

COガス除去部触媒体98の具体例としては、既に説明したシフト反応用の白金系の変成触媒体であっても良く、銅―亜鉛系の変成触媒であっても良く、微量の酸素ガス(酸素ガス流入経路は図示せず。)を改質ガスに混ぜて改質ガス中のCOガスを二酸化炭素ガスに変換する白金系のCO選択酸化触媒体であっても良い。   Specific examples of the CO gas removal unit catalyst body 98 may be the platinum-based shift catalyst for shift reaction described above, or a copper-zinc shift catalyst, and a small amount of oxygen gas ( A platinum-based CO selective oxidation catalyst body that mixes the oxygen gas inflow path with the reformed gas and converts the CO gas in the reformed gas into carbon dioxide gas may be used.

但し、COガス除去部触媒体98として白金系の変成触媒体を用いる場合、触媒体温度(触媒反応温度)は150〜200℃に維持され、銅―亜鉛系の変成触媒体を用いる場合、触媒体温度は300〜350℃に維持され、CO選択酸化触媒体を用いる場合、触媒体温度は100〜150℃に維持される必要がある。よって、水素生成装置10の起動時には、使用する触媒体の種類に併せて、その触媒作用温度までヒータ131により迅速に昇温し得るようにヒータ制御部130はヒータ131の加熱動作を制御している。   However, when a platinum-based shift catalyst is used as the CO gas removal part catalyst 98, the catalyst temperature (catalyst reaction temperature) is maintained at 150 to 200 ° C., and when a copper-zinc shift catalyst is used, The medium temperature is maintained at 300 to 350 ° C., and when using the CO selective oxidation catalyst body, the catalyst body temperature needs to be maintained at 100 to 150 ° C. Therefore, when the hydrogen generator 10 is started, the heater control unit 130 controls the heating operation of the heater 131 so that the heater 131 can quickly raise the temperature to the catalytic action temperature in accordance with the type of catalyst body to be used. Yes.

また、水素生成装置10の作動中に、その出力を上げる方向に負荷を急変すると、COガス除去部触媒体98を流れる改質ガスの流量が急に増えて、改質ガスの流量増加にこれの温度上昇が追随できずに、温度の低い改質ガスによって改質ガス上流側の触媒部位の温度を下げて、特にCOガス除去部触媒体98として変成触媒体を使用する際に、この触媒部位が充分な触媒特性を発揮できないという懸念がある。   Further, if the load is suddenly changed in the direction of increasing the output during the operation of the hydrogen generator 10, the flow rate of the reformed gas flowing through the CO gas removal unit catalyst body 98 suddenly increases, which increases the flow rate of the reformed gas. When the temperature of the catalyst portion on the upstream side of the reformed gas is lowered by the reformed gas having a low temperature without using the reforming catalyst body 98 as the CO gas removing portion catalyst body 98, There is concern that the site may not exhibit sufficient catalytic properties.

このため、このような水素生成装置10の負荷変動時に、触媒体温度測定手段132によりCOガス除去部触媒体98の下端部近傍の温度を検知しておき、この検知温度に基づいてヒータ制御部130が、ヒータ131のCOガス除去部触媒体98への加熱動作を制御しても良い。すなわち、水素生成装置10の負荷変動に伴って、触媒体温度測定手段132により検知された温度が変成触媒体の反応温度以下(白金系変成触媒体では150℃以下)になれば、ヒータ制御部130は、ヒータ131の、変成触媒体への加熱を開始するように制御する。   For this reason, the temperature in the vicinity of the lower end portion of the CO gas removal unit catalyst body 98 is detected by the catalyst body temperature measuring means 132 when the load of the hydrogen generator 10 is changed, and the heater control unit is based on the detected temperature. 130 may control the heating operation of the heater 131 to the CO gas removal unit catalyst body 98. That is, if the temperature detected by the catalyst body temperature measuring means 132 becomes equal to or lower than the reaction temperature of the shift catalyst body (150 ° C. or less for a platinum shift catalyst) as the load of the hydrogen generator 10 changes, the heater controller 130 controls the heater 131 to start heating the shift catalyst body.

なお、COガス除去部100内の流れを、変成排気配管78から流出した改質ガスが、まずCOガス除去部内管93に導かれ、上方に流れた後、COガス除去部内管93の周囲に設置されたCOガス除去部触媒体98の内部を下方に向かって通過させても良い。COガス除去部触媒体98の温度条件によっては、この方が、ヒータ131とCOガス除去部触媒体98との熱交換を適正化させやすい場合がある。   Note that the reformed gas that has flowed out of the shift exhaust pipe 78 from the CO gas removal unit 100 is first guided to the CO gas removal unit inner pipe 93 and flows upward, and then around the CO gas removal unit inner pipe 93. You may let the inside of the installed CO gas removal part catalyst body 98 pass below. Depending on the temperature conditions of the CO gas removal unit catalyst body 98, this may facilitate heat exchange between the heater 131 and the CO gas removal unit catalyst body 98.

(実施の形態3)
図4は、本発明の実施の形態3に係る水素生成装置の内部構造を示す断面図である。
(Embodiment 3)
FIG. 4 is a cross-sectional view showing the internal structure of the hydrogen generator according to Embodiment 3 of the present invention.

実施の形態1および2においては、第一の燃焼ガス流路30にヒータ131を配置すると共にこのヒータ131を制御するヒータ制御部130を設けていたが(図1または図3参照)、この実施の形態3では、ヒータ制御部130およびヒータ131が取り除かれ、発熱体としてのガス燃焼触媒体133が別途、第一の燃焼ガス流路30に配置され、これによって、水素生成装置10の起動時には、後ほど詳しく説明するようにバーナー15により生成する未燃ガス(COやHC、Hなどの可燃成分を含んだガス)や、燃焼ガス中の残留する未燃ガスを適切に排ガス処理しつつ未燃ガス燃焼から得られる熱を有効に利用することを可能にする。 In the first and second embodiments, the heater 131 is disposed in the first combustion gas flow path 30 and the heater control unit 130 for controlling the heater 131 is provided (see FIG. 1 or FIG. 3). In the third embodiment, the heater control unit 130 and the heater 131 are removed, and a gas combustion catalyst body 133 as a heating element is separately disposed in the first combustion gas flow path 30, whereby the hydrogen generator 10 is started up. As will be described in detail later, unburned gas generated by the burner 15 (gas containing a combustible component such as CO, HC, H 2 ) and remaining unburned gas in the combustion gas are appropriately treated with an exhaust gas. It is possible to effectively use the heat obtained from the combustion of the fuel gas.

なお、ガス燃焼触媒体133を除いた水素生成装置10の構成は、実施の形態2で説明したもの(図3参照)と同じため、これの説明は省略する。   Since the configuration of the hydrogen generator 10 excluding the gas combustion catalyst body 133 is the same as that described in the second embodiment (see FIG. 3), the description thereof is omitted.

図4に示すように、軸方向に燃焼ガス通過用の複数の貫通孔(後ほど説明)を有する筒状のガス燃焼触媒体133は、第一の燃焼ガス流路30の幅とほぼ同じ幅を有し、ガス燃焼触媒体133は、第一の燃焼ガス流路30の内部に挿入されて所定位置(水蒸発部13の水溜り部38の近傍)に適宜の固定手段により固定されている。   As shown in FIG. 4, the cylindrical gas combustion catalyst body 133 having a plurality of through holes (described later) for passage of combustion gas in the axial direction has a width substantially the same as the width of the first combustion gas flow path 30. The gas combustion catalyst body 133 is inserted into the first combustion gas passage 30 and fixed at a predetermined position (in the vicinity of the water reservoir 38 of the water evaporation section 13) by an appropriate fixing means.

筒状のガス燃焼触媒体133の一例は、図5に示すように軸方向からみてその詳細を理解できるとおり、多数の白金系触媒粒子134とこれらの触媒粒子134を担持する金属薄板からなる金属担体によって構成されている。   As shown in FIG. 5, an example of the cylindrical gas combustion catalyst body 133 is a metal made up of a large number of platinum-based catalyst particles 134 and a thin metal plate carrying these catalyst particles 134, as can be understood in detail from the axial direction. It is constituted by a carrier.

そして、この金属担体は詳しくは、金属製の薄い板からなる第一の円管状金属板133aと、金属製の薄い平板を波型に折り曲げて凹凸を持たせてコルゲート状に形成して、その第一の突出部137aを第一の円管状金属板133aの外周面(外側の側面)に当接する第一のコルゲート状金属板133bと、第一のコルゲート状金属板133bの第二の突出部137bをその内周面(内側の側面)に当接する第二の円管状金属板133cと、第一のコルゲート状金属板133bと同様に形成してその第三の突出部137cを第二の円管状金属板133cの外周面に当接する第二のコルゲート状金属板133dと、第二のコルゲート状金属板133dの第四の突出部137dをその内周面に当接する第三の円管状金属板133eとを有している。   In detail, this metal carrier is formed in a corrugated shape by forming a first tubular metal plate 133a made of a metal thin plate and a metal thin plate into a corrugated shape by bending it into a corrugated shape. The first corrugated metal plate 133b that abuts the first protrusion 137a on the outer peripheral surface (outer side surface) of the first tubular metal plate 133a, and the second protrusion of the first corrugated metal plate 133b 137b is formed in the same manner as the second circular metal plate 133c contacting the inner peripheral surface (inner side surface) and the first corrugated metal plate 133b, and the third protrusion 137c is formed in the second circle. A second corrugated metal plate 133d that abuts on the outer peripheral surface of the tubular metal plate 133c, and a third circular tubular metal plate that abuts the fourth protrusion 137d of the second corrugated metal plate 133d on the inner peripheral surface thereof. 133e

すなわち、金属担体と未燃ガスとの接触面積を稼いで未燃ガスの燃焼反応を促進するため、第一および第二のコルゲート状金属板133b、133dが、第一、第二および第三の円管状金属板133a、133c、133eに挟まれて二層に積層されている。勿論、このようなコルゲート状金属板は二層に限らず、未燃ガスの燃焼条件に応じて一層でも良く、多層(三層以上)でも良い。   That is, in order to increase the contact area between the metal carrier and the unburned gas and promote the combustion reaction of the unburned gas, the first and second corrugated metal plates 133b and 133d are provided with the first, second and third It is sandwiched between circular metal plates 133a, 133c, 133e and laminated in two layers. Of course, such a corrugated metal plate is not limited to two layers, and may be one layer or multiple layers (three layers or more) depending on the combustion conditions of unburned gas.

こうして、これらのコルゲート状金属板133b、133dと第一、第二および第三の円管状金属板133a、133c、133eとの間において軸方向に形成される断面略半円状の複数の第一の貫通孔135を未燃ガスが通過できるように構成して、これらの第一の貫通孔135を未燃ガスが流れる間に、金属担体に分散して担持された粒径の小さい触媒粒子134がその触媒機能を有効に発現でき、これにより未燃ガスの燃焼反応が促進して、未燃ガスが適切に燃焼処理され得る。   Thus, a plurality of first semicircular cross sections formed in the axial direction between the corrugated metal plates 133b and 133d and the first, second and third circular metal plates 133a, 133c and 133e. The unburned gas can pass through the through holes 135 of the catalyst, and the catalyst particles 134 having a small particle diameter are dispersed and supported on the metal carrier while the unburned gas flows through the first through holes 135. Can effectively exhibit its catalytic function, whereby the combustion reaction of the unburned gas is promoted, and the unburned gas can be appropriately burned.

このような金属担体を使用することにより、幅の狭い流路内(例えば、5mm程度)に多孔質からなる部材を多層に配置してもこの部分に割れやひび等をきたすことなく、設計自由度の優れたガス燃焼触媒体が得られる。   By using such a metal carrier, even if a porous member is arranged in multiple layers in a narrow channel (for example, about 5 mm), the design is free without causing cracks or cracks in this part. A gas combustion catalyst body excellent in degree can be obtained.

また、筒状のガス燃焼触媒体133の他の例は、図6に示すように軸方向からみてその詳細が理解できるとおり、多数の白金系触媒粒子134とこれらの触媒粒子134を担持するセラミック担体によって構成されている。   In addition, as shown in FIG. 6, another example of the cylindrical gas combustion catalyst body 133 is a ceramic that supports a large number of platinum-based catalyst particles 134 and these catalyst particles 134, as can be understood in detail from the axial direction. It is constituted by a carrier.

そして、このセラミック担体は詳しくは、筒状のセラミック本体133fを有し、このセラミック本体の壁部に対してその軸方向に断面略六角形の複数の第二の貫通孔136をハニカム状(蜂の巣状)に形成した多孔質体である。なお第二の貫通孔136の断面は、六角形に限らず、三角形でも四角形でも構わない。   Specifically, this ceramic carrier has a cylindrical ceramic body 133f, and a plurality of second through holes 136 having a substantially hexagonal cross section in the axial direction with respect to the wall portion of the ceramic body are formed in a honeycomb shape (honeycomb). Is a porous body formed. The cross section of the second through hole 136 is not limited to a hexagon, and may be a triangle or a quadrangle.

こうして、第二の貫通孔136を未燃ガスが流れる間に、セラミック担体に分散して担持された粒径の小さい触媒粒子がその触媒機能を有効に発現でき、これにより未燃ガスの燃焼反応を促進して、未燃ガスが適切に燃焼処理され得る。   Thus, while the unburned gas flows through the second through-hole 136, the catalyst particles having a small particle diameter dispersed and supported on the ceramic carrier can effectively exhibit their catalytic functions, thereby causing the combustion reaction of the unburned gas. And the unburned gas can be appropriately combusted.

なお、このようなセラミック担体を使用することにより、安価なガス燃焼触媒体が得られる。   In addition, an inexpensive gas combustion catalyst body can be obtained by using such a ceramic carrier.

ここまで、別体のガス燃焼触媒体133を第一の燃焼ガス流路30に挿入する例を説明したが、これの変形例として、第一の燃焼ガス流路30を区画する第一の筒状壁部材11の内周面及び/又は前記第三の筒状壁部材16の外周面に触媒粒子を塗布し、これにより触媒粒子を第一及び/又は第三の筒状壁部材11、16に付着させるようにしてガス燃焼触媒体を構成しても良い。こうすれば、触媒粒子を担持する部品を省略でき、コスト低減を図って簡易的にガス燃焼触媒体を構成できる。この場合、第一の燃焼ガス流路30を未燃ガスが流れる間に、第一及び/又は第三の筒状壁部材11、16に分散して担持された粒径の小さい触媒粒子がその触媒機能を有効に発現でき、これにより未燃ガスの燃焼反応を促進して、未燃ガスが適切に燃焼処理され得る。   So far, the example in which the separate gas combustion catalyst body 133 is inserted into the first combustion gas flow path 30 has been described, but as a modification of this, the first cylinder that partitions the first combustion gas flow path 30 Catalyst particles are applied to the inner peripheral surface of the wall member 11 and / or the outer peripheral surface of the third cylindrical wall member 16, whereby the catalyst particles are applied to the first and / or third cylindrical wall members 11, 16. You may comprise a gas combustion catalyst body by making it adhere to. In this way, the parts for supporting the catalyst particles can be omitted, and the gas combustion catalyst body can be configured simply by reducing the cost. In this case, small catalyst particles dispersed and supported on the first and / or third cylindrical wall members 11 and 16 while the unburned gas flows through the first combustion gas flow path 30 The catalytic function can be effectively expressed, thereby promoting the combustion reaction of the unburned gas, and the unburned gas can be appropriately burned.

以上のように構成された水素生成装置10において、そのガス燃焼触媒体133に基づく未燃ガスの燃焼処理動作を説明する。   In the hydrogen generator 10 configured as described above, an unburned gas combustion processing operation based on the gas combustion catalyst body 133 will be described.

バーナー15の可燃ガス燃焼を良好な排気ガス特性(未燃ガスをほとんど排出しない状態)で行うために必要とされる空気量は、燃焼量に応じてその範囲が定まっている。このため、空気ファン(図示せず)から送る空気量を増やすと良好な排気ガス特性の領域からはずれ、未燃ガスを含んだ燃焼ガスを生成してしまう。   The range of the amount of air required for burning the combustible gas in the burner 15 with good exhaust gas characteristics (a state in which almost no unburned gas is discharged) is determined according to the amount of combustion. For this reason, if the amount of air sent from an air fan (not shown) is increased, it deviates from the region of good exhaust gas characteristics, and combustion gas containing unburned gas is generated.

ここで、水素生成装置10の起動時には、水素生成装置10の各部は適正な温度状態ではなく水素生成装置10から流出する改質ガス中には、20ppm以上のCOガスを含んでいるため、燃料電池には供給できない。したがって、水素生成装置10のバーナー15の燃料ガスとして燃料ガス入口ポート17inに供給する。そうすることで、起動時のエネルギーの有効活用を実現している。しかし、起動時の水素生成装置10は温度状態が変化していくため、各部触媒の反応状態も変化していく。よって、水素生成装置10から流出してバーナー15に供給される改質ガスの流量や成分は短時間の内に激しく変化する。そのため、バーナー15では、燃料ガスである改質ガスに対する空気量が良好な排気ガス特性を有する範囲からはずれ未燃ガスを発生しやすくなっている。   Here, when the hydrogen generator 10 is started, each part of the hydrogen generator 10 is not in an appropriate temperature state, and the reformed gas flowing out of the hydrogen generator 10 contains 20 ppm or more of CO gas. The battery cannot be supplied. Therefore, the fuel gas of the burner 15 of the hydrogen generator 10 is supplied to the fuel gas inlet port 17in. By doing so, the effective use of energy at the time of startup is realized. However, since the temperature state of the hydrogen generator 10 at the time of start-up changes, the reaction state of each catalyst also changes. Therefore, the flow rate and components of the reformed gas that flows out of the hydrogen generator 10 and is supplied to the burner 15 change drastically within a short time. Therefore, in the burner 15, the amount of air with respect to the reformed gas that is the fuel gas is out of the range having good exhaust gas characteristics, and unburned gas is easily generated.

一方、ガス燃焼触媒体133では、触媒作用により、たとえバーナー15で良好な排気ガス特性の範囲外の空気量でも完全燃焼することが可能な状態にある。   On the other hand, the gas combustion catalyst body 133 is in a state where it can be completely burned by the burner 15 even with an air amount outside the range of good exhaust gas characteristics by the burner 15.

このような状況において、水素生成装置10の起動時に、バーナー15の内部で完全に燃焼することなく、ここから流出する未燃ガスを、第一の燃焼ガス流路30に配置されたガス燃焼触媒体133により確実に燃焼させ、これにより未燃ガスを大気中に放出することを未然に防止できると共に、未燃ガス燃焼によって得られた熱を、水蒸発部13の水溜り部38に溜まった供給水への加熱やCOガス除去部100に内蔵するCOガス除去部触媒体98への加熱に有効に利用できる。   In such a situation, when the hydrogen generator 10 is started, the unburned gas flowing out from the burner 15 is not completely burned inside the burner 15, and the gas combustion catalyst disposed in the first combustion gas flow path 30 is used. The medium 133 can be surely combusted, thereby preventing the unburned gas from being released into the atmosphere, and the heat obtained by the unburned gas combustion is accumulated in the water reservoir 38 of the water evaporation unit 13. It can be effectively used for heating the feed water and heating the CO gas removal unit catalyst body 98 built in the CO gas removal unit 100.

(実施の形態4)
図7は、本発明の実施の形態4に係る水素生成装置の内部構造を示す断面図である。
(Embodiment 4)
FIG. 7 is a cross-sectional view showing the internal structure of the hydrogen generator according to Embodiment 4 of the present invention.

図7の水素生成装置10は、実施の形態2(図3)に示したヒータ131と実施の形態3(図4)に示したガス燃焼触媒体133の両方を、第一の燃焼ガス流路30の内部に配置したものである。   The hydrogen generator 10 of FIG. 7 uses both the heater 131 shown in the second embodiment (FIG. 3) and the gas combustion catalyst body 133 shown in the third embodiment (FIG. 4) as the first combustion gas flow path. 30 is arranged inside.

このような水素生成装置10によれば、水素生成装置10の起動時に、ヒータ131により水蒸発部13の水溜り部38に溜まった供給水とCOガス除去部触媒体98を適切に加熱できると共に、ガス燃焼触媒体133により未燃ガスの大気中への放出を防ぎながら、ヒータ131と同様に、ここでの未燃ガス燃焼によって供給水およびCOガス除去部触媒体98を適切に加熱できて、水素生成装置10の熱効率を最大限に高めることが可能である。   According to such a hydrogen generator 10, when the hydrogen generator 10 is started, the heater 131 can appropriately heat the supply water and the CO gas removal unit catalyst body 98 accumulated in the water reservoir 38 of the water evaporator 13. While the unburned gas is prevented from being released into the atmosphere by the gas combustion catalyst body 133, the supply water and the CO gas removal unit catalyst body 98 can be appropriately heated by the unburned gas combustion here as in the heater 131. It is possible to maximize the thermal efficiency of the hydrogen generator 10.

本発明に係る水素生成装置は、ガス流路の構成の簡素化を図ると共に、水素生成装置の起動時に水蒸発部の水を効率的に加熱できて、DSS運転を行う家庭用の燃料電池発電装置等の用途に適用できる。   The hydrogen generator according to the present invention simplifies the configuration of the gas flow path, and can efficiently heat the water in the water evaporation section when the hydrogen generator is activated, thereby performing household fuel cell power generation that performs DSS operation. It can be applied to applications such as devices.

本発明の実施の形態1に係る水素生成装置の内部構造を示す断面図である。It is sectional drawing which shows the internal structure of the hydrogen generator which concerns on Embodiment 1 of this invention. 水蒸発部の下端の近傍の拡大断面図である。It is an expanded sectional view of the vicinity of the lower end of a water evaporation part. 本発明の実施の形態2に係る水素生成装置の内部構造を示す断面図である。It is sectional drawing which shows the internal structure of the hydrogen generator which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る水素生成装置の内部構造を示す断面図である。It is sectional drawing which shows the internal structure of the hydrogen generator which concerns on Embodiment 3 of this invention. 金属担体からなるガス燃焼触媒体をその軸方向から見た断面図である。It is sectional drawing which looked at the gas combustion catalyst body which consists of metal carriers from the axial direction. セラミック担体からなるガス燃焼触媒体をその軸方向から見た断面図である。It is sectional drawing which looked at the gas combustion catalyst body which consists of ceramic carriers from the axial direction. 本発明の実施の形態4に係る水素生成装置の内部構造を示す断面図である。It is sectional drawing which shows the internal structure of the hydrogen generator which concerns on Embodiment 4 of this invention.

符号の説明Explanation of symbols

10 水素生成装置
11 第一の筒状壁部材
12 第二の筒状壁部材
13 水蒸発部
13in 水入口
14 改質触媒体
15 バーナー
16 第三の筒状壁部材
17 燃料ガス配管
17in 燃料ガス入口ポート
18 燃料ガス配管蓋
19 燃料ガス噴出孔
20 空気噴出孔
21 空気配管
21in 空気入口ポート
22 円筒状カバー
23 空気バッファ
30 第一の燃焼ガス流路
31 上部燃焼ガス流入口
32 燃焼ガス流出口
33 燃焼ガス排気部
34 排気口配管
38 水溜り部
40 第一の原料ガス配管
40in 原料ガス入口
41 水配管
43 支持部材
43h 混合ガス噴出孔
44 改質ガス流入口
45 改質ガス流路
45A 改質ガスらせん状流路
46 丸棒
47 改質ガス流出口
48 改質ガス排気配管
50 燃焼筒
50A 燃焼筒の下端
50B 燃焼筒の上端
50S 鍔部
51 仕切り部材
52 下部燃焼ガス流入口
53 第二の燃焼ガス流路
64 水蒸発部温度測定手段
74 変成触媒体
76 第一の変成触媒体パンチメタル
76h 第一の変成触媒体パンチメタルのパンチ孔
77 第二の変成触媒体パンチメタル
77h 第二の変成触媒体パンチメタルのパンチ孔
78 変成排気配管
90 第一のCOガス除去部断熱部材
91 第二のCOガス除去部断熱部材
92 COガス除去部外管
93 COガス除去部内管
94 COガス除去部下蓋
95 COガス除去部上蓋
96 第一のCOガス除去部パンチメタル
96h 第一のCOガス除去部パンチメタルのパンチ孔
97 第二のCOガス除去部パンチメタル
97h 第二のCOガス除去部パンチメタルのパンチ孔
98 COガス除去部触媒体
100 COガス除去部
110 第一の中心軸
120 第二の中心軸
130 ヒータ制御部
131 ヒータ
132 触媒体温度測定手段
133 筒状のガス燃焼触媒体
133a 第一の円管状金属板
133b 第一のコルゲート状金属板
133c 第二の円管状金属板
133d 第二のコルゲート状金属板
133e 第三の円管状金属板
133f セラミック本体
134 触媒粒子
135 第一の貫通孔
136 第二の貫通孔
137a 第一の突出部
137b 第二の突出部
137c 第三の突出部
137d 第四の突出部
DESCRIPTION OF SYMBOLS 10 Hydrogen generator 11 1st cylindrical wall member 12 2nd cylindrical wall member 13 Water evaporation part 13in Water inlet 14 Reforming catalyst body 15 Burner 16 Third cylindrical wall member 17 Fuel gas piping 17in Fuel gas inlet Port 18 Fuel gas piping lid 19 Fuel gas ejection hole 20 Air ejection hole 21 Air piping 21 in Air inlet port 22 Cylindrical cover 23 Air buffer 30 First combustion gas flow path 31 Upper combustion gas inlet 32 Combustion gas outlet 33 Combustion Gas exhaust part 34 Exhaust port pipe 38 Reservoir part 40 First raw material gas pipe 40in Raw material gas inlet 41 Water pipe 43 Support member 43h Mixed gas injection hole 44 Reformed gas inlet 45 Reformed gas flow path 45A Reformed gas spiral Shaped channel 46 round bar 47 reformed gas outlet 48 reformed gas exhaust pipe 50 combustion cylinder 50A lower end 50B of combustion cylinder upper end 50S of combustion cylinder flange 51 partition 52 lower combustion gas inlet 53 second combustion gas flow path
64 Water Evaporating Section Temperature Measuring Means 74 Transformation Catalyst Body 76 First Transformation Catalyst Body Punch Metal 76h First Transformation Catalyst Body Punch Metal Punch Hole 77 Second Transformation Catalyst Body Punch Metal
77h Punch hole 78 of the second shift catalyst body punch metal 78 Shift exhaust pipe 90 First CO gas removal portion heat insulation member 91 Second CO gas removal portion heat insulation member 92 CO gas removal portion outer pipe 93 CO gas removal portion inner pipe 94 CO gas removal part lower lid 95 CO gas removal part upper lid 96 First CO gas removal part punch metal 96h First CO gas removal part punch metal punch hole 97 Second CO gas removal part punch metal 97h Second CO gas Punch hole 98 of the removal portion punch metal CO gas removal portion catalyst body 100 CO gas removal portion 110 first central shaft 120 second central shaft 130 heater control portion 131 heater 132 catalyst body temperature measuring means 133 cylindrical gas combustion contact Medium 133a First tubular metal plate 133b First corrugated metal plate 133c Second tubular metal plate 133d Second corrugated Metal plate 133e Third tubular metal plate 133f Ceramic body 134 Catalyst particles 135 First through hole 136 Second through hole 137a First protrusion 137b Second protrusion 137c Third protrusion 137d Fourth Protrusion

Claims (23)

第一の筒状壁部材と、前記第一の筒状壁部材の外側に前記第一の筒状壁部材と同軸状に配置した第二の筒状壁部材と、前記第一の筒状壁部材と前記第二の筒状壁部材との間の第一の筒状空間において前記第一及び第二の筒状壁部材の軸方向に並ぶように設けられた筒状の水蒸発部および筒状の改質触媒体と、可燃ガスの燃焼によって燃焼ガスを生成するバーナーと、前記第一の筒状壁部材の内側に前記第一の筒状壁部材と同軸状に配置して、前記燃焼ガスを流すための第二の筒状空間を前記第一の筒状壁部材との間で形成する第三の筒状壁部材と、前記第二の筒状空間の内部に配置した発熱体と、を備え、
前記水蒸発部の水入口を通して流入する水を前記水蒸発部の内部において水蒸気に蒸発させると共に、前記水蒸発部の原料ガス入口を通して流入する原料ガスを前記水蒸気とを混合させ、前記原料ガスおよび前記水蒸発部を含む混合ガスを前記水蒸発部から前記改質触媒体に流入させ、前記流入した混合ガスを、前記改質触媒体を通過させながら改質反応によって水素リッチな改質ガスに改質する水素生成装置。
A first cylindrical wall member; a second cylindrical wall member disposed coaxially with the first cylindrical wall member outside the first cylindrical wall member; and the first cylindrical wall A cylindrical water evaporation section and a cylinder provided so as to be aligned in the axial direction of the first and second cylindrical wall members in a first cylindrical space between the member and the second cylindrical wall member A reforming catalyst body in the form of a gas, a burner that generates combustion gas by combustion of combustible gas, and the first cylindrical wall member disposed inside the first cylindrical wall member and coaxially with the combustion A third cylindrical wall member that forms a second cylindrical space for flowing a gas with the first cylindrical wall member; and a heating element disposed inside the second cylindrical space; With
The water flowing in through the water inlet of the water evaporating part is evaporated into water vapor inside the water evaporating part, and the raw material gas flowing in through the raw material gas inlet of the water evaporating part is mixed with the water vapor, and the raw material gas and The mixed gas including the water evaporation section is caused to flow from the water evaporation section into the reforming catalyst body, and the mixed gas thus flowed into the hydrogen-rich reformed gas by a reforming reaction while passing through the reforming catalyst body. Reforming hydrogen generator.
前記発熱体はヒータ及び/又はガス燃焼触媒体である請求項1記載の水素生成装置。   The hydrogen generating apparatus according to claim 1, wherein the heating element is a heater and / or a gas combustion catalyst body. 前記水蒸発部の水入口を通して前記水蒸発部の内部に流入する水を、前記発熱体によって加熱して水蒸気に蒸発する請求項1記載の水素生成装置。   The hydrogen generator according to claim 1, wherein water flowing into the water evaporation section through the water inlet of the water evaporation section is heated by the heating element to evaporate into water vapor. 前記水蒸発部の内部の温度を検知する水蒸発部温度測定手段と、ヒータ制御部とを備え、前記ヒータ制御部は、前記水蒸発部温度検知手段により検知される温度に基づいて前記ヒータの前記水への加熱を制御する請求項2記載の水素生成装置。   A water evaporation unit temperature measuring means for detecting a temperature inside the water evaporation unit; and a heater control unit, wherein the heater control unit is configured to control the heater based on the temperature detected by the water evaporation unit temperature detection unit. The hydrogen generator according to claim 2 which controls heating to said water. 前記水蒸発部温度測定手段により検知される温度が所定温度以上において、前記ヒータ制御部は、前記ヒータの前記水への加熱を停止する請求項4記載の水素生成装置。   The hydrogen generator according to claim 4, wherein the heater control unit stops heating the water to the water when the temperature detected by the water evaporation unit temperature measuring unit is equal to or higher than a predetermined temperature. 前記ガス燃焼触媒体は、触媒粒子と前記触媒粒子を担持する金属担体とを備えた請求項2記載の水素生成装置。   The hydrogen generating apparatus according to claim 2, wherein the gas combustion catalyst body includes catalyst particles and a metal carrier that supports the catalyst particles. 前記金属担体は、筒状の第一の金属板と前記第一の金属板の側面に接触する突出部を有してコルゲート状に加工される第二の金属板とを備えた請求項6記載の水素生成装置。   The said metal support | carrier was equipped with the cylindrical 1st metal plate and the 2nd metal plate which has a protrusion part which contacts the side surface of the said 1st metal plate, and is processed into a corrugated shape. Hydrogen generator. 前記ガス燃焼触媒体は、触媒粒子と前記触媒粒子を担持する筒状のセラミック担体とを備えた請求項2記載の水素生成装置。   The hydrogen generating apparatus according to claim 2, wherein the gas combustion catalyst body includes catalyst particles and a cylindrical ceramic carrier that supports the catalyst particles. 前記セラミック担体には、軸方向に貫通する複数の孔がハニカム状に形成されている請求項8記載の水素生成装置。   The hydrogen generating apparatus according to claim 8, wherein a plurality of holes penetrating in the axial direction are formed in the ceramic support in a honeycomb shape. 前記ガス燃焼触媒体は、前記第一の筒状壁部材の内周面または前記第三の筒状壁部材の外周面に触媒粒子を塗布することにより構成される請求項2記載の水素生成装置。   The hydrogen generating apparatus according to claim 2, wherein the gas combustion catalyst body is configured by applying catalyst particles to an inner peripheral surface of the first cylindrical wall member or an outer peripheral surface of the third cylindrical wall member. . 中心軸の方向に延びる筒状の水蒸発部と、前記水蒸発部の中心軸の延長線上において前記水蒸発部の中心軸に並行して延びる筒状の改質触媒体と、可燃ガスの燃焼によって燃焼ガスを生成するバーナーと、前記水蒸発部によって囲まれた領域内に前記水蒸発部と同軸状に配置されて前記改質触媒体から流出する改質ガス中に含有する一酸化炭素ガスを除去する触媒体を収納するCOガス除去部と、前記COガス除去部と前記水蒸発部との間の、前記燃焼ガスを流すための筒状の燃焼ガス流路に配置された発熱体と、を備え、
前記水蒸発部の水入口を通して流入する水を前記水蒸発部の内部において水蒸気に蒸発させると共に、前記水蒸発部の原料ガス入口を通して流入する原料ガスを前記水蒸気とを混合させ、前記原料ガスおよび前記水蒸発部を含む混合ガスを前記水蒸発部から前記改質触媒体に流入させ、前記流入した混合ガスを、前記改質触媒体を通過させながら改質反応によって水素リッチな改質ガスに改質する水素生成装置。
A cylindrical water evaporation portion extending in the direction of the central axis, a cylindrical reforming catalyst body extending in parallel with the central axis of the water evaporation portion on an extension line of the central axis of the water evaporation portion, and combustion of combustible gas And a carbon monoxide gas contained in the reformed gas that is disposed coaxially with the water evaporating unit in a region surrounded by the water evaporating unit and flows out of the reforming catalyst body. A CO gas removal unit that houses a catalyst body that removes gas, and a heating element that is disposed in a cylindrical combustion gas flow path for flowing the combustion gas between the CO gas removal unit and the water evaporation unit, With
The water flowing in through the water inlet of the water evaporating part is evaporated into water vapor inside the water evaporating part, and the raw material gas flowing in through the raw material gas inlet of the water evaporating part is mixed with the water vapor, and the raw material gas and The mixed gas including the water evaporation section is caused to flow from the water evaporation section into the reforming catalyst body, and the mixed gas thus flowed into the hydrogen-rich reformed gas by a reforming reaction while passing through the reforming catalyst body. Reforming hydrogen generator.
前記発熱体はヒータ及び/又はガス燃焼触媒体である請求項11記載の水素生成装置。   The hydrogen generator according to claim 11, wherein the heating element is a heater and / or a gas combustion catalyst body. 前記水蒸発部の水入口を通して前記水蒸発部の内部に流入する水を、前記発熱体によって加熱して水蒸気に蒸発する請求項11記載の水素生成装置。   The hydrogen generating apparatus according to claim 11, wherein water flowing into the water evaporation unit through the water inlet of the water evaporation unit is heated by the heating element to evaporate into water vapor. 前記水蒸発部の内部の温度を検知する水蒸発部温度測定手段と、ヒータ制御部とを備え、前記ヒータ制御部は、前記水蒸発部温度検知手段により検知される温度に基づいて前記ヒータの前記水への加熱を制御する請求項12記載の水素生成装置。   A water evaporation unit temperature measuring means for detecting a temperature inside the water evaporation unit; and a heater control unit, wherein the heater control unit is configured to control the heater based on the temperature detected by the water evaporation unit temperature detection unit. The hydrogen generator according to claim 12, wherein heating to the water is controlled. 前記水蒸発部温度測定手段により検知される温度が所定温度以上において、前記ヒータ制御部は、前記ヒータの前記水への加熱を停止する請求項14記載の水素生成装置。   The hydrogen generation apparatus according to claim 14, wherein the heater control unit stops heating the water by the heater when the temperature detected by the water evaporation unit temperature measuring unit is equal to or higher than a predetermined temperature. 前記触媒体の温度を検知する触媒体温度測定手段と、ヒータ制御部とを備え、前記ヒータ制御部は、前記触媒体温度測定手段により検知される温度に基づいて前記ヒータの前記触媒体への加熱を制御する請求項12記載の水素生成装置。   A catalyst body temperature measuring means for detecting the temperature of the catalyst body; and a heater control section, wherein the heater control section applies the heater to the catalyst body based on the temperature detected by the catalyst body temperature measurement means. The hydrogen generator according to claim 12, which controls heating. 前記触媒体が、前記一酸化炭素ガスをシフト反応する変成触媒体である請求項16記載の水素生成装置。   The hydrogen generator according to claim 16, wherein the catalyst body is a shift catalyst body that shifts the carbon monoxide gas. 前記水素生成装置の負荷変動時に、前記触媒体温度測定手段により検知される温度が所定温度以下において、前記ヒータ制御部は、前記ヒータの前記変成触媒体への加熱を開始する請求項17記載の水素生成装置。   18. The heater control unit starts heating the shift catalyst body of the heater when a temperature detected by the catalyst body temperature measurement unit is equal to or lower than a predetermined temperature when the load of the hydrogen generator is fluctuated. Hydrogen generator. 前記触媒体は、前記一酸化炭素ガスを選択酸化する選択酸化触媒体である請求項16記載の水素生成装置。   The hydrogen generator according to claim 16, wherein the catalyst body is a selective oxidation catalyst body that selectively oxidizes the carbon monoxide gas. 前記ガス燃焼触媒体は、触媒粒子と前記触媒粒子を担持する金属担体とを備えた請求項12記載の水素生成装置。   The hydrogen generating apparatus according to claim 12, wherein the gas combustion catalyst body includes catalyst particles and a metal carrier that supports the catalyst particles. 前記金属担体は、筒状の第一の金属板と前記第一の金属板の側面に接触する突出部を有してコルゲート状に加工される第二の金属板とを備えた請求項20記載の水素生成装置。   The said metal support | carrier was equipped with the cylindrical 1st metal plate and the 2nd metal plate which has a protrusion part which contacts the side surface of the said 1st metal plate, and is processed into a corrugated shape. Hydrogen generator. 前記ガス燃焼触媒体は、触媒粒子と前記触媒粒子を担持する筒状のセラミック担体とを備えた請求項12記載の水素生成装置。   The hydrogen generating apparatus according to claim 12, wherein the gas combustion catalyst body includes catalyst particles and a cylindrical ceramic carrier that supports the catalyst particles. 前記セラミック担体には、軸方向に貫通する複数の孔がハニカム状に形成されている請求項22記載の水素生成装置。   23. The hydrogen generator according to claim 22, wherein the ceramic carrier has a plurality of holes penetrating in the axial direction formed in a honeycomb shape.
JP2004125264A 2004-04-21 2004-04-21 Hydrogen producing apparatus Withdrawn JP2005306658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004125264A JP2005306658A (en) 2004-04-21 2004-04-21 Hydrogen producing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004125264A JP2005306658A (en) 2004-04-21 2004-04-21 Hydrogen producing apparatus

Publications (1)

Publication Number Publication Date
JP2005306658A true JP2005306658A (en) 2005-11-04

Family

ID=35435836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004125264A Withdrawn JP2005306658A (en) 2004-04-21 2004-04-21 Hydrogen producing apparatus

Country Status (1)

Country Link
JP (1) JP2005306658A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160602A (en) * 2004-12-07 2006-06-22 Sk Corp Small cylindrical reformer
JP2007165239A (en) * 2005-12-16 2007-06-28 Mitsubishi Materials Corp Evaporative emission generating device, and fuel cell using the same
WO2007145218A1 (en) * 2006-06-12 2007-12-21 Panasonic Corporation Hydrogen generation device and fuel cell system equipped with it
JP2008063171A (en) * 2006-09-06 2008-03-21 Matsushita Electric Works Ltd Hydrogen production apparatus and fuel cell power generation apparatus
JP2008535766A (en) * 2005-04-11 2008-09-04 エスケー エネルギー 株式会社 Integrated and cylindrical steam reformer for heat exchangers
JP2009196866A (en) * 2008-02-22 2009-09-03 Aisin Seiki Co Ltd Reforming apparatus
JP2009209006A (en) * 2008-03-05 2009-09-17 Aisin Seiki Co Ltd Gas treatment apparatus for fuel cell
JP2009242205A (en) * 2008-03-31 2009-10-22 Osaka Gas Co Ltd Start-up method of hydrogen-containing gas producing apparatus
WO2010010718A1 (en) 2008-07-25 2010-01-28 パナソニック株式会社 Hydrogen generation device and fuel cell system provided therewith
JP2010275129A (en) * 2009-05-27 2010-12-09 Panasonic Corp Hydrogen generator
JP2013212988A (en) * 2008-01-08 2013-10-17 Tokyo Gas Co Ltd Cylindrical steam reformer
JP2015018750A (en) * 2013-07-12 2015-01-29 Toto株式会社 Solid oxide fuel cell device
JP2017183135A (en) * 2016-03-31 2017-10-05 Toto株式会社 Solid oxide fuel cell device
KR101830954B1 (en) 2016-06-08 2018-04-04 한국에너지기술연구원 Hydrogen production system including unit for removal of carbon monoxide
US9947951B2 (en) 2013-02-25 2018-04-17 Sumitomo Precision Products Co., Ltd. Fuel cell module
JP2020092096A (en) * 2020-02-18 2020-06-11 森村Sofcテクノロジー株式会社 Solid oxide fuel cell device
CN112551485A (en) * 2020-12-10 2021-03-26 广东醇氢新能源研究院有限公司 Hydrogen production system
JP2021130583A (en) * 2020-02-20 2021-09-09 パナソニックIpマネジメント株式会社 Hydrogen generating device and fuel cell system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160602A (en) * 2004-12-07 2006-06-22 Sk Corp Small cylindrical reformer
JP2008535766A (en) * 2005-04-11 2008-09-04 エスケー エネルギー 株式会社 Integrated and cylindrical steam reformer for heat exchangers
JP2007165239A (en) * 2005-12-16 2007-06-28 Mitsubishi Materials Corp Evaporative emission generating device, and fuel cell using the same
US8273489B2 (en) 2006-06-12 2012-09-25 Fuji Electric Co., Ltd. Hydrogen generator and fuel cell system including the same
WO2007145218A1 (en) * 2006-06-12 2007-12-21 Panasonic Corporation Hydrogen generation device and fuel cell system equipped with it
JP2008063171A (en) * 2006-09-06 2008-03-21 Matsushita Electric Works Ltd Hydrogen production apparatus and fuel cell power generation apparatus
JP2013212988A (en) * 2008-01-08 2013-10-17 Tokyo Gas Co Ltd Cylindrical steam reformer
JP2009196866A (en) * 2008-02-22 2009-09-03 Aisin Seiki Co Ltd Reforming apparatus
JP2009209006A (en) * 2008-03-05 2009-09-17 Aisin Seiki Co Ltd Gas treatment apparatus for fuel cell
JP2009242205A (en) * 2008-03-31 2009-10-22 Osaka Gas Co Ltd Start-up method of hydrogen-containing gas producing apparatus
WO2010010718A1 (en) 2008-07-25 2010-01-28 パナソニック株式会社 Hydrogen generation device and fuel cell system provided therewith
JP2010275129A (en) * 2009-05-27 2010-12-09 Panasonic Corp Hydrogen generator
US9947951B2 (en) 2013-02-25 2018-04-17 Sumitomo Precision Products Co., Ltd. Fuel cell module
JP2015018750A (en) * 2013-07-12 2015-01-29 Toto株式会社 Solid oxide fuel cell device
JP2017183135A (en) * 2016-03-31 2017-10-05 Toto株式会社 Solid oxide fuel cell device
KR101830954B1 (en) 2016-06-08 2018-04-04 한국에너지기술연구원 Hydrogen production system including unit for removal of carbon monoxide
JP2020092096A (en) * 2020-02-18 2020-06-11 森村Sofcテクノロジー株式会社 Solid oxide fuel cell device
JP2021130583A (en) * 2020-02-20 2021-09-09 パナソニックIpマネジメント株式会社 Hydrogen generating device and fuel cell system
JP7320701B2 (en) 2020-02-20 2023-08-04 パナソニックIpマネジメント株式会社 Hydrogen generator and fuel cell system
CN112551485A (en) * 2020-12-10 2021-03-26 广东醇氢新能源研究院有限公司 Hydrogen production system

Similar Documents

Publication Publication Date Title
EP1717197B1 (en) Hydrogen producing device and fuel cell system with the same
JP2005306658A (en) Hydrogen producing apparatus
JP4145785B2 (en) Cylindrical steam reformer
JP6541729B2 (en) Fuel reformer
JP2004149402A (en) Hydrogen generator and fuel cell system having the same
JP4762496B2 (en) Catalytic reactor
JP4477890B2 (en) Hydrogen generator
JP5057938B2 (en) Hydrogen generator and fuel cell system provided with the same
JP2008303128A (en) Fuel reforming apparatus
JP2005225684A5 (en)
EP2554512A1 (en) Hydrogen production apparatus and fuel cell system
WO2005077820A1 (en) Fuel reformer
JP2004075435A (en) Fuel reforming device
JP5634729B2 (en) Hydrogen production apparatus and fuel cell system
JP2005216615A (en) Fuel processing device and fuel cell power generation system
JP2014009129A (en) Hydrogen production apparatus and fuel cell system
JP5202863B2 (en) Fuel cell reformer
JP2005281097A (en) Reforming apparatus
JP2010030900A (en) Apparatus for generating hydrogen
JP2011102223A (en) Hydrogen production apparatus
JP6194480B2 (en) Hydrogen generator and fuel cell system
JP2008290912A (en) Reforming device for fuel cell
JP5538025B2 (en) Hydrogen production apparatus and fuel cell system
JP5057910B2 (en) Hydrogen generator and its startup method
JP2002293502A (en) Reformer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703