JP3942405B2 - Three-fluid heat exchanger - Google Patents

Three-fluid heat exchanger Download PDF

Info

Publication number
JP3942405B2
JP3942405B2 JP2001341882A JP2001341882A JP3942405B2 JP 3942405 B2 JP3942405 B2 JP 3942405B2 JP 2001341882 A JP2001341882 A JP 2001341882A JP 2001341882 A JP2001341882 A JP 2001341882A JP 3942405 B2 JP3942405 B2 JP 3942405B2
Authority
JP
Japan
Prior art keywords
fluid
flow path
plate
heat exchanger
plate members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001341882A
Other languages
Japanese (ja)
Other versions
JP2003148881A (en
Inventor
健一郎 安原
規寿 神家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001341882A priority Critical patent/JP3942405B2/en
Publication of JP2003148881A publication Critical patent/JP2003148881A/en
Application granted granted Critical
Publication of JP3942405B2 publication Critical patent/JP3942405B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、第1流体と第2流体との間、及び前記第1流体と第3流体との間の夫々で熱交換を行なう三流体用熱交換器に関する。
【0002】
【従来の技術】
従来、燃料を燃焼用空気により燃焼させ燃焼排ガスを排出するバーナ装置において、燃焼排ガスの熱を燃焼用空気等により回収するように構成して熱効率を向上させることがある。
特に、燃料が天然ガス等の気体燃料である場合には、前記燃焼排ガスの熱を、燃焼用空気及び燃料の両方で回収するように構成することで、一層の熱効率の向上を図ることができる。
【0003】
一方、炭化水素系の原燃料ガスを、水蒸気改質して、燃料電池に供給される水素含有ガスを生成する水素含有ガス生成装置が知られており、このような水素含有ガス生成装置の上記水蒸気改質を行なう改質処理部には、加熱用のバーナ装置が設けられることがある。
そして、このように改質処理部を比較的高温に加熱する必要があるバーナ装置からは、改質処理部の温度以上の高温の燃焼排ガスが排出される。よって、特に、このような改質処理部加熱用のバーナ装置においては、燃焼排ガスの熱を燃料及び燃焼用空気により回収して熱効率を向上することが望まれる。
【0004】
そして、このように燃焼排ガスの熱を燃料及び燃焼用空気の両方で回収するには、燃焼排ガスと燃料との熱交換を行なう燃料用熱交換器と、燃焼用排ガスと燃焼用空気との熱交換を行なう空気用熱交換器とが、燃焼排ガスの流路に並設される。
【0005】
【発明が解決しようとする課題】
しかし、燃焼排ガスの流路に2つの熱交換器を並設すると、バーナ装置等の小型化を阻害し、コスト高の原因となる。
従って、本発明は、上記の事情に鑑みて、簡単な構成で、容易に小型化が可能な三流体用熱交換器を実現することを目的とする。
【0006】
【課題を解決するための手段】
〔構成1〕
本発明に係る三流体用熱交換器は、請求項1に記載したごとく、第1流体と第2流体との間、及び前記第1流体と第3流体との間の夫々で熱交換を行なう三流体用熱交換器であって、複数の第1板材と、その両外側に配置された第2板材及び第3板材とを、夫々の前記板材の外周部を、互いに隣接する前記板材間において接合して重設し、前記第1流体が流通する第1流路が、互いに隣接する前記第1板材間において、両第1板材に突出形成された仕切部同士を接触させることにより、前記複数の第1板材の夫々の間に形成され、前記第2流体が流通する第2流路が、第2板材に突出形成された仕切部を、前記第1板材の前記仕切部に接触させることにより、前記第1板材と前記第2板材との間に形成され、前記第3流体が流通する第3流路が、第3板材に突出形成された仕切部を、前記第1板材の前記仕切部に接触させることにより、前記第1板材と前記第3板材との間に形成されていることを特徴とする。
【0007】
〔作用効果〕
本構成の三流体用熱交換器によれば、プレス成型等により皿状に形成された4つ以上の板材を、隣接間に流路を形成しながら、外周部をシーム溶接等により接合して重設することで、第1流路と第2流路と第3流路とが、夫々の板材の重設方向に平面視して同形状の経路を有する構造とすることができる。つまり、上記同形状の経路を有する第1流路と第2流路と第3流路とが、第1板材を介して隣接して形成されていることになるので、伝熱長及び伝熱面積を稼ぐことができるため、第1流体と第2流体及び第3流体との熱交換の促進を図ることができる。また、プレス成型等により皿状に形成された4つ以上の板材を、隣接間に流路を形成しながら、外周部をシーム溶接等により接合して重設することで、プレート形熱交換器として構成されているので、簡単な構成で小型且つ薄形化が可能となる。
【0008】
さらに、互いに重設された4つ以上の板材の内、中間にある複数の第1板材の間に形成された偏平状の第1流路には、給熱用の燃焼排ガス等の第1流体が流通し、さらに、複数の重設された第1板材の外側を2つの第2板材及び第3板材により挟み込むことで、第2板材の内側(即ち、第1板材側)に形成された偏平状の第2流路には、受熱用の燃料及び燃焼用空気の一方等の第2流体が流通し、さらに、第3板材の内側(即ち、第1板材側)に形成された偏平状の第3流路には、受熱用の燃料及び燃焼用空気の他方等の第2流体が流通することになる。そして、第2流体及び第3流体の夫々は、第1流体に対して、第1板材のほぼ全域を伝熱面とし、夫々の流路の単位容量あたりの伝熱面積を比較的大きいものとして良好に熱交換を行なうことができるので、第1流体と第2流体との間、及び第1流体と第3流体との間で、同時に熱交換を行なうことができる三流体用熱交換器を実現することができる。
【0009】
〔構成2〕
本発明に係る三流体用熱交換器は、請求項2に記載したごとく、上記構成1の三流体用熱交換器の構成に加えて、前記第1流路における前記第1流体の流通方向が、前記第2流路における前記第2流体の流通方向及び前記第3流路における前記第3流体の流通方向に対向する方向であることを特徴とする。
【0010】
〔作用効果〕
本構成の三流体用熱交換器によれば、第1流体が、第2流体及び第3流体の流通方向に対向して流れるので、第1流路を流通して排出される直前の第1流体の熱を、第2流路及び第3流路に供給された直後の第2流体及び第3流体により充分に回収することができ、両流体の熱交換を促進することができる。
【0011】
〔構成3〕
本発明に係る三流体用熱交換器は、請求項3に記載したごとく、第1流体と第2流体との間、及び前記第1流体と第3流体との間の夫々で熱交換を行なう三流体用熱交換器であって、複数の第1板材と、その両外側に配置された第2板材及び第3板材とを、夫々の前記板材の外周部を、互いに隣接する前記板材間において接合して重設し、前記第1流体が流通する第1流路が、前記複数の第1板材の夫々の間に形成され、前記第2流体が流通する第2流路が、前記第1板材と前記第2板材との間に形成され、前記第3流体が流通する第3流路が、前記第1板材と前記第3板材との間に形成され、前記第1流路及び前記第2流路及び前記第3流路が、前記各板材の重なり方向に平面視して同形状の経路を有するものであり、前記第1流路における前記第1流体の流通方向が、前記第2流路における前記第2流体の流通方向及び前記第3流路における前記第3流体の流通方向に対向する方向に設定され、前記第1流路及び前記第2流路及び前記第3流路の経路が、互いに隣接する前記板材間において少なくとも一方側の前記板材に突出形成された仕切部を他方側の前記板材に接合することにより形成された蛇行状経路であることを特徴とする。
【0012】
〔作用効果〕
第1流路と第2流路と第3流路とが、夫々の板材の重設方向に平面視して同形状の経路を有するものであり、つまり、上記同形状の経路を有する第1流路と第2流路と第3流路とが、第1板材を介して隣接して形成されていることになるので、伝熱長及び伝熱面積を稼ぐことができるため、第1流体と第2流体及び第3流体との熱交換の促進を図ることができる。また、プレス成型等により皿状に形成された4つ以上の板材を、隣接間に流路を形成しながら、外周部をシーム溶接等により接合して重設することで、プレート形熱交換器として構成されているので、簡単な構成で小型且つ薄形化が可能となる。
【0013】
また、第1流体が、第2流体及び第3流体の流通方向に対向して流れるので、第1流路を流通して排出される直前の第1流体の熱を、第2流路及び第3流路に供給された直後の第2流体及び第3流体により充分に回収することができ、両流体の熱交換を促進すること ができる。
【0014】
さらに、互いに重設された4つ以上の板材の内、中間にある複数の第1板材の間に形成された偏平状の第1流路には、給熱用の燃焼排ガス等の第1流体が流通し、さらに、複数の重設された第1板材の外側を2つの第2板材及び第3板材により挟み込むことで、第2板材の内側(即ち、第1板材側)に形成された偏平状の第2流路には、受熱用の燃料及び燃焼用空気の一方等の第2流体が流通し、さらに、第3板材の内側(即ち、第1板材側)に形成された偏平状の第3流路には、受熱用の燃料及び燃焼用空気の他方等の第2流体が流通することになる。そして、第2流体及び第3流体の夫々は、第1流体に対して、第1板材のほぼ全域を伝熱面とし、夫々の流路の単位容量あたりの伝熱面積を比較的大きいものとして良好に熱交換を行なうことができるので、第1流体と第2流体との間、及び第1流体と第3流体との間で、同時に熱交換を行なうことができる三流体用熱交換器を実現することができる。
【0015】
さらに、第1流路及び第2流路及び第3流路を、夫々の板材間においてシーム溶接等により接合された仕切部により、蛇行状経路とするので、第1流路と第2流路との間、及び第1流路と第3流路との間の夫々において、伝熱長及び伝熱面積を稼いで、第1流体に対する第2流体及び第3流路の熱交換の促進を図ることができる。
【0016】
【発明の実施の形態】
以下、図面に基づいて、本発明を燃料電池用の水素含有ガス生成装置に適用した場合の実施の形態を説明する。
図1に示すように、水素含有ガス生成装置Pは、供給される天然ガス等の炭化水素系の原燃料ガスを脱硫処理する脱硫処理部1と、供給される原料水を加熱して水蒸気を生成する水蒸気生成部Sと、燃焼式の改質処理部加熱手段としての燃焼部4にて加熱されて、脱硫処理部1から供給される脱硫原燃料ガスを水蒸気生成部Sで生成された水蒸気を用いて水素ガスと一酸化炭素ガスを含むガスに改質処理する改質処理部3と、改質処理部3から供給される改質処理ガス中の一酸化炭素ガスを水蒸気を用いて二酸化炭素ガスに変成させることにより変成処理する変成処理部5と、その変成処理部5から供給される変成処理ガス中の一酸化炭素ガスを選択酸化することにより選択酸化処理する選択酸化処理部6と、水素含有ガス生成装置の運転を制御する制御部(図示せず)を備えて構成して、一酸化炭素ガス濃度の低い(例えば10ppm以下)水素リッチな水素含有ガスを生成するように構成してある。
【0017】
脱硫処理部1においては、例えば150〜300°Cの範囲の脱硫処理温度で、脱硫触媒にて原燃料ガス中の硫黄化合物が水素化され、その水素化物が酸化亜鉛に吸着されて脱硫される。ちなみに、脱硫処理部1における脱硫反応は発熱反応である。脱硫処理部1には、ニッケル−モリブデン系、クロム−モリブデン系などの水素化脱硫触媒の粒状成型体の多数が充填されている。
【0018】
改質処理部3においては、メタンガスを主成分とする天然ガスが原燃料ガスである場合は、ルテニウム、ニッケル、白金等の改質触媒の触媒作用により、例えば600〜700°Cの範囲の改質処理温度の下で、メタンガスと水蒸気とが下記の反応式[化1]にて改質反応して、水素ガスと一酸化炭素ガスを含むガスに改質処理される。ちなみに、改質処理部3における改質反応は吸熱反応である。また、上記改質用触媒は、セラミック製の多孔質粒状体に保持され、改質処理部3には、その多孔質粒状体の多数が充填されている。
【0019】
【化1】
CH4+H2O→CO+3H2
【0020】
変成処理部5においては、改質処理ガス中の一酸化炭素ガスと水蒸気とが、酸化鉄又は銅亜鉛の変成触媒の触媒作用により、例えば150〜300°Cの範囲の変成処理温度の下で、下記の反応式[化2]にて変成反応して、一酸化炭素ガスが二酸化炭素ガスに変成処理される。ちなみに、変成処理部5における変成反応は発熱反応である。変成処理部5には、粒状成型体の多数が充填されている。
【0021】
【化2】
CO+H2O→CO2+H2
【0022】
選択酸化処理部6においては、白金、ルテニウム、ロジウム等の貴金属系の選択酸化触媒の触媒作用によって、例えば80〜120°Cの範囲の選択酸化処理温度の下で、変成処理ガス中に残っている一酸化炭素ガスが選択酸化される。ちなみに、選択酸化処理部6における酸化反応は発熱反応である。また、上記選択酸化用触媒は、セラミック製の多孔質粒状体に保持され、選択酸化処理部6には、その多孔質粒状体の多数が充填されている。
【0023】
そして、水素含有ガス生成装置にて生成された水素含有ガスは燃料ガスとして、燃料電池Gに供給される。燃料電池Gは、詳細な説明は省略するが、高分子膜を電解質とする固体高分子型であり、水素含有ガス生成装置Pから供給される燃料ガス中の水素と、ブロア(図示せず)から供給される反応用空気中の酸素との電気化学反応により発電するように構成してある。
【0024】
燃焼部4は、燃料電池Gから排出されたオフガスを燃料ガスFとして燃焼させると共に、改質処理部3を改質処理可能なように加熱するに当たって、オフガスだけでは不足する分を都市ガス(13A等)で補う。
さらに、燃焼部4には、燃料ガスFを燃焼させるための燃焼用空気Aが供給される。そして、燃焼部4からは、少なくとも改質処理温度以上の高温の燃焼排ガスEが排出される。
また、水蒸気生成部Sは、このような燃焼排ガスEにより水を加熱して、水蒸気を生成するように構成してある。
【0025】
さらに、水素含有ガス生成装置Pには、水蒸気生成部Sから排出された少なくとも水蒸気温度以上の燃焼排ガスEの熱を、燃焼部4に供給される燃料ガスF及び燃焼用空気Aにより回収して、熱効率を向上するための三流体用熱交換器10が設けられており、この三流体用熱交換器10の詳細構造について以下に説明する。
【0026】
この三流体用熱交換器10は、図2及び図3に示すように、プレス成型等により皿状に形成された厚さ0.5mmのステンレス製の板材である4つの板材14,15を、隣接間に流路11,12,13を形成しながら重ね合わせて、夫々の板材14,15の外周部17を、シーム溶接等により接合して、プレート形熱交換器として構成されており、小型且つ薄形である。
【0027】
三流体用熱交換器10においては、互いに重設された4つの板材14,15の内、中間にある2つの第1板材14の間に形成された偏平状の第1流路11には、給熱用の燃焼排ガスE(第1流体の一例)が流通し、2つの重設された第1板材14の外側を2つの第2板材15及び第3板材16により挟み込むことで、第2板材15の内側に形成された偏平状の第2流路12には、受熱用の燃焼用空気A(第2流体の一例)が流通し、さらに、第3板材16の内側に形成された偏平状の第3流路13には、受熱用の燃料ガスF(第3流体の一例)が流通し、そして、燃焼排ガスEと燃料ガスFとの間、及び燃焼排ガスEと燃焼用空気Aとの間の夫々で同時に熱交換を行なうことができる。
【0028】
さらに、三流体用熱交換器10においては、第1流路11と第2流路12と第3流路13とが、図2に示すように、夫々の板材14,15,16の重設方向から平面視して、同形状の蛇行状経路を有するものとして形成されており、さらに、燃焼排ガスEの流通方向が燃料ガスF及び燃焼用空気Aの流通方向に対向する方向とされており、伝熱長及び伝熱面積を稼ぐと共に、第1流路11を流通して排出される直前の燃焼排ガスEの熱を、第2流路12及び第3流路13に供給された直後の比較的低温の燃料ガスF及び燃焼用空気Aにより充分に回収することができ、燃焼排ガスEと燃料ガスF及び燃焼用空気Aとの熱交換の促進が図られている。
【0029】
即ち、第1流路11の経路が、互いに隣接する第1板材14の間において、両第1板材14に突出形成された仕切部18同士を接触させることにより蛇行状経路に形成されており、さらに、夫々の第2流路12及び第3流路13が、第2板材15及び第3板材16に突出形成された仕切部18を、第1板材14の仕切部18に接触させることにより、第1流路11と同形状の経路の蛇行状経路に形成されている。そして、このように互いに接合された仕切部18は、シーム溶接により隣接する板材間において接合されている。
【0030】
第2板材15には、第2流路12に燃焼用空気Aを流入させるための流入部12iと、第2流路12から燃焼用空気Aを流出させるための流出部12oが、絞り加工により管状に形成されており、その流入部12i及び流出部12oに、燃焼用空気Aの流路を形成する管材が夫々接合されている。
また、第3板材16にも、第3流路13に燃料ガスFを流入させるための流入部13iと、第3流路13から燃料ガスFを流出させるための流出部13oが、絞り加工により管状に形成されており、その流入部13i及び流出部13oに、燃料ガスFの流路を形成する管材が夫々接合されている。
【0031】
また、第1板材14には、第1流路11に燃焼用排ガスEを流入させるための流入部11iと、第1流路11から燃焼用排ガスEを流出させるための流出部11oが、絞り加工により、第3板材16を貫通する管状に形成されており、その流入部11i及び流出部11oに、燃焼排ガスEの流路を形成する管材が夫々接合されている。
【0032】
また、水素含有ガス生成装置Pには、脱硫処理部1からの脱硫原燃料ガスと改質処理部3からの高温の改質処理ガスとを熱交換させて、改質処理部3に供給される脱硫原燃料ガスを予熱する脱硫原燃料ガス用熱交換器Epと、改質処理部3からの高温の改質処理ガスと脱硫処理部1に供給される原燃料ガスを熱交換させて原燃料ガスを予熱する原燃料ガス用熱交換器Eaとを設けてある。
又、変成処理部5から排出された変成処理ガスと、水蒸気生成部Sへ供給する原料水とを熱交換させて、原料水を予熱する原料水予熱用熱交換器17を設けてある。
【0033】
起動時に、脱硫処理部1を脱硫処理可能なように加熱する脱硫処理部用ヒータ32、変成処理部を変成処理可能なように加熱する2個の変成処理部用ヒータ33を設けてあり、それらヒータ32,33は電気ヒータから成る。
【0034】
更に、脱硫処理部1の温度を検出する脱硫処理温度センサT1、改質処理部3の温度を検出する改質処理温度センサT3、及び、選択酸化処理部6の温度を検出する選択酸化処理温度センサT5を設けてある。
【0035】
そして、脱硫処理部用ヒータ32は、脱硫処理温度センサT1により検出される脱硫処理温度が上記の適正な温度に維持されるように加熱能力が調整され、変成処理部用ヒータ33は、変成処理温度センサT5により検出される変成処理温度が上記の適正な温度に維持されるように加熱能力が調整される。さらに、燃焼部4の加熱能力、即ち、燃焼部4に供給する燃料量は、改質処理温度センサT3により検出される改質処理温度が上記の適正な温度に維持されるように調整される。
また、選択酸化処理部6は、適正な温度に維持するように、冷却用ファン等により冷却されている。
【図面の簡単な説明】
【図1】 水素含有ガス生成装置の概略構成図
【図2】 三流体用熱交換器の概略斜視図
【図3】 三流体用熱交換器の断面図
【符号の説明】
1 脱硫処理部
3 改質処理部
4 改質処理部加熱手段
5 変成処理部
6 選択酸化処理部
10 三流体用熱交換器
11 第1流路
12 第2流路
13 第3流路
14 第1板材
15 第2板材
16 第3板材
17 外周部
18 仕切部
S 水蒸気生成部
G 燃料電池
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a three-fluid heat exchanger that performs heat exchange between a first fluid and a second fluid, and between the first fluid and a third fluid.
[0002]
[Prior art]
Conventionally, in a burner device that burns fuel with combustion air and discharges combustion exhaust gas, the heat efficiency of the combustion exhaust gas may be improved by recovering the heat of the combustion exhaust gas with combustion air or the like.
In particular, when the fuel is a gaseous fuel such as natural gas, the heat efficiency of the combustion exhaust gas can be further improved by recovering the heat of the combustion exhaust gas using both the combustion air and the fuel. .
[0003]
On the other hand, there is known a hydrogen-containing gas generating device that steam-reforms a hydrocarbon-based raw fuel gas to generate a hydrogen-containing gas supplied to a fuel cell. A reforming unit that performs steam reforming may be provided with a heating burner device.
And from the burner apparatus which needs to heat a reforming process part to comparatively high temperature in this way, high-temperature combustion exhaust gas more than the temperature of a reforming process part is discharged | emitted. Therefore, in particular, in such a burner apparatus for heating the reforming unit, it is desired to improve the thermal efficiency by recovering the heat of the combustion exhaust gas with the fuel and the combustion air.
[0004]
And in order to collect | recover the heat | fever of combustion exhaust gas in both fuel and combustion air in this way, the heat exchanger for fuel which performs heat exchange with combustion exhaust gas and fuel, the heat of combustion exhaust gas and combustion air An air heat exchanger for exchanging is provided in parallel with the flow path of the combustion exhaust gas.
[0005]
[Problems to be solved by the invention]
However, when two heat exchangers are arranged in parallel in the flow path of the combustion exhaust gas, downsizing of the burner device or the like is hindered, resulting in high costs.
Accordingly, in view of the above circumstances, an object of the present invention is to realize a three-fluid heat exchanger that can be easily downsized with a simple configuration.
[0006]
[Means for Solving the Problems]
[Configuration 1]
As described in claim 1, the three-fluid heat exchanger according to the present invention performs heat exchange between the first fluid and the second fluid and between the first fluid and the third fluid. A heat exchanger for three fluids, wherein a plurality of first plate members and second and third plate members arranged on both outer sides thereof are arranged between the plate members adjacent to each other at the outer peripheral portions of the plate members. A plurality of the first flow paths through which the first fluid flows are brought into contact with each other between the first plate members adjacent to each other by bringing the partition portions protruding from both first plate members into contact with each other. The partition part formed between each of the first plate members and the second flow path through which the second fluid flows is brought into contact with the partition portion of the first plate member by contacting the partition part formed on the second plate member. It is formed between the second plate and the first plate, the third flow path and the third fluid flows The partition portion formed to project the third plate member by contacting to the partition portion of said first plate member, characterized in that it is formed between the third plate and the first plate member.
[0007]
[Function and effect]
According to the three-fluid heat exchanger of this configuration, four or more plate materials formed in a dish shape by press molding or the like are joined to each other by seam welding or the like while forming a flow path between adjacent ones. By overlapping, the first flow path, the second flow path, and the third flow path can have a structure having the same shape in plan view in the overlapping direction of the respective plate members. That is, since the first flow path, the second flow path, and the third flow path having the same shape of the path are formed adjacent to each other through the first plate member, the heat transfer length and heat transfer Since an area can be earned, heat exchange between the first fluid, the second fluid, and the third fluid can be promoted. In addition, four or more plates formed in a dish shape by press molding or the like are joined and overlapped by seam welding or the like while forming a flow path between adjacent ones, so that a plate heat exchanger Therefore, it is possible to reduce the size and thickness with a simple configuration.
[0008]
Furthermore, among the four or more plate members which are Ju設to each other physician, in the flat of the first flow path formed between the plurality of first plate member in the middle, a such as a combustion gas for supplying heat 1 fluid flows and is formed inside the second plate (that is, on the first plate side) by sandwiching the outside of the plurality of first plates that are stacked between the two second and third plates. A second fluid such as one of heat-receiving fuel and combustion air flows through the flat second flow path, and is further formed inside the third plate (that is, the first plate). A second fluid such as the other of the heat receiving fuel and the combustion air flows through the third flow path. Each of the second fluid and the third fluid has a heat transfer surface that is substantially the entire area of the first plate member with respect to the first fluid, and the heat transfer area per unit capacity of each flow path is relatively large. Since the heat exchange can be performed satisfactorily, a three-fluid heat exchanger capable of simultaneously exchanging heat between the first fluid and the second fluid and between the first fluid and the third fluid is provided. Can be realized.
[0009]
[Configuration 2]
Third-rate-body heat exchanger according to the present invention, as set forth in claim 2, in addition to the configuration of the heat exchanger for three-fluid of the structure 1, the flow direction of the first fluid before Symbol first flow path Is a direction opposite to the flow direction of the second fluid in the second flow path and the flow direction of the third fluid in the third flow path.
[0010]
[Function and effect]
According to the three-fluid heat exchanger of this configuration , the first fluid flows in the flow direction of the second fluid and the third fluid, so that the first fluid just before flowing through the first flow path is discharged. The heat of the fluid can be sufficiently recovered by the second fluid and the third fluid immediately after being supplied to the second flow path and the third flow path, and heat exchange between both fluids can be promoted.
[0011]
[Configuration 3]
As described in claim 3, the three-fluid heat exchanger according to the present invention performs heat exchange between the first fluid and the second fluid and between the first fluid and the third fluid. A heat exchanger for three fluids, wherein a plurality of first plate members and second and third plate members arranged on both outer sides thereof are arranged between the plate members adjacent to each other at the outer peripheral portions of the plate members. A first channel that is joined and overlapped and through which the first fluid flows is formed between each of the plurality of first plate members, and a second channel through which the second fluid flows is the first channel. A third flow path formed between the plate material and the second plate material and through which the third fluid flows is formed between the first plate material and the third plate material, and the first flow path and the The two flow paths and the third flow path have the same shape in plan view in the overlapping direction of the plate members, and the first flow path The flow direction of the first fluid is set in a direction opposite to the flow direction of the second fluid in the second flow channel and the flow direction of the third fluid in the third flow channel, The meandering path formed by joining the partition formed by projecting the plate material on at least one side between the plate members adjacent to each other to the plate material on the other side, between the plate materials adjacent to each other. It is characterized by a path .
[0012]
[Function and effect]
The first flow path, the second flow path, and the third flow path have the same shape in plan view in the overlapping direction of the respective plate members, that is, the first flow path having the same shape. Since the flow path, the second flow path, and the third flow path are formed adjacent to each other via the first plate member, the heat transfer length and the heat transfer area can be increased, so the first fluid And heat exchange between the second fluid and the third fluid can be promoted. In addition, four or more plates formed in a dish shape by press molding or the like are joined and overlapped by seam welding or the like while forming a flow path between adjacent ones, so that a plate heat exchanger Therefore, it is possible to reduce the size and thickness with a simple configuration.
[0013]
In addition, since the first fluid flows in the flow direction of the second fluid and the third fluid, the heat of the first fluid immediately before flowing through the first flow path is discharged to the second flow path and the second fluid. The second fluid and the third fluid immediately after being supplied to the three flow paths can be sufficiently recovered, and heat exchange between both fluids can be promoted .
[0014]
Further, a first fluid such as combustion exhaust gas for heating is provided in a flat first flow path formed between a plurality of first plate members in the middle of four or more plate members stacked on each other. And the flat formed on the inner side of the second plate (that is, the first plate side) by sandwiching the outer sides of the plurality of first stacked plates between the two second and third plates. The second fluid such as one of the heat receiving fuel and the combustion air flows through the second flow path, and is formed into a flat shape formed inside the third plate (that is, on the first plate side). The second fluid such as the other of the heat receiving fuel and the combustion air flows through the third flow path. Each of the second fluid and the third fluid has a heat transfer surface that is substantially the entire area of the first plate member with respect to the first fluid, and the heat transfer area per unit capacity of each flow path is relatively large. Since the heat exchange can be performed satisfactorily, a three-fluid heat exchanger capable of simultaneously exchanging heat between the first fluid and the second fluid and between the first fluid and the third fluid is provided. Can be realized.
[0015]
Further, the first flow path and second flow path and the third flow passage, by a partition portion joined by seam welding or the like between the plate members each, than you a serpentine path, the first flow path and the second The heat transfer length and the heat transfer area are earned between the flow path and between the first flow path and the third flow path, and heat exchange between the second fluid and the third flow path with respect to the first fluid is achieved. Promotion can be aimed at.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment in which the present invention is applied to a hydrogen-containing gas generation device for a fuel cell will be described with reference to the drawings.
As shown in FIG. 1, the hydrogen-containing gas generator P includes a desulfurization treatment unit 1 that desulfurizes a hydrocarbon-based raw fuel gas such as natural gas to be supplied, and a raw material water that is supplied to heat and supply steam. Steam generated by the steam generation unit S and the desulfurization raw fuel gas supplied from the desulfurization processing unit 1 after being heated by the steam generation unit S to be generated and the combustion unit 4 as the combustion type reforming unit heating means The reforming processing unit 3 for reforming the gas containing hydrogen gas and carbon monoxide gas using the gas, and the carbon monoxide gas in the reforming processing gas supplied from the reforming processing unit 3 using water vapor. A shift treatment section 5 for performing a shift treatment by converting to carbon gas, and a selective oxidation treatment section 6 for performing a selective oxidation process by selectively oxidizing a carbon monoxide gas in the shift treatment gas supplied from the shift treatment section 5; Operation of hydrogen-containing gas generator And configured to include a Gosuru controller (not shown), low carbon monoxide gas concentration (e.g., 10ppm or less) is arranged to produce a hydrogen-rich hydrogen-containing gas.
[0017]
In the desulfurization processing unit 1, for example, a sulfur compound in the raw fuel gas is hydrogenated by a desulfurization catalyst at a desulfurization processing temperature in the range of 150 to 300 ° C., and the hydride is adsorbed by zinc oxide and desulfurized. . Incidentally, the desulfurization reaction in the desulfurization processing unit 1 is an exothermic reaction. The desulfurization processing unit 1 is filled with a large number of granular molded bodies of hydrodesulfurization catalysts such as nickel-molybdenum and chromium-molybdenum.
[0018]
In the reforming processing unit 3, when the natural gas mainly composed of methane gas is the raw fuel gas, the reforming process is performed in a range of 600 to 700 ° C., for example, by the catalytic action of a reforming catalyst such as ruthenium, nickel, or platinum. Under the quality treatment temperature, methane gas and water vapor undergo a reforming reaction according to the following reaction formula [Chemical Formula 1], and are reformed into a gas containing hydrogen gas and carbon monoxide gas. Incidentally, the reforming reaction in the reforming processing unit 3 is an endothermic reaction. The reforming catalyst is held in a ceramic porous granule, and the reforming unit 3 is filled with a large number of the porous granule.
[0019]
[Chemical 1]
CH 4 + H 2 O → CO + 3H 2
[0020]
In the shift treatment section 5, the carbon monoxide gas and the water vapor in the reformed treatment gas are subjected to a catalysis of a shift catalyst of iron oxide or copper zinc, for example, under a shift treatment temperature in the range of 150 to 300 ° C. Then, the carbon monoxide gas is converted to carbon dioxide gas through a conversion reaction according to the following reaction formula [Chemical Formula 2]. Incidentally, the modification reaction in the modification processing unit 5 is an exothermic reaction. The modification processing unit 5 is filled with a large number of granular molded bodies.
[0021]
[Chemical 2]
CO + H 2 O → CO 2 + H 2
[0022]
In the selective oxidation treatment unit 6, it remains in the shift treatment gas under the selective oxidation treatment temperature in the range of 80 to 120 ° C., for example, by the catalytic action of a noble metal type selective oxidation catalyst such as platinum, ruthenium, rhodium or the like. The carbon monoxide gas present is selectively oxidized. Incidentally, the oxidation reaction in the selective oxidation treatment unit 6 is an exothermic reaction. The selective oxidation catalyst is held in a ceramic porous granule, and the selective oxidation treatment unit 6 is filled with many of the porous granules.
[0023]
And the hydrogen containing gas produced | generated with the hydrogen containing gas production | generation apparatus is supplied to the fuel cell G as fuel gas. Although detailed description is omitted, the fuel cell G is a solid polymer type having a polymer membrane as an electrolyte, hydrogen in the fuel gas supplied from the hydrogen-containing gas generator P, and a blower (not shown). Power is generated by an electrochemical reaction with oxygen in the reaction air supplied from.
[0024]
The combustion unit 4 burns off gas discharged from the fuel cell G as fuel gas F, and heats the reforming processing unit 3 so that it can be reformed. Etc.)
Further, combustion air A for burning the fuel gas F is supplied to the combustion unit 4. And from the combustion part 4, the high temperature combustion exhaust gas E more than the reforming process temperature is discharged | emitted.
Moreover, the water vapor generation unit S is configured to heat water with such combustion exhaust gas E to generate water vapor.
[0025]
Further, the hydrogen-containing gas generation device P collects the heat of the combustion exhaust gas E discharged from the steam generation unit S at least at the steam temperature by the fuel gas F and the combustion air A supplied to the combustion unit 4. A three-fluid heat exchanger 10 for improving thermal efficiency is provided, and the detailed structure of the three-fluid heat exchanger 10 will be described below.
[0026]
As shown in FIGS. 2 and 3, the three-fluid heat exchanger 10 includes four plate members 14 and 15, which are stainless steel plate members having a thickness of 0.5 mm, formed in a dish shape by press molding or the like. It is configured as a plate-type heat exchanger by superimposing while forming the flow paths 11, 12, 13 between adjacent ones, and joining the outer peripheral portions 17 of the respective plate members 14, 15 by seam welding or the like. And it is thin.
[0027]
In the three-fluid heat exchanger 10, the flat first flow path 11 formed between the two first plate members 14 in the middle of the four plate members 14 and 15 stacked on each other includes: Combustion exhaust gas E for heat supply (an example of a first fluid) flows, and the second plate member is sandwiched between the two second plate members 15 and the third plate member 16 by sandwiching the outside of the two first plate members 14 overlaid. 15, heat-receiving combustion air A (an example of a second fluid) flows through the flat second flow path 12 formed inside the flat plate 15, and the flat plate formed inside the third plate member 16. In the third flow path 13, a heat receiving fuel gas F (an example of a third fluid) flows, and between the combustion exhaust gas E and the fuel gas F and between the combustion exhaust gas E and the combustion air A. Heat exchange can be carried out simultaneously in each of the intervals.
[0028]
Further, in the three-fluid heat exchanger 10, the first flow path 11, the second flow path 12, and the third flow path 13 are overlapped with each other, as shown in FIG. It is formed as having a meandering path of the same shape in plan view from the direction, and the flow direction of the combustion exhaust gas E is opposite to the flow direction of the fuel gas F and the combustion air A. Immediately after the heat transfer length and the heat transfer area are earned, the heat of the combustion exhaust gas E immediately before being discharged through the first flow path 11 is supplied to the second flow path 12 and the third flow path 13. The fuel gas F and the combustion air A can be sufficiently recovered by the relatively low temperature, and the heat exchange between the combustion exhaust gas E and the fuel gas F and the combustion air A is promoted.
[0029]
That is, the path of the first flow path 11 is formed in a serpentine path between the first plate members 14 adjacent to each other by bringing the partition portions 18 formed to protrude from the first plate members 14 into contact with each other. Further, by bringing the second flow channel 12 and the third flow channel 13 into contact with the partition portion 18 of the first plate material 14, the partition portion 18 formed to protrude from the second plate material 15 and the third plate material 16, respectively, It is formed in a meandering path having the same shape as the first flow path 11. And the partition part 18 joined mutually in this way is joined between the board | plate materials which adjoin by seam welding.
[0030]
The second plate member 15 has an inflow portion 12i for allowing the combustion air A to flow into the second flow path 12 and an outflow portion 12o for allowing the combustion air A to flow out of the second flow path 12 by drawing. The pipe material which forms the flow path of the combustion air A is each joined to the inflow part 12i and the outflow part 12o.
In addition, an inflow portion 13i for allowing the fuel gas F to flow into the third flow path 13 and an outflow portion 13o for allowing the fuel gas F to flow out of the third flow path 13 are also drawn into the third plate member 16 by drawing. The pipe material which forms the flow path of the fuel gas F is joined to the inflow part 13i and the outflow part 13o, respectively.
[0031]
Further, the first plate member 14 has an inflow portion 11i for allowing the combustion exhaust gas E to flow into the first flow path 11 and an outflow portion 11o for allowing the combustion exhaust gas E to flow out from the first flow path 11. By processing, it is formed in a tubular shape that penetrates the third plate member 16, and pipe materials that form a flow path of the combustion exhaust gas E are joined to the inflow portion 11i and the outflow portion 11o, respectively.
[0032]
In addition, the hydrogen-containing gas generator P is supplied to the reforming unit 3 by exchanging heat between the desulfurized raw fuel gas from the desulfurizing unit 1 and the high-temperature reforming gas from the reforming unit 3. The desulfurized raw fuel gas heat exchanger Ep for preheating the desulfurized raw fuel gas, the high-temperature reformed processing gas from the reforming processing unit 3 and the raw fuel gas supplied to the desulfurizing processing unit 1 are heat-exchanged to produce a raw material. A raw fuel gas heat exchanger Ea for preheating the fuel gas is provided.
In addition, a heat exchanger 17 for preheating the raw water is provided to preheat the raw water by exchanging heat between the shift gas discharged from the shift treatment section 5 and the raw water supplied to the steam generation section S.
[0033]
There are provided a desulfurization processing section heater 32 for heating the desulfurization processing section 1 so that it can be desulfurized at the time of start-up, and two shift processing section heaters 33 for heating the conversion processing section so that it can be subjected to a modification process. The heaters 32 and 33 are electric heaters.
[0034]
Further, a desulfurization treatment temperature sensor T1 for detecting the temperature of the desulfurization treatment unit 1, a reforming treatment temperature sensor T3 for detecting the temperature of the reforming treatment unit 3, and a selective oxidation treatment temperature for detecting the temperature of the selective oxidation treatment unit 6. A sensor T5 is provided.
[0035]
The desulfurization processing section heater 32 is adjusted in heating capacity so that the desulfurization processing temperature detected by the desulfurization processing temperature sensor T1 is maintained at the above-mentioned appropriate temperature. The heating capability is adjusted so that the transformation temperature detected by the temperature sensor T5 is maintained at the appropriate temperature. Further, the heating capacity of the combustion unit 4, that is, the amount of fuel supplied to the combustion unit 4 is adjusted so that the reforming process temperature detected by the reforming process temperature sensor T3 is maintained at the appropriate temperature. .
In addition, the selective oxidation treatment unit 6 is cooled by a cooling fan or the like so as to maintain an appropriate temperature.
[Brief description of the drawings]
1 is a schematic configuration diagram of a hydrogen-containing gas generating device. FIG. 2 is a schematic perspective view of a three-fluid heat exchanger. FIG. 3 is a cross-sectional view of a three-fluid heat exchanger.
DESCRIPTION OF SYMBOLS 1 Desulfurization process part 3 Reformation process part 4 Modification process part Heating means 5 Transformation process part 6 Selective oxidation process part 10 Three-fluid heat exchanger 11 1st flow path 12 2nd flow path 13 3rd flow path 14 1st Plate material 15 Second plate material 16 Third plate material 17 Outer peripheral portion 18 Partition portion S Water vapor generating portion G Fuel cell

Claims (5)

第1流体と第2流体との間、及び前記第1流体と第3流体との間の夫々で熱交換を行なう三流体用熱交換器であって、
複数の第1板材と、その両外側に配置された第2板材及び第3板材とを、夫々の前記板材の外周部を、互いに隣接する前記板材間において接合して重設し、
前記第1流体が流通する第1流路が、互いに隣接する前記第1板材間において、両第1板材に突出形成された仕切部同士を接触させることにより、前記複数の第1板材の夫々の間に形成され、
前記第2流体が流通する第2流路が、第2板材に突出形成された仕切部を、前記第1板材の前記仕切部に接触させることにより、前記第1板材と前記第2板材との間に形成され、
前記第3流体が流通する第3流路が、第3板材に突出形成された仕切部を、前記第1板材の前記仕切部に接触させることにより、前記第1板材と前記第3板材との間に形成されていることを特徴とする三流体用熱交換器。
A three-fluid heat exchanger that performs heat exchange between the first fluid and the second fluid and between the first fluid and the third fluid,
A plurality of first plate members, and a second plate member and a third plate member arranged on both outer sides thereof are joined by overlapping the outer peripheral portions of the respective plate members between the adjacent plate members,
The first flow path through which the first fluid circulates between the first plate members adjacent to each other, by bringing the partitioning portions formed on both first plate members into contact with each other, thereby allowing each of the plurality of first plate members to contact each other . Formed between,
The second flow path through which the second fluid circulates causes the partition portion formed to protrude from the second plate member to contact the partition portion of the first plate member , thereby allowing the first plate member and the second plate member to contact each other. Formed between,
The third flow path through which the third fluid circulates causes the partition portion formed to protrude from the third plate material to contact the partition portion of the first plate material , whereby the first plate material and the third plate material. A three-fluid heat exchanger characterized by being formed in between.
記第1流路における前記第1流体の流通方向が、前記第2流路における前記第2流体の流通方向及び前記第3流路における前記第3流体の流通方向に対向する方向に設定されていることを特徴とする請求項1記載の三流体用熱交換器。Flowing direction of the first fluid before Symbol first flow path is set to a direction opposite to the flow direction of the third fluid in the flow direction and the third channel of the second fluid in the second flow path The three-fluid heat exchanger according to claim 1 , wherein the heat exchanger is a three-fluid heat exchanger. 第1流体と第2流体との間、及び前記第1流体と第3流体との間の夫々で熱交換を行なう三流体用熱交換器であって、
複数の第1板材と、その両外側に配置された第2板材及び第3板材とを、夫々の前記板材の外周部を、互いに隣接する前記板材間において接合して重設し、
前記第1流体が流通する第1流路が、前記複数の第1板材の夫々の間に形成され、
前記第2流体が流通する第2流路が、前記第1板材と前記第2板材との間に形成され、
前記第3流体が流通する第3流路が、前記第1板材と前記第3板材との間に形成され、
前記第1流路及び前記第2流路及び前記第3流路が、前記各板材の重なり方向に平面視して同形状の経路を有するものであり、
前記第1流路における前記第1流体の流通方向が、前記第2流路における前記第2流体の流通方向及び前記第3流路における前記第3流体の流通方向に対向する方向に設定され、
前記第1流路及び前記第2流路及び前記第3流路の経路が、互いに隣接する前記板材間において少なくとも一方側の前記板材に突出形成された仕切部を他方側の前記板材に接合することにより形成された蛇行状経路であることを特徴とする三流体用熱交換器。
A three-fluid heat exchanger that performs heat exchange between the first fluid and the second fluid and between the first fluid and the third fluid,
A plurality of first plate members, and a second plate member and a third plate member arranged on both outer sides thereof are joined by overlapping the outer peripheral portions of the respective plate members between the adjacent plate members,
A first flow path through which the first fluid flows is formed between each of the plurality of first plate members;
A second flow path through which the second fluid flows is formed between the first plate and the second plate;
A third flow path through which the third fluid flows is formed between the first plate member and the third plate member;
The first flow path, the second flow path, and the third flow path have a path of the same shape in plan view in the overlapping direction of the plate members,
The flow direction of the first fluid in the first flow path is set in a direction opposite to the flow direction of the second fluid in the second flow path and the flow direction of the third fluid in the third flow path,
The path of the first flow path, the second flow path, and the third flow path joins the partition portion formed to protrude from at least one of the plate materials between the adjacent plate materials to the other plate material. A three-fluid heat exchanger, wherein the three-fluid heat exchanger is formed in a meandering path .
燃焼部で燃料を燃焼用空気により燃焼させるバーナ装置であって、
請求項1から3の何れか一項に記載の三流体用熱交換器を、前記燃焼部から排出された燃焼排ガスを前記第1流体とし、前記燃焼部に供給される前記燃料と前記燃焼用空気とを前記第2流体と前記第3流体として備えたことを特徴とするバーナ装置。
A burner device that burns fuel with combustion air in a combustion section,
The three-fluid heat exchanger according to any one of claims 1 to 3, wherein the combustion exhaust gas discharged from the combustion unit is the first fluid, and the fuel supplied to the combustion unit and the combustion A burner device comprising air as the second fluid and the third fluid.
請求項4に記載のバーナ装置により加熱され、炭化水素系の原燃料ガスを、水蒸気にて、燃料電池に供給される水素含有ガスに改質させる改質処理部を備えたことを特徴とする水素含有ガス生成装置。  A reforming processing unit is provided which is heated by the burner device according to claim 4 and reforms the hydrocarbon-based raw fuel gas into water-containing gas supplied to the fuel cell with water vapor. Hydrogen-containing gas generator.
JP2001341882A 2001-11-07 2001-11-07 Three-fluid heat exchanger Expired - Lifetime JP3942405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001341882A JP3942405B2 (en) 2001-11-07 2001-11-07 Three-fluid heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001341882A JP3942405B2 (en) 2001-11-07 2001-11-07 Three-fluid heat exchanger

Publications (2)

Publication Number Publication Date
JP2003148881A JP2003148881A (en) 2003-05-21
JP3942405B2 true JP3942405B2 (en) 2007-07-11

Family

ID=19155834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001341882A Expired - Lifetime JP3942405B2 (en) 2001-11-07 2001-11-07 Three-fluid heat exchanger

Country Status (1)

Country Link
JP (1) JP3942405B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE527450C2 (en) * 2004-01-23 2006-03-07 Alfa Laval Corp Ab Heat
JP4664114B2 (en) * 2005-04-13 2011-04-06 株式会社ティラド Multi-plate heat exchanger
CN100582627C (en) * 2005-05-24 2010-01-20 达纳加拿大公司 Multifluid heat exchanger
JP4904720B2 (en) * 2005-05-25 2012-03-28 トヨタ自動車株式会社 Fuel cell system
JP4724602B2 (en) * 2006-05-17 2011-07-13 トーステ株式会社 Heat exchanger
US7703505B2 (en) * 2006-11-24 2010-04-27 Dana Canada Corporation Multifluid two-dimensional heat exchanger
JP2008170090A (en) * 2007-01-12 2008-07-24 Mac:Kk Brazed plate for heat transfer, and heat exchanger using the same
JP5163147B2 (en) * 2008-01-23 2013-03-13 富士電機株式会社 Heat exchanger and combined fuel reactor
JP5409056B2 (en) * 2009-02-17 2014-02-05 株式会社アタゴ製作所 Plate heat exchanger
JP2010230211A (en) * 2009-03-26 2010-10-14 Earth Technica:Kk Heating/cooling device
KR100954439B1 (en) 2009-10-15 2010-04-27 케이피에치이 주식회사 Multi effect plate heat exchanger
JP2011185497A (en) * 2010-03-05 2011-09-22 Atago Seisakusho:Kk Heat exchanger
KR101316861B1 (en) * 2011-12-07 2013-10-08 현대자동차주식회사 Heat exchanger for lpi vehicle
JP2015025626A (en) * 2013-07-26 2015-02-05 アイシン精機株式会社 Heat exchange device
CN108088283A (en) * 2017-12-29 2018-05-29 浙江镭弘激光科技有限公司 A kind of three chambers pillow formula heat exchanger
US11472255B2 (en) * 2020-09-21 2022-10-18 Honda Motor Co., Ltd. Chiller/warmer combination for an electric vehicle

Also Published As

Publication number Publication date
JP2003148881A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
JP3942405B2 (en) Three-fluid heat exchanger
JP4063430B2 (en) Fluid processing equipment
JP4736299B2 (en) Metamorphic equipment
JP4479117B2 (en) Fuel reformer
JP4090234B2 (en) Hydrogen-containing gas generator
JP3831688B2 (en) Reformer system
CN101488573A (en) Fuel cell and control method thereof
US7842260B2 (en) Reaction vessel and reaction device
JP3903710B2 (en) Fuel reformer and polymer electrolyte fuel cell power generator using the same
JP4531320B2 (en) Operation control method for hydrogen-containing gas generator
JP4646527B2 (en) Reformer
JP5324752B2 (en) Hydrogen-containing gas generator
JP5163147B2 (en) Heat exchanger and combined fuel reactor
JP4624382B2 (en) Operation control method for hydrogen-containing gas generator
JP3680936B2 (en) Fuel reformer
JP4753506B2 (en) Hydrogen-containing gas generator and method for operating the same
US7306781B2 (en) Hydrogen generator
JPH0450246B2 (en)
JP4107407B2 (en) Air mixing method in CO selective oxidation reaction of oxidation reactor and hydrogen production apparatus
JP4502468B2 (en) Fuel cell power generator
JP3948885B2 (en) Hydrogen-containing gas generator for fuel cells
Zhang et al. Development of Methane Steam Reformer for Domestic Fuel Cell by Using Electro-Thermal Alumite Catalyst
JP2550716B2 (en) Fuel reformer
JPH11199202A (en) Converting device and fuel cell power generation unit using the same
JP2003160305A (en) Reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070403

R150 Certificate of patent or registration of utility model

Ref document number: 3942405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

EXPY Cancellation because of completion of term