JP4646527B2 - Reformer - Google Patents

Reformer Download PDF

Info

Publication number
JP4646527B2
JP4646527B2 JP2004043155A JP2004043155A JP4646527B2 JP 4646527 B2 JP4646527 B2 JP 4646527B2 JP 2004043155 A JP2004043155 A JP 2004043155A JP 2004043155 A JP2004043155 A JP 2004043155A JP 4646527 B2 JP4646527 B2 JP 4646527B2
Authority
JP
Japan
Prior art keywords
chamber
reforming
gas
dish
flow chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004043155A
Other languages
Japanese (ja)
Other versions
JP2005231943A (en
Inventor
規寿 神家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2004043155A priority Critical patent/JP4646527B2/en
Publication of JP2005231943A publication Critical patent/JP2005231943A/en
Application granted granted Critical
Publication of JP4646527B2 publication Critical patent/JP4646527B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、改質触媒が装入されて、供給される炭化水素系の原燃料を水蒸気により改質処理して水素ガスを主成分とする改質処理ガスを生成する改質処理室と、その改質処理室から排出された改質処理ガスを通流させる改質処理ガス通流室とが伝熱可能に並設された改質装置に関する。   The present invention includes a reforming treatment chamber in which a reforming catalyst is charged and a hydrocarbon-based raw fuel to be supplied is reformed with steam to generate a reforming treatment gas mainly composed of hydrogen gas; The present invention relates to a reforming apparatus in which a reforming process gas flow chamber for allowing a reforming process gas discharged from the reforming process chamber to flow therethrough is arranged in parallel so as to be able to transfer heat.

かかる改質装置は、改質処理室と改質処理ガス通流室とを伝熱可能に並設して、改質処理室から排出された改質処理ガスを改質処理ガス通流室に通流させることにより、改室処理ガス通流室から改質処理室に伝熱させて、その改質処理ガス通流室を通流する改質処理ガスから、改質処理室における改質処理用の熱を回収するように構成したものであり、改質処理室における改質処理効率を向上するようにしたものである。   Such a reformer has a reforming process chamber and a reforming process gas flow chamber arranged side by side so that heat can be transferred, and the reforming process gas discharged from the reforming process chamber is transferred to the reforming process gas flow chamber. By conducting the flow, heat is transferred from the reformed process gas flow chamber to the reforming process chamber, and from the reformed process gas flowing through the reformed process gas flow chamber, the reforming process in the reforming process chamber is performed. It is configured to recover the heat for use, and improves the reforming treatment efficiency in the reforming treatment chamber.

このような改質装置において、従来では、図11に示すように、改質処理室2と改質処理ガス通流室4とを、夫々に専用の室形成体51,52を用いて各別に形成し、それら各別の改質処理室2及び改質処理ガス通流室4を、改質処理室用の室形成体51と改質処理ガス通流室用の室形成体52とを密着させた状態で並設することにより、改質処理室2と改質処理ガス通流室4とを伝熱可能に並設し、更に、それら改質処理室2と改質処理ガス通流室4とをそれらの外部に配管した外部接続管53にて接続していた。   In such a reforming apparatus, conventionally, as shown in FIG. 11, the reforming process chamber 2 and the reforming process gas flow chamber 4 are separately provided using dedicated chamber forming bodies 51 and 52, respectively. The reforming treatment chamber 2 and the reforming treatment gas flow chamber 4 are formed in close contact with the chamber forming member 51 for the reforming treatment chamber and the chamber forming member 52 for the reforming treatment gas flow chamber. By arranging in parallel, the reforming treatment chamber 2 and the reforming treatment gas flow chamber 4 are juxtaposed so that heat can be transferred, and further, the reforming treatment chamber 2 and the reforming treatment gas flow chamber. 4 are connected to each other by an external connection pipe 53 piped to the outside thereof.

説明を加えると、一対の皿状容器形成体54をそれらの間に燃焼室側伝熱板55を位置させた状態で配置し、それら一対の皿状容器形成体54の周辺部を溶接接続することにより、区画された2つの室を備えた双室具備容器Bdを構成し、その双室具備容器Bdの一方の室を備えた部分にて改質処理室2を構成し、他方の室を備えた部分にて燃料を燃焼させて改質処理室2を加熱する燃焼室3を構成していた。
又、皿状容器形成体58と平板状容器形成体59とを対向させて配置し、それら皿状容器形成体58及び平板状容器形成体59の周辺部を溶接接続することにより、一つの室を備えた単室具備容器Bmを構成し、その単室具備容器Bmにて改質処理ガス通流室4を構成していた。
In other words, a pair of dish-like container forming bodies 54 are arranged with the combustion chamber side heat transfer plate 55 positioned between them, and the peripheral portions of the pair of dish-like container forming bodies 54 are connected by welding. Thus, a twin-chamber equipped container Bd having two compartments is formed, the reforming treatment chamber 2 is constituted by a portion of the twin-chamber equipped container Bd having one chamber, and the other chamber is The combustion chamber 3 for combusting fuel and heating the reforming treatment chamber 2 in the provided portion was configured.
In addition, the dish-like container forming body 58 and the plate-like container forming body 59 are arranged to face each other, and the peripheral portions of the dish-like container forming body 58 and the plate-like container forming body 59 are connected by welding to form one chamber. The single-chamber equipped container Bm was provided, and the single-chamber equipped container Bm constituted the reforming treatment gas flow chamber 4.

つまり、双室具備容器Bdを形成する一対の皿状容器形成体54のうちの改質処理室2を区画する方の皿状容器形成体54と燃焼室側伝熱板55とが、改質処理室用の室形成体51に相当し、単室具備容器Bmを形成する皿状容器形成体58と平板状容器形成体59とが、改質処理ガス通流室用の室形成体52に相当する。   That is, of the pair of dish-shaped container forming bodies 54 that form the twin-chamber equipped container Bd, the dish-shaped container forming body 54 that partitions the reforming treatment chamber 2 and the combustion chamber side heat transfer plate 55 are reformed. Corresponding to the chamber forming body 51 for the processing chamber, the plate-like container forming body 58 and the plate-like container forming body 59 forming the single chamber equipped container Bm are used as the chamber forming body 52 for the reforming process gas flow chamber. Equivalent to.

そして、双室具備容器Bdと単室具備容器Bmとを、双室具備容器Bdの一方の皿状容器形成体54(改質処理室用の室形成体51に相当する)と単室具備容器Bmの皿状容器形成体58(改質処理ガス通流室用の室形成体52に相当する)とを密着させた状態で並設することにより、改質処理室2と改質処理ガス通流室4とを伝熱可能に並設し、更に、改質処理室2を構成する双室具備容器Bdと改質処理ガス通流室4を構成する単室具備容器Bmとを外部接続管53にて接続して、その外部接続管53を通じて、改質処理室2から排出された改質処理ガスを改質処理ガス通流室4に供給するように構成していた(例えば、特許文献1参照。)。   Then, the twin chamber container Bd and the single chamber container Bm are combined into one dish-like container forming body 54 (corresponding to the chamber forming body 51 for the reforming treatment chamber) of the twin chamber container Bd and the single chamber container. By arranging the Bm dish-like container forming body 58 (corresponding to the chamber forming body 52 for the reforming process gas flow chamber) in close contact with each other, the reforming process chamber 2 and the reforming process gas flow are arranged. The flow chamber 4 is arranged side by side so that heat can be transferred, and further, the double chamber equipped vessel Bd constituting the reforming treatment chamber 2 and the single chamber equipped vessel Bm constituting the reforming treatment gas flow chamber 4 are externally connected. 53, and the reforming process gas discharged from the reforming process chamber 2 is supplied to the reforming process gas flow chamber 4 through the external connection pipe 53 (for example, Patent Documents). 1).

尚、図11中、60は、前記燃焼室3内に設けて燃料を燃焼させるバーナであり、1は、改質処理室2に装入した改質触媒、61は、炭化水素系の原燃料を改質処理室2に供給する原燃料供給路、62は、改質処理ガス通流室4から排出される改質処理ガスを導く改質処理ガス排出路である。   In FIG. 11, 60 is a burner provided in the combustion chamber 3 for burning fuel, 1 is a reforming catalyst charged into the reforming treatment chamber 2, and 61 is a hydrocarbon-based raw fuel. The raw fuel supply path 62 for supplying the reforming process chamber 2 to the reforming process chamber 2 is a reforming process gas discharge path for guiding the reforming process gas discharged from the reforming process gas flow chamber 4.

特開2000−178003号公報JP 2000-178003 A

従って、従来では、上述のように改質処理室と改質処理ガス通流室とを夫々に専用の室形成体を用いて各別に形成すると共に、それら各別の改質処理室と改質処理ガス通流室とを外部接続管にて接続することから、構成が複雑化して、改質装置が高騰化していた。
又、互いに密着する改質処理室用の室形成体及び改質処理ガス通流室用の室形成体を夫々伝熱板として機能させて、それら2枚の伝熱板を通して、改質処理室と改質処理ガス通流室との間で伝熱させるように構成していたことから、伝熱効率が悪くなり、改質処理効率を向上させる上で改善の余地があった。
つまり、2枚の伝熱板にて伝熱させるだけでも伝熱効率が悪くなるばかりか、更に、2枚の伝熱板の少なくとも一方に凹凸が存在すると、2枚の伝熱板の間に伝熱が抑制される空気層が形成されるので、一段と伝熱効率が悪くなるのである。
Therefore, conventionally, as described above, the reforming process chamber and the reforming process gas flow chamber are separately formed using the dedicated chamber forming bodies, and the respective reforming process chambers and the reforming chambers are formed. Since the process gas flow chamber is connected to the external connection pipe, the configuration is complicated, and the reforming apparatus is expensive.
Further, the reformer chamber forming body and the reformer gas flow chamber chamber former that are in close contact with each other function as heat transfer plates, and the reformer chamber passes through these two heat transfer plates. Since the heat transfer efficiency is deteriorated, there is room for improvement in improving the reforming treatment efficiency.
That is, not only the heat transfer efficiency is deteriorated just by transferring the heat with the two heat transfer plates, but also when at least one of the two heat transfer plates has unevenness, the heat transfer is performed between the two heat transfer plates. Since the air layer to be suppressed is formed, the heat transfer efficiency is further deteriorated.

本発明は、かかる実情に鑑みてなされたものであり、その目的は、低廉化を図りながら、改質処理効率を向上し得る改質装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a reforming apparatus capable of improving the reforming treatment efficiency while reducing the cost.

本発明の改質装置は、改質触媒が装入されて、供給される炭化水素系の原燃料を水蒸気により改質処理して水素ガスを主成分とする改質処理ガスを生成する改質処理室と、その改質処理室から排出された改質処理ガスを通流させる改質処理ガス通流室とが伝熱可能に並設された改質装置であって、
前記改質処理室と前記改質処理ガス通流室とが、1枚の通流室側伝熱板にて隔てられた状態で、且つ、前記改質処理室から前記改質処理ガス通流室に改質処理ガスを通過させるガス通過部を備える状態で区画形成され、
燃焼室側伝熱板を間に位置させた状態で配置された一対の皿状容器形成体の周辺部が溶接接続されて、前記改質処理室と燃料を燃焼させて前記改質処理室を加熱する燃焼室とが区画形成され、
前記改質処理室を構成する前記皿状容器形成体の背面側に、皿状通流室形成体の周縁部における端面部のみが当て付けられた状態で溶接接続されて、前記改質処理室を構成する前記皿状容器形成体を前記通流室側伝熱板として機能させる状態で、前記改質処理ガス通流室が区画形成され、
前記皿状容器形成体及び前記皿状通流室形成体の夫々が、平板状の底部の周縁部から丸みを帯びる状態で側壁部が立ち上がる皿状に成形加工されて形成されている点を特徴とする。
The reforming apparatus of the present invention is a reforming method in which a reforming catalyst is charged and a hydrocarbon-based raw fuel to be supplied is reformed with steam to generate a reforming gas mainly composed of hydrogen gas. A reforming apparatus in which a processing chamber and a reforming process gas flow chamber for allowing the reforming process gas discharged from the reforming process chamber to flow are arranged in parallel so as to be capable of transferring heat,
The reforming process chamber and the reforming process gas flow chamber are separated from each other by a single flow chamber side heat transfer plate, and the reforming process gas flow from the reforming process chamber. A compartment is formed with a gas passage part for allowing the reforming gas to pass through the chamber,
Peripheral portions of a pair of dish-like container forming bodies arranged with the combustion chamber side heat transfer plate positioned between them are welded, and the reforming chamber and the fuel are burned to form the reforming chamber. The combustion chamber to be heated is partitioned,
The reforming treatment chamber is welded and connected to the back side of the dish-shaped container forming body constituting the reforming processing chamber in a state where only the end surface portion of the peripheral portion of the dish-shaped flow chamber forming body is applied. In the state in which the dish-like container forming body constituting the function as the flow chamber side heat transfer plate, the reforming gas flow chamber is partitioned and formed,
Each of the dish-shaped container forming body and the dish-shaped flow chamber forming body is formed and processed into a dish shape in which a side wall portion rises in a state of being rounded from a peripheral edge portion of a flat bottom. And

即ち、改質処理室にて改質処理された改質処理ガスがガス通過部を通じて改質処理ガス通流室に流入して、その改質処理ガス通流室を通流し、1枚の通流室側伝熱板を通じて、改質処理ガス通流室から改質処理室に伝熱する。   That is, the reforming process gas reformed in the reforming process chamber flows into the reforming process gas flow chamber through the gas passage portion, flows through the reforming process gas flow chamber, and passes through one sheet. Heat is transferred from the reforming process gas flow chamber to the reforming process chamber through the flow chamber side heat transfer plate.

つまり、改質処理室と改質処理ガス通流室とを、1枚の通流室側伝熱板にて隔てた状態で且つガス通過部を備える状態で区画形成することから、改質処理室と改質処理ガス通流室とを一体的に構成することができると共に、改質処理室と改質処理ガス通流室とを従来の如く外部接続管にて接続する必要がないので、改質装置の構成を簡略化することが可能になる。
又、改質処理ガス通流室から改質処理室へ1枚の通流室側伝熱板を通じて伝熱させるので、伝熱効率を向上することが可能になって、改質処理効率を向上することが可能になる。
従って、低廉化を図りながら、改質処理効率を向上し得る改質装置を提供することができるようになった。
また、第1特徴構成によれば、燃焼室側伝熱板を間に位置させた状態で配置した一対の皿状容器形成体の周辺部を溶接接続して、区画された2つの室を備えた容器を構成し、その容器の一方の室を備えた部分にて改質処理室を構成し、他方の室を備えた部分にて、燃料を燃焼させて改質処理室を加熱する燃焼室を構成することにより、燃焼室で燃料が燃焼して発生する燃焼熱を1枚の燃焼室側伝熱板を通じて改質処理室に伝熱させるようにすることができる。
又、その容器の改質処理室の部分を構成する皿状容器形成体に、皿状通流室形成体の周縁部を溶接接続して、その改質処理室を構成する皿状容器形成体を通流室側伝熱板として機能させる状態で、改質処理ガス通流室を区画形成することにより、1枚の通流室側伝熱板を通じて、改質処理ガス通流室から改質処理室に伝熱させるようにすることができる。
つまり、上述のように容器を構成して、その容器により改質処理室及び燃焼室を構成すると共に、その容器の改質処理室の部分を構成する皿状容器形成体に皿状通流室形成体の周縁部を溶接接続して、その改質処理室を構成する皿状容器形成体と皿状通流室形成体とにより改質処理ガス通流室を区画形成することにより、改質処理室、燃焼室及び改質処理ガス通流室を、改質処理室と燃焼室とを1枚の燃焼室側伝熱板にて隔て且つ改質処理室と改質処理ガス通流室とを1枚の通流室側伝熱板にて隔てた状態で、一体的に構成することが可能になる。
そして、改質処理室、燃焼室及び改質処理ガス通流室を一体的に構成することが可能になることにより、組み付け構成を簡略化することが可能になる。
又、改質処理ガス通流室から改質処理室へ1枚の通流室側伝熱板を通じて伝熱させることにより、改質処理ガス通流室から改質処理室への伝熱効率を向上させることが可能になることに加えて、燃焼室から改質処理室へ1枚の燃焼室側伝熱板を通じて伝熱させることにより、燃焼室から改質処理室への伝熱効率をも向上させることが可能になるので、改質処理効率を一段と向上させることが可能になる。
従って、低廉化を一層図ると共に、改質処理効率の向上を一層促進させるようにする上で好適な手段を提供することができるようになった。
さらに、第1特徴構成によれば、皿状容器形成体及び皿状通流室形成体の夫々が、皿状に成形加工されて形成されているので、皿状容器形成体及び皿状通流室形成体夫々の製作を簡略化することが可能になり、延いては、改質処理室、燃焼室及び改質処理ガス通流室夫々の製作を簡略化することが可能になる。
ちなみに、皿状容器形成体及び皿状通流室形成体の夫々を、折り曲げ加工により形成することができるが、この折り曲げ加工は成形加工に比べて、加工工程が多くなる等の理由により、皿状容器形成体及び皿状通流室形成体夫々の製作が複雑化する。
従って、低廉化を一層図るようにする上で好適な手段を提供することができるようになった。
In other words, the reforming process chamber and the reforming process gas flow chamber are partitioned and formed with a gas passage portion separated by a single flow chamber side heat transfer plate. The chamber and the reforming process gas flow chamber can be configured integrally, and it is not necessary to connect the reforming process chamber and the reforming process gas flow chamber with an external connection pipe as in the prior art. The configuration of the reformer can be simplified.
In addition, since heat is transferred from the reforming process gas flow chamber to the reforming chamber through one flow chamber side heat transfer plate, the heat transfer efficiency can be improved and the reforming process efficiency is improved. It becomes possible.
Accordingly, it is possible to provide a reforming apparatus that can improve the reforming treatment efficiency while reducing the cost.
Further, according to the first characteristic configuration, the two peripheral compartments are provided by welding and connecting the peripheral portions of the pair of dish-like container forming bodies arranged with the combustion chamber side heat transfer plate positioned therebetween. A combustion chamber in which a reforming chamber is formed in a portion of the container having one chamber and the reforming chamber is heated by burning fuel in a portion having the other chamber By configuring this, the combustion heat generated by the combustion of fuel in the combustion chamber can be transferred to the reforming treatment chamber through one combustion chamber side heat transfer plate.
Also, the dish-shaped container forming body constituting the reforming treatment chamber is formed by welding the peripheral portion of the dish-shaped flow chamber forming body to the dish-shaped container forming body constituting the reforming processing chamber portion of the container. Reforming from the reforming gas flow chamber through one flow chamber heat transfer plate by partitioning the reforming gas flow chamber in a state of functioning as a flow chamber side heat transfer plate Heat can be transferred to the processing chamber.
In other words, the container is configured as described above, and the reforming chamber and the combustion chamber are configured by the container, and the dish-shaped flow chamber is formed in the dish-shaped container forming body that configures the reforming chamber of the container. The peripheral part of the formed body is welded and the reforming gas flow chamber is partitioned by the dish-shaped container forming body and the dish-shaped flow chamber forming body constituting the reforming processing chamber, thereby reforming. The processing chamber, the combustion chamber, and the reforming process gas flow chamber are separated by a single combustion chamber side heat transfer plate, and the reforming processing chamber and the reforming process gas flow chamber are separated from each other. Can be configured integrally with a single flow chamber-side heat transfer plate.
And since it becomes possible to comprise a reforming process chamber, a combustion chamber, and a reforming process gas flow chamber integrally, it becomes possible to simplify an assembly structure.
In addition, heat transfer efficiency from the reforming process gas flow chamber to the reforming process chamber is improved by transferring heat from the reforming process gas flow chamber to the reforming process chamber through one flow chamber side heat transfer plate. In addition to making it possible to transfer heat from the combustion chamber to the reforming chamber through one combustion chamber side heat transfer plate, the heat transfer efficiency from the combustion chamber to the reforming chamber is also improved. Therefore, the reforming treatment efficiency can be further improved.
Therefore, it is possible to provide a suitable means for further reducing the cost and further promoting the improvement of the reforming treatment efficiency.
Furthermore, according to the first characteristic configuration, each of the dish-shaped container forming body and the dish-shaped flow chamber forming body is formed and processed into a dish shape. It becomes possible to simplify the production of each of the chamber forming bodies, and it is possible to simplify the production of the reforming process chamber, the combustion chamber, and the reforming process gas flow chamber.
By the way, each of the dish-shaped container forming body and the dish-shaped flow chamber forming body can be formed by bending, but this bending process is performed by a dish that has more processing steps than molding. The production of each of the container-shaped body and the dish-shaped flow chamber forming body is complicated.
Therefore, it is possible to provide a suitable means for further reducing the cost.

第2特徴構成は、上記第1特徴構成に加えて、
前記改質処理室及び前記改質処理ガス通流室の夫々が、前記通流室側伝熱板の厚さ方向に薄い扁平状に構成されている点を特徴とする。
In addition to the first feature configuration, the second feature configuration is
Each of the reforming process chamber and the reforming process gas flow chamber is configured to have a thin flat shape in the thickness direction of the flow chamber side heat transfer plate.

即ち、改質処理室及び前記改質処理ガス通流室の夫々が、前記通流室側伝熱板の厚さ方向に薄い扁平状に構成されていることから、改質処理室の単位容積に対する伝熱面積及び改質処理ガス通流室の単位容積に対する伝熱面積を大きくすることが可能になって、改質処理ガス通流室を通流する改質処理ガスから効率良く熱回収することが可能になると共に、改質処理室の加熱温度分布を小さくすることが可能となる。
つまり、改質処理室にて原燃料を適切に改質処理できるようにしながら、改質処理可能なように加熱するのにかかわるエネルギー消費量を少なくすることが可能になるので、改質処理効率を一層向上させることが可能になる。
従って、改質処理効率の向上を一層促進させるようにする上で好適な手段を提供することができるようになった。
That is, since each of the reforming process chamber and the reforming process gas flow chamber is formed in a thin flat shape in the thickness direction of the flow chamber side heat transfer plate, the unit volume of the reforming process chamber It is possible to increase the heat transfer area with respect to and the heat transfer area per unit volume of the reforming treatment gas flow chamber, and efficiently recover heat from the reforming treatment gas flowing through the reforming treatment gas flow chamber. In addition, the heating temperature distribution in the reforming chamber can be reduced.
In other words, it is possible to reduce the energy consumption related to heating so that the reforming process can be performed while allowing the raw fuel to be appropriately reformed in the reforming process chamber. Can be further improved.
Accordingly, it is possible to provide a suitable means for further promoting the improvement of the reforming treatment efficiency.

〔第1実施形態〕
以下、図面に基づいて、本発明の第1実施形態を説明する。
図1ないし図3に示すように、改質装置Rは、改質触媒1が装入されて、供給される炭化水素系の原燃料ガスを水蒸気により改質処理して水素ガスを主成分とする改質処理ガスを生成する改質処理室2と、ガス燃料を燃焼させて改質処理室2を加熱する燃焼室3と、改質処理室2から排出された改質処理ガスを通流させる改質処理ガス通流室4とを、燃焼室3と改質処理室2とが伝熱可能で且つ改質処理ガス通流室4と改質処理室2とが伝熱可能な状態で、並設して構成してある。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described based on the drawings.
As shown in FIGS. 1 to 3, the reformer R is charged with a reforming catalyst 1 and reforms a hydrocarbon-based raw fuel gas supplied with steam to contain hydrogen gas as a main component. A reforming process chamber 2 for generating a reforming process gas, a combustion chamber 3 for burning gas fuel to heat the reforming process chamber 2, and a reforming process gas discharged from the reforming process chamber 2 The reforming process gas flow chamber 4 is in a state where the combustion chamber 3 and the reforming process chamber 2 can transfer heat and the reforming process gas flow chamber 4 and reforming process chamber 2 can transfer heat. Are arranged side by side.

そして、前記改質処理室2と前記改質処理ガス通流室4とを、1枚の通流室側伝熱板5にて隔てた状態で、且つ、改質処理室2から改質処理ガス通流室4に改質処理ガスを通過させるガス通過部10を備える状態で区画形成してある。   Then, the reforming treatment chamber 2 and the reforming treatment gas flow chamber 4 are separated from each other by the one flow chamber-side heat transfer plate 5 and the reforming treatment chamber 2 performs the reforming process. The gas flow chamber 4 is partitioned with a gas passage 10 that allows the reforming gas to pass therethrough.

説明を加えると、燃焼室側伝熱板6を間に位置させた状態で配置した一対の皿状容器形成体7の周辺部を溶接接続して、燃焼室側伝熱板6の厚さ方向に薄い扁平状の区画された2つの室を備える矩形板状の扁平な容器Bを構成し、その容器Bの一方の室を備えた部分にて前記改質処理室2を構成し、他方の室を備えた部分にて燃焼室3を構成し、その燃焼室3内に、ガス燃料を燃焼させるバーナ8を配設してそのバーナ8にて改質処理室2を加熱するようになっている。
又、その容器Bの改質処理室2を構成する皿状容器形成体7に、皿状通流室形成体9の周縁部を溶接接続して、その改質処理室2を構成する皿状容器形成体7を通流室側伝熱板5として機能させる状態で、皿状容器形成体7の厚さ方向に薄い扁平状の改質処理ガス通流室4を区画形成してある。
If it adds, the peripheral part of a pair of dish-shaped container formation body 7 arrange | positioned in the state which located the combustion chamber side heat exchanger plate 6 in the middle will be weld-connected, and the thickness direction of the combustion chamber side heat exchanger plate 6 will be described. A rectangular plate-like flat container B having two chambers each having a thin flat shape is configured, and the reforming chamber 2 is configured by a portion of the container B including one chamber, and the other The combustion chamber 3 is constituted by a portion provided with a chamber, a burner 8 for burning the gas fuel is disposed in the combustion chamber 3, and the reforming treatment chamber 2 is heated by the burner 8. Yes.
Further, the peripheral portion of the dish-shaped flow chamber forming body 9 is welded to the dish-shaped container forming body 7 constituting the reforming treatment chamber 2 of the container B, and the dish-like shape constituting the reforming processing chamber 2 is formed. In a state where the container forming body 7 functions as the flow chamber side heat transfer plate 5, a thin flat reforming process gas flow chamber 4 is formed in the thickness direction of the dish-shaped container forming body 7.

つまり、改質装置Rを、改質処理室2と燃焼室3とを1枚の燃焼室側伝熱板6にて隔て且つ改質処理室2と改質処理ガス通流室4とを1枚の通流室側伝熱板5にて隔てた状態で、改質処理室2、燃焼室3及び改質処理ガス通流室4を一体的に備えて構成してある。
又、前記燃焼室3、前記改質処理室2及び前記改質処理ガス通流室4の夫々を、前記通流室側伝熱板5の厚さ方向に薄い扁平状に構成してある。
That is, the reformer R is configured such that the reforming process chamber 2 and the combustion chamber 3 are separated by a single combustion chamber side heat transfer plate 6, and the reforming process chamber 2 and the reforming process gas flow chamber 4 are separated from each other. The reforming process chamber 2, the combustion chamber 3, and the reforming process gas flow chamber 4 are integrally provided in a state separated by a single flow chamber side heat transfer plate 5.
Each of the combustion chamber 3, the reforming process chamber 2, and the reforming process gas flow chamber 4 is configured to be thin and flat in the thickness direction of the flow chamber side heat transfer plate 5.

前記燃焼室側伝熱板6、前記皿状容器形成体7及び前記皿状通流室形成体9は、夫々ステンレス等の耐熱金属製であり、燃焼室側伝熱板6は矩形平板状に形成し、皿状容器形成体7は、開口部周囲に鍔状部を備えた矩形皿状にプレス成形加工して形成し、皿状通流室形成体9は、前述の如き鍔状部を備えない矩形皿状にプレス成形加工して形成してある。
皿状容器形成体7及び皿状通流室形成体9のいずれも、平板状の底部の周縁部から丸みを帯びる状態で側壁部が立ち上がる形状に形成してある。
前記改質触媒1は、ルテニウム、ニッケル、白金等の触媒をセラミック製の多孔質粒状体に保持させて、粒状に形成してある。
The combustion chamber side heat transfer plate 6, the dish-shaped container forming body 7 and the dish-shaped flow chamber forming body 9 are each made of a heat-resistant metal such as stainless steel, and the combustion chamber side heat transfer plate 6 has a rectangular flat plate shape. The dish-shaped container forming body 7 is formed by press-molding into a rectangular dish shape having a bowl-shaped part around the opening, and the dish-shaped flow chamber forming body 9 has a bowl-shaped part as described above. It is formed by press molding into a rectangular dish that is not provided.
Each of the dish-shaped container forming body 7 and the dish-shaped flow chamber forming body 9 is formed in a shape in which the side wall portion rises in a rounded state from the peripheral edge portion of the flat plate-like bottom portion.
The reforming catalyst 1 is formed in a granular shape by holding a catalyst such as ruthenium, nickel, or platinum in a ceramic porous granular material.

図2及び図3に示すように、前記改質処理室2を形成する方の皿状容器形成体7における一側縁の鍔状部分よりも内側で且つその鍔状部分近傍に、その鍔状部分に沿って複数列状に多数の小孔を穿設して、その小孔群により前記通過部10を構成し、又、その皿状容器形成体7の内部には、底用多孔板11及び蓋用多孔板12を、底用多孔板11が通過部10よりも内側で且つその通過部10近傍に位置し、且つ、蓋用多孔板12が底用多孔板11に対してその通過部10側とは反対側に対向して位置する状態で付設してある。   As shown in FIG. 2 and FIG. 3, the bowl-like shape is formed on the inner side of the bowl-shaped part on one side of the dish-shaped container forming body 7 that forms the reforming treatment chamber 2 and in the vicinity of the bowl-shaped part. A plurality of small holes are formed in a plurality of rows along the portion, and the passage portion 10 is constituted by the small hole group. In the dish-like container forming body 7, a porous plate 11 for the bottom is formed. The bottom porous plate 11 is located on the inner side of the passage portion 10 and in the vicinity of the passage portion 10, and the lid porous plate 12 is in the passage portion with respect to the bottom porous plate 11. It is attached in a state of being opposed to the side opposite to the 10 side.

そして、一対の皿状容器形成体7を、改質処理室2を形成する方の皿状容器形成体7の内部における底用多孔板11と蓋用多孔板12との間に多数の改質触媒1を充填し且つ燃焼室3を形成する方の皿状容器形成体7の内部における前記底用多孔板11に対向する位置に長尺状のバーナ8を設けた状態で、夫々の鍔状部にて燃焼室側伝熱板6を挟むように配置し、その配置状態にて周縁部をシーム溶接にて接続して、前記容器Bを形成してある。つまり、容器Bにおける改質触媒1を装入した室を備えた部分にて改質処理室2を構成し、バーナ8を配設した室を備えた部分にて燃焼室3を構成してある。   The pair of dish-like container forming bodies 7 is subjected to a number of modifications between the bottom porous plate 11 and the lid porous plate 12 inside the dish-like container forming body 7 that forms the reforming treatment chamber 2. In a state where a long burner 8 is provided at a position facing the bottom porous plate 11 inside the dish-like container forming body 7 which is filled with the catalyst 1 and forms the combustion chamber 3, each bowl-like shape is provided. It arrange | positions so that the combustion chamber side heat exchanger plate 6 may be pinched | interposed in a part, and the peripheral part may be connected by seam welding in the arrangement | positioning state, and the said container B is formed. That is, the reforming treatment chamber 2 is constituted by the portion of the container B provided with the chamber charged with the reforming catalyst 1, and the combustion chamber 3 is constituted by the portion provided with the chamber provided with the burner 8. .

更に、前記容器Bの改質処理室2の部分を構成する前記皿状容器形成体7の背面側に、前記通過部10を覆うように前記皿状通流室形成体9を被せて配置し、その配置状態において、皿状通流室形成体9の周縁部をシーム溶接して、皿状容器形成体7の背面に皿状通流室形成体9を付設して、前記改質処理ガス通流室4を区画形成してある。
一対の皿状容器形成体7、皿状通流室形成体9の夫々には、前記通過部10や前記バーナ8の側とは反対側の側縁部側に位置させて、各室内に連通する状態で、ガス供給用又はガス排出用のノズル13を接続してある。
又、前記バーナBには、ガス燃料を供給する燃料供給路14及び燃焼用空気を供給する燃焼用空気供給路15を接続してある。
Furthermore, the dish-shaped flow chamber forming body 9 is placed on the back side of the dish-shaped container forming body 7 constituting the part of the reforming treatment chamber 2 of the container B so as to cover the passage portion 10. In the arrangement state, the peripheral edge of the dish-shaped flow chamber forming body 9 is seam-welded, and the dish-shaped flow chamber forming body 9 is attached to the back surface of the dish-shaped container forming body 7, so that the reforming treatment gas The flow chamber 4 is partitioned.
Each of the pair of dish-shaped container forming bodies 7 and the dish-shaped flow chamber forming body 9 is located on the side edge side opposite to the passing section 10 and the burner 8 side, and communicates with each room. In this state, the nozzle 13 for gas supply or gas discharge is connected.
The burner B is connected with a fuel supply path 14 for supplying gas fuel and a combustion air supply path 15 for supplying combustion air.

上述のように構成した改質装置Rは、前記底用多孔板11が下側に位置する縦姿勢で配置して使用するようになっている。   The reformer R configured as described above is arranged and used in a vertical posture in which the bottom porous plate 11 is located on the lower side.

そして、バーナ8にて燃料供給路14を通じて供給されるガス燃料を燃焼用空気供給路15を通じて供給される燃焼用空気にて燃焼させて、その燃焼ガスを燃焼室3内を上方に向けて通流させた後、燃焼室3の上方のノズル13から排出させるようになっていて、燃焼室3内を通流する燃焼ガスの熱を1枚の燃焼室側伝熱板6を通じて改質処理室2へ伝熱させて、改質触媒1を改質処理可能なように加熱するようになっている。
又、改質処理室2にその上方からノズル13を通して原燃料ガスを供給して、原燃料ガスを改質触媒1を上側から下側に向けて通過するように通流させて改質処理し、そのように改質処理した改質処理ガスをガス通過部10を通じて改質処理ガス通流室4に流入させて、その改質処理ガス通流室4を上方に向けて通流させた後、その改質処理ガス通流室4の上方のノズル13から排出させるようになっている。
Then, the gas fuel supplied through the fuel supply passage 14 by the burner 8 is burned by the combustion air supplied through the combustion air supply passage 15, and the combustion gas passes through the combustion chamber 3 upward. After flowing, the heat of the combustion gas flowing through the combustion chamber 3 is discharged from the nozzle 13 above the combustion chamber 3 through the single combustion chamber side heat transfer plate 6. Heat is transferred to 2 so that the reforming catalyst 1 can be reformed.
Further, the raw fuel gas is supplied to the reforming treatment chamber 2 from above through the nozzle 13, and the raw fuel gas is passed through the reforming catalyst 1 from the upper side to the lower side to be reformed. After the reforming process gas thus reformed is caused to flow into the reforming process gas flow chamber 4 through the gas passage 10 and the reforming process gas flow chamber 4 is allowed to flow upward. The gas is discharged from the nozzle 13 above the reforming gas flow chamber 4.

そして、1枚の燃焼室側伝熱板6を通じて、燃焼室3から改質処理室2へ伝熱させると共に、1枚の通流室側伝熱板5を通じて、改質処理ガス通流室4から改質処理室2に伝熱させるようになっているので、伝熱効率を向上することが可能になって、改質処理効率を向上することが可能になる。
又、上述のように、一対の皿状容器形成体7及び皿状通流室形成体9は、プレス成形加工により、平板状の底部の周縁部から丸みを帯びる状態で側壁部が立ち上がる皿状に形成してあるので、丸みを帯びた部分にて熱応力を吸収することが可能になって、耐久性を一層向上させることが可能になる。
Heat is transferred from the combustion chamber 3 to the reforming treatment chamber 2 through one combustion chamber side heat transfer plate 6, and the reforming process gas flow chamber 4 is passed through one flow chamber side heat transfer plate 5. Therefore, the heat transfer efficiency can be improved and the reforming process efficiency can be improved.
In addition, as described above, the pair of dish-shaped container forming bodies 7 and the dish-shaped flow chamber forming bodies 9 are formed in a dish-like shape in which the side wall portion rises in a rounded state from the peripheral edge portion of the flat plate-like bottom portion by press molding. Therefore, it becomes possible to absorb the thermal stress in the rounded portion, and it is possible to further improve the durability.

次に、上述の改質装置Rを備えた水素含有ガス生成装置について説明する。
図4に示すように、水素含有ガス生成装置は、前記改質装置Rに加えて、その改質装置Rにて改質処理する対象の天然ガス等の炭化水素系の原燃料ガスを脱硫処理する脱硫部21と、改質装置Rにおける改質処理用の水蒸気を生成する水蒸気生成部Sと、改質装置R(具体的には改質処理ガス通流室4)から供給される改質処理ガス中の一酸化炭素ガスを水蒸気を用いて二酸化炭素ガスに変成処理する変成部22と、その変成部22から供給される改質処理ガス中の一酸化炭素ガスを選択酸化する選択酸化部23とを備えて構成してある。そして、この水素含有ガス生成装置にて生成された水素含有ガスは、例えば、各種の燃料電池Gにて発電用として用いられる。
Next, a hydrogen-containing gas generation device provided with the above-described reformer R will be described.
As shown in FIG. 4, in addition to the reformer R, the hydrogen-containing gas generator desulfurizes hydrocarbon-based raw fuel gas such as natural gas to be reformed by the reformer R. The desulfurization section 21 that performs the reforming, the steam generation section S that generates steam for reforming in the reformer R, and the reforming supplied from the reformer R (specifically, the reforming process gas flow chamber 4). A shift unit 22 that converts carbon monoxide gas in the process gas into carbon dioxide gas using water vapor, and a selective oxidation unit that selectively oxidizes the carbon monoxide gas in the reformed process gas supplied from the shift unit 22 23. And the hydrogen containing gas produced | generated with this hydrogen containing gas production | generation apparatus is used for an electric power generation in various fuel cells G, for example.

更に、この水素含有ガス生成装置には、前記脱硫部21からの脱硫原燃料ガスと前記改質装置Rの改質処理ガス通流室4からの高温の改質処理ガスとを熱交換させて、改質処理室2に供給される脱硫原燃料ガスを予熱する脱硫後原燃料加熱用熱交換器Eaと、その脱硫後原燃料加熱用熱交換器Eaを通過して前記変成部22に供給される前の改質処理ガスと脱硫部21に供給される原燃料ガスとを熱交換させて原燃料ガスを予熱する脱硫前原燃料加熱用熱交換器Ebと、変成部22を冷却するために冷却用流体を通流させる変成部冷却用通流部25と、同じく、変成部22を冷却するために冷却用流体を通流させる変成部冷却用通流部26と、前記選択酸化部23を冷却する冷却用ファン27とを設けてある。   Further, in this hydrogen-containing gas generating device, the desulfurization raw fuel gas from the desulfurization section 21 and the high-temperature reforming treatment gas from the reforming treatment gas flow chamber 4 of the reformer R are subjected to heat exchange. The desulfurized raw fuel heating heat exchanger Ea for preheating the desulfurized raw fuel gas supplied to the reforming treatment chamber 2 and the post-desulfurized raw fuel heating heat exchanger Ea are supplied to the shift unit 22. In order to cool the reforming section 22 and the heat exchanger Eb for heating raw fuel before desulfurization for preheating the raw fuel gas by exchanging heat between the reformed gas before being processed and the raw fuel gas supplied to the desulfurization section 21 The metamorphic portion cooling flow portion 25 for allowing the cooling fluid to flow, the metamorphic portion cooling flow portion 26 for allowing the cooling fluid to flow in order to cool the metamorphic portion 22, and the selective oxidation portion 23. A cooling fan 27 for cooling is provided.

以下、水素含有ガス生成装置を構成する各部について説明を加える。
前記水蒸気生成部Sは、改質装置Rの燃焼室3から排出された燃焼ガスを通流させる水蒸気生成用加熱通流部28と、供給される原料水を水蒸気生成用加熱通流部28による加熱にて蒸発させる蒸発処理部29とから構成してある。
Hereinafter, each part which comprises a hydrogen-containing gas production | generation apparatus is demonstrated.
The steam generation unit S includes a steam generation heating flow-through portion 28 that allows the combustion gas discharged from the combustion chamber 3 of the reformer R to flow, and the raw material water that is supplied by the steam generation heating flow-through portion 28. It comprises an evaporation processing unit 29 that evaporates by heating.

改質装置Rにおいては、メタンガスを主成分とする天然ガスベースの都市ガス(13A)が原燃料ガスである場合は、改質触媒の触媒作用により、例えば600〜700°Cの範囲の改質処理温度の下で、メタンガスと水蒸気とが下記の反応式(1)にて改質反応して、水素ガスと一酸化炭素ガスを含む改質処理ガスに改質処理される。   In the reformer R, when the natural gas-based city gas (13A) mainly composed of methane gas is the raw fuel gas, reforming in the range of 600 to 700 ° C., for example, due to the catalytic action of the reforming catalyst. Under the processing temperature, methane gas and water vapor undergo a reforming reaction according to the following reaction formula (1) to be reformed into a reforming processing gas containing hydrogen gas and carbon monoxide gas.

CH4+H2O→CO+3H2……………(1) CH 4 + H 2 O → CO + 3H 2 (1)

前記変成部22は、酸化鉄系又は銅亜鉛系の変成触媒を保持したセラミック製の多孔質粒状体の多数を通気可能な状態で装入してあり、改質装置Rから供給される改質処理ガス中の一酸化炭素ガスと水蒸気とが、変成触媒の触媒作用により、例えば150〜310°Cの範囲の変成処理温度の下で、下記の反応式(2)にて変成反応して、一酸化炭素ガスが二酸化炭素ガスに変成処理される。   The reforming unit 22 is charged with a large number of ceramic porous particles holding an iron oxide-based or copper-zinc-based shift catalyst in a state of allowing ventilation, and is supplied from the reformer R. The carbon monoxide gas and water vapor in the treatment gas undergo a shift reaction by the following reaction formula (2) under the shift treatment temperature in the range of 150 to 310 ° C., for example, by the catalytic action of the shift catalyst. Carbon monoxide gas is converted to carbon dioxide gas.

CO+H2O→CO2+H2……………(2) CO + H 2 O → CO 2 + H 2 (2)

前記選択酸化部23は、白金、ルテニウム、ロジウム等の貴金属系の選択酸化触媒を保持したセラミック製の多孔質粒状体の多数を通気可能な状態で装入してあり、その選択酸化触媒の触媒作用によって、例えば80〜100°Cの範囲の選択酸化処理温度の下で、変成処理後の改質処理ガス中に残っている一酸化炭素ガスが選択酸化される。   The selective oxidation unit 23 is charged with a large number of ceramic porous particles holding a precious metal-based selective oxidation catalyst such as platinum, ruthenium, rhodium, etc. in a state where it can be vented, and the catalyst of the selective oxidation catalyst By the action, for example, the carbon monoxide gas remaining in the reforming treatment gas after the modification treatment is selectively oxidized at a selective oxidation treatment temperature in the range of 80 to 100 ° C., for example.

前記脱硫後原燃料加熱用熱交換器Eaは、前記改質装置Rの改質処理ガス通流室4から排出された改質処理ガスを通流させる上流側熱交換用通流部30と、前記脱硫部21にて脱硫処理されて改質装置Rに供給する脱硫処理後の原燃料ガスを通流させる脱硫後原燃料ガス通流部31とを熱交換自在に設けて構成し、前記脱硫前原燃料加熱用熱交換部Ebは、前記上流側熱交換用通流部30から排出された改質処理ガスを通流させる下流側熱交換用通流部32と、前記脱硫部21に供給する原燃料ガスを通流させる脱硫前原燃料ガス通流部33とを熱交換自在に設けて構成してある。   The post-desulfurization raw fuel heating heat exchanger Ea includes an upstream heat exchange flow passage 30 through which the reforming gas discharged from the reforming gas flow chamber 4 of the reformer R flows, A desulfurized raw fuel gas flow section 31 for allowing the desulfurized raw fuel gas that is desulfurized in the desulfurization section 21 to be supplied to the reformer R is provided so as to be able to exchange heat, and the desulfurization is performed. The pre-raw fuel heating heat exchange section Eb supplies the downstream heat exchange flow section 32 through which the reformed gas discharged from the upstream heat exchange flow section 30 flows and the desulfurization section 21. The raw fuel gas flow passage 33 before desulfurization through which the raw fuel gas flows is provided so as to be capable of heat exchange.

水素含有ガス生成装置は、矩形板状の扁平な容器Bの複数を板状形状の厚さ方向に並べて設けて、各容器Bを用いて、前記改質装置R、前記水蒸気生成部S、前記脱硫部21、前記変成部22、前記選択酸化部23、及び、各通流部等をそれぞれ構成してある。
即ち、複数の容器Bは、上述した改質装置Rを構成するのと同様に、2つの区画された扁平状の室を備える扁平状に構成してある。又、前記水蒸気生成部S、前記脱硫部21、前記変成部22、前記選択酸化部23、及び、各通流部等を構成する各容器Bには、必要に応じて、改質装置Rを構成する容器Bと同様に、ガス供給用やガス排出用のノズル13を接続してある。
The hydrogen-containing gas generation apparatus is provided by arranging a plurality of rectangular plate-like flat containers B in the thickness direction of the plate shape, and using each container B, the reformer R, the steam generation unit S, the The desulfurization unit 21, the shift conversion unit 22, the selective oxidation unit 23, and each flow unit are configured.
That is, the plurality of containers B are configured in a flat shape including two partitioned flat chambers in the same manner as the reformer R described above. In addition, a reformer R is provided in each vessel B constituting the steam generation unit S, the desulfurization unit 21, the shift conversion unit 22, the selective oxidation unit 23, and each flow-through unit, if necessary. Similarly to the container B to be configured, a nozzle 13 for gas supply and gas discharge is connected.

本実施形態においては、8個の容器Bをその容器Bの厚さ方向に並べて設けてある。尚、8個の容器Bを並べるに当たっては、伝熱させる必要のあるもの同士は密着させた状態で、且つ、伝熱量を調節する必要のあるもの同士の間には伝熱量調節用の断熱材34を介在させた状態で並べてある。
8個の容器Bの区別が明確になるように、便宜上、容器を示す符号Bの後に、図4において左からの並び順を示す符号1,2,3……………8を付す。
In the present embodiment, eight containers B are provided side by side in the thickness direction of the containers B. In order to arrange the eight containers B, heat-insulating materials for adjusting the amount of heat transfer are placed in close contact with those that need to transfer heat, and between those that need to adjust the amount of heat transfer. 34 are arranged with 34 interposed.
In order to make the distinction of the eight containers B clear, for the sake of convenience, reference numerals 1, 2, 3,... 8 indicating the arrangement order from the left in FIG.

左端の容器B1の左側の室を備えた部分を用いて前記水蒸気生成用加熱通流部28を構成し、右側の室を備えた部分を用いて前記蒸発処理部29を構成してある。つまり、左端の容器B1にて水蒸気生成部Sを構成してある。
左から2個目の容器B2を用いて、上述のように改質装置Rを構成してある
左から3個目の容器B3の左側の室を備えた部分を用いて、前記上流側熱交換用通流部30を構成し、右側の室を備えた部分を用いて、前記脱硫後原燃料ガス通流部31を構成してある。
左から4個目の容器B4の左側の室を備えた部分を用いて、前記脱硫部21を構成し、右側の室を備えた部分を用いて、前記脱硫前原燃料ガス通流部33を構成してある。
左から5個目の容器B5の左側の室を備えた部分を用いて、前記下流側熱交換用通流部32を構成し、右側の室を備えた部分を用いて、前記変成部22を構成してある。
左から6個目の容器B6の左側の室を備えた部分を用いて、前記変成部22を構成し、右側の室を備えた部分を用いて前記変成部冷却用通流部25を構成してある。
左から7個目の容器B7の両室を用いて、前記変成部22を構成し、左から8個目(右端)の容器B8の左側の室を備えた部分を用いて、前記変成部冷却用通流部26を構成し、右側の室を備えた部分を用いて前記選択酸化部23を構成してある。
The portion for providing the left chamber of the leftmost container B1 is used to constitute the steam generating heating flow passage portion 28, and the portion for providing the right chamber is used to constitute the evaporation processing portion 29. That is, the water vapor generating part S is configured by the leftmost container B1.
Using the second container B2 from the left, the reformer R is configured as described above, and using the portion having the left chamber of the third container B3 from the left, the upstream heat exchange The post-desulfurized raw fuel gas flow portion 31 is formed by using the portion having the right flow chamber 30 and the right flow chamber.
The desulfurization section 21 is configured by using the left chamber of the fourth container B4 from the left, and the pre-desulfurization raw fuel gas flow section 33 is configured by using the right chamber. It is.
The downstream side heat exchange passage 32 is configured using the left chamber of the fifth container B5 from the left, and the transformation unit 22 is configured using the right chamber. It is configured.
The portion having the left chamber of the sixth container B6 from the left is used to constitute the transformation portion 22, and the portion having the right chamber is used to constitute the transformation portion cooling flow passage 25. It is.
The transformation section 22 is configured by using both chambers of the seventh container B7 from the left, and the transformation section cooling is performed by using a portion including the left chamber of the eighth (right end) container B8 from the left. The selective oxidization section 23 is configured by using a portion that constitutes the flow-through section 26 and includes the right chamber.

図5及び図6に示すように、水素含有ガス生成装置は、複数の容器B及び断熱材34等を、上述のように並べて配置して、並び方向両端の容器Bに一対の保持板49を各別に当て付けた状態で、それら一対の保持板49を6組のネジ式連結手段にて連結することにより、一体的に組み付けて構成してある。
ネジ式連結手段は、ボルト45、一対のナット46及び一対のスプリングワッシャ47から成る。
各保持板49は、L字状に形成すると共に、各保持板49は、2本の補強用リブ48にて補強してある。
そして、一対の保持板49にボルト45を挿通した状態で、そのボルト45の両側からスプリングワッシャ47を介してナット46にて締め付けることにより、複数の容器Bを並び方向に直交する方向での相対移動を許容する状態で並び方向両側から押し付けるようにしてある。又、スプリングワッシャ47の伸縮作用により、各容器Bの並び方向での膨張収縮も許容するようにしてある。
尚、一対の保持板49を立設して、その一対の保持板49にて支持する状態で、水素含有ガス生成装置を設置する。
As shown in FIGS. 5 and 6, the hydrogen-containing gas generation apparatus arranges a plurality of containers B, a heat insulating material 34 and the like as described above, and a pair of holding plates 49 on the containers B at both ends in the arrangement direction. In a state of being applied separately, the pair of holding plates 49 are integrally assembled by connecting them with six sets of screw-type connecting means.
The screw type connecting means includes a bolt 45, a pair of nuts 46, and a pair of spring washers 47.
Each holding plate 49 is formed in an L shape, and each holding plate 49 is reinforced by two reinforcing ribs 48.
Then, with the bolts 45 inserted through the pair of holding plates 49, the nuts 46 are tightened from both sides of the bolts 45 via the spring washers 47, whereby the plurality of containers B are relatively aligned in the direction perpendicular to the arrangement direction. It is designed to be pressed from both sides in the alignment direction while allowing movement. Further, the expansion and contraction of the containers B in the arrangement direction is allowed by the expansion and contraction action of the spring washer 47.
The hydrogen-containing gas generator is installed in a state where the pair of holding plates 49 are erected and supported by the pair of holding plates 49.

図4において、白抜き矢印にて示すように、原燃料ガス供給路35を前記脱硫前原燃料加熱用熱交換部Ebの脱硫前原燃料ガス通流部33に接続し、並びに、その脱硫前原燃料ガス通流部33、前記脱硫部21、前記脱硫後原燃料加熱用熱交換器Eaの脱硫後原燃料ガス通流部31、前記改質装置R、前記脱硫後原燃料加熱用熱交換器Eaの上流側熱交換用通流部30、前記脱硫前原燃料加熱用熱交換部Ebの下流側熱交換用通流部32、前記変成部22、前記選択酸化部23の順に流れるガス処理経路を形成するように、それらをガス処理用流路36にて接続してある。   In FIG. 4, as indicated by the white arrow, the raw fuel gas supply path 35 is connected to the raw fuel gas flow passage 33 before desulfurization of the raw fuel heating heat exchange section Eb before desulfurization, and the raw fuel gas before desulfurization. Flowing portion 33, desulfurization portion 21, post-desulfurized raw fuel heating heat exchanger Ea of desulfurized raw fuel gas flow portion 31, reformer R, post-desulfurized raw fuel heating heat exchanger Ea A gas processing path that flows in the order of the upstream heat exchange flow section 30, the downstream heat exchange flow section 32 of the pre-desulfurization raw fuel heating heat exchange section Eb, the shift section 22, and the selective oxidation section 23 is formed. Thus, they are connected by a gas processing flow path 36.

前記選択酸化部23から排出された改質処理ガスを燃料ガスとして燃料電池Gに供給するように、選択酸化部23と燃料電池Gとを燃料ガス路37にて接続し、燃料電池Gから排出された排燃料ガスをガス燃料として前記改質装置Rの燃焼室3のガスバーナ8に供給すべく、燃料電池Gとガスバーナ8とを前記燃料供給路14にて接続してある。   The selective oxidation unit 23 and the fuel cell G are connected by a fuel gas passage 37 so that the reforming process gas discharged from the selective oxidation unit 23 is supplied to the fuel cell G as a fuel gas, and discharged from the fuel cell G. The fuel cell G and the gas burner 8 are connected by the fuel supply path 14 in order to supply the discharged fuel gas as gas fuel to the gas burner 8 of the combustion chamber 3 of the reformer R.

図4において、実線矢印にて示すように、原料水ポンプ38から水蒸気生成用の原料水が送られる原料水供給路39を前記蒸発処理部29に接続し、蒸発処理部29にて生成された水蒸気を送出する水蒸気路40を、前記脱硫部21と前記脱硫後原燃料ガス通流部31とを接続するガス処理用流路36に接続して、ガス処理用流路36を通流する脱硫原燃料ガスに改質用の水蒸気を混合させるように構成してある。   In FIG. 4, a raw water supply path 39 through which raw water for steam generation is sent from the raw water pump 38 is connected to the evaporation processing unit 29 as shown by a solid arrow, and is generated by the evaporation processing unit 29. A water vapor passage 40 for sending water vapor is connected to a gas processing flow path 36 connecting the desulfurization section 21 and the raw fuel gas flow section 31 after desulfurization, and desulfurization flows through the gas processing flow path 36. The reforming steam is mixed with the raw fuel gas.

図4において、破線矢印にて示すように、前記改質装置Rの燃焼室3から排出された燃焼ガスを、水蒸気生成部Sの水蒸気生成用加熱通流部28、変成部冷却用通流部25の順に流すように、それら燃焼室3、水蒸気生成用加熱通流部28、変成部冷却用通流部25を燃焼ガス路41にて接続して、水蒸気生成用加熱通流部28においては、燃焼ガスによって蒸発処理部29を加熱し、変成部冷却用通流部25においては、燃焼ガスによって、発熱反応である変成反応が行われる変成部22を冷却するように構成してある。   In FIG. 4, as indicated by a broken line arrow, the combustion gas discharged from the combustion chamber 3 of the reformer R is converted into a steam generation heating passage 28 and a transformation section cooling passage in the steam generation section S. The combustion chamber 3, the steam generation heating flow passage 28, and the transformation portion cooling flow passage 25 are connected by a combustion gas passage 41 so that the steam generation heating flow passage 28 flows in the order of 25. The evaporating section 29 is heated by the combustion gas, and the shift section cooling flow section 25 is configured to cool the shift section 22 where the shift reaction, which is an exothermic reaction, is performed by the combustion gas.

図4において、一点鎖線矢印にて示すように、ブロア42からの空気を燃焼用空気として、前記改質装置Rのバーナ8に供給するように、ブロア42とガスバーナ8とを前記燃焼用空気供給路15にて接続してある。尚、図示は省略するが、ブロア42からの空気を前記変成部冷却用通流部26を通流させてからバーナ8に供給する変成部冷却用空気路も設けてあり、変成部22の冷却能力が不足するとき、例えば、夏期の高気温時には、その変成部冷却用空気路を通じて、燃焼用空気をバーナ8に供給するように切り換え可能なように構成してある。   In FIG. 4, as indicated by a one-dot chain line arrow, the blower 42 and the gas burner 8 are supplied to the combustion air supply so that air from the blower 42 is supplied as combustion air to the burner 8 of the reformer R. They are connected by a line 15. Although not shown in the figure, a cooling section cooling air passage for supplying air from the blower 42 to the burner 8 after passing the cooling section cooling flow section 26 is also provided. When the capacity is insufficient, for example, at high temperatures in summer, the combustion air can be switched to be supplied to the burner 8 through the air passage for cooling the transformation section.

又、原料水供給路39を流れる原料水を前記変成部22にて変成処理された変成処理後の改質処理ガスにて予熱する原料水予熱用熱交換器43を設けると共に、その原料水予熱用熱交換器43を通過した改質処理ガスから凝縮水を除去するドレントラップ44を、その原料水予熱用熱交換器43よりも下流側の箇所に設けて、変成処理後の改質処理ガスと原料水とを熱交換させて、原料水を予熱すると共に、変成処理後の改質処理ガスを冷却するようにしてある。   In addition, a raw material water preheating heat exchanger 43 is provided for preheating the raw material water flowing through the raw material water supply passage 39 with the reforming gas after the transformation treatment in which the transformation unit 22 performs the transformation treatment. A drain trap 44 for removing condensed water from the reforming process gas that has passed through the heat exchanger 43 is provided at a location downstream of the raw material water preheating heat exchanger 43 so that the reforming process gas after the shift treatment The raw material water is preheated by heat exchange between the raw material water and the raw material water, and the reforming gas after the modification treatment is cooled.

〔別実施形態〕
次に別実施形態を説明する。
[Another embodiment]
Then explaining another embodiment.

) 前記ガス通過部10の具体構成は、上記の各実施形態において例示した小孔群に限定されるものではない。例えば、通流室側伝熱板5に挿入状態で保持させた複数の管状体にて構成しても良い。 (B) specific structure of the gas passing portion 10 is not limited to the small hole group exemplified in the above embodiments. For example, you may comprise with the some tubular body hold | maintained by the flow-flow chamber side heat exchanger plate 5 in the insertion state.

) 本発明による改質装置Rは、上記の実施形態の如き水素含有ガス生成装置に組み込んで用いる場合に限定されるものではなく、単独で用いることが可能である。 ( B ) The reformer R according to the present invention is not limited to the case of being incorporated in the hydrogen-containing gas generator as in the above embodiment, and can be used alone.

) 本発明による改質装置Rを、燃料電池における発電反応用の燃料ガス生成用として用いる場合、燃料電池としては、固体高分子型、リン酸型、固体電解質型、溶融炭酸塩型等、種々の型式の燃料電池を対象とすることができる。
又、本発明による改質装置Rを用いて燃料ガス生成用の前記水素含有ガス生成装置を構成する場合、固体高分子型の燃料電池を対象とする場合は、上記の実施形態にように、変成部22及び選択酸化部23を備えて構成して、生成される燃料ガス中の一酸化炭素濃度を低くすることが好ましいが、例えば、リン酸型の燃料電池のように、一酸化炭素ガス濃度を高分子型ほど低くする必要がない場合は、選択酸化部23を省略することができ、又、固体電解質型のように一酸化炭素ガスが含有されていても支障がない場合は、変成部22と選択酸化部23を省略することができる。
( C ) When the reformer R according to the present invention is used for generating a fuel gas for power generation reaction in a fuel cell, the fuel cell may be a solid polymer type, a phosphoric acid type, a solid electrolyte type, a molten carbonate type, or the like. Various types of fuel cells can be targeted.
Further, when the hydrogen-containing gas generating device for generating fuel gas is configured by using the reformer R according to the present invention, when the target is a solid polymer type fuel cell, as in the above embodiment, Although it is preferable to provide the transformation unit 22 and the selective oxidation unit 23 to reduce the concentration of carbon monoxide in the generated fuel gas, for example, as in a phosphoric acid fuel cell, the carbon monoxide gas If the concentration does not need to be as low as that of the polymer type, the selective oxidation unit 23 can be omitted, and if there is no problem even if carbon monoxide gas is contained as in the solid electrolyte type, the modification is performed. The part 22 and the selective oxidation part 23 can be omitted.

) 改質処理対象の炭化水素系の原燃料としては、上記の実施形態において例示した天然ガス以外に、プロパンガス、ナフサ、灯油や、メタノール等のアルコール類等、種々の原燃料を用いることができる。 ( D ) As the hydrocarbon-based raw fuel to be reformed, various raw fuels such as propane gas, naphtha, kerosene, and alcohols such as methanol are used in addition to the natural gas exemplified in the above embodiment. it is Ru can.

第1実施形態に係る改質装置の斜視図1 is a perspective view of a reformer according to a first embodiment. 第1実施形態に係る改質装置の縦断正面図Longitudinal front view of the reformer according to the first embodiment 第1実施形態に係る改質装置の分解斜視図1 is an exploded perspective view of a reformer according to a first embodiment. 第1実施形態に係る改質装置を備えた水素含有ガス生成装置の縦断正面図1 is a longitudinal front view of a hydrogen-containing gas generation apparatus provided with a reformer according to a first embodiment. 第1実施形態に係る改質装置を備えた水素含有ガス生成装置の正面図1 is a front view of a hydrogen-containing gas generation device including a reformer according to a first embodiment. 第1実施形態に係る改質装置を備えた水素含有ガス生成装置の側面図1 is a side view of a hydrogen-containing gas generation apparatus provided with a reformer according to a first embodiment. 従来の改質装置の縦断正面図Longitudinal front view of conventional reformer

符号の説明Explanation of symbols

1 改質触媒
2 改質処理室
3 燃焼室
4 改質処理ガス通流室
5 通流室側伝熱板
6 燃焼室側伝熱板
7 皿状容器形成体
9 皿状通流室形成体
10 ガス通過部
1 reforming catalyst 2 reforming treatment chamber 3 combustion chamber 4 reforming treatment gas flow chamber 5 flow chamber side heat transfer plate 6 combustion chamber side heat transfer plate 7 dish-shaped container forming body 9 dish-shaped flow chamber forming body 10 Gas passage

Claims (2)

改質触媒が装入されて、供給される炭化水素系の原燃料を水蒸気により改質処理して水素ガスを主成分とする改質処理ガスを生成する改質処理室と、その改質処理室から排出された改質処理ガスを通流させる改質処理ガス通流室とが伝熱可能に並設された改質装置であって、
前記改質処理室と前記改質処理ガス通流室とが、1枚の通流室側伝熱板にて隔てられた状態で、且つ、前記改質処理室から前記改質処理ガス通流室に改質処理ガスを通過させるガス通過部を備える状態で区画形成され、
燃焼室側伝熱板を間に位置させた状態で配置された一対の皿状容器形成体の周辺部が溶接接続されて、前記改質処理室と燃料を燃焼させて前記改質処理室を加熱する燃焼室とが区画形成され、
前記改質処理室を構成する前記皿状容器形成体の背面側に、皿状通流室形成体の周縁部における端面部のみが当て付けられた状態で溶接接続されて、前記改質処理室を構成する前記皿状容器形成体を前記通流室側伝熱板として機能させる状態で、前記改質処理ガス通流室が区画形成され、
前記皿状容器形成体及び前記皿状通流室形成体の夫々が、平板状の底部の周縁部から丸みを帯びる状態で側壁部が立ち上がる皿状に成形加工されて形成されている改質装置。
A reforming chamber in which a reforming catalyst is charged and a hydrocarbon-based raw fuel to be supplied is reformed with steam to generate a reforming gas mainly composed of hydrogen gas, and the reforming process A reforming apparatus in which a reforming process gas flow chamber for allowing the reforming process gas discharged from the chamber to flow therethrough is arranged in parallel so that heat can be transferred,
The reforming process chamber and the reforming process gas flow chamber are separated from each other by a single flow chamber side heat transfer plate, and the reforming process gas flow from the reforming process chamber. A compartment is formed with a gas passage part for allowing the reforming gas to pass through the chamber,
Peripheral portions of a pair of dish-like container forming bodies arranged with the combustion chamber side heat transfer plate positioned between them are welded, and the reforming chamber and the fuel are burned to form the reforming chamber. The combustion chamber to be heated is partitioned,
The reforming treatment chamber is welded and connected to the back side of the dish-shaped container forming body constituting the reforming processing chamber in a state where only the end surface portion of the peripheral portion of the dish-shaped flow chamber forming body is applied. In the state in which the dish-like container forming body constituting the function as the flow chamber side heat transfer plate, the reforming gas flow chamber is partitioned and formed,
Each of the dish-shaped container forming body and the dish-shaped flow chamber forming body is formed and processed into a dish shape in which a side wall portion rises in a state of being rounded from a peripheral portion of a flat bottom portion. .
前記改質処理室及び前記改質処理ガス通流室の夫々が、前記通流室側伝熱板の厚さ方向に薄い扁平状に構成されている請求項1記載の改質装置。   The reforming apparatus according to claim 1, wherein each of the reforming treatment chamber and the reforming treatment gas flow chamber is configured to be thin and flat in the thickness direction of the flow chamber side heat transfer plate.
JP2004043155A 2004-02-19 2004-02-19 Reformer Expired - Fee Related JP4646527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004043155A JP4646527B2 (en) 2004-02-19 2004-02-19 Reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004043155A JP4646527B2 (en) 2004-02-19 2004-02-19 Reformer

Publications (2)

Publication Number Publication Date
JP2005231943A JP2005231943A (en) 2005-09-02
JP4646527B2 true JP4646527B2 (en) 2011-03-09

Family

ID=35015288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004043155A Expired - Fee Related JP4646527B2 (en) 2004-02-19 2004-02-19 Reformer

Country Status (1)

Country Link
JP (1) JP4646527B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5336696B2 (en) * 2005-09-01 2013-11-06 大阪瓦斯株式会社 Fluid processing apparatus and manufacturing method thereof
JP4847117B2 (en) * 2005-12-02 2011-12-28 富士電機株式会社 Fuel reforming system
JP4838615B2 (en) * 2006-03-30 2011-12-14 大阪瓦斯株式会社 Hydrogen-containing gas generator
JP4841993B2 (en) * 2006-03-30 2011-12-21 大阪瓦斯株式会社 Hydrogen-containing gas generator
JP2010083709A (en) * 2008-09-30 2010-04-15 Chofu Seisakusho Co Ltd Casing of reformer for fuel cell
JP5259327B2 (en) * 2008-10-02 2013-08-07 株式会社長府製作所 Fuel cell reformer and baffle plate manufacturing method used therefor
JP6634492B1 (en) * 2018-10-11 2020-01-22 日本碍子株式会社 Fuel cell device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255304A (en) * 1996-03-15 1997-09-30 Toshiba Corp Plate type modification device
JP2000178003A (en) * 1998-12-15 2000-06-27 Osaka Gas Co Ltd Liquid treating device
JP2000180077A (en) * 1998-12-14 2000-06-30 Atago Seisakusho:Kk Plate type heat exchanger
JP2002511383A (en) * 1998-04-16 2002-04-16 インターナショナル フュエル セルズ,エルエルシー Fuel gas reformer with catalyst wall

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255304A (en) * 1996-03-15 1997-09-30 Toshiba Corp Plate type modification device
JP2002511383A (en) * 1998-04-16 2002-04-16 インターナショナル フュエル セルズ,エルエルシー Fuel gas reformer with catalyst wall
JP2000180077A (en) * 1998-12-14 2000-06-30 Atago Seisakusho:Kk Plate type heat exchanger
JP2000178003A (en) * 1998-12-15 2000-06-27 Osaka Gas Co Ltd Liquid treating device

Also Published As

Publication number Publication date
JP2005231943A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
JP4063430B2 (en) Fluid processing equipment
JP4714023B2 (en) Reformer
US20070184310A1 (en) Molten Carbonate Fuel Cell Provided with Indirect Internal Steam Reformer
JP2002124289A (en) Solid electrolyte fuel cell system
JP3942405B2 (en) Three-fluid heat exchanger
JP4646527B2 (en) Reformer
JP5606165B2 (en) Cell stack device, fuel cell module and fuel cell device
JP5336696B2 (en) Fluid processing apparatus and manufacturing method thereof
JP5324752B2 (en) Hydrogen-containing gas generator
JP4990045B2 (en) Hydrogen production apparatus and fuel cell system
JP4429032B2 (en) Method for operating hydrogen-containing gas generator and hydrogen-containing gas generator
JP2012054016A (en) Cell stack device, fuel cell module and fuel cell device
JP4531320B2 (en) Operation control method for hydrogen-containing gas generator
US10790522B2 (en) Fuel cell module
JP4624382B2 (en) Operation control method for hydrogen-containing gas generator
JP2007261871A (en) Hydrogen-containing gas producing apparatus
JP5111040B2 (en) Fuel cell reformer
JP2003160305A (en) Reformer
JPH11199202A (en) Converting device and fuel cell power generation unit using the same
JP3948885B2 (en) Hydrogen-containing gas generator for fuel cells
JP5140361B2 (en) Fuel cell reformer
JP2007265946A (en) Burner for reformer for fuel cell
JP4838615B2 (en) Hydrogen-containing gas generator
JP4841993B2 (en) Hydrogen-containing gas generator
JP2024042813A (en) fuel cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4646527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees