JP4847117B2 - Fuel reforming system - Google Patents

Fuel reforming system Download PDF

Info

Publication number
JP4847117B2
JP4847117B2 JP2005348603A JP2005348603A JP4847117B2 JP 4847117 B2 JP4847117 B2 JP 4847117B2 JP 2005348603 A JP2005348603 A JP 2005348603A JP 2005348603 A JP2005348603 A JP 2005348603A JP 4847117 B2 JP4847117 B2 JP 4847117B2
Authority
JP
Japan
Prior art keywords
catalyst layer
carbon monoxide
condensed water
fuel
reforming system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005348603A
Other languages
Japanese (ja)
Other versions
JP2007157407A (en
Inventor
俊輔 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Fuji Electric Co Ltd
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2005348603A priority Critical patent/JP4847117B2/en
Publication of JP2007157407A publication Critical patent/JP2007157407A/en
Application granted granted Critical
Publication of JP4847117B2 publication Critical patent/JP4847117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、炭化水素系の原燃料を改質して改質ガスを生成する燃料改質システムに関する。   The present invention relates to a fuel reforming system that reforms a hydrocarbon-based raw fuel to generate a reformed gas.

燃料電池は、電解質層を挟んで一対の電極を配置し、アノード側の電極に水素を含む燃料ガスを、もう一方のカソード側の電極に酸素を含む酸化剤ガスを供給し、電気化学反応によって電気エネルギーを得るもので、高いエネルギー効率での発電が可能である。一般に、酸化剤ガスとしては空気、燃料ガスとしては水素が用いられている。燃料改質システムは、天然ガス等の炭化水素系の原燃料を水蒸気改質して水素を含んだガスを生成し、このガスを燃料電池に供給する。
図4は、固体高分子形燃料電池のアノード極に供給する燃料ガスの改質システムの従来の構成例を示すフロー図である。図において、1は脱硫器、2は蒸気発生器、3は改質器、4は一酸化炭素変成器、5は一酸化炭素除去器であり、6は燃料電池、6aはアノード極である。炭化水素系の原燃料は、まず、原燃料ガスブロア10により脱硫器1へと送られ、脱硫される。脱硫された原燃料は、改質用水供給ポンプ8によって供給された改質用水と混合されて蒸気発生器2へと送られ、改質器3のバーナー3bから排出される高温の燃焼排ガスによって加熱されて高温の蒸気となる。なお、固体高分子形燃料電池は動作温度が他の燃料電池に比べて相対的に低いので、通常、このように改質器3のバーナー3bから排出される燃焼排ガスによって高温の蒸気を得ているが、動作温度が約180℃と高いリン酸形燃料電池の場合には、燃料電池の排熱により加熱して高温の蒸気を得る方法が採られる。蒸気発生器2により加熱されて高温となった原燃料と蒸気の混合物は、バーナー3bによって加熱された改質器3の水蒸気改質触媒層3aへと導かれ、改質される。
In a fuel cell, a pair of electrodes are arranged with an electrolyte layer in between, a fuel gas containing hydrogen is supplied to an electrode on the anode side, and an oxidant gas containing oxygen is supplied to the other electrode on the cathode side. It obtains electric energy and can generate electricity with high energy efficiency. In general, air is used as the oxidant gas, and hydrogen is used as the fuel gas. The fuel reforming system generates a gas containing hydrogen by steam reforming a hydrocarbon-based raw fuel such as natural gas, and supplies the gas to the fuel cell.
FIG. 4 is a flowchart showing a conventional configuration example of a reforming system of a fuel gas supplied to the anode electrode of a polymer electrolyte fuel cell. In the figure, 1 is a desulfurizer, 2 is a steam generator, 3 is a reformer, 4 is a carbon monoxide converter, 5 is a carbon monoxide remover, 6 is a fuel cell, and 6a is an anode electrode. The hydrocarbon-based raw fuel is first sent to the desulfurizer 1 by the raw fuel gas blower 10 and desulfurized. The desulfurized raw fuel is mixed with the reforming water supplied by the reforming water supply pump 8, sent to the steam generator 2, and heated by the high-temperature combustion exhaust gas discharged from the burner 3b of the reformer 3. It becomes high temperature steam. Since the polymer electrolyte fuel cell has a relatively low operating temperature compared to other fuel cells, normally, high temperature steam is obtained from the combustion exhaust gas discharged from the burner 3b of the reformer 3 in this way. However, in the case of a phosphoric acid fuel cell having a high operating temperature of about 180 ° C., a method of obtaining high-temperature steam by heating with exhaust heat of the fuel cell is employed. The mixture of raw fuel and steam heated to a high temperature by the steam generator 2 is guided to the steam reforming catalyst layer 3a of the reformer 3 heated by the burner 3b and reformed.

式(1)は、改質器3におけるメタン(CH4)の改質反応を示す化学反応式である。
式に示されているように、メタンの改質反応は吸熱反応であるため、メタン(CH4)に水蒸気(H2O)を添加した上で、燃料電池6のアノード極6aから排出される燃料オフガスをバーナー3bで燃焼させて生じた燃焼排ガスによって水蒸気改質触媒層3aの粒状改質触媒を加熱し、600〜700℃に保持された水蒸気改質触媒層3aに通流することにより、水素に富む改質ガスが生成される。
Formula (1) is a chemical reaction formula showing the reforming reaction of methane (CH 4 ) in the reformer 3.
As shown in the equation, since the reforming reaction of methane is an endothermic reaction, steam (H 2 O) is added to methane (CH 4 ) and then discharged from the anode 6 a of the fuel cell 6. By heating the granular reforming catalyst of the steam reforming catalyst layer 3a with the combustion exhaust gas generated by burning the fuel off-gas in the burner 3b and passing it through the steam reforming catalyst layer 3a maintained at 600 to 700 ° C, A reformed gas rich in hydrogen is produced.

(化1)
CH4 + H2O → CO + 3H2 + 206.14 kJ/mol (1)
上記の改質反応によって高濃度の水素を含む改質ガスが改質器3より取り出されることとなるが、この改質ガスには多量の一酸化炭素が含まれる。固体高分子形燃料電池は動作温度が 60〜80 ℃と低いため、改質ガス中に一酸化炭素が含まれると、これが触媒毒となって燃料電池の性能が低下する。したがって、一酸化炭素濃度を抑えるために、改質器3より得られた改質ガスは、一酸化炭素変成器4へと送られて一酸化炭素濃度が1%以下に低減され、次いで、さらに一酸化炭素除去器5へと送られて 10 ppm 以下の濃度に抑えられる。
図4のごとき燃料改質システムを備えた燃料電池発電装置において発電運転を停止する際には、まず原燃料の供給を停止する措置が採られるが、このように処置すると改質器3と燃料電池6のアノード6aとの間、およびアノード6aから排出される燃料オフガス経路に水素リッチなガスが滞留することとなるので、大気開放されたバーナー3bからこの水素リッチな空間に自然対流によって空気が流入し、水素の燃焼を生じる恐れがある。このため、従来の一部の燃料電池発電装置においては、遮断弁付きの窒素供給管によって上記の水素リッチなガスが滞留する空間と窒素供給設備とを連結し、発電運転停止の際には、遮断弁を開いて不活性ガスとしての窒素ガスを上記の空間に供給して窒素パージを行い、バーナー3bで燃焼させることによって水素の燃焼を未然に防止している。このように窒素パージを行えば、水素ガスの燃焼が回避されて安全性が確保されることとなるが、運転停止操作の度毎に多量の窒素ガスが必要で、大型の窒素ボンベ等の窒素供給設備を備える必要がある。したがって、家庭用定置型分散発電装置や電気自動車用電源装置に適用するには設置所要スペースが過大で、装置のイニシャルコストも高くなるという欠点がある。また、この装置では窒素ボンベを定期的に交換しなければならないのでランニングコストも高くなるという難点がある。
(Chemical formula 1)
CH 4 + H 2 O → CO + 3H 2 + 206.14 kJ / mol (1)
A reformed gas containing a high concentration of hydrogen is extracted from the reformer 3 by the above reforming reaction, and this reformed gas contains a large amount of carbon monoxide. Since the polymer electrolyte fuel cell has an operating temperature as low as 60 to 80 ° C., if carbon monoxide is contained in the reformed gas, it becomes a catalyst poison and the performance of the fuel cell is lowered. Therefore, in order to suppress the carbon monoxide concentration, the reformed gas obtained from the reformer 3 is sent to the carbon monoxide converter 4 to reduce the carbon monoxide concentration to 1% or less, and then further It is sent to the carbon monoxide remover 5 to keep the concentration below 10 ppm.
When the power generation operation is stopped in the fuel cell power generation apparatus having the fuel reforming system as shown in FIG. 4, first, a measure to stop the supply of raw fuel is taken. Since the hydrogen-rich gas stays between the anode 6a of the battery 6 and the fuel off-gas path discharged from the anode 6a, air is naturally convected from the burner 3b opened to the atmosphere into the hydrogen-rich space. May flow in and cause hydrogen combustion. For this reason, in some conventional fuel cell power generators, the nitrogen supply pipe is connected to the space where the hydrogen-rich gas is retained by a nitrogen supply pipe with a shut-off valve, and when the power generation operation is stopped, The shut-off valve is opened, nitrogen gas as an inert gas is supplied to the above space, nitrogen purge is performed, and combustion is performed in the burner 3b to prevent hydrogen combustion. If nitrogen purge is performed in this way, combustion of hydrogen gas is avoided and safety is ensured. However, a large amount of nitrogen gas is required each time the operation is stopped, and nitrogen such as a large nitrogen cylinder is required. It is necessary to provide supply equipment. Therefore, there is a drawback that the installation required space is excessive and the initial cost of the apparatus is increased when applied to a home-use stationary distributed power generation apparatus or an electric vehicle power supply apparatus. In addition, this apparatus has a drawback in that the running cost increases because the nitrogen cylinder must be replaced periodically.

この窒素パージ法に替わる他のパージ法としては、運転停止後も改質用水を一定時間流し続けることによって残留する水素リッチガスを系から排出させる水蒸気パージ法がある。この水蒸気パージ法を用いれば、窒素ボンベ等の大型の設備を付設する必要がないのでイニシャルコストが安くなり、かつ改質用水を供給し続けるだけでよいのでランニングコストも廉価となる。
このように発電運転を停止する際にはパージ操作を行って水素ガスの燃焼を回避し、安全性を確保しているが、発電運転を停止し、時間を経過したのち再起動する場合には、内部に凝縮した水のためにガスの流通が偏ったり、温度上昇が妨げられたりする可能性がある。このため、内部に溜まる凝縮水を排出させる排水手段を設ける構成(例えば、特許文献1など)や、凝縮水を貯留する貯留部を設ける構成(例えば、特許文献2など)が用いられている。
特開2003−112904号公報 特開2004−315331号公報
As another purge method that replaces this nitrogen purge method, there is a water vapor purge method in which the remaining hydrogen-rich gas is discharged from the system by continuing to flow the reforming water for a predetermined time after the operation is stopped. If this steam purge method is used, it is not necessary to attach a large facility such as a nitrogen cylinder, so that the initial cost is reduced, and the running cost is also reduced because it is only necessary to continue to supply the reforming water.
In this way, when stopping the power generation operation, a purge operation is performed to avoid the combustion of hydrogen gas and ensure safety, but when the power generation operation is stopped and restarted after a lapse of time, There is a possibility that the flow of gas may be biased or the temperature rise may be hindered due to water condensed inside. For this reason, the structure (for example, patent document 1 etc.) which provides the drainage means which discharges the condensed water which accumulates inside, or the structure (for example, patent document 2 etc.) which provides the storage part which stores condensed water is used.
JP 2003-112904 A JP 2004-315331 A

上記のごとく、水蒸気パージ法は、イニシャルコスト、ランニングコストともに窒素パージ法に比べて廉価となるという利点がある。しかしながらこの水蒸気パージ法を用いると、パージ後、凝縮水が触媒を覆って触媒そのものを脆くするという危険性がより強くなり、また、起動時の水蒸気パージ操作の際、昇温が十分になされていないときに改質用水の供給を持続しても、凝縮水を十分に気化することができず、水素リッチガスの系からの排出が窒素パージ法よりもより一層不十分となるという難点がある。
本発明は、上記のごとき燃料改質システムの技術の現状を顧慮してなされたもので、本発明が解決しようとする課題は、水蒸気パージで生じた凝縮水による改質システムの触媒の脆化が低く抑えられ、かつ、再起動時に凝縮水の昇温、気化がスムースに行われて、安定した水蒸気パージが実行可能な、コンパクトで、安価な燃料改質システムを提供することである。
As described above, the steam purge method has an advantage that both the initial cost and the running cost are less expensive than the nitrogen purge method. However, when this steam purge method is used, the danger that condensed water will cover the catalyst and make the catalyst itself brittle after purging becomes stronger, and the temperature is sufficiently raised during the steam purge operation at startup. Even if the supply of the reforming water is continued when there is not, the condensed water cannot be sufficiently vaporized, and there is a problem that the discharge of the hydrogen rich gas from the system becomes even more insufficient than the nitrogen purge method.
The present invention has been made in consideration of the current state of the technology of the fuel reforming system as described above, and the problem to be solved by the present invention is to embrittle the catalyst of the reforming system by the condensed water generated by the steam purge. The fuel reforming system can provide a compact and inexpensive fuel reforming system in which the temperature of the condensate is raised and vaporized smoothly at the time of restart, and stable steam purge can be performed.

上記課題を解決するために、本発明においては以下の手段を備えることとする。
第1に、バーナーを収容した燃焼筒と、燃焼筒に接して設けた水蒸気改質触媒層とを備え、炭化水素系の原燃料と水蒸気とを改質して、高濃度の水素を含む改質ガスを生成する燃料改質システムにおいて、前記燃焼筒に接して、前記水蒸気改質触媒層の上方かつガス通流方向の上流側に凝縮水を貯留する凝縮水溜りを備えることとする。
第2に、水蒸気改質触媒層のガス通流方向の後段に、一酸化炭素変成触媒層および一酸化炭素除去触媒層を備えるものとする。第3に、一酸化炭素変成触媒層および一酸化炭素除去触媒層の上方かつガス通流方向の上流側に、それぞれ凝縮水を貯留する凝縮水溜りと、前記凝縮水溜りに貯留された凝縮水を加熱して蒸発させる加熱手段とを備えるものとする。
に、前記加熱手段は、前記凝縮水溜りに備えられた電気加熱器よりなるものとする。
第5に、前記燃焼筒に接して、ガス通流方向の上流かつ鉛直方向の上から順に前記水蒸気改質触媒層、前記一酸化炭素変成触媒層、及び前記一酸化炭素除去触媒層が配置されているものとする。
In order to solve the above problems, the present invention includes the following means.
First, a combustion cylinder containing a burner and a steam reforming catalyst layer provided in contact with the combustion cylinder are provided to reform hydrocarbon-based raw fuel and steam so as to contain high-concentration hydrogen. in the fuel reforming system for generating a quality gas, the contact with the combustion cylinder, and further comprising condensing the basin Rio storing condensed water on the upstream side of the upper and gas through direction of the steam reforming catalyst layer.
Second, downstream of the gas passage direction of the steam reforming catalyst layer, and it shall comprise a carbon monoxide shift catalyst layer, and carbon monoxide removal catalyst layer. Third, a condensed water reservoir for storing condensed water above the carbon monoxide conversion catalyst layer and the carbon monoxide removal catalyst layer and upstream in the gas flow direction, and the condensed water stored in the condensed water reservoir, respectively. And a heating means for evaporating by heating.
Fourth, the heating means shall be made of electrically heater wherein provided in the condensed water reservoir.
Fifth, the steam reforming catalyst layer, the carbon monoxide shift catalyst layer, and the carbon monoxide removal catalyst layer are arranged in order from the upstream in the gas flow direction and in the vertical direction in contact with the combustion cylinder. It shall be.

に、前記触媒層の下方でかつガス通流方向の下流側に凝縮水を貯留する凝縮水溜りを配置し、前記触媒層の上流側及び下流側の前記各凝縮水溜りにより前記触媒層を水で封止する構成とする。この水は、凝縮水や改質用水を用いることができる。改質用水を用いる場合は、ガスが通流した際に凝縮水溜りの水がこぼれない程度の水量を供給する。 Sixth , a condensed water reservoir for storing condensed water is disposed below each catalyst layer and downstream in the gas flow direction, and the condensed water reservoirs upstream and downstream of each catalyst layer The catalyst layer is sealed with water. This water can be condensed water or reforming water. When reforming water is used, an amount of water is supplied so that the water in the condensed water pool does not spill when the gas flows.

上記のごとく、燃焼筒に接して、水蒸気改質触媒層の上方かつガス通流方向の上流側に凝縮水を貯留する凝縮水溜りを備えることにより、凝縮水はこの凝縮水溜りに貯留され、水蒸気改質触媒層に流入する凝縮水は少量に抑えられるので、触媒が凝縮水によって覆われることによる脆化を防止できる。また、燃焼筒に接して凝縮水溜りを備えるので、凝縮水溜りが燃焼筒を介してバーナーの燃焼熱で加熱され、再起動時に、凝縮水溜りに貯留された凝縮水を速やかに蒸発させることができ、再起動時の水蒸気パージを適切に実施できる。
さらに、水蒸気改質触媒層のガス通流方向の後段に、一酸化炭素変成触媒層および一酸化炭素除去触媒層を備え、さらに、一酸化炭素変成触媒層および一酸化炭素除去触媒層の上方かつガス通流方向の上流側に、それぞれ凝縮水を貯留する凝縮水溜りと、前記凝縮水溜りに貯留された凝縮水を加熱して蒸発させる加熱手段、例えば電気加熱器のような加熱手段とを備えることにより、前記水蒸気改質触媒層と同様に、一酸化炭素変成触媒層および一酸化炭素除去触媒層における触媒の脆化を防止でき、かつ再起動時の水蒸気パージを適切に実施できる。
さらに、前記燃焼筒に接して、ガス通流方向の上流かつ鉛直方向の上から順に前記水蒸気改質触媒層、前記一酸化炭素変成触媒層、及び前記一酸化炭素除去触媒層が配置されていれば、一つの反応器に水蒸気改質機能、一酸化炭素変成機能、及び一酸化炭素除去機能を備えることができ、熱効率が高く、コンパクトな構成の燃料改質システムが得られる。
また、前記触媒層の下方でかつガス通流方向の下流側に凝縮水を貯留する凝縮水溜りを配置し、前記触媒層の上流側及び下流側の前記各凝縮水溜りにより前記触媒層を水で封止すれば、外気に触媒が晒される事を防止でき、前記各触媒の劣化を防止できる。
As described above , the condensed water is stored in the condensed water reservoir by being provided with a condensed water reservoir that is in contact with the combustion cylinder and stores the condensed water above the steam reforming catalyst layer and upstream in the gas flow direction . Since the condensed water flowing into the steam reforming catalyst layer is suppressed to a small amount, embrittlement due to the catalyst being covered with the condensed water can be prevented. Further, since the condensed water reservoir is provided in contact with the combustion cylinder, the condensed water reservoir is heated by the combustion heat of the burner through the combustion cylinder, and the condensed water stored in the condensed water reservoir is quickly evaporated at the time of restart. Therefore, the water vapor purge at the time of restarting can be appropriately performed.
Furthermore, a carbon monoxide shift catalyst layer and a carbon monoxide removal catalyst layer are provided downstream of the steam reforming catalyst layer in the gas flow direction, and further above the carbon monoxide shift catalyst layer and the carbon monoxide removal catalyst layer and On the upstream side in the gas flow direction, a condensed water reservoir for storing condensed water and a heating means for heating and evaporating the condensed water stored in the condensed water reservoir, for example, a heating means such as an electric heater. By providing, similarly to the steam reforming catalyst layer, embrittlement of the catalyst in the carbon monoxide shift catalyst layer and the carbon monoxide removal catalyst layer can be prevented, and steam purge at the time of restart can be appropriately performed.
Further, the steam reforming catalyst layer, the carbon monoxide shift catalyst layer, and the carbon monoxide removal catalyst layer are arranged in order from the upstream in the gas flow direction and in the vertical direction in contact with the combustion cylinder. For example, a steam reforming function, a carbon monoxide conversion function, and a carbon monoxide removal function can be provided in one reactor, and a fuel reforming system having a high thermal efficiency and a compact configuration can be obtained.
Further, each and below the catalyst layer is disposed condensed water reservoir for storing the condensed water on the downstream side of the gas through direction, the catalyst layer by the upstream and the respective condensed water reservoir downstream of the respective catalyst layer By sealing with water, it is possible to prevent the catalyst from being exposed to the outside air, and it is possible to prevent the deterioration of each catalyst.

本発明の燃料改質システムの最良の実施形態は、炭化水素系の原燃料を改質して改質ガスを生成する燃料改質システムにおいて、水蒸気改質触媒層、一酸化炭素変成触媒層、及び一酸化炭素除去触媒層のうち少なくとも1つを備えた反応器と、前記反応器の触媒層の上方かつガス通流方向の上流側に凝縮水を貯留する凝縮水溜りと、前記凝縮水溜りに貯留された凝縮水を加熱して蒸発させる加熱手段とを備えている燃料改質システムである。図1ないし3において、図4に示した従来例と同一の機能を有する構成要素には同一の符号を付し、重複する説明は省略する。 The best mode of the fuel reforming system of the present invention is a fuel reforming system for reforming a hydrocarbon-based raw fuel to generate a reformed gas, in which a steam reforming catalyst layer, a carbon monoxide conversion catalyst layer, And a reactor having at least one of the carbon monoxide removal catalyst layer, a condensed water reservoir for storing condensed water above the catalyst layer of the reactor and upstream in the gas flow direction, and the condensed water reservoir And a heating means for heating and evaporating the condensed water stored in the fuel reforming system. 1 to 3, components having the same functions as those of the conventional example shown in FIG. 4 are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の燃料改質システムの第1の実施例の構成を示すフロー図である。本実施例の構成の特徴は、改質器3と一酸化炭素変成器4と一酸化炭素除去器5を備え、これら反応器のそれぞれの触媒層の上方かつガス通流方向の上流側に凝縮水を貯留する凝縮水溜り21,22,23が備えられ、かつ、各凝縮水溜り21,22,23に貯留された凝縮水を加熱、蒸発させる加熱手段が備えられていることにある。なお、本実施例では、改質器3の上流側の凝縮水溜り21の加熱手段には改質器3のバーナー3bの燃焼熱が利用され、一酸化炭素変成器4の上流側の凝縮水溜り22の加熱手段には電気加熱器25が、また、一酸化炭素除去器5の上流側の凝縮水溜り23の加熱手段には電気加熱器26が用いられている。そして、各触媒層に図示していない熱伝対などの温度測定手段を設置する。電気加熱器25,26は、各反応器の触媒温度が所定の温度以上になると停止される。
また、一酸化炭素変成器4と一酸化炭素除去器5との間には図示しない酸素供給手段により一酸化炭素除去反応に使われる酸素を供給する。
FIG. 1 is a flowchart showing a configuration of a first embodiment of a fuel reforming system of the present invention. A feature of the configuration of this embodiment is that it includes a reformer 3, a carbon monoxide converter 4, and a carbon monoxide remover 5, and is condensed above the respective catalyst layers of these reactors and upstream in the gas flow direction. Condensed water reservoirs 21, 22 and 23 for storing water are provided, and heating means for heating and evaporating the condensed water stored in the respective condensed water reservoirs 21, 22 and 23 is provided. In this embodiment, the combustion heat of the burner 3b of the reformer 3 is used as the heating means for the condensed water reservoir 21 on the upstream side of the reformer 3, and the condensed water on the upstream side of the carbon monoxide converter 4 is used. An electric heater 25 is used as the heating means for the reservoir 22, and an electric heater 26 is used as the heating means for the condensed water reservoir 23 on the upstream side of the carbon monoxide remover 5. And each catalyst layer is provided with temperature measuring means such as a thermocouple (not shown). The electric heaters 25 and 26 are stopped when the catalyst temperature of each reactor becomes equal to or higher than a predetermined temperature.
Further, oxygen used for the carbon monoxide removal reaction is supplied between the carbon monoxide transformer 4 and the carbon monoxide remover 5 by an oxygen supply means (not shown).

図2は、本発明の燃料改質システムの第2の実施例の構成を示す縦断面図である。本燃料改質システムは、水蒸気改質触媒層3a、一酸化炭素変成触媒層4a、及び一酸化炭素除去触媒層5aを同軸状に配置し、一端に備えたバーナー3bの燃焼排ガスを中心部に導いて水蒸気改質触媒層3a、一酸化炭素変成触媒層4a、及び一酸化炭素除去触媒層5aを所定の運転温度に加熱するよう構成されている。上記のバーナー3bの燃焼排ガスの発熱量と断熱層28,29の厚さを適切に選定することによって、一酸化炭素変成触媒層4aおよび一酸化炭素除去触媒層5aの温度を調整し、かつ、水蒸気改質触媒層3a、一酸化炭素変成触媒層4a、及び一酸化炭素除去触媒層5aの上方かつガス通流方向の上流側に凝縮水を貯留する凝縮水溜り21,22,23の加熱量が適切となるよう構成されている。   FIG. 2 is a longitudinal sectional view showing the configuration of the second embodiment of the fuel reforming system of the present invention. In this fuel reforming system, the steam reforming catalyst layer 3a, the carbon monoxide shift catalyst layer 4a, and the carbon monoxide removal catalyst layer 5a are coaxially arranged, and the combustion exhaust gas of the burner 3b provided at one end is centered. The steam reforming catalyst layer 3a, the carbon monoxide shift catalyst layer 4a, and the carbon monoxide removal catalyst layer 5a are guided and heated to a predetermined operating temperature. By appropriately selecting the calorific value of the combustion exhaust gas of the burner 3b and the thickness of the heat insulating layers 28 and 29, the temperatures of the carbon monoxide shift catalyst layer 4a and the carbon monoxide removal catalyst layer 5a are adjusted, and Heating amount of condensate reservoirs 21, 22, and 23 that stores condensate above the steam reforming catalyst layer 3 a, the carbon monoxide shift catalyst layer 4 a, and the carbon monoxide removal catalyst layer 5 a and upstream in the gas flow direction. Is configured to be appropriate.

実施例1および2のように、水蒸気改質触媒層3a、一酸化炭素変成触媒層4a、及び一酸化炭素除去触媒層5aのガス通流方向の上流側に凝縮水溜り21,22,23を設ければ、システムの運転停止後、外気温度の低下等によって水蒸気が冷却されて一部が凝縮する事態が生じても凝縮水が凝縮水溜りに貯留されるので、凝縮水と触媒との接触を回避でき、従来問題となっていた触媒が凝縮水に覆われることにより生じる触媒の脆化が回避される。また、加熱手段により前記凝縮水溜り21,22,23を加熱可能な構成とすれば、次の起動時には、加熱手段により各所に分散して配置されている前記凝縮水溜り21,22,23に貯留された凝縮水が気化されて水蒸気パージが行われるため、速やかに水蒸気パージが行われることとなる。 As in the first and second embodiments, the condensed water reservoirs 21, 22, and 23 are disposed upstream of the steam reforming catalyst layer 3a, the carbon monoxide conversion catalyst layer 4a, and the carbon monoxide removal catalyst layer 5a in the gas flow direction. If the system is installed, the condensed water will be stored in the condensed water reservoir even if the water vapor is cooled due to a decrease in the outside air temperature, etc. after the system is shut down. Thus, embrittlement of the catalyst caused by covering the catalyst, which has been a problem in the past, with the condensed water is avoided. Further, if the condensate reservoirs 21, 22, and 23 are configured to be heated by heating means, at the next start-up, the condensate pools 21, 22, and 23 that are dispersed and arranged at various locations by the heating means are used. Since the stored condensed water is vaporized and the steam purge is performed, the steam purge is performed promptly.

図3は、本発明の燃料改質システムの第3の実施例の構成を示す縦断面図である。本燃料改質システムは、水蒸気改質触媒層3a、一酸化炭素変成触媒層4a、及び一酸化炭素除去触媒層5aを同軸状に配置し、一端に備えたバーナー3bの燃焼排ガスを中心部に導いて水蒸気改質触媒層3a、一酸化炭素変成触媒層4a、及び一酸化炭素除去触媒層5aを所定の運転温度に加熱するよう構成されている。上記のバーナー3bの燃焼排ガスの発熱量と断熱層28,29の厚さを適切に選定することによって、一酸化炭素変成触媒層4aおよび一酸化炭素除去触媒層5aの温度を調整し、かつ、水蒸気改質触媒層3a、一酸化炭素変成触媒層4a、及び一酸化炭素除去触媒層5aの上方かつガス通流方向の上流側に凝縮水を貯留する凝縮水溜り21,22,23及び一酸化炭素除去触媒層5aの下方でかつガス通流方向の下流側に凝縮水を貯留する凝縮水溜り24の加熱量が適切となるよう構成されている。さらに、凝縮水溜り21,22,23,24には、水蒸気改質触媒層3a、一酸化炭素変成触媒層4a、及び一酸化炭素除去触媒層5aを水で封止する封止体30が備えられている。   FIG. 3 is a longitudinal sectional view showing the configuration of a third embodiment of the fuel reforming system of the present invention. In this fuel reforming system, the steam reforming catalyst layer 3a, the carbon monoxide shift catalyst layer 4a, and the carbon monoxide removal catalyst layer 5a are coaxially arranged, and the combustion exhaust gas of the burner 3b provided at one end is centered. The steam reforming catalyst layer 3a, the carbon monoxide shift catalyst layer 4a, and the carbon monoxide removal catalyst layer 5a are guided and heated to a predetermined operating temperature. By appropriately selecting the calorific value of the combustion exhaust gas of the burner 3b and the thickness of the heat insulating layers 28 and 29, the temperatures of the carbon monoxide shift catalyst layer 4a and the carbon monoxide removal catalyst layer 5a are adjusted, and Condensed water pools 21, 22, and 23 that store condensed water above the steam reforming catalyst layer 3a, the carbon monoxide conversion catalyst layer 4a, and the carbon monoxide removal catalyst layer 5a and upstream in the gas flow direction, and monoxide The amount of heating of the condensed water reservoir 24 that stores condensed water below the carbon removal catalyst layer 5a and downstream in the gas flow direction is configured to be appropriate. Further, the condensate pools 21, 22, 23, and 24 include a sealing body 30 that seals the steam reforming catalyst layer 3a, the carbon monoxide shift catalyst layer 4a, and the carbon monoxide removal catalyst layer 5a with water. It has been.

本発明は、燃料電池、特に、家庭用定置型分散発電装置や電気自動車用電源装置としての固体高分子形燃料電池に用いる燃料改質システムとして効果的に使用される。 INDUSTRIAL APPLICABILITY The present invention is effectively used as a fuel reforming system used in a fuel cell, in particular, a polymer electrolyte fuel cell as a stationary stationary power generator for home use or a power supply device for an electric vehicle.

本発明の燃料改質システムの第1の実施例の構成を示すフロー図The flowchart which shows the structure of the 1st Example of the fuel reforming system of this invention. 本発明の燃料改質システムの第2の実施例の構成を示す縦断面図The longitudinal cross-sectional view which shows the structure of the 2nd Example of the fuel reforming system of this invention 本発明の燃料改質システムの第3の実施例の構成を示す縦断面図The longitudinal cross-sectional view which shows the structure of the 3rd Example of the fuel reforming system of this invention 燃料改質システムの従来の構成例を示すフロー図Flow diagram showing a conventional configuration example of a fuel reforming system

1:脱硫器、2:蒸気発生器、3:改質器、3a:水蒸気改質触媒層、3b:バーナー、3c:燃焼筒、4:一酸化炭素変成器、4a:一酸化炭素変成触媒層、5:一酸化炭素除去器、5a:一酸化炭素除去触媒層、6: 燃料電池、6a:アノード極、7:改質用水タンク、8:改質用水供給ポンプ、9:空気ブロア、10:原燃料ガスブロア、21,22,23,24:凝縮水溜り、25,26:電気加熱器、28,29:断熱層、30:封止体 1: desulfurizer, 2: steam generator, 3: reformer, 3a: steam reforming catalyst layer, 3b: burner, 3c: combustion cylinder, 4: carbon monoxide converter, 4a: carbon monoxide conversion catalyst layer 5: Carbon monoxide remover, 5a: Carbon monoxide removal catalyst layer, 6: Fuel cell, 6a: Anode electrode, 7: Water tank for reforming, 8: Water supply pump for reforming, 9: Air blower, 10: Raw fuel gas blower, 21, 22, 23, 24: Condensate pool, 25, 26: Electric heater, 28, 29: Heat insulation layer, 30: Sealed body

Claims (6)

バーナーを収容した燃焼筒と、燃焼筒に接して設けた水蒸気改質触媒層とを備え、炭化水素系の原燃料と水蒸気とを改質して、高濃度の水素を含む改質ガスを生成する燃料改質システムにおいて、前記燃焼筒に接して、前記水蒸気改質触媒層の上方かつガス通流方向の上流側に凝縮水を貯留する凝縮水溜りを備えることを特徴とする燃料改質システム。 Composed of a combustion cylinder containing a burner and a steam reforming catalyst layer provided in contact with the combustion cylinder, reforming hydrocarbon-based raw fuel and steam to produce reformed gas containing high-concentration hydrogen In the fuel reforming system, a fuel reforming system comprising: a condensate pool for storing condensate in contact with the combustion cylinder and above the steam reforming catalyst layer and upstream in the gas flow direction. . 水蒸気改質触媒層のガス通流方向の後段に、一酸化炭素変成触媒層および一酸化炭素除去触媒層を備えることを特徴とする請求項1に記載の燃料改質システム。2. The fuel reforming system according to claim 1, further comprising a carbon monoxide shift catalyst layer and a carbon monoxide removal catalyst layer downstream of the steam reforming catalyst layer in the gas flow direction. 一酸化炭素変成触媒層および一酸化炭素除去触媒層の上方かつガス通流方向の上流側に、それぞれ凝縮水を貯留する凝縮水溜りと、前記凝縮水溜りに貯留された凝縮水を加熱して蒸発させる加熱手段とを備えることを特徴とする請求項2に記載の燃料改質システム。The condensed water reservoir for storing condensed water and the condensed water stored in the condensed water reservoir are heated above the carbon monoxide conversion catalyst layer and the carbon monoxide removal catalyst layer and upstream in the gas flow direction, respectively. The fuel reforming system according to claim 2, further comprising heating means for evaporating. 前記加熱手段は、前記凝縮水溜りに備えられた電気加熱器よりなることを特徴とする請求項に記載の燃料改質システム。 It said heating means, the fuel reforming system according to claim 3, characterized in that composed of electric heater wherein provided in the condensed water reservoir. 前記燃焼筒に接して、ガス通流方向の上流かつ鉛直方向の上から順に前記水蒸気改質触媒層、前記一酸化炭素変成触媒層、及び前記一酸化炭素除去触媒層が配置されていることを特徴とする請求項2に記載の燃料改質システム。 The steam reforming catalyst layer, the carbon monoxide shift catalyst layer, and the carbon monoxide removal catalyst layer are arranged in order from the upstream in the gas flow direction and in the vertical direction in contact with the combustion cylinder. The fuel reforming system according to claim 2, wherein 前記触媒層の下方でかつガス通流方向の下流側に凝縮水を貯留する凝縮水溜りを配置し、前記触媒層の上流側及び下流側の前記各凝縮水溜りにより前記触媒層を水で封止することを特徴とする請求項に記載の燃料改質システム。 Wherein placing the condensed water reservoir for storing the condensed water on the downstream side of the lower a and gas passage direction of the catalyst layer, water the catalyst layer by the upstream and downstream of the respective condensate reservoir of each catalyst layer The fuel reforming system according to claim 5 , wherein the fuel reforming system is sealed with.
JP2005348603A 2005-12-02 2005-12-02 Fuel reforming system Active JP4847117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005348603A JP4847117B2 (en) 2005-12-02 2005-12-02 Fuel reforming system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005348603A JP4847117B2 (en) 2005-12-02 2005-12-02 Fuel reforming system

Publications (2)

Publication Number Publication Date
JP2007157407A JP2007157407A (en) 2007-06-21
JP4847117B2 true JP4847117B2 (en) 2011-12-28

Family

ID=38241528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005348603A Active JP4847117B2 (en) 2005-12-02 2005-12-02 Fuel reforming system

Country Status (1)

Country Link
JP (1) JP4847117B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8273489B2 (en) 2006-06-12 2012-09-25 Fuji Electric Co., Ltd. Hydrogen generator and fuel cell system including the same
JP5057910B2 (en) * 2007-09-14 2012-10-24 パナソニック株式会社 Hydrogen generator and its startup method
JP5057938B2 (en) * 2007-11-16 2012-10-24 パナソニック株式会社 Hydrogen generator and fuel cell system provided with the same
JP5160389B2 (en) * 2008-12-11 2013-03-13 東京瓦斯株式会社 Multi-cylinder steam reformer for fuel cells
JP5423112B2 (en) * 2009-04-10 2014-02-19 パナソニック株式会社 Hydrogen generator
CN106104158B (en) * 2014-03-19 2019-01-11 住友精密工业株式会社 burner and fuel cell system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053302A (en) * 2000-08-09 2002-02-19 Sanyo Electric Co Ltd Burner for fuel reformer
JP2003112904A (en) * 2001-10-05 2003-04-18 Tokyo Gas Co Ltd Single tube type cylindrical reformer
JP2003288934A (en) * 2002-01-23 2003-10-10 Nissan Motor Co Ltd Fuel reforming device for fuel cell
US6832647B2 (en) * 2002-04-02 2004-12-21 Modine Manufacturing Company Integrated condenser/separator for fuel cell exhaust gases
JP4264875B2 (en) * 2003-01-14 2009-05-20 トヨタ自動車株式会社 Condensate drainage system and fuel cell system
JP2004315331A (en) * 2003-04-18 2004-11-11 Matsushita Electric Ind Co Ltd Carbon monoxide remover
JP4268452B2 (en) * 2003-05-26 2009-05-27 本田技研工業株式会社 Fuel reformer
JP2005022920A (en) * 2003-07-02 2005-01-27 Nissan Motor Co Ltd Carbon monoxide cutting down apparatus
JP4462915B2 (en) * 2003-12-18 2010-05-12 株式会社大気社 Fuel cell power generator
JP2005231987A (en) * 2004-01-22 2005-09-02 Matsushita Electric Ind Co Ltd Hydrogen producing apparatus and fuel cell generating set
JP4477890B2 (en) * 2004-02-10 2010-06-09 パナソニック株式会社 Hydrogen generator
JP4646527B2 (en) * 2004-02-19 2011-03-09 大阪瓦斯株式会社 Reformer

Also Published As

Publication number Publication date
JP2007157407A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP4906242B2 (en) How to shut down the fuel cell
JP4724029B2 (en) Method for shutting down reformer
JP4847117B2 (en) Fuel reforming system
JP2003282114A (en) Stopping method of fuel cell power generating device
JPH10308230A (en) Power generating device for fuel cell
JP2002093447A (en) Method for starting and stopping reformer for solid high polymer type fuel cell
KR100718106B1 (en) Startup method of fuel cell system
JP5127395B2 (en) Fuel cell power generation system
JP2005093115A (en) Fuel cell power generating device and its operating method
JP2007194098A (en) Fuel cell power generation system
KR100821037B1 (en) Reformer for fuel cell and fuel cell using the same
JP4136624B2 (en) Liquid fuel reforming method and apparatus
JP2003086210A (en) Solid high-polymer type fuel cell power generator and its operation method
JP4986432B2 (en) Operation method of fuel cell system
JP4940567B2 (en) Polymer electrolyte fuel cell system
JP2008130266A (en) Circulation method of condensed water in fuel cell system
JP4304975B2 (en) Fuel cell power generator
KR20110118562A (en) Fuel cell system
JP5305845B2 (en) Fuel cell power generation system and operation method thereof
JP4466049B2 (en) Water flow control method for reforming steam
KR101295237B1 (en) Fuel cell system
JP3997476B2 (en) Fuel cell power generator
JP5369327B2 (en) Fuel reformer and its pretreatment method, fuel cell power generation system and its operation pretreatment method
JP2009081112A (en) Operation method of fuel cell power generation device and fuel cell power generation device
JP4072725B2 (en) Operation method of fuel cell power generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4847117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250