JP2011195391A - On-start up operation method for hydrogen-containing gas producing apparatus - Google Patents

On-start up operation method for hydrogen-containing gas producing apparatus Download PDF

Info

Publication number
JP2011195391A
JP2011195391A JP2010065001A JP2010065001A JP2011195391A JP 2011195391 A JP2011195391 A JP 2011195391A JP 2010065001 A JP2010065001 A JP 2010065001A JP 2010065001 A JP2010065001 A JP 2010065001A JP 2011195391 A JP2011195391 A JP 2011195391A
Authority
JP
Japan
Prior art keywords
hydrogen
containing gas
raw fuel
valve
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010065001A
Other languages
Japanese (ja)
Other versions
JP5480684B2 (en
Inventor
Yukitsugu Masumoto
幸嗣 桝本
Masami Hamaso
正美 濱走
Seisaku Azumaguchi
誠作 東口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2010065001A priority Critical patent/JP5480684B2/en
Publication of JP2011195391A publication Critical patent/JP2011195391A/en
Application granted granted Critical
Publication of JP5480684B2 publication Critical patent/JP5480684B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an on-start up operation method by which a hydrogen-containing gas producing apparatus is properly started while suppressing the cost thereof.SOLUTION: The on-start up operation method for the hydrogen-containing gas producing apparatus includes: a temperature rising step of combusting a raw fuel in a combustor 3 after a first valve Vb is closed, a second valve Ve is closed and a raw fuel distributary flow passage 12 is opened, upon starting up of the hydrogen-containing gas producing apparatus; a gas production starting step of starting the production of the hydrogen-containing gas in a reformer 4 by making the raw fuel flow in a desulfurizer 2 and the reformer 4 by opening the first valve Vb after raising the temperature of the reformer 4 to equal to or above set starting temperature by the temperature rising step; and a gas supply starting step of supplying the hydrogen-containing gas to the outside of the hydrogen-containing gas production apparatus by opening the second valve Ve after increasing the pressure of a hydrogen-containing gas supply passage 11 to a set operation starting pressure by the gas production starting step.

Description

本発明は、原燃料に水素を添加した上で、その原燃料に含まれる硫黄成分の脱硫処理を行う脱硫器を有する水素含有ガス生成装置の起動時運転方法に関する。   The present invention relates to a startup operation method for a hydrogen-containing gas generator having a desulfurizer that performs desulfurization treatment of sulfur components contained in raw fuel after adding hydrogen to the raw fuel.

炭化水素を含む原燃料に水素を添加した上で、当該原燃料に含まれる硫黄成分の脱硫処理を行うことで、脱硫剤の長寿命化を図ることのできる脱硫器がある。特許文献1には、このような脱硫器を有する水素含有ガス生成装置が記載されている。例えば、特許文献1に記載されている水素含有ガス生成装置は、原燃料供給路を通して供給される原燃料の脱硫処理を行う脱硫器と、その脱硫器で脱硫処理された原燃料を改質して水素を主成分とする水素含有ガスを生成する改質器と、改質器で生成された水素含有ガスが流通する水素含有ガス供給路の途中の水素含有ガス分流箇所と脱硫器よりも上流側の原燃料供給路の途中の水素含有ガス合流箇所とを接続して、改質器で生成された水素含有ガスの一部を原燃料供給路に流入させるリサイクルガス供給路と、を備えている。加えて、そのリサイクルガス供給路には、遮断弁、調節弁、逆止弁、ブロアー、定量ポンプなどを設けることが記載されている。従って、リサイクルガス供給路に設けられている遮断弁、調節弁、逆止弁、ブロアー、定量ポンプなどの動作状態を制御することで、原燃料に添加される水素含有ガスの量が調節されることになる。
更に、特許文献1には、水素含有ガス生成装置を起動するとき、水素濃度が低い水素含有ガスが脱硫器に流入することを嫌って、水素含有ガスのリサイクルを休止することが記載されている。
There is a desulfurizer that can extend the life of a desulfurizing agent by adding hydrogen to a raw fuel containing hydrocarbons and then desulfurizing a sulfur component contained in the raw fuel. Patent Document 1 describes a hydrogen-containing gas generator having such a desulfurizer. For example, a hydrogen-containing gas generation device described in Patent Document 1 reforms a desulfurizer that performs desulfurization treatment of raw fuel supplied through a raw fuel supply path, and raw fuel desulfurized by the desulfurizer. The hydrogen-containing gas branch point in the middle of the reformer that generates hydrogen-containing gas mainly containing hydrogen and the hydrogen-containing gas supply path through which the hydrogen-containing gas generated by the reformer circulates and upstream of the desulfurizer A recycle gas supply path for connecting a portion of the hydrogen-containing gas in the middle of the raw fuel supply path on the side to flow a part of the hydrogen-containing gas generated by the reformer into the raw fuel supply path, Yes. In addition, it is described that the recycle gas supply path is provided with a shut-off valve, a control valve, a check valve, a blower, a metering pump, and the like. Therefore, the amount of hydrogen-containing gas added to the raw fuel is adjusted by controlling the operating state of the shutoff valve, control valve, check valve, blower, metering pump, etc. provided in the recycle gas supply path. It will be.
Furthermore, Patent Document 1 describes that when starting a hydrogen-containing gas generator, the hydrogen-containing gas having a low hydrogen concentration is hated from flowing into the desulfurizer and the recycling of the hydrogen-containing gas is suspended. .

特開2003−017109号公報(請求項12、段落0035、段落0049)JP2003-017109A (Claim 12, paragraph 0035, paragraph 0049)

水素含有ガス生成装置に上述したようなリサイクルガス供給路を開け閉めするような装置を設けないことができれば、水素含有ガス生成装置のコスト低減の観点から好ましい。しかし、上述したようなリサイクルガス供給路を開け閉めするような装置を設けなかった場合、リサイクルガス供給路をガスが常時流通できる構成となる。そのため、水素含有ガス生成装置の起動時に原燃料供給路へ原燃料の供給を開始したとき、上記水素含有ガス合流箇所の圧力の方が上記水素含有ガス分流箇所の圧力よりも高くなって、原燃料がリサイクルガス供給路を逆流する可能性がある。そして、脱硫処理されていない原燃料が改質器の下流側へ流入して、改質器の改質触媒や改質器の下流側に設けられている一酸化炭素除去器としての一酸化炭素選択酸化器の触媒が硫黄被毒されるという問題が発生し得る。   It is preferable from the viewpoint of cost reduction of the hydrogen-containing gas generator if it is not possible to provide the hydrogen-containing gas generator with an apparatus that opens and closes the recycle gas supply path as described above. However, in the case where an apparatus that opens and closes the recycle gas supply path as described above is not provided, the gas can always flow through the recycle gas supply path. Therefore, when the supply of raw fuel to the raw fuel supply path is started at the time of starting the hydrogen-containing gas generation device, the pressure at the hydrogen-containing gas confluence point becomes higher than the pressure at the hydrogen-containing gas diversion point. There is a possibility that the fuel flows backward through the recycle gas supply path. Then, raw fuel that has not been desulfurized flows into the downstream side of the reformer, and carbon monoxide as a reforming catalyst of the reformer or a carbon monoxide remover provided on the downstream side of the reformer. There may be a problem that the catalyst of the selective oxidizer is sulfur poisoned.

加えて、水素含有ガス生成装置の起動時に、改質器を加熱するための燃焼熱を放出する燃焼器が、原燃料供給路の途中の原燃料分流箇所から分岐した原燃料分流路を通して供給される原燃料を燃焼するような装置構成の場合、原燃料がリサイクルガス供給路の方へ流れてしまうと、燃焼器への原燃料の供給量が相対的に減少してしまうため、燃焼器での着火不良や失火が発生し得る。   In addition, when the hydrogen-containing gas generator is started, a combustor that releases combustion heat for heating the reformer is supplied through a raw fuel distribution channel branched from a raw fuel distribution point in the middle of the raw fuel supply channel. In the case of an apparatus configuration that combusts raw fuel, if the raw fuel flows toward the recycle gas supply path, the amount of raw fuel supplied to the combustor is relatively reduced. Can cause poor ignition and misfire.

更に、リサイクルガス供給路に逆止弁を設けた場合には、上述した装置コストの問題に加えて、水素含有ガス生成装置の運転継続中、生成される水素含有ガスに含まれる水分が凝縮して逆止弁を閉塞させるという問題も発生し得る。   Furthermore, in the case where a check valve is provided in the recycle gas supply path, in addition to the above-mentioned problem of the apparatus cost, moisture contained in the generated hydrogen-containing gas is condensed while the operation of the hydrogen-containing gas generator is continued. The problem of blocking the check valve can also occur.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、水素含有ガス生成装置の装置コストを抑えながらも、水素含有ガス生成装置を適正に起動できる起動時運転方法を提供する点にある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a start-up operation method capable of properly starting the hydrogen-containing gas generation device while suppressing the device cost of the hydrogen-containing gas generation device. In the point.

上記目的を達成するための本発明に係る水素含有ガス生成装置の起動時運転方法の特徴構成は、原燃料供給路を通して供給される原燃料の脱硫処理を行う脱硫器と、前記脱硫器で脱硫処理された前記原燃料を改質して水素を主成分とする水素含有ガスを生成する改質器と、前記原燃料供給路の途中の原燃料分流箇所から分岐した原燃料分流路を通して供給される原燃料を燃焼して、前記改質器を加熱するための燃焼熱を放出する燃焼器と、前記改質器で生成された前記水素含有ガスが流通する水素含有ガス供給路の途中の水素含有ガス分流箇所と前記脱硫器よりも上流側の前記原燃料供給路の途中の水素含有ガス合流箇所とを接続して前記水素含有ガスの一部を前記原燃料供給路に流入させるリサイクルガス供給路と、を備える水素含有ガス生成装置の起動時運転方法であって、
前記水素含有ガス生成装置の起動時に、
前記水素含有ガス合流箇所及び前記原燃料分流箇所よりも下流側であり且つ前記脱硫器よりも上流側の前記原燃料供給路に設けられる第1弁を閉止し、及び、前記水素含有ガス分流箇所よりも下流側の前記水素含有ガス供給路に設けられる第2弁を閉止し、及び、前記原燃料分流路を開放して前記燃焼器に原燃料を供給して前記燃焼器で前記原燃料を燃焼させる昇温工程と、
前記昇温工程によって前記改質器を設定起動温度以上に昇温した後、前記第1弁を開放して前記原燃料を前記脱硫器及び前記改質器に流入させて前記改質器において前記水素含有ガスの生成を開始するガス生成開始工程と、
前記ガス生成開始工程によって前記水素含有ガス供給路の圧力を設定始動圧力まで昇圧した後、前記第2弁を開放して前記水素含有ガス生成装置の外部に前記水素含有ガスを供給するガス供給開始工程と、を含む点にある。
In order to achieve the above object, the hydrogen-containing gas generator according to the present invention has a start-up operation method characterized in that a desulfurizer that performs desulfurization treatment of raw fuel supplied through a raw fuel supply path, and desulfurization using the desulfurizer A reformer that reforms the treated raw fuel to generate a hydrogen-containing gas containing hydrogen as a main component, and a raw fuel branch channel that branches from a raw fuel branch point in the middle of the raw fuel supply channel. Combusting raw fuel to release combustion heat for heating the reformer, and hydrogen in the middle of a hydrogen-containing gas supply path through which the hydrogen-containing gas generated by the reformer flows. Recycle gas supply in which a part of the hydrogen-containing gas flows into the raw fuel supply path by connecting the containing gas branch point and a hydrogen-containing gas confluence part in the middle of the raw fuel supply path upstream of the desulfurizer A hydrogen-containing gas comprising A startup operating method of forming apparatus,
When starting up the hydrogen-containing gas generator,
Close the first valve provided in the raw fuel supply path downstream of the hydrogen-containing gas joining point and the raw fuel branching point and upstream of the desulfurizer, and the hydrogen-containing gas branching point And closing the second valve provided in the hydrogen-containing gas supply path on the downstream side, and opening the raw fuel distribution flow path to supply the raw fuel to the combustor and supplying the raw fuel with the combustor. A temperature raising step for burning;
After the temperature of the reformer is raised to a set start temperature or higher by the temperature raising step, the first valve is opened to flow the raw fuel into the desulfurizer and the reformer, and the reformer A gas generation start step for starting generation of a hydrogen-containing gas;
After increasing the pressure of the hydrogen-containing gas supply path to a set start pressure by the gas generation start step, the gas supply starts to supply the hydrogen-containing gas to the outside of the hydrogen-containing gas generator by opening the second valve And a process.

リサイクルガス供給路に、ガスの流通を調節可能な装置(例えば、遮断弁、調節弁、逆止弁、ブロアー、ポンプなど)が設けられていない場合、昇温工程において燃焼器のみに原燃料を供給しようして原燃料供給路にガスを流通させると、そのガスが原燃料供給路の水素含有ガス分流箇所からリサイクルガス供給路へと流入してリサイクルガス供給路を逆流する可能性がある。原燃料がリサイクルガス供給路を逆流した場合、脱硫されていない原燃料が改質器に流入して、改質器の改質触媒や改質器の下流側に設けられている一酸化炭素除去器の触媒が硫黄被毒されるという問題が発生し得る。
ところが、本特徴構成の昇温工程では、燃焼器で原燃料を燃焼させるために原燃料分流路を開放して燃焼器に原燃料を供給している間、水素含有ガス合流箇所及び原燃料分流箇所よりも下流側であり且つ脱硫器よりも上流側の原燃料供給路に設けられる第1弁が閉止され、及び、水素含有ガス分流箇所よりも下流側の水素含有ガス供給路に設けられる第2弁が閉止される。つまり、脱硫器の上流側の原燃料供給路に設けられる第1弁が閉止されることで、原燃料が脱硫器の上流側から脱硫器及び必要な昇温が未だ十分に行われていない改質器へ流入することを阻止できる。また、第2弁が閉止されることで、水素含有ガス生成装置の外部(例えば、燃料電池)にガスが流れ出さないようにできる。更に、第1弁及び第2弁が閉止されることで、リサイクルガス供給路が接続されている水素含有ガス分流箇所よりも上流側の原燃料供給路は第1弁で閉止され、下流側の水素含有ガス供給路は第2弁で閉止される。つまり、水素含有ガス分流箇所よりも上流側に向かってガスが流れることはできず、且つ、水素含有ガス分流箇所よりも下流側に向かってガスが流れることはできない。従って、水素含有ガス分流箇所に接続されているリサイクルガス供給路にガスが流れる(即ち、逆流する)ことはなく、脱硫されていない原燃料が改質器や一酸化炭素除去器へ流入することもない。
更に、昇温工程において、燃焼器に供給しようとしている原燃料が、リサイクルガス供給路の方へ流れてしまうことがないため、燃焼器への原燃料の供給量が相対的に減少してしまうといった問題も発生しない。その結果、燃焼器に対して十分な量の原燃料を供給して、燃焼器において着火不良や失火が発生しないようにできる。
従って、水素含有ガス生成装置の装置コストを抑えながらも、水素含有ガス生成装置を適正に起動できる起動時運転方法を提供できる。
If the recycle gas supply path is not equipped with a device that can adjust the gas flow (for example, a shut-off valve, a control valve, a check valve, a blower, a pump, etc.), the raw fuel is supplied only to the combustor during the heating process. When gas is circulated through the raw fuel supply path so as to be supplied, there is a possibility that the gas flows from the hydrogen-containing gas distribution point of the raw fuel supply path into the recycle gas supply path and flows back through the recycle gas supply path. When the raw fuel flows back through the recycle gas supply path, the raw fuel that has not been desulfurized flows into the reformer and removes the carbon monoxide provided on the reformer's reforming catalyst and downstream of the reformer. The problem may be that the catalyst of the vessel is sulfur poisoned.
However, in the temperature raising process of this feature configuration, the hydrogen-containing gas junction and the fuel split flow are supplied while the raw fuel distribution flow path is opened and the raw fuel is supplied to the combustor in order to burn the raw fuel in the combustor. The first valve provided in the raw fuel supply path downstream from the location and upstream from the desulfurizer is closed, and the first valve provided in the hydrogen-containing gas supply path downstream from the hydrogen-containing gas distribution location. Two valves are closed. In other words, by closing the first valve provided in the raw fuel supply path upstream of the desulfurizer, the desulfurizer and the necessary temperature rise from the upstream side of the desulfurizer are not yet sufficiently performed. It can be prevented from flowing into the organ. Further, by closing the second valve, it is possible to prevent the gas from flowing out of the hydrogen-containing gas generator (for example, the fuel cell). Furthermore, by closing the first valve and the second valve, the raw fuel supply path upstream of the hydrogen-containing gas distribution point to which the recycle gas supply path is connected is closed by the first valve, and the downstream side The hydrogen-containing gas supply path is closed by the second valve. That is, the gas cannot flow toward the upstream side from the hydrogen-containing gas distribution point, and the gas cannot flow toward the downstream side from the hydrogen-containing gas distribution point. Therefore, the gas does not flow (that is, reversely flow) through the recycle gas supply path connected to the hydrogen-containing gas distribution point, and the raw fuel that has not been desulfurized flows into the reformer or the carbon monoxide remover. Nor.
Furthermore, since the raw fuel to be supplied to the combustor does not flow toward the recycle gas supply path in the temperature raising step, the supply amount of the raw fuel to the combustor is relatively reduced. Such a problem does not occur. As a result, a sufficient amount of raw fuel can be supplied to the combustor so that ignition failure and misfire do not occur in the combustor.
Therefore, it is possible to provide a start-up operation method that can properly start the hydrogen-containing gas generation device while suppressing the device cost of the hydrogen-containing gas generation device.

本発明に係る水素含有ガス生成装置の起動時運転方法の別の特徴構成は、前記ガス供給開始工程の実施に先だって、前記ガス生成開始工程の実施中に前記第2弁よりも上流側に滞留しているガスを、前記第2弁よりも上流側の前記水素含有ガス供給路に設けられるガス排出箇所から排出するガス排出工程を含む点にある。   Another characteristic configuration of the start-up operation method of the hydrogen-containing gas generation device according to the present invention is to stay upstream from the second valve during the gas generation start step prior to the gas supply start step. A gas discharge step of discharging the gas being discharged from a gas discharge point provided in the hydrogen-containing gas supply path upstream of the second valve.

ガス供給開始工程の実施前の段階では、第2弁の上流側には、ガス生成開始工程の実施中に改質器で生成された水素含有ガスだけでなく、ガス生成開始工程の実施前の段階で水素含有ガス生成装置の内部に既に存在していたガス(水素含有ガス生成装置が運転停止していた間に水素含有ガス生成装置の内部を封止するために用いられていたガスなど)が存在している。そのため、ガス生成開始工程からガス供給開始工程へと直接移行すると、水素の純度が低い水素含有ガスが水素含有ガス生成装置の下流側へ供給されるという問題が生じる可能性がある。これにより、水素含有ガス生成装置の下流に燃料電池が接続されている場合は、燃料電池が硫黄化合物や一酸化炭素によって被毒してしまう可能性がある。
ところが本特徴構成によれば、ガス供給開始工程の実施に先だってガス排出工程を実施することで、ガス生成開始工程の実施中に第2弁よりも上流側に滞留している水素純度の低い水素含有ガスがガス排出箇所から排出される。つまり、ガス供給開始工程を実施したときには、水素純度の高い水素含有ガスを水素含有ガス生成装置の下流側へ供給できる。
In the stage before the execution of the gas supply start process, not only the hydrogen-containing gas generated by the reformer during the execution of the gas generation start process but also the upstream side of the second valve before the execution of the gas generation start process. Gas that was already present in the hydrogen-containing gas generator at the stage (gas used to seal the inside of the hydrogen-containing gas generator while the hydrogen-containing gas generator was shut down) Is present. Therefore, when the gas generation start process is directly shifted to the gas supply start process, there is a possibility that a hydrogen-containing gas having a low hydrogen purity is supplied to the downstream side of the hydrogen-containing gas generation apparatus. As a result, when a fuel cell is connected downstream of the hydrogen-containing gas generator, the fuel cell may be poisoned by sulfur compounds or carbon monoxide.
However, according to this characteristic configuration, hydrogen having a low hydrogen purity stays upstream from the second valve during the gas generation start step by performing the gas discharge step prior to the gas supply start step. The contained gas is discharged from the gas discharge point. That is, when the gas supply start process is performed, a hydrogen-containing gas having a high hydrogen purity can be supplied to the downstream side of the hydrogen-containing gas generator.

本発明に係る水素含有ガス生成装置の起動時運転方法の更に別の特徴構成は、前記ガス排出箇所から排出されたガスを前記燃焼器に供給する点にある。   Still another characteristic configuration of the start-up operation method of the hydrogen-containing gas generation device according to the present invention is that gas discharged from the gas discharge point is supplied to the combustor.

上記特徴構成によれば、ガス排出箇所から排出されたガスには水素などが含まれているため、燃焼器での燃焼に有効利用できる。   According to the above characteristic configuration, since the gas discharged from the gas discharge location contains hydrogen and the like, it can be effectively used for combustion in the combustor.

本発明に係る水素含有ガス生成装置の起動時運転方法の更に別の特徴構成は、前記水素含有ガス生成装置は、前記改質器で生成された前記水素含有ガスに含まれる一酸化炭素を除去する一酸化炭素除去器を備え、前記水素含有ガス分流箇所は、前記改質器と前記一酸化炭素除去器との間を接続する前記水素含有ガス供給路の途中に設けられる点にある。   Still another characteristic configuration of the startup method of the hydrogen-containing gas generation device according to the present invention is that the hydrogen-containing gas generation device removes carbon monoxide contained in the hydrogen-containing gas generated by the reformer. The hydrogen-containing gas branch point is provided in the middle of the hydrogen-containing gas supply path that connects between the reformer and the carbon monoxide remover.

リサイクルガス供給路を通して脱硫器に供給するガスに含まれる一酸化炭素まで選択酸化する必要はない。つまり、一酸化炭素選択酸化器に対して、リサイクルガス供給路を通して脱硫器に供給するガスに含まれる一酸化炭素まで選択酸化させると、一酸化炭素選択酸化器の寿命が必要以上に短くなってしまう。
ところが本特徴構成によれば、リサイクルガス供給路が接続される水素含有ガス分流箇所は、改質器と一酸化炭素選択酸化器との間を接続する水素含有ガス供給路の途中に設けられる。つまり、リサイクルガス供給路を通して脱硫器に供給するガスは、一酸化炭素選択酸化器を通っていない。その結果、一酸化炭素選択酸化器の寿命が必要以上に短くなることが避けられる。
It is not necessary to selectively oxidize carbon monoxide contained in the gas supplied to the desulfurizer through the recycle gas supply path. In other words, if the carbon monoxide selective oxidizer is selectively oxidized up to the carbon monoxide contained in the gas supplied to the desulfurizer through the recycle gas supply path, the life of the carbon monoxide selective oxidizer becomes shorter than necessary. End up.
However, according to this characteristic configuration, the hydrogen-containing gas distribution point to which the recycle gas supply path is connected is provided in the middle of the hydrogen-containing gas supply path that connects between the reformer and the carbon monoxide selective oxidizer. That is, the gas supplied to the desulfurizer through the recycle gas supply path does not pass through the carbon monoxide selective oxidizer. As a result, the lifetime of the carbon monoxide selective oxidizer can be avoided from being unnecessarily shortened.

第1実施形態の水素含有ガス生成装置の構成を示す図である。It is a figure which shows the structure of the hydrogen containing gas production | generation apparatus of 1st Embodiment. 第2実施形態の水素含有ガス生成装置の構成を示す図である。It is a figure which shows the structure of the hydrogen containing gas production | generation apparatus of 2nd Embodiment. 第3実施形態の水素含有ガス生成装置の構成を示す図である。It is a figure which shows the structure of the hydrogen containing gas production | generation apparatus of 3rd Embodiment.

<第1実施形態>
以下に図面を参照して第1実施形態の水素含有ガス生成装置の起動時運転方法について説明する。図1は、本発明に係る水素含有ガス生成装置の起動時運転方法が行われる第1実施形態の水素含有ガス生成装置の構成を示す図である。図示するように、水素含有ガス生成装置S1(S)では、原燃料供給路10を通して改質器4に原燃料が供給され、その原燃料が改質器4で水素を主成分とするガス(水素含有ガス)に改質される。そして、改質器4で生成された水素含有ガスが水素含有ガス供給路11を通して燃料電池1に供給される。
<First Embodiment>
Hereinafter, a start-up operation method of the hydrogen-containing gas generator of the first embodiment will be described with reference to the drawings. FIG. 1 is a diagram illustrating a configuration of a hydrogen-containing gas generation device according to a first embodiment in which a startup operation method of a hydrogen-containing gas generation device according to the present invention is performed. As shown in the figure, in the hydrogen-containing gas generation device S1 (S), raw fuel is supplied to the reformer 4 through the raw fuel supply path 10, and the raw fuel is a gas containing hydrogen as a main component in the reformer 4 ( Reformed to hydrogen-containing gas). Then, the hydrogen-containing gas generated by the reformer 4 is supplied to the fuel cell 1 through the hydrogen-containing gas supply path 11.

〔水素含有ガス生成装置の構成〕
原燃料供給路10には、流量調節弁Vaが設けられ、水素含有ガス生成装置S1の系内に流入するガスの流量が調節される。例えば、制御部20が、電動式の流量調節弁Vaの開度を制御して、原燃料供給路10を通して水素含有ガス生成装置S1の系内に流入する原燃料の流量を調節する。
流量調節弁Vaよりも下流側の原燃料供給路10には昇圧ポンプ5が設けられている。つまり、流量調節弁Vaから系内に流入した原燃料は昇圧ポンプ5によって吸引されて昇圧された上でその昇圧ポンプ5の下流側に送出される。
昇圧ポンプ5よりも下流側の原燃料供給路10に脱硫器2が設けられている。脱硫器2には脱硫剤が充填されており、原燃料供給路10を通して供給される炭化水素やアルコール等の原燃料の脱硫処理を行う。本実施形態において、原燃料は、メタンやプロパンなどの炭化水素を主成分とする原燃料ガスである。これら原燃料として用いられるメタンやプロパンなどは一般に都市ガスやLPGであり、例えばジメチルスルフィド(DMS)などの硫黄化合物が付臭剤として含まれている。よって、後段の改質器4に充填されている改質触媒や燃料電池1のセルを構成するアノードなどが硫黄化合物によって劣化することを避けるために、脱硫器2によってその硫黄化合物を除去する。また、原燃料ガスに水素を添加した水添脱硫を行うことで、脱硫剤の長寿命化を図ることができる。原燃料ガスに水素を添加するために利用するリサイクルガス供給路13の構成については後述する。
[Configuration of hydrogen-containing gas generator]
The raw fuel supply path 10 is provided with a flow rate adjusting valve Va, which adjusts the flow rate of gas flowing into the system of the hydrogen-containing gas generating device S1. For example, the control unit 20 controls the opening of the electric flow control valve Va to adjust the flow rate of the raw fuel flowing into the system of the hydrogen-containing gas generation device S1 through the raw fuel supply path 10.
A booster pump 5 is provided in the raw fuel supply path 10 on the downstream side of the flow rate control valve Va. That is, the raw fuel that has flowed into the system from the flow rate adjusting valve Va is sucked and boosted by the booster pump 5, and then sent to the downstream side of the booster pump 5.
The desulfurizer 2 is provided in the raw fuel supply passage 10 downstream of the booster pump 5. The desulfurizer 2 is filled with a desulfurizing agent, and performs desulfurization processing of raw fuel such as hydrocarbon and alcohol supplied through the raw fuel supply passage 10. In the present embodiment, the raw fuel is a raw fuel gas mainly composed of hydrocarbons such as methane and propane. Methane, propane and the like used as these raw fuels are generally city gas and LPG, and a sulfur compound such as dimethyl sulfide (DMS) is included as an odorant. Therefore, the sulfur compound is removed by the desulfurizer 2 in order to avoid deterioration of the reforming catalyst charged in the reformer 4 at the subsequent stage and the anode constituting the cell of the fuel cell 1 due to the sulfur compound. Further, the life of the desulfurizing agent can be extended by performing hydrodesulfurization in which hydrogen is added to the raw fuel gas. The configuration of the recycle gas supply path 13 used for adding hydrogen to the raw fuel gas will be described later.

改質器4には改質触媒が充填され、水蒸気の存在下で脱硫処理後の原燃料の水蒸気改質を行って、水素を主成分とする水素含有ガスを生成する。改質器4には、改質器4を加熱するための燃焼器3が併設されている。燃焼器3は、原燃料供給路10の途中の原燃料分流箇所17から分岐した原燃料分流路12を通して供給される原燃料を燃焼して、改質器4を加熱するための燃焼熱を放出する。原燃料分流路12の途中には、流路を開閉する開閉弁Vcが設けられている。図1には示していないが、改質器4には、水蒸気が混合された原燃料ガスが供給される。そして、改質器4は、原燃料ガスを、水素を主成分とし、副生成物としての一酸化炭素などを含む改質ガスに改質する。副生成物としての一酸化炭素は、燃料電池1のセルを構成するアノードを劣化させるため、必要に応じて一酸化炭素変成器(図示せず)による一酸化炭素変成処理を行えばよい。この一酸化炭素変成器では、水素含有ガスに含まれている一酸化炭素と水分とが反応して、一酸化炭素が二酸化炭素に変成される。   The reformer 4 is filled with a reforming catalyst, and steam reforming of the raw fuel after the desulfurization treatment is performed in the presence of steam to generate a hydrogen-containing gas containing hydrogen as a main component. The reformer 4 is provided with a combustor 3 for heating the reformer 4. The combustor 3 burns the raw fuel supplied through the raw fuel branch channel 12 branched from the raw fuel branch point 17 in the middle of the raw fuel supply channel 10 and releases combustion heat for heating the reformer 4. To do. An open / close valve Vc for opening and closing the flow path is provided in the middle of the raw fuel distribution flow path 12. Although not shown in FIG. 1, the reformer 4 is supplied with raw fuel gas mixed with water vapor. The reformer 4 reforms the raw fuel gas into a reformed gas containing hydrogen as a main component and carbon monoxide as a by-product. Since carbon monoxide as a by-product deteriorates the anode constituting the cell of the fuel cell 1, a carbon monoxide conversion treatment by a carbon monoxide converter (not shown) may be performed as necessary. In this carbon monoxide converter, carbon monoxide contained in the hydrogen-containing gas reacts with moisture, and carbon monoxide is converted into carbon dioxide.

改質器4で生成された水素含有ガスは、水素含有ガス供給路11を通して燃料電池1へと供給される。但し、上記一酸化炭素変成器で全ての一酸化炭素が二酸化炭素に変成される訳ではない。従って、改質器4の下流側に設けた一酸化炭素選択酸化器(本発明の「一酸化炭素除去器」の一例)6において、改質器4で生成された水素含有ガス(又は、一酸化炭素変成器で変成処理が施された後の水素含有ガス)に含まれる一酸化炭素を選択的に酸化する。つまり、一酸化炭素選択酸化器6では、一酸化炭素が二酸化炭素へと酸化される。この一酸化炭素選択酸化器6での酸化処理により、燃料電池1へと供給される水素含有ガスに含まれる一酸化炭素の濃度を非常に低くできる。   The hydrogen-containing gas generated by the reformer 4 is supplied to the fuel cell 1 through the hydrogen-containing gas supply path 11. However, not all carbon monoxide is converted to carbon dioxide by the carbon monoxide transformer. Accordingly, in the carbon monoxide selective oxidizer (an example of the “carbon monoxide remover” of the present invention) 6 provided on the downstream side of the reformer 4, the hydrogen-containing gas (or Carbon monoxide contained in the hydrogen-containing gas after being subjected to the transformation treatment by the carbon oxide transformer is selectively oxidized. That is, the carbon monoxide selective oxidizer 6 oxidizes carbon monoxide to carbon dioxide. By the oxidation treatment in the carbon monoxide selective oxidizer 6, the concentration of carbon monoxide contained in the hydrogen-containing gas supplied to the fuel cell 1 can be very low.

原燃料ガスに水素を添加するために利用するリサイクルガス供給路13は、改質器4で生成された水素含有ガスが流通する水素含有ガス供給路11の途中の水素含有ガス分流箇所18と、脱硫器2よりも上流側の原燃料供給路10の途中の水素含有ガス合流箇所16とを接続する。具体的には、水素含有ガス分流箇所18は、改質器4と一酸化炭素選択酸化器6との間を接続する水素含有ガス供給路11の途中に設けられる。その結果、改質器4で生成された水素含有ガスの一部が原燃料供給路10に流入して、脱硫器2へは水素が添加された原燃料が供給されることになる。以上のように、リサイクルガス供給路13を通して脱硫器2に供給されるガスは、一酸化炭素選択酸化器6を通っていない。従って、一酸化炭素選択酸化器6で選択酸化処理されるガス量は抑制されるため、一酸化炭素選択酸化器6に充填されている一酸化炭素選択酸化触媒の寿命が必要以上に短くなることが避けられる。
また、本実施形態では、リサイクルガス供給路13に遮断弁、調節弁、逆止弁、ブロアー、ポンプなどを設けていない。
The recycle gas supply path 13 used for adding hydrogen to the raw fuel gas includes a hydrogen-containing gas branch point 18 in the middle of the hydrogen-containing gas supply path 11 through which the hydrogen-containing gas generated in the reformer 4 flows, A hydrogen-containing gas confluence 16 in the middle of the raw fuel supply path 10 upstream of the desulfurizer 2 is connected. Specifically, the hydrogen-containing gas branch point 18 is provided in the middle of the hydrogen-containing gas supply path 11 connecting the reformer 4 and the carbon monoxide selective oxidizer 6. As a result, a part of the hydrogen-containing gas generated in the reformer 4 flows into the raw fuel supply path 10, and the raw fuel to which hydrogen is added is supplied to the desulfurizer 2. As described above, the gas supplied to the desulfurizer 2 through the recycle gas supply path 13 does not pass through the carbon monoxide selective oxidizer 6. Accordingly, since the amount of gas selectively oxidized in the carbon monoxide selective oxidizer 6 is suppressed, the life of the carbon monoxide selective oxidation catalyst charged in the carbon monoxide selective oxidizer 6 is unnecessarily shortened. Can be avoided.
In this embodiment, the recycle gas supply path 13 is not provided with a shut-off valve, a control valve, a check valve, a blower, a pump, or the like.

原燃料供給路10の昇圧ポンプ5の下流側であり且つ脱硫器2の上流側には、開閉弁(本発明の「第1弁」)Vbが設けられている。水素含有ガス分流箇所18よりも下流側の水素含有ガス供給路11にも開閉弁(本発明の「第2弁」)Veが設けられている。加えて、この開閉弁Veよりも上流側の水素含有ガス供給路11のガス排出箇所19にはガス排出路14が接続されている。開閉弁Vdよりも下流側のガス排出路14は大気に開放されている。   On the downstream side of the booster pump 5 in the raw fuel supply passage 10 and upstream of the desulfurizer 2, an on-off valve (“first valve” in the present invention) Vb is provided. An open / close valve (“second valve” in the present invention) Ve is also provided in the hydrogen-containing gas supply path 11 downstream of the hydrogen-containing gas branch point 18. In addition, a gas discharge path 14 is connected to the gas discharge point 19 of the hydrogen-containing gas supply path 11 upstream of the on-off valve Ve. The gas discharge path 14 on the downstream side of the on-off valve Vd is open to the atmosphere.

〔水素含有ガス生成装置の起動時運転方法(昇温工程)〕
昇温工程では、水素含有ガス合流箇所16及び原燃料分流箇所17よりも下流側であり且つ脱硫器2よりも上流側の原燃料供給路10に設けられる開閉弁(第1弁)Vbを閉止し、及び、水素含有ガス分流箇所18よりも下流側の水素含有ガス供給路11に設けられる開閉弁(第2弁)Veを閉止し、及び、原燃料分流路12を開放して燃焼器3に原燃料を供給して燃焼器3で原燃料を燃焼させることが実施される。
[Operation method at startup of hydrogen-containing gas generator (temperature raising process)]
In the temperature raising step, the on-off valve (first valve) Vb provided in the raw fuel supply passage 10 downstream of the hydrogen-containing gas confluence 16 and the raw fuel branch 17 and upstream of the desulfurizer 2 is closed. And the on-off valve (second valve) Ve provided in the hydrogen-containing gas supply path 11 downstream from the hydrogen-containing gas distribution point 18 is closed, and the raw fuel distribution path 12 is opened to combustor 3. The raw fuel is supplied to the fuel and the combustor 3 burns the raw fuel.

具体的には、水素含有ガス生成装置S1を起動するとき、制御部20は、流量調節弁Vaを開弁し、昇圧ポンプ5を動作させて、水素含有ガス生成装置S1の系内に原燃料を流入させる。このとき、制御部20は、開閉弁Vcを開弁させ、開閉弁(第1弁)Vb及び開閉弁(第2弁)Ve及び開閉弁Vdを閉弁させている。そして、制御部20は、原燃料が供給される燃焼器3を燃焼作動させるので、燃焼器3による改質器4の加熱が開始される。   Specifically, when starting the hydrogen-containing gas generation device S1, the control unit 20 opens the flow rate control valve Va and operates the booster pump 5 to supply raw fuel into the system of the hydrogen-containing gas generation device S1. Inflow. At this time, the control unit 20 opens the on-off valve Vc, and closes the on-off valve (first valve) Vb, the on-off valve (second valve) Ve, and the on-off valve Vd. And since the control part 20 carries out the combustion operation of the combustor 3 to which raw fuel is supplied, the heating of the reformer 4 by the combustor 3 is started.

つまり、脱硫器2の上流側の原燃料供給路10に設けられる開閉弁(第1弁)Vbが閉止されることで、原燃料が脱硫器2の上流側から脱硫器2及び必要な昇温が未だ十分に行われていない改質器4へ流入することを阻止できる。また、開閉弁(第2弁)Veが閉止されることで、水素含有ガス生成装置S1の外部(例えば、燃料電池1)に原燃料が流れ出さないようにできる。更に、開閉弁Vb及び開閉弁Veが閉止されることで、リサイクルガス供給路13が接続されている水素含有ガス分流箇所18よりも上流側の原燃料供給路10は開閉弁Vbで閉止され、下流側の水素含有ガス供給路11は開閉弁Veで閉止される。つまり、水素含有ガス分流箇所18よりも上流側に向かってガスが流れることはできず、且つ、水素含有ガス分流箇所18よりも下流側に向かってガスが流れることはできない。従って、水素含有ガス分流箇所18に接続されているリサイクルガス供給路13にガスが流れる(即ち、逆流する)ことはなく、脱硫されていない原燃料が改質器4や一酸化炭素選択酸化器6へ流入することもない。
更に、昇温工程において、燃焼器3に供給しようとしている原燃料が、リサイクルガス供給路13の方へ流れ出すことがないため、燃焼器3への原燃料の供給量が相対的に減少してしまうといった問題も発生しない。その結果、燃焼器3に対して十分な量の原燃料を供給して、燃焼器3において着火不良や失火が発生しないようにできる。
That is, the on-off valve (first valve) Vb provided in the raw fuel supply passage 10 upstream of the desulfurizer 2 is closed, so that the raw fuel is desulfurized from the upstream side of the desulfurizer 2 and the necessary temperature rise. Can be prevented from flowing into the reformer 4 which has not been sufficiently performed. Further, by closing the on-off valve (second valve) Ve, raw fuel can be prevented from flowing out of the hydrogen-containing gas generation device S1 (for example, the fuel cell 1). Further, by closing the on-off valve Vb and the on-off valve Ve, the raw fuel supply path 10 upstream of the hydrogen-containing gas distribution point 18 to which the recycle gas supply path 13 is connected is closed by the on-off valve Vb. The downstream hydrogen-containing gas supply path 11 is closed by the on-off valve Ve. That is, the gas cannot flow toward the upstream side from the hydrogen-containing gas distribution point 18, and the gas cannot flow toward the downstream side from the hydrogen-containing gas distribution point 18. Therefore, gas does not flow (that is, reversely flow) through the recycle gas supply path 13 connected to the hydrogen-containing gas branch point 18, and the raw fuel that has not been desulfurized is converted into the reformer 4 or the carbon monoxide selective oxidizer. 6 does not flow.
Further, since the raw fuel to be supplied to the combustor 3 does not flow toward the recycle gas supply path 13 in the temperature raising process, the supply amount of the raw fuel to the combustor 3 is relatively reduced. There will be no problem. As a result, it is possible to supply a sufficient amount of raw fuel to the combustor 3 so that ignition failure and misfire do not occur in the combustor 3.

〔水素含有ガス生成装置の起動時運転方法(ガス生成開始工程)〕
ガス生成開始工程では、上記昇温工程によって改質器4を設定起動温度以上に昇温した後、開閉弁(第1弁)Vbを開放して原燃料を脱硫器2及び改質器4に流入させて改質器4において水素含有ガスの生成を開始することが行われる。
[Operation method when starting hydrogen-containing gas generator (gas generation start process)]
In the gas generation start step, the temperature of the reformer 4 is raised to the set start temperature or higher by the temperature raising step, and then the on-off valve (first valve) Vb is opened to feed the raw fuel to the desulfurizer 2 and the reformer 4. The generation of hydrogen-containing gas is started in the reformer 4 by flowing in.

具体的には、制御部20は、上記昇温工程を開始した後、改質器4の温度を検出する温度センサTの検出結果に基づいて、改質器4の温度が設定起動温度以上になったか否かを判定する。そして、制御部20は、改質器4の温度が設定起動温度以上になったと判定したとき、改質器4での水素含有ガスの生成を開始する。具体的には、制御部20は、開閉弁(第1弁)Vbを開弁することで、原燃料が脱硫器2及び改質器4に流入するように制御する。また、ガス生成開始工程の間も、燃焼器3に原燃料は供給され続けている。その結果、改質器4での改質反応により、水素を主成分とするガスが生成される。   Specifically, after starting the temperature raising step, the control unit 20 determines that the temperature of the reformer 4 is equal to or higher than the set startup temperature based on the detection result of the temperature sensor T that detects the temperature of the reformer 4. It is determined whether or not. Then, when the control unit 20 determines that the temperature of the reformer 4 is equal to or higher than the set activation temperature, the control unit 20 starts generating the hydrogen-containing gas in the reformer 4. Specifically, the control unit 20 controls the raw fuel to flow into the desulfurizer 2 and the reformer 4 by opening the on-off valve (first valve) Vb. Further, the raw fuel continues to be supplied to the combustor 3 during the gas generation start process. As a result, a gas mainly composed of hydrogen is generated by the reforming reaction in the reformer 4.

但し、この時点では、制御部20は、改質器4よりも下流側の水素含有ガス供給路11に設けられている開閉弁Ve及び水素含有ガス供給路11から分岐するガス排出路14に設けられている開閉弁Vdを閉弁している。そのため、改質器4で生成されたガスは開閉弁Ve及び開閉弁Vdによって流通が遮られているため、開閉弁Veよりも上流側の水素含有ガス供給路11の圧力が徐々に上昇する。このガス生成開始工程を実施することで、開閉弁Veよりも上流側の水素含有ガス供給路11のガス圧力が上昇すると、水素含有ガス分流箇所18の圧力が水素含有ガス合流箇所16の圧力よりも高くなる。その結果、改質器4で生成された水素含有ガスが、水素含有ガス分流箇所18からリサイクルガス供給路13を通って水素含有ガス合流箇所16に流れ、原燃料供給路10に流入する。そして、脱硫器2において水添脱硫が行われる。   However, at this time, the control unit 20 is provided in the on-off valve Ve provided in the hydrogen-containing gas supply path 11 downstream of the reformer 4 and the gas discharge path 14 branched from the hydrogen-containing gas supply path 11. The open / close valve Vd is closed. Therefore, since the gas generated in the reformer 4 is blocked from flowing by the on-off valve Ve and the on-off valve Vd, the pressure of the hydrogen-containing gas supply path 11 on the upstream side of the on-off valve Ve gradually increases. By carrying out this gas generation start step, when the gas pressure in the hydrogen-containing gas supply path 11 upstream from the on-off valve Ve increases, the pressure of the hydrogen-containing gas diversion point 18 is higher than the pressure of the hydrogen-containing gas junction point 16. Also gets higher. As a result, the hydrogen-containing gas generated in the reformer 4 flows from the hydrogen-containing gas distribution point 18 through the recycle gas supply path 13 to the hydrogen-containing gas junction 16 and flows into the raw fuel supply path 10. Then, hydrodesulfurization is performed in the desulfurizer 2.

〔水素含有ガス生成装置の起動時運転方法(ガス供給開始工程)〕
ガス供給開始工程では、上記ガス生成開始工程によって水素含有ガス供給路11の圧力を設定始動圧力まで昇圧した後、開閉弁(第2弁)Veを開放して水素含有ガス生成装置S1の外部に水素含有ガスを供給することが行われる。また、ガス供給開始工程の実施に先だって、ガス生成開始工程の実施中に第2弁よりも上流側に滞留しているガスを、第2弁よりも上流側の水素含有ガス供給路11に設けられるガス排出箇所19から排出するガス排出工程が行われる。更に、ガス供給開始工程の間も、燃焼器3に原燃料は供給され続けている。
[Operation method for starting hydrogen-containing gas generator (gas supply start process)]
In the gas supply start step, the pressure of the hydrogen-containing gas supply path 11 is increased to the set start pressure in the gas generation start step, and then the on-off valve (second valve) Ve is opened to the outside of the hydrogen-containing gas generation device S1. Supplying a hydrogen-containing gas is performed. Prior to the gas supply start step, the gas staying upstream from the second valve during the gas generation start step is provided in the hydrogen-containing gas supply path 11 upstream from the second valve. A gas discharge step of discharging from the gas discharge point 19 is performed. Further, the raw fuel continues to be supplied to the combustor 3 during the gas supply start process.

具体的には、制御部20は、上記ガス生成開始工程を開始した後、水素含有ガス生成装置S1の内部の圧力(即ち、開閉弁Veよりも上流側の水素含有ガス供給路11のガス圧力)が設定始動圧力まで上昇すると、水素含有ガス生成装置S1で生成した水素を燃料電池1に供給できるタイミングであると判定する。本実施形態では、脱硫器2の上流側の原燃料供給路10の圧力を検出する圧力センサPによって、上述した水素含有ガス生成装置S1の内部の圧力(即ち、開閉弁Veよりも上流側の水素含有ガス供給路11のガス圧力)を検出している。但し、この時点で開閉弁Veの上流側の水素含有ガス供給路11に滞留しているガスは、純度の低い水素である。そこで、制御部20は、ガス排出路14に設けられている開閉弁Vdを所定期間の間だけ開弁して、開閉弁(第2弁)Veよりも上流側に滞留しているガスをその開弁期間の間に開閉弁(第2弁)Veよりも上流側の水素含有ガス供給路11に設けられるガス排出箇所19から排出するガス排出工程を実行する。その後、制御部20は、水素含有ガス供給路11に設けられている開閉弁Veを開弁して、水素含有ガス生成装置S1で生成された水素が燃料電池1へと水素含有ガス供給路11を通して供給されるようにする。   Specifically, the control unit 20 starts the gas generation start step, and then the internal pressure of the hydrogen-containing gas generation device S1 (that is, the gas pressure of the hydrogen-containing gas supply path 11 on the upstream side of the on-off valve Ve). ) Rises to the set starting pressure, it is determined that it is time to supply the hydrogen generated in the hydrogen-containing gas generator S1 to the fuel cell 1. In the present embodiment, the pressure sensor P that detects the pressure of the raw fuel supply passage 10 upstream of the desulfurizer 2 is used to increase the pressure inside the hydrogen-containing gas generator S1 (that is, upstream of the on-off valve Ve). The gas pressure of the hydrogen-containing gas supply path 11 is detected. However, the gas remaining in the hydrogen-containing gas supply path 11 on the upstream side of the on-off valve Ve at this time is low-purity hydrogen. Therefore, the control unit 20 opens the on-off valve Vd provided in the gas discharge passage 14 for a predetermined period, and the gas staying upstream from the on-off valve (second valve) Ve During the valve-opening period, a gas discharge step of discharging from a gas discharge point 19 provided in the hydrogen-containing gas supply path 11 upstream of the on-off valve (second valve) Ve is executed. Thereafter, the control unit 20 opens the on-off valve Ve provided in the hydrogen-containing gas supply path 11, and the hydrogen generated in the hydrogen-containing gas generation device S 1 is supplied to the fuel cell 1 as the hydrogen-containing gas supply path 11. To be supplied through.

以上のように、昇温工程では、燃焼器3で原燃料を燃焼させるために原燃料分流路12を開放して燃焼器3に原燃料を供給している間、水素含有ガス合流箇所16及び原燃料分流箇所17よりも下流側であり且つ脱硫器2よりも上流側の原燃料供給路10に設けられる開閉弁(第1弁)Vbが閉止され、及び、水素含有ガス分流箇所18よりも下流側の水素含有ガス供給路11に設けられる開閉弁(第2弁)Veが閉止される。つまり、脱硫器2の上流側の原燃料供給路10に設けられる開閉弁Vbが閉止されることで、原燃料が脱硫器2の上流側から脱硫器2及び必要な昇温が未だ十分に行われていない改質器4へ流入することを阻止できる。また、開閉弁Veが閉止されることで、水素含有ガス生成装置S1の外部(例えば、燃料電池1)にガスが流れ出さないようにできる。更に、開閉弁Vb及び開閉弁Veが閉止されることで、リサイクルガス供給路13が接続されている水素含有ガス分流箇所18よりも上流側の原燃料供給路10は開閉弁Vbで閉止され、下流側の水素含有ガス供給路11は開閉弁Veで閉止される。つまり、水素含有ガス分流箇所18よりも上流側に向かってガスが流れることはできず、且つ、水素含有ガス分流箇所18よりも下流側に向かってガスが流れることはできない。従って、水素含有ガス分流箇所18に接続されているリサイクルガス供給路13にガスが逆流することはない。   As described above, in the temperature raising step, while the raw fuel distribution channel 12 is opened and the raw fuel is supplied to the combustor 3 in order to burn the raw fuel in the combustor 3, The on-off valve (first valve) Vb provided in the raw fuel supply passage 10 downstream of the raw fuel branching point 17 and upstream of the desulfurizer 2 is closed, and more than the hydrogen-containing gas branching point 18. The on-off valve (second valve) Ve provided in the downstream hydrogen-containing gas supply path 11 is closed. That is, the on-off valve Vb provided in the raw fuel supply passage 10 upstream of the desulfurizer 2 is closed, so that the raw fuel is still sufficiently heated from the upstream side of the desulfurizer 2 and the necessary temperature rise. Inflow to the reformer 4 which is not broken can be prevented. Further, by closing the on-off valve Ve, it is possible to prevent gas from flowing out of the hydrogen-containing gas generation device S1 (for example, the fuel cell 1). Further, by closing the on-off valve Vb and the on-off valve Ve, the raw fuel supply path 10 upstream of the hydrogen-containing gas distribution point 18 to which the recycle gas supply path 13 is connected is closed by the on-off valve Vb. The downstream hydrogen-containing gas supply path 11 is closed by the on-off valve Ve. That is, the gas cannot flow toward the upstream side from the hydrogen-containing gas distribution point 18, and the gas cannot flow toward the downstream side from the hydrogen-containing gas distribution point 18. Therefore, the gas does not flow back into the recycle gas supply path 13 connected to the hydrogen-containing gas branch point 18.

<第2実施形態>
第2実施形態の水素含有ガス生成装置S2は、燃焼器に対して、燃料電池のアノード排ガスが供給される点で上記第1実施形態の水素含有ガス生成装置S1と異なっている。以下に、第2実施形態の水素含有ガス生成装置S2について説明するが、第1実施形態と同様の構成については説明を省略する。
Second Embodiment
The hydrogen-containing gas generator S2 of the second embodiment is different from the hydrogen-containing gas generator S1 of the first embodiment in that the anode exhaust gas of the fuel cell is supplied to the combustor. Hereinafter, the hydrogen-containing gas generation device S2 of the second embodiment will be described, but the description of the same configuration as that of the first embodiment will be omitted.

図2は、第2実施形態の水素含有ガス生成装置S2の構成を示す図である。水素含有ガス生成装置S2の起動時運転方法の各工程(昇温工程、ガス生成開始工程、ガス供給開始工程、ガス排出工程)は、第1実施形態と同様である。但し、本実施形態では、図示するように、燃料電池1のアノードから排出されるアノード排ガスが流通するアノード排ガス路15が原燃料分流路12に接続されている。その結果、ガス供給開始工程以降の段階で、燃料電池1へ水素含有ガスを供給しているとき、燃料電池1のアノード排ガスは、アノード排ガス路15及び原燃料分流路12を通って燃焼器3に流入する。アノード排ガスには、燃料電池1における発電反応に用いられなかった水素が含まれているため、その水素が燃焼器3での燃焼に用いられる。   FIG. 2 is a diagram illustrating a configuration of the hydrogen-containing gas generation device S2 of the second embodiment. Each step (temperature raising step, gas generation start step, gas supply start step, gas discharge step) of the startup operation method of the hydrogen-containing gas generation device S2 is the same as in the first embodiment. However, in the present embodiment, as illustrated, an anode exhaust gas passage 15 through which anode exhaust gas discharged from the anode of the fuel cell 1 flows is connected to the raw fuel distribution passage 12. As a result, when the hydrogen-containing gas is supplied to the fuel cell 1 in a stage after the gas supply start process, the anode exhaust gas of the fuel cell 1 passes through the anode exhaust gas passage 15 and the raw fuel distribution channel 12 and the combustor 3. Flow into. Since the anode exhaust gas contains hydrogen that has not been used for the power generation reaction in the fuel cell 1, the hydrogen is used for combustion in the combustor 3.

加えて、本実施形態において、上記ガス排出路14はアノード排ガス路15の途中に接続されている。その結果、ガス生成開始工程の実施中に開閉弁(第2弁)Veよりも上流側に滞留しているガスが、開閉弁VdやVeを開弁することでガス排出箇所19からガス排出路14及びアノード排ガス路15及び原燃料分流路12を通って燃焼器3に流入する。ガス排出箇所19から排出されたガスには水素などが含まれているため、燃焼器3での燃焼に有効利用できる。   In addition, in the present embodiment, the gas discharge path 14 is connected in the middle of the anode exhaust gas path 15. As a result, the gas staying upstream from the on-off valve (second valve) Ve during the gas generation start process opens the on-off valves Vd and Ve, thereby opening the gas discharge path from the gas discharge point 19. 14, the anode exhaust gas passage 15, and the raw fuel distribution passage 12, and flows into the combustor 3. Since the gas discharged from the gas discharge point 19 contains hydrogen and the like, it can be effectively used for combustion in the combustor 3.

<第3実施形態>
第3実施形態の水素含有ガス生成装置S3は、一酸化炭素選択酸化器6が設けられていない点で上記実施形態と異なっている。以下に、第3実施形態の水素含有ガス生成装置S3について説明するが、上記実施形態と同様の構成については説明を省略する。
<Third Embodiment>
The hydrogen-containing gas generation device S3 of the third embodiment is different from the above-described embodiment in that the carbon monoxide selective oxidizer 6 is not provided. Hereinafter, the hydrogen-containing gas generation device S3 according to the third embodiment will be described.

図3は、第3実施形態の水素含有ガス生成装置S3の構成を示す図である。水素含有ガス生成装置S3の起動時運転方法の各工程(昇温工程、ガス生成開始工程、ガス供給開始工程、ガス排出工程)は、第1実施形態と同様である。燃料電池1が固体酸化物形燃料電池である場合、動作温度が高いことから白金触媒のような貴金属触媒を使用しなくても電極反応が速やかに進行して、一酸化炭素による電極被毒が発生しない。そのため、本実施形態の水素含有ガス生成装置S3は、上述したような一酸化炭素選択酸化器6を備えていない。従って、水素含有ガス生成装置S3の装置構成を簡略化できる。   FIG. 3 is a diagram illustrating a configuration of the hydrogen-containing gas generation device S3 of the third embodiment. Each process (temperature raising process, gas generation start process, gas supply start process, gas discharge process) of the startup operation method of the hydrogen-containing gas generation device S3 is the same as in the first embodiment. When the fuel cell 1 is a solid oxide fuel cell, since the operating temperature is high, the electrode reaction proceeds quickly without using a noble metal catalyst such as a platinum catalyst, and the electrode poisoning by carbon monoxide is caused. Does not occur. Therefore, the hydrogen-containing gas generation device S3 of this embodiment does not include the carbon monoxide selective oxidizer 6 as described above. Therefore, the device configuration of the hydrogen-containing gas generation device S3 can be simplified.

<別実施形態>
<1>
上記実施形態において、弁Vaが流量調節弁で構成される場合を例示したが、弁Vaの構成を改変してもよい。例えば、原燃料遮断機能を有する弁で弁Vaを構成してもよい。その場合、水素含有ガス生成装置Sの系内に流入するガスの流量調節は、昇圧ポンプ5とその昇圧ポンプ5と直列に接続された流量計(図示せず)とを用いて行うことができる。
<Another embodiment>
<1>
In the said embodiment, although the case where the valve Va was comprised with the flow control valve was illustrated, you may change the structure of the valve Va. For example, the valve Va may be composed of a valve having a raw fuel cutoff function. In that case, the flow rate of the gas flowing into the system of the hydrogen-containing gas generator S can be adjusted using the booster pump 5 and a flow meter (not shown) connected in series with the booster pump 5. .

<2>
上記実施形態において、弁の配置を変更してもよい。例えば、第3実施形態(図3)において、ガス排出路14に開閉弁Vdを設けなくてもよい。
<2>
In the above embodiment, the arrangement of the valves may be changed. For example, in the third embodiment (FIG. 3), it is not necessary to provide the on-off valve Vd in the gas discharge path 14.

<3>
上記実施形態において、一酸化炭素選択酸化器6を本発明の「一酸化炭素除去器」の一例として示したが、他の方式の一酸化炭素除去器を用いてもよい。例えば、一酸化炭素除去器として、一酸化炭素を選択的にメタン化する一酸化炭素選択メタン化器などを用いてもよい。
<3>
In the above embodiment, the carbon monoxide selective oxidizer 6 is shown as an example of the “carbon monoxide remover” of the present invention, but other types of carbon monoxide removers may be used. For example, a carbon monoxide selective methanator that selectively methanates carbon monoxide may be used as the carbon monoxide remover.

<4>
上記実施形態において、上述した昇温工程の前に別の工程を実施してもよい。例えば、上述した昇温工程の開始前に、水素含有ガス生成装置S内に原燃料ガスを供給して、水素含有ガス生成装置S内の圧力を高めた状態にしてもよい。
具体的には、図1の水素含有ガス生成装置S1を用いて説明すると、制御部20は、上記昇温工程の前に、水素含有ガス生成装置S1の昇圧工程を実施する。
昇圧工程を以下に説明する。流量調節弁Vaを開弁し、昇圧ポンプ5を動作させて、水素含有ガス生成装置S1の系内に原燃料を所定時間流入させる。このとき、制御部20は、開閉弁(第1弁)Vbを開弁し、開閉弁Vc及び開閉弁(第2弁)Ve及び開閉弁Vdを閉弁させている。その結果、水素含有ガス生成装置S内の開閉弁Vb及び開閉弁Vcの上流側の圧力、並びに、開閉弁Vbと開閉弁(第2弁)Ve及び開閉弁Vdとの間の圧力、並びに、リサイクルガス供給路13の圧力が高まる。当該箇所の圧力が高まった後、開閉弁Vb及びVaを閉止する。つまり、水素含有ガス生成装置S1内の圧力が高まった状態で保持する。以上が昇圧工程である。
昇圧工程の次に、制御部20は、開閉弁Vcを開弁して(開閉弁(第1弁)Vb及び開閉弁(第2弁)Ve及び開閉弁Vdは閉弁させたまま)、原燃料が供給される燃焼器3を燃焼作動させる(昇温工程)。これにより、昇圧工程開始前に水素含有ガス生成装置S内の圧力が原燃料供給圧よりも低くなっていたとしても、昇圧工程を実施することで、水素含有ガス合流箇所16での圧力が水素含有ガス分流箇所18での圧力よりも高くなることがないため、燃焼器3へ原燃料を供給開始する段階ではリサイクルガス供給路13に原燃料が流れる(逆流する)ことを確実に防止できる(即ち、燃焼器3へ原燃料を確実に供給できる)ため、燃焼器3の着火不良や着火失敗が発生しないようにできる。
<4>
In the said embodiment, you may implement another process before the temperature rising process mentioned above. For example, the raw fuel gas may be supplied into the hydrogen-containing gas generation device S and the pressure in the hydrogen-containing gas generation device S may be increased before the start of the temperature raising step described above.
Specifically, using the hydrogen-containing gas generation device S1 in FIG. 1, the control unit 20 performs the pressure-increasing step of the hydrogen-containing gas generation device S1 before the temperature raising step.
The boosting process will be described below. The flow rate adjustment valve Va is opened, the booster pump 5 is operated, and the raw fuel is caused to flow into the system of the hydrogen-containing gas generator S1 for a predetermined time. At this time, the control unit 20 opens the on-off valve (first valve) Vb, and closes the on-off valve Vc, the on-off valve (second valve) Ve, and the on-off valve Vd. As a result, the pressure upstream of the on-off valve Vb and the on-off valve Vc in the hydrogen-containing gas generator S, the pressure between the on-off valve Vb and the on-off valve (second valve) Ve, and the on-off valve Vd, and The pressure of the recycle gas supply path 13 increases. After the pressure at the relevant point increases, the on-off valves Vb and Va are closed. That is, the hydrogen-containing gas generator S1 is held in a state where the pressure is increased. The above is the boosting step.
After the boosting step, the control unit 20 opens the on-off valve Vc (the on-off valve (first valve) Vb, the on-off valve (second valve) Ve, and the on-off valve Vd remain closed), Combustion operation of the combustor 3 to which fuel is supplied is performed (temperature raising step). As a result, even if the pressure in the hydrogen-containing gas generation device S is lower than the raw fuel supply pressure before the start of the pressurization process, the pressure at the hydrogen-containing gas confluence 16 is increased by performing the pressurization process. Since the pressure does not become higher than the pressure at the containing gas branch point 18, it is possible to reliably prevent the raw fuel from flowing (reversely flowing) into the recycle gas supply path 13 at the stage where the supply of the raw fuel to the combustor 3 is started ( That is, since the raw fuel can be reliably supplied to the combustor 3), the ignition failure or ignition failure of the combustor 3 can be prevented from occurring.

本発明に係る水素含有ガス生成装置の起動時運転方法は、リサイクルガス供給路に、ガスの流通を調節可能な装置(例えば、遮断弁、調節弁、逆止弁、ブロアー、ポンプなど)が設けられていないような水素含有ガス生成装置において利用可能である。   In the start-up operation method of the hydrogen-containing gas generator according to the present invention, a device (for example, a shutoff valve, a control valve, a check valve, a blower, a pump, etc.) capable of adjusting the gas flow is provided in the recycle gas supply path. It can be used in a hydrogen-containing gas generator that has not been used.

1 燃料電池
2 脱硫器
3 燃焼器
4 改質器
6 一酸化炭素選択酸化器
10 原燃料供給路
11 水素含有ガス供給路
12 原燃料分流路
13 リサイクルガス供給路
14 ガス排出路
15 アノード排ガス路
16 水素含有ガス合流箇所
17 原燃料分流箇所
18 水素含有ガス分流箇所
19 ガス排出箇所
S(S1、S2、S3) 水素含有ガス生成装置
Vb 弁(第1弁)
Ve 弁(第2弁)
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Desulfurizer 3 Combustor 4 Reformer 6 Carbon monoxide selective oxidizer 10 Raw fuel supply path 11 Hydrogen-containing gas supply path 12 Raw fuel distribution path 13 Recycle gas supply path 14 Gas discharge path 15 Anode exhaust gas path 16 Hydrogen-containing gas junction point 17 Raw fuel branch point 18 Hydrogen-containing gas branch point 19 Gas discharge point S (S1, S2, S3) Hydrogen-containing gas generator Vb valve (first valve)
Ve valve (second valve)

Claims (4)

原燃料供給路を通して供給される原燃料の脱硫処理を行う脱硫器と、前記脱硫器で脱硫処理された前記原燃料を改質して水素を主成分とする水素含有ガスを生成する改質器と、前記原燃料供給路の途中の原燃料分流箇所から分岐した原燃料分流路を通して供給される原燃料を燃焼して、前記改質器を加熱するための燃焼熱を放出する燃焼器と、前記改質器で生成された前記水素含有ガスが流通する水素含有ガス供給路の途中の水素含有ガス分流箇所と前記脱硫器よりも上流側の前記原燃料供給路の途中の水素含有ガス合流箇所とを接続して前記水素含有ガスの一部を前記原燃料供給路に流入させるリサイクルガス供給路と、を備える水素含有ガス生成装置の起動時運転方法であって、
前記水素含有ガス生成装置の起動時に、
前記水素含有ガス合流箇所及び前記原燃料分流箇所よりも下流側であり且つ前記脱硫器よりも上流側の前記原燃料供給路に設けられる第1弁を閉止し、及び、前記水素含有ガス分流箇所よりも下流側の前記水素含有ガス供給路に設けられる第2弁を閉止し、及び、前記原燃料分流路を開放して前記燃焼器に原燃料を供給して前記燃焼器で前記原燃料を燃焼させる昇温工程と、
前記昇温工程によって前記改質器を設定起動温度以上に昇温した後、前記第1弁を開放して前記原燃料を前記脱硫器及び前記改質器に流入させて前記改質器において前記水素含有ガスの生成を開始するガス生成開始工程と、
前記ガス生成開始工程によって前記水素含有ガス供給路の圧力を設定始動圧力まで昇圧した後、前記第2弁を開放して前記水素含有ガス生成装置の外部に前記水素含有ガスを供給するガス供給開始工程と、を含む水素含有ガス生成装置の起動時運転方法。
A desulfurizer that performs desulfurization treatment of the raw fuel supplied through the raw fuel supply path, and a reformer that reforms the raw fuel desulfurized by the desulfurizer to generate a hydrogen-containing gas mainly containing hydrogen. A combustor that burns raw fuel supplied through a raw fuel branch channel branched from a raw fuel branch point in the middle of the raw fuel supply channel and releases combustion heat for heating the reformer; A hydrogen-containing gas distribution point in the middle of the hydrogen-containing gas supply path through which the hydrogen-containing gas generated in the reformer flows and a hydrogen-containing gas junction in the middle of the raw fuel supply path upstream of the desulfurizer And a recycle gas supply path for allowing a part of the hydrogen-containing gas to flow into the raw fuel supply path, and a startup method of a hydrogen-containing gas generation device comprising:
When starting up the hydrogen-containing gas generator,
Close the first valve provided in the raw fuel supply path downstream of the hydrogen-containing gas joining point and the raw fuel branching point and upstream of the desulfurizer, and the hydrogen-containing gas branching point And closing the second valve provided in the hydrogen-containing gas supply path on the downstream side, and opening the raw fuel distribution flow path to supply the raw fuel to the combustor and supplying the raw fuel with the combustor. A temperature raising step for burning;
After the temperature of the reformer is raised to a set start temperature or higher by the temperature raising step, the first valve is opened to flow the raw fuel into the desulfurizer and the reformer, and the reformer A gas generation start step for starting generation of a hydrogen-containing gas;
After increasing the pressure of the hydrogen-containing gas supply path to a set start pressure by the gas generation start step, the gas supply starts to supply the hydrogen-containing gas to the outside of the hydrogen-containing gas generator by opening the second valve And a start-up operation method of the hydrogen-containing gas generator.
前記ガス供給開始工程の実施に先だって、前記ガス生成開始工程の実施中に前記第2弁よりも上流側に滞留しているガスを、前記第2弁よりも上流側の前記水素含有ガス供給路に設けられるガス排出箇所から排出するガス排出工程を含む請求項1記載の水素含有ガス生成装置の起動時運転方法。   Prior to the execution of the gas supply start step, the gas that has accumulated in the upstream side of the second valve during the execution of the gas generation start step is transferred to the hydrogen-containing gas supply path upstream of the second valve. The operation method at the time of starting of the hydrogen containing gas production | generation apparatus of Claim 1 including the gas discharge process discharged | emitted from the gas discharge location provided in this. 前記ガス排出箇所から排出されたガスを前記燃焼器に供給する請求項2記載の水素含有ガス生成装置の起動時運転方法。   The operation method at the time of starting of the hydrogen-containing gas generation device according to claim 2, wherein the gas discharged from the gas discharge point is supplied to the combustor. 前記水素含有ガス生成装置は、前記改質器で生成された前記水素含有ガスに含まれる一酸化炭素を除去する一酸化炭素除去器を備え、前記水素含有ガス分流箇所は、前記改質器と前記一酸化炭素除去器との間を接続する前記水素含有ガス供給路の途中に設けられる請求項1〜3の何れか一項に記載の水素含有ガス生成装置の起動時運転方法。   The hydrogen-containing gas generating device includes a carbon monoxide remover that removes carbon monoxide contained in the hydrogen-containing gas generated by the reformer, and the hydrogen-containing gas branch point is the reformer and The operation method at the time of starting of the hydrogen containing gas production | generation apparatus as described in any one of Claims 1-3 provided in the middle of the said hydrogen containing gas supply path connecting between the said carbon monoxide removers.
JP2010065001A 2010-03-19 2010-03-19 Method for operating hydrogen-containing gas generator at startup Expired - Fee Related JP5480684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010065001A JP5480684B2 (en) 2010-03-19 2010-03-19 Method for operating hydrogen-containing gas generator at startup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010065001A JP5480684B2 (en) 2010-03-19 2010-03-19 Method for operating hydrogen-containing gas generator at startup

Publications (2)

Publication Number Publication Date
JP2011195391A true JP2011195391A (en) 2011-10-06
JP5480684B2 JP5480684B2 (en) 2014-04-23

Family

ID=44874065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010065001A Expired - Fee Related JP5480684B2 (en) 2010-03-19 2010-03-19 Method for operating hydrogen-containing gas generator at startup

Country Status (1)

Country Link
JP (1) JP5480684B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013057891A1 (en) * 2011-10-20 2013-04-25 パナソニック株式会社 Hydrogen generation apparatus, method for operating hydrogen generation apparatus, and fuel cell system
WO2014097622A1 (en) * 2012-12-19 2014-06-26 パナソニック株式会社 Fuel cell system and method for operating fuel cell system
WO2015118889A1 (en) * 2014-02-10 2015-08-13 パナソニックIpマネジメント株式会社 Hydrogen generation apparatus, method for operating same, and fuel cell system
JP2016104686A (en) * 2014-11-25 2016-06-09 パナソニックIpマネジメント株式会社 Hydrogen-generating device and fuel cell system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992316A (en) * 1995-09-26 1997-04-04 Fuji Electric Co Ltd Method of raising temperature of fuel cell power generating device
JPH09161832A (en) * 1995-12-01 1997-06-20 Nippon Telegr & Teleph Corp <Ntt> Fuel cell generating device, and its operation method and operation control method
JP2001250573A (en) * 2000-03-06 2001-09-14 Toshiba Corp Fuel cell power generating system and operation method therefor
JP2002020103A (en) * 2000-06-30 2002-01-23 Mitsubishi Kakoki Kaisha Ltd Method for starting and method for stopping hydrogen producing device
JP2002097001A (en) * 2000-09-25 2002-04-02 Sanyo Electric Co Ltd Fuel gas reformer and fuel-cell system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992316A (en) * 1995-09-26 1997-04-04 Fuji Electric Co Ltd Method of raising temperature of fuel cell power generating device
JPH09161832A (en) * 1995-12-01 1997-06-20 Nippon Telegr & Teleph Corp <Ntt> Fuel cell generating device, and its operation method and operation control method
JP2001250573A (en) * 2000-03-06 2001-09-14 Toshiba Corp Fuel cell power generating system and operation method therefor
JP2002020103A (en) * 2000-06-30 2002-01-23 Mitsubishi Kakoki Kaisha Ltd Method for starting and method for stopping hydrogen producing device
JP2002097001A (en) * 2000-09-25 2002-04-02 Sanyo Electric Co Ltd Fuel gas reformer and fuel-cell system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013057891A1 (en) * 2011-10-20 2013-04-25 パナソニック株式会社 Hydrogen generation apparatus, method for operating hydrogen generation apparatus, and fuel cell system
JPWO2013057891A1 (en) * 2011-10-20 2015-04-02 パナソニックIpマネジメント株式会社 Hydrogen generator, operation method of hydrogen generator, and fuel cell system
US9070915B2 (en) 2011-10-20 2015-06-30 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generator, operating method of hydrogen generator, and fuel cell system
WO2014097622A1 (en) * 2012-12-19 2014-06-26 パナソニック株式会社 Fuel cell system and method for operating fuel cell system
WO2015118889A1 (en) * 2014-02-10 2015-08-13 パナソニックIpマネジメント株式会社 Hydrogen generation apparatus, method for operating same, and fuel cell system
JP2016104686A (en) * 2014-11-25 2016-06-09 パナソニックIpマネジメント株式会社 Hydrogen-generating device and fuel cell system

Also Published As

Publication number Publication date
JP5480684B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
US9334164B2 (en) Hydrogen generator and fuel cell system
JP4028787B2 (en) Fuel cell power generation system and operation method thereof
JPWO2006049299A1 (en) Fuel cell system
JP4884773B2 (en) Fuel cell power generation system
JP4130681B2 (en) Fuel cell system
JP5204757B2 (en) Hydrogen generator, operating method thereof, and fuel cell system,
JP5480684B2 (en) Method for operating hydrogen-containing gas generator at startup
JP2008010369A (en) Starting method of fuel cell system and fuel cell system
JP5340933B2 (en) HYDROGEN GENERATOR, FUEL CELL POWER GENERATION SYSTEM HAVING THE SAME, AND METHOD FOR STOPPING HYDROGEN GENERATOR
WO2010109854A1 (en) Hydrogen production device, fuel cell system provided with same, method for operating hydrogen production device, and method for operating fuel cell system
JP2014082062A (en) Fuel cell power generation device and operation method thereof
JP4098332B2 (en) Reformer and fuel cell system
JP2003303608A (en) Fuel cell generation system, control method of fuel cell generation system
JP2003160307A (en) Reformer and its operation method
JP2008066096A (en) Fuel cell system
JP2011256059A (en) Method for operating hydrogen generator and fuel cell system
JP5624606B2 (en) FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP2015140285A (en) Method for operating hydrogen-containing gas generation apparatus, and hydrogen-containing gas generation apparatus
JP2005332834A (en) Fuel cell power generation system and method of controlling fuel cell power generation system
JP2005078900A (en) Fuel cell system
JP4713547B2 (en) Fuel cell power generation system and operation method thereof
JP6722893B2 (en) Fuel cell system
JP6925151B2 (en) Fuel cell system
JP2014101257A (en) Fuel treatment apparatus and operational method of the same
JP2005228621A (en) Gas replacement method of fuel cell system, and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140214

R150 Certificate of patent or registration of utility model

Ref document number: 5480684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees