JP2003160307A - Reformer and its operation method - Google Patents

Reformer and its operation method

Info

Publication number
JP2003160307A
JP2003160307A JP2001358596A JP2001358596A JP2003160307A JP 2003160307 A JP2003160307 A JP 2003160307A JP 2001358596 A JP2001358596 A JP 2001358596A JP 2001358596 A JP2001358596 A JP 2001358596A JP 2003160307 A JP2003160307 A JP 2003160307A
Authority
JP
Japan
Prior art keywords
section
reforming
combustion gas
gas
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001358596A
Other languages
Japanese (ja)
Other versions
JP3886789B2 (en
Inventor
Naohiko Fujiwara
直彦 藤原
Hiroshi Fujiki
広志 藤木
Toshiyasu Miura
俊泰 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2001358596A priority Critical patent/JP3886789B2/en
Publication of JP2003160307A publication Critical patent/JP2003160307A/en
Application granted granted Critical
Publication of JP3886789B2 publication Critical patent/JP3886789B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reformer able to avoid reforming catalyst oxidation in a reforming part and able to protect its degradation when the reformer equipped with the reforming part, a CO converting part and a CO removing part in a steam reforming method of a hydrocarbon is started or stopped and its operation method. <P>SOLUTION: The reformer is equipped with a steam reformer, the CO converting part and the CO removing part. The reforming catalyst oxidation is protected by feeding a partial combustion gas obtained from incomplete combustion of a fuel gas at a combustion part of the steam reformer to the reforming part of the steam reformer when it is started or stopped. The reformer is equipped with a partial combustion gas oxidizing part which oxidize the partial combustion gas branched from a conduit at a downstream side of the CO removing part by air and a combustion gas bypass line from the combustion part to the oxidizing part. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素の水蒸気
改質法による燃焼部と改質部とCO変成部とCO除去部
を含む改質装置に関し、またその起動、停止方法、すな
わちその起動時及び停止時における操作方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reforming apparatus including a combustion section, a reforming section, a CO shift conversion section and a CO removing section by a steam reforming method for hydrocarbons, and a starting and stopping method thereof, that is, a starting thereof. Operation method at the time of stopping and at time.

【0002】[0002]

【従来の技術】固体高分子形燃料電池(=Polymer Elec
trolyte Fuel Cell、以下適宜“PEFC”と略称す
る)は燃料として水素が用いられる。水素の製造法の一
つとして炭化水素の水蒸気改質法がある。水蒸気改質法
は、メタン、エタン、プロパン、ブタン、都市ガス、L
Pガス、天然ガス、その他の炭化水素ガス(2種以上の
炭化水素の混合ガスを含む)を水蒸気により改質して水
素リッチな改質ガスを生成させる方法である。水蒸気改
質法では改質部中での接触反応によりそれら炭化水素が
水素リッチな改質ガスへ変えられる。
2. Description of the Related Art Polymer electrolyte fuel cells (= Polymer Elec
Hydrogen is used as a fuel in a trolyte Fuel Cell (hereinafter abbreviated as "PEFC" as appropriate). One of the methods for producing hydrogen is the steam reforming method for hydrocarbons. Steam reforming methods include methane, ethane, propane, butane, city gas, L
This is a method of reforming P gas, natural gas, and other hydrocarbon gas (including mixed gas of two or more kinds of hydrocarbons) with steam to generate a hydrogen-rich reformed gas. In the steam reforming method, those hydrocarbons are converted into hydrogen-rich reformed gas by a catalytic reaction in the reforming section.

【0003】図1は水蒸気改質器を模式的に示す図であ
る。概略、バーナあるいは燃焼触媒を配置した燃焼部
(=加熱部)と改質触媒を配置した改質部とにより構成
される。改質部では炭化水素が水蒸気と反応して水素リ
ッチな改質ガスが生成される。改質部での反応進行のた
めに外部から熱が供給され、炭化水素を原料とする場合
には600℃程度以上の温度が必要である。このため燃
焼部における燃料ガスの空気(=燃焼用空気)による燃
焼により発生した燃焼熱(ΔH)が改質部に供給され
る。燃焼触媒としては例えばPt等の貴金属触媒が用い
られ、改質触媒としては例えばNi系、Ru系等の触媒
が用いられる。
FIG. 1 is a diagram schematically showing a steam reformer. In general, it is composed of a combustion section (= heating section) in which a burner or a combustion catalyst is arranged and a reforming section in which a reforming catalyst is arranged. In the reforming section, the hydrocarbon reacts with steam to produce a hydrogen-rich reformed gas. Heat is supplied from the outside for the reaction to proceed in the reforming section, and when hydrocarbon is used as a raw material, a temperature of about 600 ° C. or higher is required. Therefore, the combustion heat (ΔH) generated by the combustion of the fuel gas in the combustion section by the air (= combustion air) is supplied to the reforming section. A noble metal catalyst such as Pt is used as the combustion catalyst, and a Ni-based catalyst or a Ru-based catalyst is used as the reforming catalyst.

【0004】図2は、上記のような水蒸気改質器を用
い、炭化水素(=原料ガス)の供給からPEFCに至る
までの態様例を示す図である。改質触媒は、原料ガス中
の硫黄化合物により被毒し性能劣化を来たすので、それ
らの硫黄化合物を除去するために脱硫部へ導入される。
次いで、別途設けられた水蒸気発生部からの水蒸気を添
加、混合して水蒸気改質器の改質部へ導入される。
FIG. 2 is a diagram showing a mode example from the supply of hydrocarbons (= source gas) to the PEFC using the steam reformer as described above. Since the reforming catalyst is poisoned by the sulfur compounds in the raw material gas and deteriorates in performance, it is introduced into the desulfurization section in order to remove the sulfur compounds.
Next, the steam from the steam generating unit, which is separately provided, is added and mixed and introduced into the reforming unit of the steam reformer.

【0005】原料ガスがメタンである場合の改質反応は
「CH4+2H2O→CO2+4H2」で示される。生成す
る改質ガス中には未反応のメタン、未反応の水蒸気、生
成炭酸ガスのほか、一酸化炭素(CO)が副生して8〜
15%(容量%、以下同じ)程度含まれている。このた
め改質ガスは、副生COを二酸化炭素(CO2)と水素
へ変えて除去するためにCO変成部にかけられる。CO
変成部では例えばFe−Cr系触媒、Cu−Zn系触
媒、あるいはPt触媒が用いられる。CO変成部中での
反応「CO+H2O→CO2+H2」で必要な水蒸気とし
ては改質部において未反応の残留水蒸気が利用される。
The reforming reaction when the source gas is methane is represented by "CH 4 + 2H 2 O → CO 2 + 4H 2 ". In the reformed gas produced, unreacted methane, unreacted water vapor, carbon dioxide produced, and carbon monoxide (CO) as a by-product are produced.
About 15% (volume%, the same applies below) is included. For this reason, the reformed gas is applied to the CO shift conversion section in order to convert the by-product CO into carbon dioxide (CO 2 ) and hydrogen for removal. CO
In the shift conversion section, for example, an Fe-Cr based catalyst, a Cu-Zn based catalyst, or a Pt catalyst is used. The unreacted residual steam in the reforming section is used as the steam required for the reaction “CO + H 2 O → CO 2 + H 2 ” in the CO shift section.

【0006】CO変成部から出る改質ガスは、未反応の
メタンと余剰水蒸気を除けば、水素と二酸化炭素とから
なっている。このうち水素が目的とする成分であるが、
CO変成部を経て得られる改質ガスについても、COは
完全には除去されず、1%程度以下ではあるが、尚微量
のCOが含まれている。
The reformed gas discharged from the CO shift section is composed of hydrogen and carbon dioxide except for unreacted methane and excess steam. Of these, hydrogen is the intended component,
Also in the reformed gas obtained through the CO shift section, CO is not completely removed, but a trace amount of CO is still contained, although it is about 1% or less.

【0007】PEFCに供給する燃料水素中のCOの許
容濃度は100ppm程度(その燃料極等の構成材料の
如何によっては10ppm程度。ppmは容量、以下同
じ)であり、これを越えると電池性能が著しく劣化する
ので、CO成分はPEFCへ導入する前にできる限り除
去する必要がある。このため、改質ガスはCO変成部に
よりCO濃度を1%前後まで低下させた後、CO除去部
(=CO選択酸化反応部)にかけられる。CO除去部で
は空気などの酸化剤が添加され、COをCO2に変える
ことでCOを除去し、改質ガスのCO濃度を100pp
m以下、10ppm以下、あるいは5ppm以下という
ように低減させる。
The allowable concentration of CO in the hydrogen fuel supplied to the PEFC is about 100 ppm (about 10 ppm depending on the constituent material of the fuel electrode. The CO component needs to be removed as much as possible before it is introduced into the PEFC because it deteriorates significantly. Therefore, the reformed gas is applied to the CO removal section (= CO selective oxidation reaction section) after the CO conversion section reduces the CO concentration to about 1%. In the CO removal section, an oxidizing agent such as air is added, CO is removed by changing CO to CO 2, and the CO concentration of the reformed gas is 100 pp.
m or less, 10 ppm or less, or 5 ppm or less.

【0008】ところで、水蒸気改質器は、得られる改質
ガスの需要に応じて起動させ、停止させることが必要で
ある。これに伴い、水蒸気改質器に連なるCO変成部の
起動、停止を行う必要があり、CO変成部に続きCO除
去部を配置する場合には、CO変成部及びCO除去部の
起動、停止を行う必要がある。
By the way, it is necessary to start and stop the steam reformer according to the demand of the obtained reformed gas. Along with this, it is necessary to start and stop the CO shift section connected to the steam reformer. When a CO removal section is arranged subsequent to the CO shift section, the CO shift section and the CO removal section must be started and stopped. There is a need to do.

【0009】なお、本明細書中、水蒸気改質器、CO変
成部及びCO除去部を含む系(システム)を改質装置と
指称し、また燃焼部、改質部とは、それぞれ、水蒸気改
質器における燃焼部、改質部の意味である。燃焼部へは
燃焼用のガスが供給され、改質部へは水蒸気で改質され
る炭化水素が供給されるが、両者を区別して、燃焼部へ
供給する燃焼用のガスを燃焼ガスと指称し、改質部へ供
給される炭化水素を原料ガスと指称している。
In the present specification, a system including a steam reformer, a CO shift conversion section and a CO removal section is referred to as a reformer, and the combustion section and the reforming section are respectively steam reformers. It means the combustion part and reforming part in the quality device. Combustion gas is supplied to the combustion section, and hydrocarbons that are reformed with steam are supplied to the reforming section.The two are distinguished and the combustion gas supplied to the combustion section is called the combustion gas. The hydrocarbon supplied to the reforming section is referred to as the raw material gas.

【0010】改質装置を備えたPEFCでは、従来、そ
の停止時に、改質装置内に可燃性ガスを残存させず、ま
たPEFCの燃料極側、空気極側のガス圧バランスを維
持して保護するために、改質装置内を窒素などの不活性
ガスを用いてパージしている。一方、その起動時には、
改質装置を作動温度に昇温する必要があるが、そのため
に電気ヒータを付設する場合を除いて、窒素などの不活
性ガスや水蒸気(スチーム)を熱媒体として昇温してい
る。図2はこの態様を示している。
In a PEFC equipped with a reformer, conventionally, when the PEFC is stopped, no combustible gas remains in the reformer, and the PEFC is protected by maintaining a gas pressure balance on the fuel electrode side and the air electrode side. In order to achieve this, the inside of the reformer is purged with an inert gas such as nitrogen. On the other hand, when it starts up,
Although it is necessary to raise the temperature of the reformer to the operating temperature, the temperature is raised by using an inert gas such as nitrogen or steam (steam) as a heat medium, unless an electric heater is attached for that purpose. FIG. 2 illustrates this aspect.

【0011】しかし、一般家庭向けなどに用いられるP
EFCにおいては、不活性ガスを用いることが難しい。
すなわち、不活性ガスを用いるには、別途そのための設
備が必要となり、不活性ガスの残量管理も必要となる。
したがって、起動時の熱媒体としては水蒸気のみを使用
せざるを得ないが、水蒸気を使用して昇温すると、40
0℃付近から改質触媒の一部が酸化され始める。改質触
媒が酸化されると、水素による還元処理が必要になるば
かりか、酸化還元を繰り返すことになって該触媒の劣化
が促進されることになり、頻繁な再生や交換が必要とな
る。
However, P used for general households
It is difficult to use an inert gas in EFC.
That is, in order to use the inert gas, a separate facility for that purpose is required, and it is also necessary to manage the residual amount of the inert gas.
Therefore, it is unavoidable to use only steam as the heat medium at the time of start-up, but if the temperature is raised by using steam,
A part of the reforming catalyst starts to be oxidized at around 0 ° C. When the reforming catalyst is oxidized, not only reduction treatment with hydrogen is required, but also redox is repeated to promote deterioration of the catalyst, which requires frequent regeneration and replacement.

【0012】それら不活性ガスや水蒸気による昇温のほ
か、水蒸気改質器の燃焼部での燃焼排ガスを用いて改質
部、CO変成部の昇温を行うことも考えられる。図3は
この場合を示す図である。ところが、水蒸気改質器の起
動時に、該燃焼排ガスを熱媒体として昇温する場合、燃
焼排ガス中の酸素により改質触媒の酸化が起こる。この
ため、水素による還元処理が必要となるばかりでなく、
酸化、還元を繰り返すことにより該触媒の劣化が促進さ
れる。
In addition to the temperature increase by the inert gas and steam, it is also conceivable to increase the temperature of the reforming section and the CO conversion section by using the combustion exhaust gas in the combustion section of the steam reformer. FIG. 3 is a diagram showing this case. However, when the temperature of the combustion exhaust gas is increased as a heat medium when the steam reformer is started, oxygen in the combustion exhaust gas causes oxidation of the reforming catalyst. Therefore, not only reduction treatment with hydrogen is necessary, but
Deterioration of the catalyst is promoted by repeating oxidation and reduction.

【0013】[0013]

【発明が解決しようとする課題】本発明者等は、改質装
置の停止時及び起動時における以上のような問題を解決
するため、その起動時及び停止時に、水蒸気改質器の燃
焼部の燃焼ガスを用い、その際、燃焼部へ供給する燃料
ガス量に対する燃焼用の空気量を制御することにより、
改質触媒の酸化を防止できることを見い出し、この事実
を利用した改質装置の起動方法及び停止方法を先に開発
し出願している(特願2001−191880)。
SUMMARY OF THE INVENTION In order to solve the above problems at the time of stopping and starting the reforming apparatus, the inventors of the present invention solve the above-mentioned problems at the time of starting and stopping the reforming apparatus by changing the combustion section of the steam reformer. By using combustion gas, by controlling the amount of air for combustion with respect to the amount of fuel gas supplied to the combustion unit,
It has been found that oxidation of the reforming catalyst can be prevented, and a method for starting and stopping the reforming apparatus utilizing this fact has been previously developed and applied (Japanese Patent Application No. 2001-191880).

【0014】上記特願2001−191880の発明
は、その起動時に、水蒸気改質器の燃焼部に導入する空
気量を燃料ガスを完全燃焼させる空気量より少なく設定
し、燃焼部で燃料ガスを不完全燃焼させて生成した水素
とCOが含まれた部分燃焼ガスを水蒸気改質器の改質部
に供給することにより、改質触媒の酸化を防止し、また
CO変成触媒の酸化を抑制しながら起動し、その停止時
に、同じく部分燃焼ガスを水蒸気改質器の改質部に供給
することにより、改質器系内の可燃性ガスと水蒸気をパ
ージすることを基本とする。
In the invention of Japanese Patent Application No. 2001-191880, the amount of air introduced into the combustion section of the steam reformer is set to be smaller than the amount of air for complete combustion of the fuel gas at the time of startup, and the fuel gas is not supplied in the combustion section. By supplying the partial combustion gas containing hydrogen and CO generated by complete combustion to the reforming section of the steam reformer, oxidation of the reforming catalyst is prevented and oxidation of the CO shift catalyst is suppressed. Basically, the combustible gas and the steam in the reformer system are purged by supplying the partial combustion gas to the reforming section of the steam reformer when the engine is started and stopped.

【0015】その際、改質部、CO変成部、CO除去部
を経た部分燃焼ガス中の水素や一酸化炭素は空気と反応
させて処理される。図4はその概略を示す図で、図4
(a)は起動時及び停止時のフロー、図4(b)は運転
時のフローである。図4(a)のとおり、起動時及び停
止時に、CO除去部からのパージガスは、CO除去部下
流側に連結された酸化処理部で空気酸化して排出され
る。酸化処理部で発生した熱は、水の加熱に利用して温
水として貯えることもでき、また水蒸気発生部へ供給す
る水の加熱に利用するなどプロセスで必要な水の加熱に
利用することもできる。
At that time, hydrogen and carbon monoxide in the partial combustion gas that has passed through the reforming section, the CO conversion section, and the CO removing section are treated by reacting with air. FIG. 4 is a diagram showing the outline thereof.
(A) is a flow at the time of starting and stopping, FIG.4 (b) is a flow at the time of driving. As shown in FIG. 4A, at the time of starting and stopping, the purge gas from the CO removal unit is air-oxidized and discharged in the oxidation processing unit connected to the downstream side of the CO removal unit. The heat generated in the oxidation treatment part can be used for heating water and stored as hot water, or can be used for heating water required for the process such as heating water supplied to the steam generation part. .

【0016】ところで、上記改質装置(水蒸気改質器、
CO変成部及びCO除去部を含む系)の操作に際し、停
止状態→起動時のフロ−状態→運転時のフロ−状態→停
止状態という各工程への移行過程、すなわちそれら各前
工程から次工程への切り替え時に、一時的ではあるが、
部分燃焼ガス(COなどの毒性ガスや可燃性ガス)を外
部に排出せざるを得ず、あるいは、空気比λ>1で燃焼
した通常の燃焼ガス、つまり酸素を多量に含む酸化性雰
囲気ガスを改質装置内部に流通させる工程が生じてしま
う。加えて、起動時の早期昇温のために燃焼部で炊き込
んだ部分燃焼ガスの全量を改質装置内部にも流通させる
必要があるため、起動時の燃料ガス及び燃焼用空気の所
要揚程が過大となってしまう。
By the way, the above reformer (steam reformer,
In the operation of the system including the CO conversion section and the CO removal section), the transition process from stop state to flow state at startup → flow state at operation → stop state, that is, from each preceding step to the next step When switching to, but temporarily
Partial combustion gas (toxic gas such as CO and combustible gas) must be exhausted to the outside, or normal combustion gas burned at an air ratio λ> 1, that is, an oxidizing atmosphere gas containing a large amount of oxygen. A process of circulating the reformer inside the reformer will occur. In addition, because the entire amount of the partial combustion gas cooked in the combustion section must be circulated inside the reformer for early temperature rise at startup, the required lift of fuel gas and combustion air at startup is too large. Will be.

【0017】本発明は、先の開発に係る上記発明をさら
に改善し、炭化水素の水蒸気改質法による改質器とCO
変成部とCO除去部を含む改質装置の起動及び停止に際
し、水蒸気改質器における改質部中の改質触媒の酸化を
回避してその劣化を防止するのに加え、部分燃焼ガスの
一時的な外部排出をも防止し、通常の燃焼ガスまたは空
気の一時的な改質装置内部への流通を防止するなど、実
用性に優れた改質装置、その起動方法及び停止方法を提
供することを目的とする。
The present invention is a further improvement of the above-mentioned invention relating to the above-mentioned development.
When starting and stopping the reforming device including the shift converter and the CO remover, the reforming catalyst in the reformer of the steam reformer is prevented from being oxidized and its deterioration is prevented. To provide a reforming device excellent in practicability, a method for starting and stopping the reforming device, which also prevents general external discharge and temporarily prevents normal combustion gas or air from flowing into the reforming device. With the goal.

【0018】[0018]

【課題を解決するための手段】本発明の改質装置は、水
蒸気改質器とCO変成部とCO除去部を備え、その起動
時及び停止時に、水蒸気改質器の燃焼部で燃料ガスを不
完全燃焼させて生成した部分燃焼ガスを水蒸気改質器の
改質部に供給して改質触媒の酸化を防止するようにして
なる改質装置であって、該CO除去部下流側に続く導管
から分岐して空気による部分燃焼ガスの酸化処理部を備
え、且つ、燃焼部から酸化処理部にいたる燃焼ガスバイ
パスラインを備えることを特徴とする改質装置である。
A reforming apparatus of the present invention comprises a steam reformer, a CO shift conversion section, and a CO removal section, and supplies a fuel gas in a combustion section of the steam reformer when the steam reformer is started and stopped. A reformer for preventing partial oxidation of a reforming catalyst by supplying a partially combusted gas generated by incomplete combustion to a reforming section of a steam reformer, which is downstream of the CO removing section. The reforming device is characterized in that it is provided with an oxidation treatment section for partial combustion gas by air branched from a conduit and a combustion gas bypass line extending from the combustion section to the oxidation treatment section.

【0019】また、本発明は、上記改質装置の操作方法
であって、該改質装置を起動し、または運転後、停止す
るに際し、該部分燃焼ガスを水蒸気改質器の改質部に導
入する前に、燃焼ガスの全量を該バイパスラインに通し
た後、酸化処理部に酸化処理用空気を流通させることを
特徴とする改質装置の操作方法を提供する。
The present invention also provides a method for operating the above reformer, wherein the partial combustion gas is supplied to the reforming section of the steam reformer when the reformer is started or stopped after the operation. A method for operating a reformer, characterized in that, before introduction, the entire amount of combustion gas is passed through the bypass line, and then the oxidizing air is passed through the oxidizing section.

【0020】また、本発明は、上記改質装置の操作方法
であって、該改質装置を起動し、または運転後、停止す
るに際し、該部分燃焼ガスを水蒸気改質器の改質部に導
入する前に、燃焼ガスの全量を該バイパスラインに通し
た後、酸化処理部に酸化処理用空気を流通させ、次いで
部分燃焼ガスを生成し、該バイパスラインに設けた流量
調節弁の開度を調節することにより部分燃焼ガスの適当
量、すなわち必要量を順次水蒸気改質器の改質部、CO
変成部、CO除去部に流通させることを特徴とする改質
装置の操作方法を提供する。
The present invention is also a method for operating the above reformer, wherein the partial combustion gas is supplied to the reforming section of the steam reformer when the reformer is started or stopped after the operation. Before being introduced, after the entire amount of combustion gas is passed through the bypass line, air for oxidation treatment is passed through the oxidation treatment section, then partial combustion gas is generated, and the opening degree of the flow rate control valve provided in the bypass line. By adjusting the appropriate amount of partial combustion gas, that is, the required amount, in succession to the reforming section of the steam reformer, CO
Disclosed is a method for operating a reforming device, which is characterized in that the reformer is circulated to a shift converter and a CO remover.

【0021】また、本発明は、上記改質装置の操作方法
であって、該改質装置を運転後、停止するに際し、原料
ガスを止め、改質部、CO変成部及びCO除去部内の可
燃性ガスを部分燃焼ガスによってパージすることを特徴
とする改質装置の操作方法を提供する。
The present invention is also a method of operating the above reformer, wherein when the reformer is operated and then stopped, the raw material gas is stopped, and the combustibles in the reformer, CO shift converter and CO remover are combusted. Provided is a method for operating a reformer, which comprises purging the volatile gas with a partial combustion gas.

【0022】さらに、本発明は、上記改質装置の操作方
法であって、該改質装置を運転後、停止するに際し、原
料ガスを止め、改質部、CO変成部及びCO除去部内の
可燃性ガスを水蒸気によってパージした後、水蒸気を部
分燃焼ガスによってパージすることを特徴とする改質装
置の操作方法を提供する。
Further, the present invention is a method for operating the above reformer, wherein when the reformer is operated and then stopped, the raw material gas is stopped, and the combustibles in the reformer, CO shift converter and CO remover are combusted. Provided is a method for operating a reforming apparatus, which comprises purging a functional gas with steam and then purging steam with a partial combustion gas.

【0023】[0023]

【発明の実施の形態】本発明は、水蒸気改質器、CO変
成部及びCO除去部を備えた改質装置において、その起
動時及び停止時に、水蒸気改質器の燃焼部で燃料ガスを
不完全燃焼させて生成した水素と一酸化炭素が含まれた
部分燃焼ガスを水蒸気改質器の改質部に供給して改質触
媒の酸化を防止するようにしてなることを前提とし、該
CO除去部下流側の導管から分岐させた導管に連結して
配置した、空気による部分燃焼ガスの酸化処理部を備え
るとともに、燃焼部から該酸化処理部にいたる燃焼ガス
バイパスラインを備えることを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a reformer having a steam reformer, a CO shift conversion section, and a CO removal section. Assuming that the partial combustion gas containing hydrogen and carbon monoxide produced by complete combustion is supplied to the reforming section of the steam reformer to prevent oxidation of the reforming catalyst, It is characterized in that it is provided with an oxidation treatment part for partial combustion gas by air, which is arranged so as to be connected to a conduit branched from a conduit on the downstream side of the removal part, and a combustion gas bypass line from the combustion part to the oxidation treatment part. To do.

【0024】水蒸気改質器は基本的にバーナあるいは燃
焼触媒を配置した燃焼部と改質触媒を配置した改質部と
により構成される。改質触媒としては例えばNi系(例
えばアルミナにNiを担持した触媒)やRu系(例えば
アルミナにRuを担持した触媒)等の改質触媒が用いら
れる。燃焼部に燃焼触媒を配置する場合には、例えば白
金等の貴金属触媒やアルミナヘキサネート等の燃焼触媒
が用いられる。
The steam reformer is basically composed of a combustion section in which a burner or a combustion catalyst is arranged and a reforming section in which a reforming catalyst is arranged. As the reforming catalyst, for example, a Ni-based (for example, a catalyst in which Ni is supported on alumina) or a Ru-based (for example, a catalyst in which Ru is supported on alumina) or the like is used. When arranging the combustion catalyst in the combustion section, for example, a noble metal catalyst such as platinum or a combustion catalyst such as alumina hexanate is used.

【0025】CO変成部においては、例えばPt系触媒
(Pt触媒)やCuーZn系等のシフト触媒(=CO変
成触媒)が用いられる。また、Fe、Crを主成分とす
る高温CO変成触媒とCu、Znを主成分とする低温C
O変成触媒の二段の触媒層により構成することもでき
る。このうち高温CO変成触媒は、それのみでも機能す
るので、該低温CO変成触媒と併用せずに用いてもよ
い。CO除去部においては例えばPt、Ru等の貴金属
触媒が用いられる。
In the CO shift conversion section, for example, a Pt catalyst (Pt catalyst) or a Cu—Zn shift catalyst (= CO shift catalyst) is used. Further, a high temperature CO shift catalyst containing Fe and Cr as main components and a low temperature C containing Cu and Zn as main components.
It may be composed of two catalyst layers of the O conversion catalyst. Of these, the high-temperature CO shift catalyst functions by itself, and thus may be used without being used in combination with the low-temperature CO shift catalyst. Noble metal catalysts such as Pt and Ru are used in the CO removal section.

【0026】ここで、改質装置には、水蒸気改質器とC
O変成部とCO除去部をそれぞれ別個に配置した形式の
ほか、それら水蒸気改質器、CO変成部、CO除去部を
一体にした形式、水蒸気改質器とCO変成部を一体化
し、CO除去部を単独に(つまり別個に)配置した形
式、その他各種形式があるが、本発明はそれらいずれの
形式の改質装置についても適用される。また、水蒸気改
質器には、水蒸気発生部を別個に配置した形式のほか、
水蒸気発生部を一体に構成した形式のものもあるが、本
発明はそれらいずれの水蒸気改質器についても適用され
る。
Here, the reformer includes a steam reformer and a C
In addition to the type in which the O shift conversion unit and the CO removal unit are separately arranged, the steam reformer, the CO shift unit, and the CO removal unit are integrated, and the steam reformer and the CO shift unit are integrated to remove the CO. There are various types such as a type in which the parts are arranged independently (that is, separately), and the present invention is applicable to the reformer of any of these types. Also, in the steam reformer, in addition to the type in which the steam generation part is separately arranged,
There is a type in which the steam generating unit is integrally formed, but the present invention is applicable to any of these steam reformers.

【0027】図5は、本発明に係る改質装置の基本的な
構成を示す図である。本改質装置は、水蒸気改質器、C
O変成部、CO除去部及び酸化処理部を備え、これら各
機器は図示のとおり導管(ライン)により連結されてい
る。これらの点は前記特願2001−191880の一
態様(図4)と同様であるが、本発明においては、水蒸
気改質器の燃焼部から酸化処理部にいたる燃焼ガスバイ
パスラインを備えることを特徴とする。該燃焼ガスバイ
パスラインには流量調節弁(=開度設定弁)が配置され
る。なお、図5に示すバルブXは、流量調節弁として閉
にできる弁を用いれば、必ずしも必要でない。
FIG. 5 is a diagram showing the basic structure of the reformer according to the present invention. This reformer is a steam reformer, C
An O conversion section, a CO removal section, and an oxidation treatment section are provided, and these respective devices are connected by a conduit (line) as shown in the drawing. These points are the same as one aspect of the Japanese Patent Application No. 2001-191880 (FIG. 4), but in the present invention, a combustion gas bypass line extending from the combustion section of the steam reformer to the oxidation processing section is provided. And A flow rate control valve (= opening setting valve) is arranged in the combustion gas bypass line. The valve X shown in FIG. 5 is not always necessary if a valve that can be closed is used as the flow rate control valve.

【0028】本改質装置の操作に際しては、その起動時
及び停止時に、水蒸気改質器の燃焼部で燃料ガスを不完
全燃焼させて生成した部分燃焼ガスを水蒸気改質器の改
質部に供給して改質触媒の酸化を防止する。燃焼部での
通常の燃焼は、空気比λ(燃料ガスを完全燃焼させる上
で理論的に必要な最小限の空気量に対する実際に供給し
た乾き空気の量の比)=1.0〜2.0の範囲に設定し
て実施するが、上記部分燃焼ガスは、空気比λ=0.8
〜1.0未満の範囲で生成させる。
When the reformer is operated, the partial combustion gas generated by incomplete combustion of the fuel gas in the combustor of the steam reformer is supplied to the reformer of the steam reformer when the reformer is started and stopped. Supply to prevent oxidation of the reforming catalyst. Normal combustion in the combustion section has an air ratio λ (ratio of the amount of dry air actually supplied to the minimum amount of air theoretically required to completely burn the fuel gas) = 1.0 to 2. The partial combustion gas has an air ratio λ = 0.8.
It is generated in the range of less than 1.0.

【0029】上記のように部分燃焼ガスを改質部に供給
して改質触媒の酸化を防止するに際し、該部分燃焼ガス
を水蒸気改質器の改質部に導入する前に、通常の燃焼で
生成させた燃焼ガスの全量を該バイパスラインに通した
後、酸化処理用空気を流通させるようにするのが好まし
い。また、該酸化処理用空気を流通させた後、部分燃焼
ガスを生成させ、燃焼ガスバイパスラインに設けた流量
調節弁の開度を調節することにより部分燃焼ガスの適当
量を順次水蒸気改質器の改質部、CO変成部、CO除去
部に流通させるようにするのが好ましい。
When the partial combustion gas is supplied to the reforming section to prevent the oxidation of the reforming catalyst as described above, before the partial combustion gas is introduced into the reforming section of the steam reformer, normal combustion is performed. After the entire amount of the combustion gas generated in step 1 is passed through the bypass line, it is preferable that the oxidizing air is passed through. Further, after the air for the oxidation treatment is circulated, a partial combustion gas is generated and the opening degree of a flow rate control valve provided in the combustion gas bypass line is adjusted to sequentially change an appropriate amount of the partial combustion gas to a steam reformer. It is preferable to circulate it through the reforming section, the CO conversion section, and the CO removal section.

【0030】これらの操作において、起動時間を短縮す
るのに部分燃焼排ガス量を増量することで対応する場合
や部分燃焼排ガス量が一時的に要求値よりも少なくなっ
た場合などでは、部分燃焼排ガス量を増量することがで
きる。部分燃焼ガスを増量したい際は、酸化処理部への
空気量を増量してから部分燃焼ガスを増量するのが好ま
しい。また、改質装置の炉材や隔壁等を含む系内の温度
が所定となり温度維持、あるいは降温が必要である場合
などでは、部分燃焼排ガス量を減量することで対応する
ことができる。部分燃焼ガスを減量したい際は、部分燃
焼ガスを減量してから酸化処理部への空気量を減量する
のが好ましい。
In these operations, when the start-up time is shortened by increasing the partial combustion exhaust gas amount or when the partial combustion exhaust gas amount temporarily becomes smaller than the required value, the partial combustion exhaust gas amount is reduced. The amount can be increased. When it is desired to increase the partial combustion gas, it is preferable to increase the amount of air to the oxidation treatment section and then increase the partial combustion gas. Further, when the temperature of the system including the furnace material and partition walls of the reforming device becomes a predetermined value and the temperature needs to be maintained or the temperature needs to be lowered, it is possible to cope with it by reducing the partial combustion exhaust gas amount. When it is desired to reduce the partial combustion gas, it is preferable to reduce the partial combustion gas and then reduce the air amount to the oxidation treatment section.

【0031】以下、本発明の改質装置の操作態様例を説
明する。本改質装置は水蒸気改質器、CO変成部、CO
除去部及び酸化処理部を備え、且つ、水蒸気改質器の燃
焼部から酸化処理部にいたる燃焼ガスバイパスラインを
備えている。(=図6)から(=図10)までの工
程が起動時のフロー、(=図11)から(=図1
4)までが停止時のフローである。
Hereinafter, an example of the operation mode of the reformer of the present invention will be described. This reformer consists of steam reformer, CO shift converter, CO
A removal section and an oxidation processing section are provided, and a combustion gas bypass line from the combustion section of the steam reformer to the oxidation processing section is provided. The process from (= FIG. 6) to (= FIG. 10) is started, and (= FIG. 11) to (= FIG. 1).
Up to 4) is the flow when stopped.

【0032】〈プリパージ→着火フロー〉起動時にお
いて、まず水蒸気改質器の燃焼部で燃料ガスを空気(燃
焼用空気)で燃焼させて水蒸気改質器の改質部を間接的
に加熱することにより、改質部中の改質触媒を400℃
以下まで予熱する。ここでの燃料ガスの燃焼は、空気比
λ>1に設定して行う。図6はこの段階を示している。
<Pre-purge → Ignition flow> At startup, first, the fuel portion is burned with air (combustion air) in the combustion portion of the steam reformer to indirectly heat the reforming portion of the steam reformer. The reforming catalyst in the reforming section at 400 ° C
Preheat to below. The combustion of the fuel gas here is performed by setting the air ratio λ> 1. FIG. 6 shows this stage.

【0033】〈部分燃焼ガス生成フロー〉次いで、水
蒸気改質器の改質部中の改質触媒への熱搬入媒体とし
て、水蒸気改質器の燃焼部に導入する空気量を燃料ガス
を完全燃焼させる空気量より少なくするよう切り替え
る。すなわち空気量を空気比λ>1から空気比λ<1へ
切り替える。切り替え時点で燃焼ガスバイパスラインに
配置した弁を開とし、部分燃焼ガスを酸化処理部で空気
(すなわち酸化処理用空気)により燃焼させる。図7は
この段階を示している。
<Partial Combustion Gas Generation Flow> Next, the amount of air introduced into the combustion section of the steam reformer as a heat transfer medium to the reforming catalyst in the reforming section of the steam reformer is completely combusted with the fuel gas. Switch so that the amount of air is less than that required. That is, the air amount is switched from the air ratio λ> 1 to the air ratio λ <1. At the time of switching, the valve arranged in the combustion gas bypass line is opened, and the partial combustion gas is burned by the air (that is, the oxidation air) in the oxidation treatment section. FIG. 7 shows this stage.

【0034】〈起動時昇温フロー〉上記部分燃焼ガ
スの生成に続き、部分燃焼ガスを水蒸気改質器の改質部
中へ導入して改質触媒、CO変成触媒、CO除去触媒を
加熱する。改質部へは、部分燃焼ガスのうち必要量だけ
導入し、余剰の部分燃焼ガスは燃焼ガスバイパスライン
を経て、酸化処理部で空気により燃焼させる。その必要
量の調節は該バイパスラインに設けた流量調節弁の開度
を調節することにより行われる。部分燃焼ガスは改質部
→CO変成部→CO除去部を経た後、上記余剰の部分燃
焼ガスとともに酸化処理部で空気により燃焼させる。
<Start-up temperature rising flow> Following the generation of the partial combustion gas, the partial combustion gas is introduced into the reforming section of the steam reformer to heat the reforming catalyst, the CO shift catalyst, and the CO removal catalyst. . A necessary amount of the partial combustion gas is introduced into the reforming section, and the surplus partial combustion gas is burned by air in the oxidation processing section through the combustion gas bypass line. The required amount is adjusted by adjusting the opening of the flow rate control valve provided in the bypass line. The partial combustion gas passes through the reforming section → the CO conversion section → the CO removal section, and is then burned by air in the oxidation processing section together with the surplus partial combustion gas.

【0035】燃料ガス(都市ガス:13A)を例えば空
気比λ=0.95として燃焼させた場合、不完全燃焼に
よる部分燃焼ガスには水素=2.40%程度、CO=
2.55%程度が含まれている。そのような還元性の部
分燃焼ガスを熱媒体として利用することで、水蒸気改質
器の改質部中の改質触媒の酸化を防止して、改質部、C
O変成部及びCO除去部を加熱し起動させることができ
る。上記のような部分燃焼ガスの場合、改質触媒に対し
て750℃程度まで還元性であり酸化が進行することが
ない。図8はこの段階を示している。
When a fuel gas (city gas: 13 A) is burned with an air ratio λ = 0.95, for example, hydrogen = about 2.40% and CO = about partial combustion gas due to incomplete combustion.
About 2.55% is included. By utilizing such a reducing partial combustion gas as a heat medium, oxidation of the reforming catalyst in the reforming section of the steam reformer is prevented, and the reforming section, C
The O conversion section and the CO removal section can be heated and activated. In the case of the partial combustion gas as described above, it is reducing to the reforming catalyst up to about 750 ° C., and oxidation does not proceed. FIG. 8 shows this stage.

【0036】〈起動時通常燃焼ガス復帰フロー〉水蒸
気改質器の改質部中の改質触媒が作動温度に達した時点
で、改質部への部分燃焼ガスの導入を停止し、水蒸気改
質器の燃焼部へ供給する空気量を空気比λ<1から空気
比λ>1へ切り替える。切り替え時点では、燃焼部から
燃焼ガスバイパスラインには未だ部分燃焼ガスが流れて
いるので、酸化処理部で空気により燃焼させる。燃焼部
から燃焼ガスバイパスライン中の部分燃焼ガスが通常の
燃焼ガスの流れに切り替わった時点で酸化処理部への空
気の導入を停止する。図9はこの段階を示している。
<Normal Combustion Gas Return Flow at Startup> When the reforming catalyst in the reforming section of the steam reformer reaches the operating temperature, the introduction of the partial combustion gas into the reforming section is stopped and the steam reforming is stopped. The amount of air supplied to the combustion section of the quality control device is switched from the air ratio λ <1 to the air ratio λ> 1. At the time of switching, since the partial combustion gas still flows from the combustion section to the combustion gas bypass line, it is burned with air in the oxidation processing section. When the partial combustion gas in the combustion gas bypass line is switched from the combustion unit to the normal flow of combustion gas, the introduction of air to the oxidation treatment unit is stopped. FIG. 9 shows this stage.

【0037】〈原料ガス導入→発電運転フロー〉次い
で、水蒸気改質器の改質部に原料ガスを導入し、改質部
→CO変成部→CO除去部を経て得られる水素リッチな
改質ガスをPEFCに供給して発電運転を行う。PEF
Cのオフガスは必要に応じて燃焼部の燃料ガスとして利
用する。図10はこの段階を示している。
<Introduction of Raw Material Gas → Power Generation Operation Flow> Next, the raw material gas is introduced into the reforming section of the steam reformer, and the hydrogen-rich reformed gas obtained through the reforming section → CO shift section → CO removing section Is supplied to PEFC for power generation operation. PEF
The off gas of C is used as a fuel gas for the combustion section as needed. FIG. 10 shows this stage.

【0038】〈停止時部分燃焼ガス生成フロー〉改質
装置の停止時において、部分燃焼ガスを生成させる。水
蒸気改質器の改質部への原料ガス供給を停止し、水蒸気
改質器の燃焼部に導入する空気量を燃料ガスを不完全燃
焼させる空気量に切り替える。すなわち、空気比λ>1
から空気比λ<1へ切り替える。切り替え時点で燃焼ガ
スバイパスラインの弁を開とし、部分燃焼ガスを酸化処
理部で空気により燃焼させる。図11はこの段階を示し
ている。
<Partial Combustion Gas Generation Flow at Stop> Partial combustion gas is generated when the reformer is stopped. The supply of the raw material gas to the reforming section of the steam reformer is stopped, and the amount of air introduced into the combustion section of the steam reformer is switched to the amount of air that causes incomplete combustion of the fuel gas. That is, the air ratio λ> 1
To air ratio λ <1. At the time of switching, the valve of the combustion gas bypass line is opened, and the partial combustion gas is burned by air in the oxidation treatment section. FIG. 11 shows this stage.

【0039】〈停止時パージフロー〉次いで、部分燃
焼ガスを水蒸気改質器の改質部中へ導入してパージす
る。部分燃焼ガスは改質部→CO変成部→CO除去部を
経て酸化処理部にいたり、ここでで空気により燃焼させ
る。図12はこの段階を示している。
<Purge Flow During Shutdown> Next, the partial combustion gas is introduced into the reforming section of the steam reformer for purging. The partial combustion gas goes to the oxidation treatment section through the reforming section → the CO conversion section → the CO removal section, and is burned by air here. FIG. 12 shows this stage.

【0040】〈停止時通常燃焼ガス復帰フロー〉水蒸
気改質器の改質部中の改質触媒が400℃以下まで低下
した時点で、改質部への部分燃焼ガスの導入を停止し、
水蒸気改質器の燃焼部へ供給する空気量を空気比λ<1
から空気比λ>1へ切り替える。切り替え時点では、燃
焼部及び燃焼ガスバイパスラインには未だ部分燃焼ガス
が流れているので、酸化処理部で酸化処理用空気により
燃焼させる。燃焼部から燃焼ガスバイパスライン中の部
分燃焼ガスが通常の燃焼ガスの流れに切り替わった時点
で酸化処理部への空気の導入を停止する。図13はこの
段階を示している。
<Normal combustion gas return flow at stop> When the reforming catalyst in the reforming section of the steam reformer has dropped to 400 ° C. or lower, the introduction of the partial combustion gas into the reforming section is stopped,
The ratio of air supplied to the combustion section of the steam reformer is λ <1
To air ratio λ> 1. At the time of switching, since the partial combustion gas still flows in the combustion section and the combustion gas bypass line, the oxidation processing section combusts with the oxidation processing air. When the partial combustion gas in the combustion gas bypass line is switched from the combustion unit to the normal flow of combustion gas, the introduction of air to the oxidation treatment unit is stopped. FIG. 13 shows this stage.

【0041】〈燃料ガス停止→ポストパージフロー〉
上記停止時通常燃焼ガス復帰フロー終了後、燃料ガス
の供給を停止する。この段階を図14に示している。
<Fuel gas stop → Post-purge flow>
The supply of the fuel gas is stopped after the above-mentioned stop-time normal combustion gas return flow is completed. This stage is shown in FIG.

【0042】以上の操作において、酸化処理部に導入さ
れる部分燃焼ガスに対して酸化処理用空気を添加して燃
焼させるが、酸化処理部に導入される部分燃焼ガスに対
して酸化処理空気量を増量することによって、酸化処理
部における水素、一酸化炭素の酸化を促進し、酸化処理
部出口における水素、一酸化炭素の濃度を低減すること
ができる。
In the above operation, the air for oxidation treatment is added to the partial combustion gas introduced into the oxidation treatment section for combustion, but the amount of oxidation treatment air is added to the partial combustion gas introduced into the oxidation treatment section. By increasing the amount of hydrogen, the oxidation of hydrogen and carbon monoxide in the oxidation treatment section can be promoted, and the concentrations of hydrogen and carbon monoxide at the outlet of the oxidation treatment section can be reduced.

【0043】表1は、燃料ガスである都市ガス13Aを
空気比λ=0.95で生成した部分燃焼ガス〔空間速度
(SV)=4000h-1〕に対する酸化処理部での酸化
処理空気量(空気比)の影響についての試験例の結果で
ある。表1のとおり、部分燃焼ガスに対する酸化処理部
での酸化処理空気量を増量することで、酸化処理部にお
ける水素、一酸化炭素の酸化を促進させ、酸化処理部出
口における水素、一酸化炭素の濃度を低減させることが
できる。
Table 1 shows the amount of oxidation treatment air in the oxidation treatment section for the partial combustion gas [space velocity (SV) = 4000 h −1 ] produced from the city gas 13A which is the fuel gas at the air ratio λ = 0.95 ( It is a result of the test example about the influence of air ratio. As shown in Table 1, by increasing the amount of oxidation treatment air for the partial combustion gas in the oxidation treatment section, the oxidation of hydrogen and carbon monoxide in the oxidation treatment section is promoted, and hydrogen and carbon monoxide at the outlet of the oxidation treatment section are increased. The concentration can be reduced.

【0044】[0044]

【表 1】 [Table 1]

【0045】また、上述のとおり、その空気量を増量す
ることによって、酸化処理層の温度を下げ、酸化処理部
でのメタネーションを抑制することもできる。メタネー
ション反応(2CO+2H2→CH4+CO2)は発熱反
応であり、これが起こるとCOやH2は減じることはで
きるが、同時にCH4が生成し、これにより酸化処理部
での可燃ガスの低減目的が阻害されるばかりか、その発
熱により酸化処理触媒の活性を低下させるなどの不都合
が生じるが、その空気量を増量することで、それら問題
を回避することができる。
Further, as described above, by increasing the amount of air, it is possible to lower the temperature of the oxidation treatment layer and suppress methanation in the oxidation treatment section. The methanation reaction (2CO + 2H 2 → CH 4 + CO 2 ) is an exothermic reaction, and CO and H 2 can be reduced when this occurs, but at the same time CH 4 is produced, which reduces combustible gas in the oxidation treatment section. Not only the purpose is hindered, but also the heat generation thereof causes inconveniences such as lowering of the activity of the oxidation treatment catalyst. However, by increasing the air amount, these problems can be avoided.

【0046】[0046]

【実施例】以下、実施例に基づき本発明をさらに詳しく
説明するが、本発明がこれら実施例に限定されないこと
はもちろんである。本実施例は図6()から図14
()までの工程に従い実施した。本実施例では改質装
置にPEFCを連結している。燃料ガス及び原料ガスと
して都市ガス(13A)を用い、CO除去部及び酸化処
理部へ供給する酸化剤として空気を用いた。
The present invention will be described in more detail based on the following examples, but it goes without saying that the present invention is not limited to these examples. This embodiment is shown in FIGS.
It implemented according to the process to (). In this embodiment, PEFC is connected to the reformer. City gas (13A) was used as the fuel gas and the raw material gas, and air was used as the oxidant supplied to the CO removal section and the oxidation treatment section.

【0047】水蒸気改質器の燃焼部としてバーナを用
い、改質部にはアルミナにNiを担持した触媒を充填
し、CO変成部には銅ー亜鉛系触媒(Cu/Zn系触
媒)を充填し、CO除去部にはアルミナにPtを担持し
た触媒を充填し、酸化処理部にはゼオライト系酸化触媒
を充填した。改質装置には常法に従い温度センサを配置
した。図6〜14中、実線のライン(配管)は対応する
ガスが流れていることを示し、点線のラインは対応する
ガスが流れていないことを示している。矢印(→)は対
応するガスが流れている場合の流れ方向である。なお、
各工程の時間は、外気温度その他の各種条件により異な
るが、本実施例で必要としたおおよその時間を併記して
いる。
A burner is used as a combustion section of the steam reformer, a catalyst in which Ni is supported on alumina is filled in the reforming section, and a copper-zinc catalyst (Cu / Zn catalyst) is filled in the CO shift conversion section. Then, the catalyst for supporting Pt on alumina was filled in the CO removal portion, and the zeolite-based oxidation catalyst was filled in the oxidation treatment portion. A temperature sensor was arranged in the reformer according to a conventional method. 6 to 14, a solid line (pipe) indicates that the corresponding gas is flowing, and a dotted line indicates that the corresponding gas is not flowing. The arrow (→) indicates the flow direction when the corresponding gas is flowing. In addition,
Although the time of each step varies depending on the outside air temperature and various other conditions, the approximate time required in this example is also shown.

【0048】《運転開始(=起動)から通常運転状態》 〈プリパージ→着火工程:図6〉水蒸気改質器の燃焼
部で燃料ガスを燃焼用空気で燃焼させて水蒸気改質器の
改質部を間接的に加熱し、改質部中の改質触媒を400
℃以下まで予熱した。ここでの燃料ガスの燃焼は、空気
比λ=1.1に設定して行い、燃焼排ガスは燃焼部から
排出させた。約3min(min=分)。
<< Starting (= Starting) to Normal Operating State >><Prepurge → Ignition Process: FIG. 6> Combusting fuel gas with combustion air in the combustion section of the steam reformer to reform the reforming section of the steam reformer To indirectly heat the reforming catalyst to 400
Preheated to below ℃. The combustion of the fuel gas here was performed with the air ratio λ = 1.1 set, and the combustion exhaust gas was discharged from the combustion section. About 3 minutes (min = minute).

【0049】〈部分燃焼ガスの生成工程:図7〉次い
で、水蒸気改質器の燃焼部に導入する空気量を燃料ガス
を完全燃焼させる空気量より少ない、空気比λ=0.9
5に変更した。燃焼ガスバイパスラインの弁Xを開と
し、生成部分燃焼ガスを酸化処理部で空気により燃焼さ
せた。燃料ガス(都市ガス:13A)を空気比λ=0.
95として燃焼させた場合、不完全燃焼による部分燃焼
ガスには水素=2.40%程度、CO=2.55%程度
が含まれているが、該部分燃焼ガスを酸化処理部で空気
により燃焼させることにより、水素=200ppm以
下、CO=2ppm以下まで低減し、これによりCOな
どの毒性ガスや可燃性ガスの外部排出を回避できた。約
1min。
<Partial Combustion Gas Generation Step: FIG. 7> Next, the amount of air introduced into the combustion section of the steam reformer is smaller than the amount of air that completely burns the fuel gas, and the air ratio λ = 0.9.
Changed to 5. The valve X of the combustion gas bypass line was opened, and the produced partial combustion gas was combusted with air in the oxidation treatment section. Fuel gas (city gas: 13 A) is used for air ratio λ = 0.
When burned as 95, the partial combustion gas due to incomplete combustion contains hydrogen = about 2.40% and CO = about 2.55%, but the partial combustion gas is burned by air in the oxidation treatment section. By doing so, hydrogen was reduced to 200 ppm or less and CO to 2 ppm or less, whereby it was possible to avoid toxic gas such as CO and flammable gas from being discharged to the outside. About 1 min.

【0050】〈起動時昇温工程:図8〉部分燃焼ガ
スの生成工程に続き、部分燃焼ガスを水蒸気改質器の改
質部中へ導入して改質触媒を加熱した。改質部へは、部
分燃焼ガスのうち必要量だけ導入し、余剰の部分燃焼ガ
スは燃焼ガスバイパスラインを経て、酸化処理部で空気
により燃焼させた。これによりCOなどの毒性ガスや可
燃性ガスの外部排出を回避できた。改質部へ導入した部
分燃焼ガスは改質部→CO変成部→CO除去部を経て、
上記余剰の部分燃焼ガスとともに酸化処理部で空気によ
り燃焼させた。部分燃焼ガスを熱媒体として利用するこ
とで改質触媒、CO変成触媒、CO選択酸化触媒(CO
除去部中)、改質装置の炉材、隔壁等を加熱し、改質装
置を急速に起動させることができた。約30min。
<Initial temperature rising step: FIG. 8> Following the partial combustion gas generation step, the partial combustion gas was introduced into the reforming section of the steam reformer to heat the reforming catalyst. A required amount of the partial combustion gas was introduced into the reforming section, and the surplus partial combustion gas was burned by air in the oxidation processing section through the combustion gas bypass line. As a result, it was possible to avoid the external emission of toxic gas such as CO and flammable gas. The partial combustion gas introduced into the reforming section passes through the reforming section → CO shift section → CO removal section,
Combustion was performed with air in the oxidation treatment section together with the surplus partial combustion gas. A reforming catalyst, a CO conversion catalyst, a CO selective oxidation catalyst (CO
It was possible to rapidly start the reforming device by heating the furnace material, partition walls, etc. of the reforming device). About 30 min.

【0051】〈起動時通常燃焼ガスへの復帰工程:図
9〉水蒸気改質器の改質部中の改質触媒が作動温度に達
した時点で、改質部への部分燃焼ガスの導入を停止し、
水蒸気改質器の燃焼部へ供給する空気量を空気比λ=
0.95から空気比λ=1.1へ切り替えた。切り替え
時点では、燃焼部から燃焼ガスバイパスラインには未だ
部分燃焼ガスが流れているので、酸化処理部で空気によ
り燃焼させた。これによりCOなどの毒性ガスや可燃性
ガスの外部排出を回避できた。燃焼部から燃焼ガスバイ
パスライン中の部分燃焼ガスが通常の燃焼ガスの流れに
切り替わった時点で酸化処理部への空気の導入を停止し
た。約1min。
<Restarting process to normal combustion gas at startup: FIG. 9> When the reforming catalyst in the reforming section of the steam reformer reaches the operating temperature, the partial combustion gas is introduced into the reforming section. Stop and
The air ratio to the combustion section of the steam reformer is λ =
The air ratio was switched from 0.95 to λ = 1.1. At the time of switching, since the partial combustion gas still flows from the combustion unit to the combustion gas bypass line, it was burned with air in the oxidation treatment unit. As a result, it was possible to avoid the external emission of toxic gas such as CO and flammable gas. At the time when the partial combustion gas in the combustion gas bypass line switched from the combustion section to the normal flow of combustion gas, the introduction of air to the oxidation treatment section was stopped. About 1 min.

【0052】〈原料ガス導入→発電運転工程:図1
0〉次いで、水蒸気改質器の改質部に原料ガス(都市ガ
ス13A)を導入し、改質部→CO変成部→CO除去部
を経て、水素リッチな改質ガスをPEFCに供給して発
電を開始し、発電運転を行った。その際、PEFCのオ
フガスは燃焼部の燃料ガスとして利用した。原料ガス
は、脱硫部を経て改質部に導入し、脱硫後の原料ガスに
は別途設けられた水蒸気発生部からの水蒸気を添加、混
合して改質部へ導入した。約1min。なお、図10
中、脱硫部及び水蒸気発生部の記載は省略している。
<Introduction of raw material gas → Power generation operation process: FIG. 1
0> Next, the raw material gas (city gas 13A) is introduced into the reforming section of the steam reformer, and the hydrogen-rich reformed gas is supplied to the PEFC through the reforming section → CO shift conversion section → CO removal section. Power generation was started and power generation operation was performed. At that time, the offgas of PEFC was used as the fuel gas for the combustion section. The raw material gas was introduced into the reforming section through the desulfurization section, and the desulfurized raw material gas was introduced into the reforming section by adding and mixing steam from a separately provided steam generating section. About 1 min. Note that FIG.
The description of the desulfurization section and the steam generation section is omitted.

【0053】〈停止時部分燃焼ガスの生成工程:図1
1〉発電運転を続けた後、停止工程へ移行させた。水蒸
気改質器の改質部への原料ガス供給を停止し、水蒸気の
みを改質部中に流した。約3min。同時に部分燃焼ガ
スを生成させた。すなわち水蒸気改質器の燃焼部に導入
する空気量を、空気比λ=1.1から空気比λ=0.9
5へ切り替えた。切り替え時点で燃焼ガスバイパスライ
ンの弁を開とし、部分燃焼ガスを酸化処理部で空気によ
り燃焼させた。約1min。これによりCOなどの毒性
ガスや可燃性ガスの外部排出を回避できた。
<Step of generating partial combustion gas at stop: FIG. 1
1> After continuing the power generation operation, the process was shifted to the stop process. The supply of the raw material gas to the reforming section of the steam reformer was stopped, and only steam was flown into the reforming section. About 3 min. At the same time, partial combustion gas was generated. That is, the amount of air introduced into the combustion section of the steam reformer is changed from the air ratio λ = 1.1 to the air ratio λ = 0.9.
Switched to 5. At the time of switching, the valve of the combustion gas bypass line was opened, and the partial combustion gas was burned by air in the oxidation treatment section. About 1 min. As a result, it was possible to avoid the external emission of toxic gas such as CO and flammable gas.

【0054】〈停止時パージ工程:図12〉上記部
分燃焼ガスの生成に続き、水蒸気の導入を停止し、部分
燃焼ガスを水蒸気改質器の改質部中へ導入してパージし
た。改質部へ導入した部分燃焼ガスは改質部→CO変成
部→CO除去部を経て、酸化処理部で空気により燃焼さ
せた。約20min。これによりCOなどの毒性ガスや
可燃性ガスの外部排出を回避できた。
<Purge Step During Shutdown: FIG. 12> Following the generation of the partial combustion gas, the introduction of steam was stopped, and the partial combustion gas was introduced into the reforming section of the steam reformer for purging. The partial combustion gas introduced into the reforming section passed through the reforming section-> CO conversion section-> CO removal section and was burned by air in the oxidation processing section. About 20 min. As a result, it was possible to avoid the external emission of toxic gas such as CO and flammable gas.

【0055】〈停止時通常燃焼ガスへの復帰工程:図
13〉水蒸気改質器の改質部中の改質触媒が400℃以
下まで低下した時点で、改質部への部分燃焼ガスの導入
を停止し、水蒸気改質器の燃焼部へ供給する空気量を空
気比=0.95から空気比λ=1.1へ切り替えた。切
り替え時点では、燃焼部及び燃焼ガスバイパスラインに
は未だ部分燃焼ガスが流れているので、酸化処理部で空
気により燃焼させた。これによりCOなどの毒性ガスや
可燃性ガスの外部排出を回避できた。燃焼部から燃焼ガ
スバイパスライン中の部分燃焼ガスが通常の燃焼ガスの
流れに切り替わった時点で酸化処理部への空気の導入を
停止した。約1min。
<Step of Returning to Normal Combustion Gas at Shutdown: FIG. 13> When the reforming catalyst in the reforming section of the steam reformer has dropped to 400 ° C. or below, the partial combustion gas is introduced into the reforming section. And the amount of air supplied to the combustion section of the steam reformer was switched from the air ratio = 0.95 to the air ratio λ = 1.1. At the time of switching, since the partial combustion gas still flows through the combustion section and the combustion gas bypass line, it was burned with air in the oxidation processing section. As a result, it was possible to avoid the external emission of toxic gas such as CO and flammable gas. At the time when the partial combustion gas in the combustion gas bypass line switched from the combustion section to the normal flow of combustion gas, the introduction of air to the oxidation treatment section was stopped. About 1 min.

【0056】〈燃料ガス停止→ポストパージ工程:図
14〉停止時通常燃焼ガスへの復帰工程に続き、燃焼
部への燃料ガスの供給を停止した。約5min。
<Fuel gas stop → post-purge process: FIG. 14> At the time of stop Following the process of returning to normal combustion gas, the supply of fuel gas to the combustion section was stopped. About 5 min.

【0057】[0057]

【発明の効果】本発明によれば、炭化水素の水蒸気改質
法による改質部とCO変成部とCO除去部を含む改質装
置の起動及び停止に際して、改質部中の改質触媒の酸化
を回避し、その劣化を防止することができる。加えて、
燃焼部からの燃焼ガスバイパスラインによって部分燃焼
ガスと通常の燃焼ガスの切り替えを行うことにより、C
Oなどの毒性ガスや可燃性ガスを含む部分燃焼ガスの外
部排出を防止でき、また一時的な通常の燃焼ガスまたは
空気の改質装置内部への流通を防止することができるな
ど、実用上非常に有用である。
According to the present invention, when starting and stopping the reforming apparatus including the reforming section, the CO shift conversion section, and the CO removing section by the steam reforming method for hydrocarbons, the reforming catalyst in the reforming section Oxidation can be avoided and its deterioration can be prevented. in addition,
By switching between partial combustion gas and normal combustion gas by the combustion gas bypass line from the combustion section, C
It is possible to prevent partial combustion gas containing toxic gas such as O and combustible gas from being discharged to the outside, and to prevent temporary normal combustion gas or air from flowing into the reformer. Useful for.

【図面の簡単な説明】[Brief description of drawings]

【図1】水蒸気改質器を模式的に示す図FIG. 1 is a diagram schematically showing a steam reformer.

【図2】水蒸気改質器を用い、原料ガスの供給からPE
FCに至るまでの態様例を示す図
[Fig. 2] Using a steam reformer, from the supply of raw material gas to PE
Diagram showing an example of how to reach FC

【図3】水蒸気改質器の燃焼部での燃焼排ガスを用いて
CO変成部の昇温を行う態様を示す図
FIG. 3 is a diagram showing a mode in which the temperature of a CO shift conversion section is raised by using combustion exhaust gas from the combustion section of a steam reformer.

【図4】部分燃焼ガス中の水素や一酸化炭素を酸化処理
部で空気と反応させて処理する態様例を示す図
FIG. 4 is a diagram showing an example of a mode in which hydrogen and carbon monoxide in a partial combustion gas are reacted with air in an oxidation treatment section and treated.

【図5】本発明に係る改質装置の基本的な構成を示す図FIG. 5 is a diagram showing a basic configuration of a reformer according to the present invention.

【図6】本発明の操作過程を示す図(プリパージ→着
火フロー)
FIG. 6 is a diagram showing an operation process of the present invention (prepurge → ignition flow).

【図7】本発明の操作過程を示す図(部分燃焼ガス生
成フロー)
FIG. 7 is a diagram showing an operation process of the present invention (partial combustion gas generation flow)

【図8】本発明の操作過程を示す図(起動時昇温フロ
ー)
FIG. 8 is a diagram showing an operation process of the present invention (start-up temperature rising flow)

【図9】本発明の操作過程を示す図(起動時通常燃焼
ガス復帰フロー)
FIG. 9 is a diagram showing an operation process of the present invention (normal combustion gas return flow at startup)

【図10】本発明の操作過程を示す図(原料ガス導入
→発電運転フロー)
FIG. 10 is a diagram showing an operation process of the present invention (raw material gas introduction → power generation operation flow)

【図11】本発明の操作過程を示す図(停止時部分燃
焼ガス生成フロー)
FIG. 11 is a diagram showing an operation process of the present invention (partial combustion gas generation flow at stop)

【図12】本発明の操作過程を示す図(停止時パージ
フロー)
FIG. 12 is a diagram showing an operation process of the present invention (purge flow during stop)

【図13】本発明の操作過程を示す図(停止時通常燃
焼ガス復帰フロー)
FIG. 13 is a view showing an operation process of the present invention (normal combustion gas return flow at stop)

【図14】本発明の操作過程を示す図(燃料ガス停止
→ポストパージフロー)
FIG. 14 is a diagram showing an operation process of the present invention (fuel gas stop → post purge flow)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/10 H01M 8/10 (72)発明者 三浦 俊泰 東京都港区海岸一丁目5番20号 東京瓦斯 株式会社内 Fターム(参考) 4G040 EA03 EA06 EB12 EB27 EB31 EB32 EB43 EB45 5H026 AA06 5H027 AA06 BA01 BA09 BA16 BA17 MM12 MM13 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01M 8/10 H01M 8/10 (72) Inventor Toshiyasu Miura 1-5-20 Kaigan, Minato-ku, Tokyo F-term in Tokyo Gas Co., Ltd. (reference) 4G040 EA03 EA06 EB12 EB27 EB31 EB32 EB43 EB45 5H026 AA06 5H027 AA06 BA01 BA09 BA16 BA17 MM12 MM13

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】燃焼部と改質部とCO変成部とCO除去部
を備え、その起動時または停止時に、燃焼部で燃料ガス
を不完全燃焼させて生成した部分燃焼ガスを改質部に供
給して改質触媒の酸化を防止するようにしてなる水蒸気
改質を行う改質装置であって、該CO除去部下流側の導
管から分岐して空気による部分燃焼ガスの酸化処理部を
備え、且つ、燃焼部から酸化処理部にいたる燃焼ガスバ
イパスラインを備えることを特徴とする改質装置。
1. A combustion section, a reforming section, a CO conversion section, and a CO removal section, and when starting or stopping the combustion section, a partial combustion gas generated by incomplete combustion of fuel gas is supplied to the reforming section. A reforming apparatus for performing steam reforming by supplying the reforming catalyst so as to prevent oxidation of the reforming catalyst, the reforming apparatus including an oxidation treatment section for partial combustion gas by air branched from a conduit downstream of the CO removal section. A reformer comprising a combustion gas bypass line extending from the combustion section to the oxidation processing section.
【請求項2】上記燃焼ガスバイパスラインに流量調節弁
を備えることを特徴とする請求項1に記載の改質装置。
2. The reformer according to claim 1, wherein the combustion gas bypass line is provided with a flow rate control valve.
【請求項3】燃焼部と改質部とCO変成部とCO除去部
を備え、その起動時または停止時に、燃焼部で燃料ガス
を不完全燃焼させて生成した部分燃焼ガスを改質部に供
給して改質触媒の酸化を防止するようにしてなる水蒸気
改質を行う改質装置であって、該CO除去部下流側の導
管から分岐して空気による部分燃焼ガスの酸化処理部を
備え、且つ、燃焼部から酸化処理部にいたる燃焼ガスバ
イパスラインを備える改質装置を起動または停止するに
際し、該部分燃焼ガスを改質装置の改質部に導入する前
に、燃焼ガスの全量を該バイパスラインに通した後、酸
化処理部に酸化処理用空気を流通させることを特徴とす
る改質装置の操作方法。
3. A combustion section, a reforming section, a CO conversion section, and a CO removal section, and when starting or stopping the combustion section, a partial combustion gas generated by incomplete combustion of the fuel gas is generated in the reforming section. A reforming apparatus for performing steam reforming by supplying the reforming catalyst so as to prevent oxidation of the reforming catalyst, the reforming apparatus including an oxidation treatment section for partial combustion gas by air branched from a conduit downstream of the CO removal section. In addition, when starting or stopping the reformer equipped with the combustion gas bypass line from the combustion unit to the oxidation treatment unit, before introducing the partial combustion gas into the reforming unit of the reformer, the total amount of the combustion gas is changed. A method for operating a reformer, which comprises passing oxidation treatment air through the oxidation treatment section after passing through the bypass line.
【請求項4】燃焼部と改質部とCO変成部とCO除去部
を備え、その起動時または停止時に、燃焼部で燃料ガス
を不完全燃焼させて生成した部分燃焼ガスを改質部に供
給して改質触媒の酸化を防止するようにしてなる水蒸気
改質を行う改質装置であって、該CO除去部下流側の導
管から分岐して空気による部分燃焼ガスの酸化処理部を
備え、且つ、燃焼部から酸化処理部にいたる燃焼ガスバ
イパスラインを備える改質装置を起動または停止するに
際し、該部分燃焼ガスを改質装置の改質部に導入する前
に、燃焼ガスの全量を該バイパスラインに通した後、酸
化処理部に酸化処理用空気を流通させ、次いで部分燃焼
ガスを生成し、該バイパスラインに設けた流量調節弁の
開度を調節することにより部分燃焼ガスの必要量を順次
改質装置の改質部、CO変成部及びCO除去部に流通さ
せることを特徴とする改質装置の操作方法。
4. A combustion section, a reforming section, a CO conversion section, and a CO removal section, and when starting or stopping the combustion gas, a partial combustion gas generated by incomplete combustion of fuel gas is generated in the reforming section. A reforming apparatus for performing steam reforming by supplying the reforming catalyst so as to prevent oxidation of the reforming catalyst, the reforming apparatus including an oxidation treatment section for partial combustion gas by air branched from a conduit downstream of the CO removal section. In addition, when starting or stopping the reformer equipped with the combustion gas bypass line from the combustion unit to the oxidation treatment unit, before introducing the partial combustion gas into the reforming unit of the reformer, the total amount of the combustion gas is changed. After passing through the bypass line, the oxidation treatment air is circulated in the oxidation treatment section, then partial combustion gas is generated, and the opening degree of the flow rate control valve provided in the bypass line is adjusted so that the partial combustion gas is required. Reforming unit of reformer Operation of the reforming apparatus characterized by circulating the CO shift converter and the CO remover.
【請求項5】請求項4に記載の改質装置の操作方法にお
いて、該部分燃焼ガスを増量したい際は、酸化処理部へ
の空気量を増量してから部分燃焼ガスを増量し、逆に該
部分燃焼ガスを減量したい際は、部分燃焼ガスを減量し
てから酸化処理部への空気量を減量することを特徴とす
る改質装置の操作方法。
5. The method for operating a reforming apparatus according to claim 4, wherein when it is desired to increase the partial combustion gas, the amount of air to the oxidation treatment section is increased and then the partial combustion gas is increased. When it is desired to reduce the partial combustion gas, the partial combustion gas is reduced, and then the air amount to the oxidation treatment section is reduced.
【請求項6】燃焼部と改質部とCO変成部とCO除去部
を備え、その起動時または停止時に、燃焼部で燃料ガス
を不完全燃焼させて生成した部分燃焼ガスを改質部に供
給して改質触媒の酸化を防止するようにしてなる水蒸気
改質を行う改質装置であって、該CO除去部下流側の導
管から分岐して空気による部分燃焼ガスの酸化処理部を
備え、且つ、燃焼部から酸化処理部にいたる燃焼ガスバ
イパスラインを備える改質装置を停止するに際し、原料
ガスを止め、改質部、CO変成部及びCO除去部内の可
燃性ガスを部分燃焼ガスによってパージすることを特徴
とする改質装置の操作方法。
6. A combustion section, a reforming section, a CO conversion section, and a CO removal section, and when starting or stopping the combustion section, a partial combustion gas generated by incomplete combustion of fuel gas is generated in the reforming section. A reforming apparatus for performing steam reforming by supplying the reforming catalyst so as to prevent oxidation of the reforming catalyst, the reforming apparatus including an oxidation treatment section for partial combustion gas by air branched from a conduit downstream of the CO removal section. Moreover, when stopping the reforming device including the combustion gas bypass line from the combustion section to the oxidation processing section, the raw material gas is stopped, and the combustible gas in the reforming section, the CO shift conversion section, and the CO removal section is changed by the partial combustion gas. A method for operating a reformer characterized by purging.
【請求項7】燃焼部と改質部とCO変成部とCO除去部
を備え、その起動時または停止時に、燃焼部で燃料ガス
を不完全燃焼させて生成した部分燃焼ガスを改質部に供
給して改質触媒の酸化を防止するようにしてなる水蒸気
改質を行う改質装置であって、該CO除去部下流側の導
管から分岐して空気による部分燃焼ガスの酸化処理部を
備え、且つ、燃焼部から酸化処理部にいたる燃焼ガスバ
イパスラインを備える改質装置を停止するに際し、原料
ガスを止め、改質部、CO変成部及びCO除去部内の可
燃性ガスを水蒸気によってパージした後、水蒸気を部分
燃焼ガスによってパージすることを特徴とする改質装置
の操作方法。
7. A combustion section, a reforming section, a CO shift conversion section, and a CO removal section are provided, and the partial combustion gas generated by incompletely combusting the fuel gas in the combustion section when starting or stopping the reforming section is used. A reforming apparatus for performing steam reforming by supplying the reforming catalyst so as to prevent oxidation of the reforming catalyst, the reforming apparatus including an oxidation treatment section for partial combustion gas by air branched from a conduit downstream of the CO removal section. Moreover, when stopping the reforming apparatus including the combustion gas bypass line from the combustion section to the oxidation processing section, the raw material gas was stopped and the combustible gas in the reforming section, the CO shift conversion section and the CO removal section was purged with steam. After that, the method for operating the reformer is characterized in that steam is purged by the partial combustion gas.
【請求項8】前記改質装置が固体高分子形燃料電池に接
続された改質装置である請求項3ないし7のいずれかに
記載の改質装置の操作方法。
8. The method for operating a reformer according to claim 3, wherein the reformer is a reformer connected to a polymer electrolyte fuel cell.
JP2001358596A 2001-11-22 2001-11-22 Reforming apparatus and operation method thereof Expired - Lifetime JP3886789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001358596A JP3886789B2 (en) 2001-11-22 2001-11-22 Reforming apparatus and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001358596A JP3886789B2 (en) 2001-11-22 2001-11-22 Reforming apparatus and operation method thereof

Publications (2)

Publication Number Publication Date
JP2003160307A true JP2003160307A (en) 2003-06-03
JP3886789B2 JP3886789B2 (en) 2007-02-28

Family

ID=19169749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001358596A Expired - Lifetime JP3886789B2 (en) 2001-11-22 2001-11-22 Reforming apparatus and operation method thereof

Country Status (1)

Country Link
JP (1) JP3886789B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216500A (en) * 2004-01-27 2005-08-11 Matsushita Electric Ind Co Ltd Hydrogen generator
JP2006342004A (en) * 2005-06-07 2006-12-21 T Rad Co Ltd Method for reducing reforming catalyst
JP2007246376A (en) * 2006-03-20 2007-09-27 Toyota Central Res & Dev Lab Inc Hydrogen generation apparatus
JP2007265651A (en) * 2006-03-27 2007-10-11 Casio Comput Co Ltd Fuel cell type power generator
JP2008108546A (en) * 2006-10-25 2008-05-08 Aisin Seiki Co Ltd Fuel cell system
JP2008207990A (en) * 2007-02-26 2008-09-11 Idemitsu Kosan Co Ltd Co converting apparatus and method, and fuel cell system and method for controlling the same
WO2008126353A1 (en) * 2007-03-14 2008-10-23 Panasonic Corporation Fuel cell system and fuel cell system operation method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216500A (en) * 2004-01-27 2005-08-11 Matsushita Electric Ind Co Ltd Hydrogen generator
JP4682518B2 (en) * 2004-01-27 2011-05-11 パナソニック株式会社 Fuel cell system
JP2006342004A (en) * 2005-06-07 2006-12-21 T Rad Co Ltd Method for reducing reforming catalyst
JP4676819B2 (en) * 2005-06-07 2011-04-27 株式会社ティラド Method for reducing reforming catalyst
JP2007246376A (en) * 2006-03-20 2007-09-27 Toyota Central Res & Dev Lab Inc Hydrogen generation apparatus
JP2007265651A (en) * 2006-03-27 2007-10-11 Casio Comput Co Ltd Fuel cell type power generator
JP2008108546A (en) * 2006-10-25 2008-05-08 Aisin Seiki Co Ltd Fuel cell system
JP2008207990A (en) * 2007-02-26 2008-09-11 Idemitsu Kosan Co Ltd Co converting apparatus and method, and fuel cell system and method for controlling the same
WO2008126353A1 (en) * 2007-03-14 2008-10-23 Panasonic Corporation Fuel cell system and fuel cell system operation method
US8318365B2 (en) 2007-03-14 2012-11-27 Panasonic Corporation Fuel cell system with bypass path and operation method for controlling bypass path of fuel cell system
JP5366801B2 (en) * 2007-03-14 2013-12-11 パナソニック株式会社 Fuel cell system and method for operating fuel cell system

Also Published As

Publication number Publication date
JP3886789B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
JP5063584B2 (en) FUEL CELL DEVICE FOR FUEL CELL DEVICE AND METHOD OF OPERATING FUEL PROCESSING DEVICE FOR FUEL CELL DEVICE
WO2007111124A1 (en) Method of shutdown of reforming apparatus
JPWO2006049299A1 (en) Fuel cell system
JP4130681B2 (en) Fuel cell system
JP4884773B2 (en) Fuel cell power generation system
JP2003002605A (en) Method for operating and stopping steam reformer
JP3857022B2 (en) Method for starting and stopping a polymer electrolyte fuel cell
JP2003160307A (en) Reformer and its operation method
JP5480684B2 (en) Method for operating hydrogen-containing gas generator at startup
JP3865479B2 (en) Carbon monoxide removal system and carbon monoxide removal method
JP3490877B2 (en) Starting method of reformer for fuel cell
JP2003243018A (en) Hydrogen manufacturing equipment and its operation method
JP2001085039A (en) Fuel cell system
EP1661853A1 (en) Method and apparatus for treating reformed gas and fuel cell electric power generation system
JP4145573B2 (en) Start-up method of reformer
JP4490717B2 (en) Reformer
JP2020193129A (en) Hydrogen generator and its operation method
JPH10324501A (en) Carbon monoxide remover and method for starting carbon monoxide remover
JP2001155747A (en) Fuel cell system
JP2008074657A (en) Method for starting self-heating reforming reaction at a low temperature
JP5515641B2 (en) Hydrogen generator, fuel cell system, and operation method of hydrogen generator
JP2006315874A (en) Method for starting fuel cell power generation system
JP4713547B2 (en) Fuel cell power generation system and operation method thereof
JP2002356311A (en) Pretreatment method for generation apparatus for gas containing hydrogen
JP2001176533A (en) Fuel cell system and fuelcell cogeneration hot-water supply system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061122

R150 Certificate of patent or registration of utility model

Ref document number: 3886789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term