JP2003160306A - Hydrogen containing gas generator - Google Patents

Hydrogen containing gas generator

Info

Publication number
JP2003160306A
JP2003160306A JP2001357731A JP2001357731A JP2003160306A JP 2003160306 A JP2003160306 A JP 2003160306A JP 2001357731 A JP2001357731 A JP 2001357731A JP 2001357731 A JP2001357731 A JP 2001357731A JP 2003160306 A JP2003160306 A JP 2003160306A
Authority
JP
Japan
Prior art keywords
gas
treatment
reforming
section
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001357731A
Other languages
Japanese (ja)
Other versions
JP4090234B2 (en
Inventor
Norihisa Kamiya
規寿 神家
Satoshi Ibe
聰 伊部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001357731A priority Critical patent/JP4090234B2/en
Publication of JP2003160306A publication Critical patent/JP2003160306A/en
Application granted granted Critical
Publication of JP4090234B2 publication Critical patent/JP4090234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen containing gas generator 100 capable of keeping a desulfurizing part 34, a reforming part 36, a converting part 38 and a selective oxidizing part 40 in a suitable temperature respectively without consuming surplus energy in a simple composition. <P>SOLUTION: A plurality of cylindrical bodies are assembled toward the diameter and the axis center I and on their axis center. The cylindrical spaces formed between a plurality of the cylindrical bodies are composed as each part such as 34, 36, 38, 40 and each flow path such as 2, 4, 6, 8, 10, 12, 14, 16, 20 connected to each part. The reforming part 36, the desulfurizing part 34, the converting part 38 and the selective oxidizing part 40 are arranged in the mentioned order along the axis center I of the cylindrical bodies. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素系の原燃
料ガスを脱硫処理する脱硫処理部と、加熱部にて加熱さ
れて、前記脱硫処理部から供給される脱硫処理ガスを水
蒸気にて水素ガスと一酸化炭素ガスを含む改質処理ガス
に改質処理する改質処理部と、前記改質処理ガスを前記
改質処理ガス中の一酸化炭素ガスを二酸化炭素ガスに変
成させることにより変成処理ガスに変成処理する変成処
理部と、前記変成処理ガスを前記変成処理ガス中の一酸
化炭素を選択酸化することにより選択酸化処理ガスに選
択酸化処理する選択酸化処理部とを備え、前記選択酸化
処理ガスを水素含有ガスとして排出する水素含有ガス生
成装置に関する。
TECHNICAL FIELD The present invention relates to a desulfurization treatment section for desulfurizing a hydrocarbon-based raw fuel gas and a desulfurization treatment gas heated by a heating section and supplied from the desulfurization treatment section by steam. A reforming processing part for reforming a reforming treatment gas containing hydrogen gas and carbon monoxide gas, and by converting the carbon monoxide gas in the reforming treatment gas into carbon dioxide gas And a selective oxidation treatment unit for selectively oxidizing the selective shift treatment gas to selectively oxidize carbon monoxide in the shift treatment gas. The present invention relates to a hydrogen-containing gas generator that discharges a selective oxidation treatment gas as a hydrogen-containing gas.

【0002】[0002]

【従来の技術】上記のような水素含有ガス生成装置は、
脱硫処理部にて炭化水素系の原燃料ガスを脱硫処理し、
その脱硫処理ガスを改質処理部にて水蒸気により水素ガ
スと一酸化炭素ガスを含む改質処理ガスに改質処理し、
その改質処理ガスを変成処理部にて改質処理ガス中の一
酸化炭素ガスを二酸化炭素ガスに変成させることにより
変成処理ガスに変成処理し、その変成処理ガスを選択酸
化処理部にて変成処理ガス中の一酸化炭素を選択酸化す
ることにより選択酸化処理して、一酸化炭素濃度の低い
(例えば10ppm以下)水素リッチな水素含有ガスを
生成するものであり、生成水素含有ガスは、例えば、燃
料電池における発電反応用の燃料ガスとして用いる。
2. Description of the Related Art A hydrogen-containing gas generator as described above is
Desulfurization treatment of hydrocarbon-based raw fuel gas in the desulfurization unit,
The desulfurization treatment gas is reformed with steam in the reforming treatment unit to a reforming treatment gas containing hydrogen gas and carbon monoxide gas,
The reforming treatment gas is transformed in the reforming treatment section into carbon dioxide gas by transforming the carbon monoxide gas in the reforming treatment gas into carbon dioxide gas, and the transformation treatment gas is transformed in the selective oxidation treatment section. The selective oxidation treatment is performed by selectively oxidizing carbon monoxide in the treatment gas to generate a hydrogen-rich hydrogen-containing gas having a low carbon monoxide concentration (for example, 10 ppm or less). , Used as a fuel gas for power generation reaction in a fuel cell.

【0003】そして、このように構成された水素含有ガ
ス生成装置の運転中は、脱硫処理部と改質処理部と変成
処理部と選択酸化処理部とのそれぞれを、脱硫処理に適
正な温度(以下、脱硫処理温度と記載する場合があ
る)、改質処理に適正な温度(以下、改質処理温度と記
載する場合がある)、変成処理に適正な温度(以下、変
成処理温度と記載する場合がある)、選択酸化処理に適
正な温度(以下、選択酸化処理温度と記載する場合があ
る)に維持する必要がある。ちなみに、例えば、改質処
理温度は600〜700℃の範囲、脱硫処理温度は例え
ば200〜350℃の範囲、変成処理温度は例えば15
0〜300℃の範囲、選択酸化処理温度は80〜120
℃の範囲である。
During the operation of the hydrogen-containing gas generator thus constructed, the desulfurization treatment section, the reforming treatment section, the shift conversion treatment section and the selective oxidation treatment section are respectively operated at appropriate temperatures for desulfurization treatment ( Hereinafter, it may be referred to as a desulfurization treatment temperature), a temperature suitable for the reforming treatment (hereinafter, also referred to as a reforming treatment temperature), a temperature suitable for the shift treatment (hereinafter referred to as the shift treatment temperature) In some cases), it is necessary to maintain the temperature suitable for the selective oxidation treatment (hereinafter sometimes referred to as the selective oxidation treatment temperature). Incidentally, for example, the reforming treatment temperature is in the range of 600 to 700 ° C., the desulfurization treatment temperature is in the range of 200 to 350 ° C., and the shift treatment temperature is, for example, 15
The range of 0 to 300 ° C., the selective oxidation treatment temperature is 80 to 120
It is in the range of ° C.

【0004】そこで、従来の水素含有ガス生成装置は、
脱硫処理部と改質処理部と変成処理部と選択酸化処理部
を、それぞれ脱硫処理温度、改質処理温度、変成処理温
度、選択酸化処理温度に維持するように運転するため
に、例えば、脱硫処理部を加熱する脱硫処理部加熱手
段、変成処理部を加熱する変成処理部加熱手段及び変成
処理部を冷却する変成処理部冷却手段、並びに、選択酸
化処理部を加熱する選択酸化処理部加熱手段及び選択酸
化処理部を冷却する選択酸化処理部冷却手段を設けて、
脱硫処理部を脱硫処理温度に維持するように、脱硫処理
部加熱手段の加熱能力を調節し、改質処理部を改質処理
温度に維持するように、改質処理部加熱手段の加熱能力
を調節し、変成処理部を変成処理温度に維持するように
変成処理部加熱手段の加熱能力及び変成処理部冷却手段
の冷却能力を調節し、並びに、選択酸化処理部を選択酸
化処理温度に維持するように、選択酸化処理部加熱手段
の加熱能力及び選択酸化処理部冷却手段の冷却能力を調
節していた。
Therefore, the conventional hydrogen-containing gas generator is
In order to operate the desulfurization treatment unit, the reforming treatment unit, the shift conversion treatment unit, and the selective oxidation treatment unit so as to maintain the desulfurization treatment temperature, the reforming treatment temperature, the shift treatment temperature, and the selective oxidation treatment temperature, for example, desulfurization Desulfurization treatment section heating means for heating the treatment section, shift treatment section heating means for heating the shift treatment section, shift treatment section cooling means for cooling the shift treatment section, and selective oxidation treatment section heating means for heating the selective oxidation treatment section And a selective oxidation treatment section cooling means for cooling the selective oxidation treatment section,
To maintain the desulfurization treatment part at the desulfurization treatment temperature, adjust the heating capacity of the desulfurization treatment part heating means, and to maintain the reforming treatment part at the reforming treatment temperature, change the heating capacity of the reforming treatment part heating means. The heating capacity of the shift treatment section heating means and the cooling capacity of the shift treatment section cooling means are adjusted so as to maintain the shift treatment section at the shift treatment temperature, and the selective oxidation treatment section is kept at the selective oxidation treatment temperature. As described above, the heating capacity of the selective oxidation treatment section heating means and the cooling capacity of the selective oxidation treatment section cooling means are adjusted.

【0005】[0005]

【発明が解決しようとする課題】従って、従来の水素含
有ガス生成装置においては、脱硫処理部と改質処理部と
変成処理部と選択酸化処理部をそれぞれ脱硫処理温度、
改質処理温度、変成処理温度、選択酸化処理温度に維持
するために、脱硫処理部、改質処理部、変成処理部及び
選択酸化処理部それぞれの温度を各別に制御するという
ように、複雑な制御を必要とし、改善が望まれていた。
Therefore, in the conventional hydrogen-containing gas generator, the desulfurization treatment section, the reforming treatment section, the shift conversion treatment section and the selective oxidation treatment section are respectively provided with a desulfurization treatment temperature,
In order to maintain the reforming treatment temperature, the shift conversion treatment temperature, and the selective oxidation treatment temperature, the temperature of each of the desulfurization treatment unit, the reforming treatment unit, the shift treatment unit, and the selective oxidation treatment unit is controlled separately, which is complicated. Control was required and improvements were desired.

【0006】本発明は、上記のような実情に鑑みてなさ
れたものであり、その目的は、簡単な構成で、脱硫処理
部と改質処理部と変成処理部と選択酸化処理部の夫々
を、余分なエネルギを消費することなく適正な温度に維
持することができる水素含有ガス生成装置を提供するこ
とにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a desulfurization treatment section, a reforming treatment section, a shift treatment section and a selective oxidation treatment section with a simple structure. Another object of the present invention is to provide a hydrogen-containing gas generator capable of maintaining an appropriate temperature without consuming extra energy.

【0007】[0007]

【課題を解決するための手段】〔構成1〕本発明に係る
水素含有ガス生成装置は、請求項1に記載したごとく、
複数の筒状体を径方向及び軸心方向に且つ同軸心上に備
え、前記複数の筒状体間に形成された筒状の空間が、前
記各部及び前記各部に接続される各流路として構成さ
れ、前記筒状体の軸心方向に沿って、前記改質処理部、
前記脱硫処理部、前記変成処理部、及び前記選択酸化処
理部が、記載の順に配置されていることを特徴とする。
Means for Solving the Problems [Structure 1] A hydrogen-containing gas generator according to the present invention has the following structure.
A plurality of tubular bodies are provided in a radial direction and an axial center and coaxially, and a tubular space formed between the plurality of tubular bodies is used as each of the parts and each flow path connected to each of the parts. Configured, along the axial direction of the tubular body, the modification processing unit,
The desulfurization treatment unit, the shift conversion treatment unit, and the selective oxidation treatment unit are arranged in the order described.

【0008】〔作用効果〕即ち、本発明の発明者らは、
改質処理温度、脱硫処理温度、変成処理温度及び選択酸
化処理温度においては、改質処理温度が最も高く、選択
酸化処理温度が最も低く、脱硫処理温度と変成処理温度
は、改質処理温度と選択酸化処理温度との間にあるとい
うことに鑑みて、水素含有ガス生成装置の構造を簡略化
すべく鋭意研究した。そして、改質処理部、脱硫処理
部、変成処理部及び選択酸化処理部を、最も高温に維持
する必要のある改質処理部と、最も低温に維持する必要
のある選択酸化処理部との間に、それら改質処理部の温
度と選択酸化処理部の温度との間の温度に維持する必要
のある脱硫処理部及び変成処理部が位置し、且つ、隣接
するもの同士で伝熱可能なように設け、そのように改質
処理部、脱硫処理部、変成処理部及び選択酸化処理部を
設けた状態で、隣接するもの同士の伝熱状態と、選択酸
化処理部及びその他の筒状体の部位から外部への放熱状
態を適宜設定することにより、余分なエネルギを消費す
ることなく、改質処理部を適正な温度を制御するだけ
で、その他の処理部は温度を制御することなくそれぞれ
に適正な温度に維持することができるということを見出
した。
[Operation and Effect] That is, the inventors of the present invention
Among the reforming treatment temperature, the desulfurization treatment temperature, the shift treatment temperature and the selective oxidation treatment temperature, the reforming treatment temperature is the highest, the selective oxidation treatment temperature is the lowest, and the desulfurization treatment temperature and the shift treatment temperature are the same as the reforming treatment temperature. In view of the fact that the temperature is between the selective oxidation treatment temperature, an intensive study was conducted to simplify the structure of the hydrogen-containing gas generator. The reforming treatment section, the desulfurization treatment section, the shift conversion treatment section, and the selective oxidation treatment section are placed between the reforming treatment section that needs to be maintained at the highest temperature and the selective oxidation treatment section that is required to be maintained at the lowest temperature. In addition, the desulfurization processing section and the shift conversion processing section, which need to be maintained at a temperature between the temperature of the reforming processing section and the temperature of the selective oxidation processing section, are located, and adjacent ones can transfer heat. In the state where the reforming treatment section, the desulfurization treatment section, the shift conversion treatment section and the selective oxidation treatment section are provided in such a manner, the heat transfer state between adjacent ones and the selective oxidation treatment section and other tubular bodies are By appropriately setting the heat radiation state from the part to the outside, it is possible to control the reforming processing part to an appropriate temperature without consuming extra energy, and the other processing parts can be controlled individually without controlling the temperature. That it can be maintained at an appropriate temperature I found the door.

【0009】さらに、本構成の水素含有ガス生成装置
は、上記のように夫々の処理部を適正な温度に維持する
ことができる上に、各部及び各部に接続される各流路が
複数の筒状体間に形成された筒状の空間により構成され
ているので、管材等により特別に流路を構成する必要が
なくコンパクト化が可能で、且つ偏平な筒状の流路を形
成することができるので、筒状体を介して隣接する空間
との熱交換を良好に行なうことができる。さらに、各流
路や各部の外部への放熱を抑制する場合には、その流路
又は処理部の外側の筒状体を囲むように断熱材を設ける
だけでよいので、断熱材の体積が少なくて済み、断熱材
設置による装置拡大を抑制することができる。
Further, in the hydrogen-containing gas generating apparatus of this structure, each processing section can be maintained at an appropriate temperature as described above, and each section and each flow path connected to each section have a plurality of cylinders. Since it is composed of a cylindrical space formed between the cylindrical bodies, it is possible to form a flat cylindrical flow path, which does not need to be specially configured by a pipe material or the like and can be made compact. Therefore, the heat exchange with the space adjacent to the tubular body can be favorably performed. Further, in the case of suppressing the heat radiation to the outside of each flow path or each part, it is sufficient to provide the heat insulating material so as to surround the flow path or the cylindrical body on the outside of the processing unit, so that the volume of the heat insulating material is small. Therefore, expansion of the device due to installation of heat insulating material can be suppressed.

【0010】〔構成2〕本発明に係る水素含有ガス生成
装置は、請求項2に記載したごとく、上記構成1の水素
含有ガス生成装置の構成に加えて、前記改質処理ガスが
流通する改質処理ガス流路として構成された前記空間
と、前記原燃料ガスが流通する原燃料ガス流路として構
成された前記空間とが前記筒状体を介して隣接して配置
されて、前記改質処理ガスと前記原燃料ガスとの間で熱
交換を行なう第1処理ガス熱交換部を設けたことを特徴
とする。
[Structure 2] The hydrogen-containing gas generator according to the present invention has, in addition to the structure of the hydrogen-containing gas generator of Structure 1 described above, a modification in which the reforming gas flows. The space configured as a quality treatment gas flow channel and the space configured as a raw fuel gas flow channel through which the raw fuel gas flows are arranged adjacent to each other via the tubular body, and the reforming is performed. A first process gas heat exchange section for exchanging heat between the process gas and the raw fuel gas is provided.

【0011】〔作用効果〕つまり、脱硫処理部へ供給さ
れる原燃料ガスは例えば常温に近い温度であり、その原
燃料ガスが供給される脱硫処理部の温度との差が大き
く、一方、改質処理部から排出された状態の改質処理ガ
スは例えば改質処理温度に近い温度であり、その改質処
理ガスが供給される変成処理部との温度差が大きい。そ
こで、脱硫処理部又は脱硫処理部へ供給される原燃料ガ
スと改質処理部から排出された改質処理ガスとを第1処
理ガス熱交換部にて筒状体を介して熱交換させることに
より、原燃料ガスを予熱するために余分なエネルギを消
費することなく、且つ、改質処理ガスを冷却するために
熱を捨てることなく、原燃料ガスを予熱して脱硫処理温
度との温度差を小さくした状態で脱硫処理部に供給する
ことができると共に、改質処理ガスを冷却して変成処理
温度との温度差を小さくした状態で変成処理部に供給す
ることができるようになる。従って、脱硫処理部及び変
成処理部のそれぞれの温度を余分なエネルギを消費する
ことなく一層適正なものに維持することができる。
[Effects] That is, the raw fuel gas supplied to the desulfurization processing section has a temperature close to room temperature, for example, and the difference from the temperature of the desulfurization processing section to which the raw fuel gas is supplied is large. The reforming treatment gas discharged from the quality treatment portion has a temperature close to the reforming treatment temperature, for example, and the temperature difference between the reforming treatment gas and the shift treatment portion to which the reforming treatment gas is supplied is large. Therefore, heat exchange is performed between the raw fuel gas supplied to the desulfurization processing section or the desulfurization processing section and the reforming processing gas discharged from the reforming processing section through the tubular body in the first processing gas heat exchange section. Thus, the temperature difference between the raw fuel gas and the desulfurization treatment temperature is preheated without consuming extra energy to preheat the raw fuel gas and without dissipating heat to cool the reforming treatment gas. Can be supplied to the desulfurization processing section in a reduced state, and at the same time, the reforming processing gas can be supplied to the conversion processing section in a state in which the temperature difference from the conversion processing temperature is reduced. Therefore, the respective temperatures of the desulfurization processing section and the shift conversion processing section can be maintained at more appropriate temperatures without consuming extra energy.

【0012】〔構成3〕本発明に係る水素含有ガス生成
装置は、請求項3に記載したごとく、上記構成2の水素
含有ガス生成装置の構成に加えて、前記変成処理ガスが
流通する変成処理ガス流路として構成された前記空間
と、前記原燃料ガス流路の前記第1処理ガス熱交換部の
上流側として構成された前記空間とが、前記筒状体を介
して隣接して配置されて、前記変成処理ガスと前記原燃
料ガスとの間で熱交換を行なう第2処理ガス熱交換部を
設けたことを特徴とする。
[Structure 3] The hydrogen-containing gas generator according to the present invention has, in addition to the structure of the hydrogen-containing gas generator of Structure 2 described above, a shift treatment in which the shift treatment gas flows. The space configured as a gas flow path and the space configured as an upstream side of the first process gas heat exchange section of the raw fuel gas flow path are arranged adjacent to each other via the tubular body. And a second process gas heat exchange section for exchanging heat between the shift process gas and the raw fuel gas.

【0013】〔作用効果〕つまり、変成処理部から排出
された状態の変成処理ガスは、変成処理温度に近い温度
であり、その変成処理ガスが供給される選択酸化処理部
の温度との差が大きく、一方、第1処理ガス熱交換部に
供給される前の状態の原燃料ガスは常温に近い温度であ
り、その原燃料ガスが供給される脱硫処理部との温度差
が大きい。そこで、変成処理部から排出された変成処理
ガスと原燃料ガスとを第2処理ガス熱交換部にて筒状体
を介して熱交換させることにより、原燃料ガスを予熱す
るために余分なエネルギを消費することなく、且つ、変
成処理ガスを冷却するために熱を捨てることなく、原燃
料ガスを予熱して脱硫処理温度との温度差を小さくした
状態で脱硫処理部に供給することができると共に、変成
処理ガスを冷却して選択酸化処理部との温度差を小さく
した状態で選択酸化処理部に供給することができるよう
になる。さらに、原燃料ガス流路を流通する原燃料ガス
を、第2処理ガス熱交換部で変成処理温度に近い変成処
理ガスとの熱交換により予熱した後に、第1処理ガス熱
交換部で変成処理温度よりも高い温度の改質処理ガスと
の熱交換により予熱して、脱硫処理温度程度で脱硫処理
部に流入させることができ、改質処理ガス及び変成処理
ガスの熱を有効に利用して、原燃料ガスの予熱を行なう
ことができる。従って、脱硫処理部及び選択酸化処理部
のそれぞれの温度を余分なエネルギを消費することなく
一層適正なものに維持することができる。
[Effects] That is, the shift treatment gas discharged from the shift treatment unit has a temperature close to the shift treatment temperature, and the difference from the temperature of the selective oxidation treatment unit to which the shift treatment gas is supplied is different. On the other hand, the raw fuel gas before being supplied to the first process gas heat exchange section has a temperature close to room temperature, and the temperature difference between the raw fuel gas and the desulfurization processing section to which the raw fuel gas is supplied is large. Therefore, by exchanging heat between the shift process gas and the raw fuel gas discharged from the shift process unit through the tubular body in the second process gas heat exchange unit, extra energy is added to preheat the raw fuel gas. It is possible to supply the raw fuel gas to the desulfurization treatment section in a state where the temperature difference from the desulfurization treatment temperature is reduced by preheating the raw fuel gas without consuming the heat and without discarding heat for cooling the shift treatment gas. At the same time, the shift treatment gas can be supplied to the selective oxidation treatment unit in a state where the temperature difference from the selective oxidation treatment unit is reduced by cooling the shift treatment gas. Further, the raw fuel gas flowing through the raw fuel gas flow path is preheated by heat exchange with the shift treatment gas close to the shift treatment temperature in the second process gas heat exchange unit, and then the shift treatment is performed in the first process gas heat exchange unit. It can be preheated by heat exchange with the reforming treatment gas at a temperature higher than the temperature, and can be made to flow into the desulfurization treatment section at about the desulfurization treatment temperature, and the heat of the reforming treatment gas and the shift treatment gas can be effectively used. The raw fuel gas can be preheated. Therefore, the respective temperatures of the desulfurization treatment section and the selective oxidation treatment section can be maintained at more appropriate temperatures without consuming extra energy.

【0014】〔構成4〕本発明に係る水素含有ガス生成
装置は、請求項4に記載したごとく、上記構成2又は3
の水素含有ガス生成装置の構成に加えて、前記改質処理
ガス流路の前記第1処理ガス熱交換部の上流側として構
成された前記空間と、前記脱硫処理ガスが流通する脱硫
処理ガス流路として構成された前記空間とが、前記脱硫
処理部の内側において前記筒状体を介して隣接して配置
されて、前記改質処理ガスと前記脱硫処理ガスとの間で
熱交換を行なう第3処理ガス熱交換部を設けたことを特
徴とする。
[Structure 4] The hydrogen-containing gas generator according to the present invention has the structure 2 or 3 described above.
In addition to the configuration of the hydrogen-containing gas generator, the space configured as an upstream side of the first process gas heat exchange section of the reforming process gas flow path, and a desulfurization process gas flow through which the desulfurization process gas flows. The space configured as a passage is disposed adjacent to the inside of the desulfurization treatment unit via the tubular body, and performs heat exchange between the reforming treatment gas and the desulfurization treatment gas. It is characterized in that a 3 process gas heat exchange section is provided.

【0015】〔作用効果〕つまり、脱硫処理部から排出
された状態の脱硫処理ガスは、脱硫処理温度に近い温度
であり、その脱硫処理ガスが供給される改質処理部の温
度との差が大きく、一方、改質処理部から排出され第1
処理ガス熱交換部に供給される前の状態の改質処理ガス
は、改質処理温度に近い温度であり、その改質処理ガス
が供給される変成処理部との温度差が大きい。そこで、
脱硫処理部から排出された脱硫処理ガスと改質処理部か
ら排出された改質処理ガスとを第3処理ガス熱交換部に
て筒状体を介して熱交換させることにより、脱硫処理ガ
スを予熱するために余分なエネルギを消費することな
く、且つ、改質処理ガスを冷却するために熱を捨てるこ
となく、脱硫処理ガスを予熱して改質処理温度との温度
差を小さくした状態で改質処理部に供給することができ
ると共に、改質処理ガスを冷却して変成処理温度との温
度差を小さくした状態で変成処理部に供給することがで
きるようになる。しかも、第3処理ガス熱交換部の温度
は、改質処理温度と脱硫処理温度との間の範囲内か、あ
るいはその範囲に近い温度であるので、第3処理ガス熱
交換部を、改質処理部に隣接する脱硫処理部の内側に配
置することにより、脱硫処理部、及び第3処理ガス熱交
換部の温度をそれぞれ適正なものに維持し易くなる。さ
らに、改質処理ガス流路を流通する改質処理ガスを、第
3処理ガス熱交換部で脱硫処理温度に近い脱硫処理ガス
との熱交換により冷却した後に、第1処理ガス熱交換部
で脱硫処理温度よりも低い温度の原燃料ガスとの熱交換
により冷却して、変成処理温度程度で変成処理部に流入
させることができ、改質処理ガスの熱を有効に利用する
ことができる。従って、改質処理部及び変成処理部、さ
らには脱硫処理部のそれぞれの温度を余分なエネルギを
消費することなく一層適正なものに維持することができ
る。
[Effects] That is, the desulfurization treatment gas discharged from the desulfurization treatment portion has a temperature close to the desulfurization treatment temperature, and a difference from the temperature of the reforming treatment portion to which the desulfurization treatment gas is supplied is Large, while discharged from the reforming treatment section
The reforming treatment gas in a state before being supplied to the treatment gas heat exchange unit has a temperature close to the reforming treatment temperature, and has a large temperature difference from the shift treatment unit to which the reforming treatment gas is supplied. Therefore,
The desulfurization treatment gas discharged from the desulfurization treatment unit and the reforming treatment gas discharged from the reforming treatment unit are heat-exchanged with each other through the tubular body in the third treatment gas heat exchange unit, whereby the desulfurization treatment gas is removed. In a state where the temperature difference between the reforming treatment temperature and the desulfurization treatment gas is reduced by preheating the desulfurization treatment gas without consuming extra energy for preheating and without dissipating the heat for cooling the reforming treatment gas. In addition to being able to supply to the reforming treatment section, the reforming treatment gas can be supplied to the transformation treatment section in a state where the reforming treatment gas is cooled to reduce the temperature difference from the transformation treatment temperature. Moreover, since the temperature of the third process gas heat exchange section is within or near the range between the reforming treatment temperature and the desulfurization treatment temperature, the third process gas heat exchange section is subjected to the reforming process. By arranging the inside of the desulfurization processing section adjacent to the processing section, it becomes easy to maintain the temperatures of the desulfurization processing section and the third process gas heat exchange section at proper temperatures. Further, after the reforming treatment gas flowing through the reforming treatment gas channel is cooled by heat exchange with the desulfurization treatment gas close to the desulfurization treatment temperature in the third treatment gas heat exchange unit, the first treatment gas heat exchange unit It can be cooled by heat exchange with the raw fuel gas having a temperature lower than the desulfurization treatment temperature and can be made to flow into the shift conversion treatment section at about the shift treatment temperature, and the heat of the reforming treatment gas can be effectively used. Therefore, it is possible to maintain the respective temperatures of the reforming processing section, the shift conversion processing section, and the desulfurization processing section at more appropriate temperatures without consuming extra energy.

【0016】〔構成5〕本発明に係る水素含有ガス生成
装置は、請求項5に記載したごとく、上記構成1から4
の何れかの水素含有ガス生成装置の構成に加えて、前記
加熱部が燃料ガス流路から供給された燃料ガスを燃焼用
空気流路から供給された燃焼用空気を利用して燃焼させ
て前記改質処理部を加熱し燃焼排ガス流路へ燃焼排ガス
を排出する燃焼部として構成されていると共に、前記燃
焼排ガス流路として構成された前記空間と水が供給され
る水流路として構成された空間とが前記筒状体を介して
隣接して配置され、前記水流路を流通する水を前記燃焼
排ガス流路を流通する燃焼排ガスとの熱交換により加熱
して、前記改質処理部へ供給される水蒸気を生成する水
蒸気生成部を設けたことを特徴とする。
[Structure 5] The hydrogen-containing gas generator according to the present invention has the structures 1 to 4 as described in claim 5.
In addition to the configuration of the hydrogen-containing gas generator of any one of the above, the heating unit burns the fuel gas supplied from the fuel gas flow path using the combustion air supplied from the combustion air flow path, A space that is configured as a combustion unit that heats the reforming processing unit and discharges combustion exhaust gas to the combustion exhaust gas flow passage, and that is configured as the space configured as the combustion exhaust gas flow passage and a water flow passage to which water is supplied. And are arranged adjacent to each other via the tubular body, and heat the water flowing through the water flow path by heat exchange with the combustion exhaust gas flowing through the combustion exhaust gas flow path, and are supplied to the reforming processing unit. It is characterized in that a steam generator for generating steam is provided.

【0017】〔作用効果〕本構成の水素含有ガス生成装
置によれば、加熱部を燃料ガスを燃焼させる燃焼部とし
て構成すると共に上記水蒸気生成部を設けることで、こ
の水蒸気生成部にて、供給される水を燃焼部から排出さ
れる燃焼排ガスにて加熱して、改質処理部における改質
処理用の水蒸気を生成するので、余分なエネルギを消費
することなく、改質処理用の水蒸気を生成することがで
きる。
[Advantageous Effects] According to the hydrogen-containing gas generating apparatus of this configuration, the heating section is configured as a combustion section for burning the fuel gas, and the steam generating section is provided so that the steam is generated at the steam generating section. The generated water is heated by the combustion exhaust gas discharged from the combustion unit to generate the steam for the reforming process in the reforming unit, so that the steam for the reforming process can be generated without consuming extra energy. Can be generated.

【0018】〔構成6〕本発明に係る水素含有ガス生成
装置は、請求項6に記載したごとく、上記構成5の水素
含有ガス生成装置の構成に加えて、前記燃料ガス流路及
び前記燃焼用空気流路の少なくとも一方として構成され
た前記空間が、前記燃焼排ガス流路の前記水蒸気生成部
の下流側として構成された空間とが、前記筒状体を介し
て隣接して配置されて、前記燃料ガス及び前記燃焼用空
気の少なくとも一方と前記燃焼排ガスとの間で熱交換を
行なう予熱部を設けたことを特徴とする。
[Structure 6] In addition to the structure of the hydrogen-containing gas generator of Structure 5, the hydrogen-containing gas generator according to the present invention has the structure of the hydrogen-containing gas generator and the fuel gas flow path for combustion as described in claim 6. The space configured as at least one of the air flow paths, the space configured as a downstream side of the steam generation unit of the combustion exhaust gas flow path, is arranged adjacent to each other through the tubular body, It is characterized in that a preheating unit for exchanging heat between at least one of the fuel gas and the combustion air and the combustion exhaust gas is provided.

【0019】〔作用効果〕即ち、前述の水蒸気生成部か
ら排出された燃焼排ガスの温度は少なくとも水蒸気の温
度以上であるので、その燃焼排ガスの熱を有効利用でき
れば、エネルギ効率を向上することができる。そこで、
本構成の水素含有ガス生成装置によれば、上記予熱部を
設けることで、この予熱部にて、燃焼部に供給される燃
料ガス及び燃焼用空気の少なくとも一方を、水蒸気温度
以上の燃焼排ガスとの熱交換により予熱することで、エ
ネルギの再生が可能となり、エネルギ効率を向上するこ
とができる。
[Effect] That is, since the temperature of the combustion exhaust gas discharged from the above-described steam generation unit is at least the temperature of the steam, the energy efficiency can be improved if the heat of the combustion exhaust gas can be effectively used. . Therefore,
According to the hydrogen-containing gas generation device of the present configuration, by providing the preheating section, at least one of the fuel gas and the combustion air supplied to the combustion section in the preheating section, and the combustion exhaust gas of the steam temperature or higher By preheating by the heat exchange of 1, the energy can be regenerated and the energy efficiency can be improved.

【0020】[0020]

【発明の実施の形態】本発明に係る水素含有ガス生成装
置の実施の形態について、図1〜3に基づいて説明す
る。尚、図1は水素含有ガス生成装置の縦断面図であ
り、図2は水素含有ガス生成装置の改質処理部を横断す
る横断面図であり、図3は水素含有ガス生成装置の処理
フローを示すブロック図である。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a hydrogen-containing gas generator according to the present invention will be described with reference to FIGS. 1 is a vertical cross-sectional view of the hydrogen-containing gas generator, FIG. 2 is a cross-sectional view across the reforming treatment section of the hydrogen-containing gas generator, and FIG. 3 is a process flow of the hydrogen-containing gas generator. It is a block diagram showing.

【0021】図1及び図3に示すように、水素含有ガス
生成装置100は、天然ガス系都市ガス13A等の炭化
水素系の原燃料ガスを脱硫処理する脱硫処理部34と、
水流路16に供給された水を加熱して水蒸気を生成する
水蒸気生成部28と、加熱部としての燃焼部45と、燃
焼部45により加熱されて脱硫処理部34から供給され
る脱硫処理ガスを水蒸気生成部28で生成された水蒸気
を用いて水素ガスと一酸化炭素ガスを含む改質処理ガス
に改質処理する改質処理部36と、改質処理部36から
供給される改質処理ガス中の一酸化炭素ガスを水蒸気を
用いて二酸化炭素ガスに変成させることにより変成処理
する変成処理部38と、その変成処理部38から供給さ
れる変成処理ガス中の一酸化炭素ガスを外部から供給さ
れる選択酸化用空気を用いて選択酸化することにより選
択酸化処理する選択酸化処理部40と備え、他に、水素
含有ガス生成装置100の運転を制御する制御部(図示
せず)等を備えて構成されている。そして、選択酸化処
理部40から水素含有ガス流路10を介して排出される
水素含有ガスは、一酸化炭素ガス濃度の低い(例えば1
0ppm以下)水素リッチな水素含有ガスとなる。
As shown in FIGS. 1 and 3, the hydrogen-containing gas generator 100 includes a desulfurization processing unit 34 for desulfurizing a hydrocarbon-based raw fuel gas such as a natural gas-based city gas 13A.
The water vapor generation unit 28 that heats the water supplied to the water flow path 16 to generate water vapor, the combustion unit 45 as a heating unit, and the desulfurization treatment gas heated by the combustion unit 45 and supplied from the desulfurization treatment unit 34. A reforming treatment unit 36 that reforms a reforming treatment gas containing hydrogen gas and carbon monoxide gas using the steam generated in the steam generation unit 28, and a reforming treatment gas supplied from the reforming treatment unit 36. A conversion processing unit 38 that performs conversion processing by converting the carbon monoxide gas therein to carbon dioxide gas using steam, and the carbon monoxide gas in the conversion processing gas supplied from the conversion processing unit 38 is supplied from the outside. And a control unit (not shown) for controlling the operation of the hydrogen-containing gas generation apparatus 100, and the like. hand It has been made. The hydrogen-containing gas discharged from the selective oxidation processing unit 40 via the hydrogen-containing gas flow channel 10 has a low carbon monoxide gas concentration (for example, 1
It becomes a hydrogen-containing gas rich in hydrogen (0 ppm or less).

【0022】脱硫処理部34においては、例えば200
〜350℃の範囲の脱硫処理温度で、脱硫触媒にて、原
燃料ガス流路2を介して供給された原燃料ガス中の硫黄
化合物を水素化し、その水素化物を酸化亜鉛に吸着させ
て脱硫する。ちなみに、脱硫処理部34における脱硫反
応は発熱反応である。脱硫処理部34には、ニッケル−
モリブデン系、クロム−モリブデン系などの水素化脱硫
触媒の粒状成型体の多数が充填されている。また、脱硫
処理部34において脱硫処理された脱硫処理ガスは脱硫
処理ガス流路4に排出される。
In the desulfurization processing section 34, for example, 200
At a desulfurization treatment temperature in the range of ˜350 ° C., a desulfurization catalyst hydrogenates a sulfur compound in the raw fuel gas supplied through the raw fuel gas channel 2, and the hydride is adsorbed on zinc oxide to desulfurize. To do. Incidentally, the desulfurization reaction in the desulfurization treatment section 34 is an exothermic reaction. The desulfurization treatment section 34 contains nickel-
A large number of granular molded bodies of hydrodesulfurization catalysts such as molybdenum type and chromium-molybdenum type are filled. Further, the desulfurization processing gas desulfurized in the desulfurization processing unit 34 is discharged to the desulfurization processing gas passage 4.

【0023】改質処理部36においては、脱硫処理ガス
流路4から脱硫処理ガスが供給され、メタンガスを主成
分とする天然ガスが原燃料ガスである場合は、ルテニウ
ム、ニッケル、白金等の改質触媒の触媒作用により、例
えば600〜700℃の範囲の改質処理温度の下で、メ
タンガスと水蒸気とが下記の反応式[化1]にて改質反
応させ、水素ガスと一酸化炭素ガスを含む改質処理ガス
に改質処理する。ちなみに、改質処理部36における改
質反応は吸熱反応である。また、上記改質用触媒は、セ
ラミック製の多孔質粒状体に保持され、改質処理部36
には、その多孔質粒状体の多数が充填されている。ま
た、改質処理部36で改質処理された改質処理ガスは改
質処理ガス流路6に排出される。
In the reforming unit 36, when desulfurization gas is supplied from the desulfurization gas passage 4 and natural gas whose main component is methane gas is the raw fuel gas, ruthenium, nickel, platinum, etc. are modified. Due to the catalytic action of the high quality catalyst, for example, at a reforming treatment temperature in the range of 600 to 700 ° C., methane gas and steam undergo a reforming reaction according to the following reaction formula [Chemical formula 1] to produce hydrogen gas and carbon monoxide gas. A reforming treatment gas containing the reforming treatment is performed. Incidentally, the reforming reaction in the reforming processing unit 36 is an endothermic reaction. Further, the reforming catalyst is held by a ceramic porous granular material, and the reforming processing unit 36 is used.
Are filled with a large number of the porous particles. Further, the reforming treatment gas which has been reformed by the reforming treatment section 36 is discharged to the reforming treatment gas passage 6.

【0024】[0024]

【化1】 [Chemical 1]

【0025】燃焼部45は、燃料電池Gから排出された
オフガス(燃料ガスの一例)がオフガス流路12を介し
て供給されると共に、燃焼用空気流路14に供給された
燃焼用空気が供給され、そのオフガスをその燃焼用空気
により先混合式に燃焼させて、その燃焼熱により改質処
理部36を加熱するように構成されている。さらに、燃
焼部45は、混合気流路47を介して都市ガス13Aで
ある燃料ガスと燃焼用空気との混合気が供給され、起動
時やオフガス量の不足時に、その混合気を燃焼させるこ
とができるように構成されており、この混合気の流量等
を調整することにより改質処理部36の改質処理温度が
適正な温度に維持される。また、燃焼部45には、起動
時に供給された混合気を着火するイグナイタ46が設け
られている。また、燃焼部45から排出される燃焼排ガ
スは燃焼排ガス流路20を介して外部に排出される。
The combustion section 45 is supplied with off-gas (an example of fuel gas) discharged from the fuel cell G through the off-gas flow passage 12, and is supplied with combustion air supplied to the combustion air flow passage 14. The off gas is burned in a premixed manner by the combustion air, and the reforming treatment unit 36 is heated by the combustion heat. Further, the combustion unit 45 is supplied with a mixture of the fuel gas, which is the city gas 13A, and the combustion air through the mixture passage 47, and burns the mixture at the time of startup or when the amount of off gas is insufficient. The reforming processing temperature of the reforming processing unit 36 is maintained at an appropriate temperature by adjusting the flow rate of the air-fuel mixture and the like. Further, the combustion unit 45 is provided with an igniter 46 that ignites the air-fuel mixture supplied at startup. Further, the combustion exhaust gas discharged from the combustion section 45 is discharged to the outside via the combustion exhaust gas passage 20.

【0026】変成処理部38においては、改質処理ガス
流路6から供給された改質処理ガス中の一酸化炭素ガス
と、後述する水蒸気生成部28の水流路16から供給さ
れた水蒸気とを、酸化鉄又は銅亜鉛の変成触媒の触媒作
用により、例えば150〜300℃の範囲の変成処理温
度の下で、下記の反応式[化2]にて変成反応させ、一
酸化炭素ガスを二酸化炭素ガスに変成処理する。ちなみ
に、変成処理部38における変成反応は発熱反応であ
る。変成処理部5には、粒状成型体の多数が充填されて
いる。また、変成処理部38で変成処理された変成処理
ガスは変成処理ガス流路8に排出される。
In the shift treatment section 38, the carbon monoxide gas in the reforming treatment gas supplied from the reforming treatment gas passage 6 and the steam supplied from the water passage 16 of the steam generating portion 28, which will be described later, are supplied. , By the catalytic action of the iron oxide or copper-zinc conversion catalyst, for example, under the conversion treatment temperature in the range of 150 to 300 ° C., the conversion reaction is performed according to the following reaction formula [Chemical Formula 2] to convert carbon monoxide gas into carbon dioxide. Transform into gas. Incidentally, the shift reaction in the shift processing unit 38 is an exothermic reaction. The transformation processing section 5 is filled with a large number of granular molded bodies. Further, the shift processing gas subjected to shift processing in the shift processing unit 38 is discharged to the shift processing gas flow path 8.

【0027】[0027]

【化2】 [Chemical 2]

【0028】選択酸化処理部40においては、白金、ル
テニウム、ロジウム等の貴金属系の選択酸化触媒の触媒
作用によって、例えば80〜120℃の範囲の選択酸化
処理温度の下で、変成処理ガス流路8から供給された変
成処理ガス中に残っている一酸化炭素ガスを、外部から
変成処理ガス流路8に供給された選択酸化用空気を用い
て、下記の反応式[化3]にて選択酸化する。ちなみ
に、選択酸化処理部40における酸化反応は発熱反応で
ある。また、上記選択酸化用触媒は、セラミック製の多
孔質粒状体に保持され、選択酸化処理部40には、その
多孔質粒状体の多数が充填されている。また、選択酸化
処理部40で選択酸化処理された水素含有ガスは水素含
有ガス流路10に排出される。
In the selective oxidation treatment section 40, by the catalytic action of the noble metal selective oxidation catalyst such as platinum, ruthenium, rhodium, etc., for example, under the selective oxidation treatment temperature in the range of 80 to 120 ° C., the shift treatment gas passage. The carbon monoxide gas remaining in the conversion treatment gas supplied from 8 is selected by the following reaction formula [Chemical Formula 3] using the selective oxidation air externally supplied to the conversion treatment gas passage 8. Oxidize. Incidentally, the oxidation reaction in the selective oxidation treatment section 40 is an exothermic reaction. The selective oxidation catalyst is held in a ceramic porous granular body, and the selective oxidation treatment section 40 is filled with a large number of the porous granular bodies. Further, the hydrogen-containing gas that has been selectively oxidized by the selective oxidation processing unit 40 is discharged to the hydrogen-containing gas flow channel 10.

【0029】[0029]

【化3】 [Chemical 3]

【0030】そして、水素含有ガス生成装置100にて
生成された水素含有ガスは、水素含有ガス流路10を介
して燃料電池Gに供給される。燃料電池Gは、詳細な説
明は省略するが、高分子膜を電解質とする固体高分子型
であり、水素含有ガス生成装置100から供給される水
素含有ガス中の水素と、ブロア(図示せず)から供給さ
れる反応用空気中の酸素との電気化学反応により発電す
るように構成してある。
Then, the hydrogen-containing gas generated by the hydrogen-containing gas generator 100 is supplied to the fuel cell G through the hydrogen-containing gas passage 10. Although detailed description is omitted, the fuel cell G is a solid polymer type having a polymer membrane as an electrolyte, and includes hydrogen in a hydrogen-containing gas supplied from the hydrogen-containing gas generator 100 and a blower (not shown). ) Is configured to generate electricity by an electrochemical reaction with oxygen in the reaction air supplied from (1).

【0031】次に、水素含有ガス生成装置100の特徴
構成について説明する。水素含有ガス生成装置100
は、図1及び図2に示すように、複数の筒状体を径方向
及び軸心I方向に且つ同軸心上に備えた多重筒構造に構
成されており、径方向において互いに隣接する筒状体間
に形成される複数の筒状の空間が、前述の各処理部3
4,36,38,40、夫々の処理部34,36,3
8,40に接続される各流路2,4,6,8,10,1
2,14,16,20、燃焼部45及びそれに接続され
た混合気流路47等として構成されている。そして、こ
のように構成された水素含有ガス生成装置100は、流
路を構成するための管材等が不要となるのでコンパクト
化が可能である。また、筒状体間に形成された筒状の空
間の夫々は、適宜、筒状体を横断する面に沿った円状又
はリング状の仕切部材を設けることにより、軸心I方向
において仕切られ、さらに、筒状体の径方向において互
いに隣接する筒状の空間は、適宜、筒状の空間の間にあ
る筒状体と上記仕切部材とに隙間を設けることにより、
その隙間において折り返す空間として接続されている。
Next, the characteristic structure of the hydrogen-containing gas generator 100 will be described. Hydrogen-containing gas generator 100
As shown in FIG. 1 and FIG. 2, is configured in a multi-cylinder structure having a plurality of cylindrical bodies in the radial direction and the axial center I direction and coaxially, and the cylindrical shapes adjacent to each other in the radial direction. A plurality of cylindrical spaces formed between the bodies are used as the processing units 3 described above.
4, 36, 38, 40 and respective processing units 34, 36, 3
Each flow path 2, 4, 6, 8, 10, 1 connected to 8, 40
2, 14, 16, 20, the combustion unit 45, and the air-fuel mixture passage 47 connected to the combustion unit 45. Further, the hydrogen-containing gas generation device 100 configured as described above does not require a pipe material or the like for forming the flow path, and thus can be made compact. Further, each of the tubular spaces formed between the tubular bodies is partitioned in the direction of the axis I by appropriately providing a circular or ring-shaped partitioning member along a surface crossing the tubular bodies. Further, the tubular spaces adjacent to each other in the radial direction of the tubular body are appropriately provided by providing a gap between the tubular body and the partition member between the tubular spaces,
It is connected as a space to turn back in the gap.

【0032】さらに、水素含有ガス生成装置100は、
この筒状体の軸心I方向に沿って、下方から、改質処理
部36、脱硫処理部34、変成処理部38、及び選択酸
化処理部40が、記載の順に配置されている。
Further, the hydrogen-containing gas generator 100 is
A reforming treatment unit 36, a desulfurization treatment unit 34, a shift conversion treatment unit 38, and a selective oxidation treatment unit 40 are arranged in this order from below along the axis I direction of the tubular body.

【0033】即ち、水素含有ガス生成装置100は、最
も高温に維持する必要のある改質処理部36が最も下方
に配置された燃焼部45の直上に配置されていると共
に、最も低温に維持する必要のある選択酸化処理部40
が最も上方に配置され、さらに、改質処理部36と選択
酸化処理部40との間に、それら改質処理部36の温度
と選択酸化処理部40の温度との間の温度に維持する必
要のある脱硫処理部34と変成処理部38とが温度の高
い順に改質処理部36側から配置されており、隣接する
各処理部間において筒状体を介して伝熱可能となってい
る。また、改質処理部36の外側には、断熱材が充填さ
れて断熱材部50として構成される筒状の空間が形成さ
れ、さらに、その断熱材部50の外側に配置された後述
の水蒸気生成部28の外側には、断熱材が充填されて断
熱材部52として構成される筒状の空間が形成されてい
る。さらに、脱硫処理部34と変成処理部38との外側
には、断熱材が充填されて断熱材部54として構成され
る筒状の空間が形成されている。そして、これら断熱材
部50,52,54により各処理部等の放熱が抑制され
ている。そして、上記各処理部間における伝熱状態と、
選択酸化処理部40の上方への放熱状態と、及び断熱部
材50,52,54の放熱抑制状態等が適宜設定されて
いるので、余分なエネルギを消費することなく、燃焼部
45の燃焼量を調整して、改質処理部36を適正な温度
を制御するだけで、その他の処理部34,38,40の
温度を適正な温度に維持することができる。また、選択
酸化処理部40の放熱を促進するための、選択酸化処理
部40の上方外側に放熱を促進するためのフィンや、フ
ィン間に気流を発生させるファン等を設けても構わな
い。
That is, in the hydrogen-containing gas generator 100, the reforming processing unit 36, which needs to be maintained at the highest temperature, is arranged directly above the combustion unit 45 arranged at the lowest position, and is maintained at the lowest temperature. Necessary selective oxidation treatment section 40
Are disposed on the uppermost side, and between the reforming treatment section 36 and the selective oxidation treatment section 40, it is necessary to maintain a temperature between the temperature of the reforming treatment section 36 and the temperature of the selective oxidation treatment section 40. The desulfurization processing section 34 and the shift conversion processing section 38 are arranged from the side of the reforming processing section 36 in the order of increasing temperature, and heat can be transferred between the adjacent processing sections via the tubular body. Further, a cylindrical space filled with a heat insulating material and configured as a heat insulating material portion 50 is formed on the outside of the reforming processing portion 36, and further, steam described later is arranged outside the heat insulating material portion 50. A tubular space filled with a heat insulating material and configured as a heat insulating material portion 52 is formed outside the generating unit 28. Further, outside the desulfurization processing section 34 and the shift conversion processing section 38, a cylindrical space is formed which is filled with a heat insulating material and configured as a heat insulating material section 54. The heat insulating parts 50, 52, 54 suppress the heat radiation of the processing parts and the like. Then, the heat transfer state between the respective processing units,
Since the heat radiation state above the selective oxidation processing unit 40 and the heat radiation suppression state of the heat insulating members 50, 52 and 54 are appropriately set, the combustion amount of the combustion unit 45 can be controlled without consuming extra energy. The temperature of the other processing units 34, 38, 40 can be maintained at an appropriate temperature only by adjusting and controlling the reforming processing unit 36 at an appropriate temperature. In addition, fins for promoting heat dissipation in order to promote heat dissipation of the selective oxidation processing unit 40, fans for generating an air flow between the fins, and the like may be provided.

【0034】水素含有ガス生成装置100は、各処理ガ
ス間において熱交換を行なう第1〜3処理ガス熱交換部
22,24,26と、燃焼排ガスとの熱交換により水を
加熱して水蒸気を生成するための水蒸気生成部28と、
燃焼排ガスとの熱交換により燃焼部45に供給されるオ
フガス及び燃焼用空気を予熱するための予熱部30とが
設けられており、以下に各部の詳細について説明する。
The hydrogen-containing gas generator 100 heats water by heat exchange with the first to third process gas heat exchange parts 22, 24 and 26 for exchanging heat between the process gases and the combustion exhaust gas to generate steam. A steam generator 28 for generating,
A preheating unit 30 for preheating the off gas and the combustion air supplied to the combustion unit 45 by heat exchange with the combustion exhaust gas is provided, and the details of each unit will be described below.

【0035】第1処理ガス熱交換部22は、変成処理部
38の外側において、改質処理ガス流路6として構成さ
れた筒状の空間と原燃料ガス流路2として構成された筒
状の空間とを、筒状体を介して隣接して配置して構成さ
れ、改質処理ガス流路6を流通する改質処理ガスと原燃
料ガス流路2を流通する原燃料ガスとの間で熱交換を行
なう。そして、この第1処理ガス熱交換部22により、
原燃料ガスを予熱して脱硫処理温度との温度差を小さく
した状態で脱硫処理部34に供給することができると共
に、改質処理ガスを冷却して変成処理温度との温度差を
小さくした状態で変成処理部38に供給することができ
る。
The first process gas heat exchange section 22 has a cylindrical space formed as the reforming process gas flow path 6 and a cylindrical shape formed as the raw fuel gas flow path 2 outside the shift conversion processing section 38. And a space between the reforming process gas flowing through the reforming gas flow channel 6 and the raw fuel gas flowing through the raw fuel gas flow channel 2. Heat exchange. Then, by the first process gas heat exchange section 22,
A state in which the raw fuel gas can be supplied to the desulfurization treatment unit 34 in a state where the temperature difference from the desulfurization treatment temperature is reduced and the reforming treatment gas is cooled to reduce the temperature difference from the shift treatment temperature. Can be supplied to the transformation processing section 38.

【0036】第2処理ガス熱交換部24は、断熱材部5
4の外側において、変成処理ガス流路8として構成され
た筒状の空間と、原燃料ガス流路2の第1処理ガス熱交
換部22の上流側として構成された筒状の空間とが、筒
状体を介して隣接して配置して構成され、変成処理ガス
が流通する変成処理ガスと第1処理ガス熱交換部22に
流入する前の原燃料ガスとの間で熱交換を行なう。そし
て、この第2処理ガス熱交換部24により、原燃料ガス
を予熱して脱硫処理温度との温度差を小さくした状態で
第1処理ガス熱交換部22に供給することができると共
に、変成処理ガスを冷却して選択酸化処理温度との温度
差を小さくした状態で選択酸化処理部40に供給するこ
とができる。
The second process gas heat exchange section 24 has a heat insulating material section 5.
Outside of 4, a tubular space configured as the shift process gas flow channel 8 and a tubular space configured as an upstream side of the first process gas heat exchange section 22 of the raw fuel gas flow channel 2 are provided. Heat is exchanged between the shift process gas in which the shift process gas circulates and the raw fuel gas before flowing into the first process gas heat exchange unit 22, which are arranged adjacent to each other via the tubular body. The second process gas heat exchange unit 24 can supply the first process gas heat exchange unit 22 in a state where the raw fuel gas is preheated to reduce the temperature difference from the desulfurization process temperature, and the shift treatment is performed. The gas can be cooled and supplied to the selective oxidation treatment section 40 in a state where the temperature difference from the selective oxidation treatment temperature is reduced.

【0037】第3処理ガス熱交換部26は、脱硫処理部
34の内側において、改質処理ガス流路6の第1処理ガ
ス熱交換部22の上流側として構成された筒状の空間
と、脱硫処理ガス流路4として構成された筒状の空間と
が、筒状体を介して隣接して配置して構成され、第1処
理ガス熱交換部22に流入する前の改質処理ガスと脱硫
処理ガス流路4を流通する脱硫処理ガスとの間で熱交換
を行なう。そして、この第3処理ガス熱交換部26によ
り、脱硫処理ガスを予熱して改質処理温度との温度差を
小さくした状態で改質処理部36に供給することができ
ると共に、改質処理ガスを冷却して変成処理温度との温
度差を小さくした状態で変成処理部38に供給すること
ができる。
The third process gas heat exchange section 26 has a cylindrical space inside the desulfurization process section 34, which is configured as an upstream side of the first process gas heat exchange section 22 of the reforming process gas passage 6. A tubular space configured as the desulfurization treatment gas flow path 4 is arranged adjacent to each other via a tubular body, and the reforming treatment gas before flowing into the first treatment gas heat exchange section 22 is provided. Heat exchange is performed with the desulfurization treatment gas flowing through the desulfurization treatment gas passage 4. The third process gas heat exchange unit 26 can supply the desulfurization process gas to the reforming process unit 36 in a state where the desulfurization process gas is preheated to reduce the temperature difference from the reforming process temperature, and the reforming process gas is also supplied. Can be supplied to the shift conversion treatment unit 38 in a state where the temperature difference between the cooling temperature and the shift treatment temperature is reduced.

【0038】水蒸気生成部28は、断熱材部50と断熱
材部52との間において、燃焼排ガス流路20として構
成された筒状の空間と、水が供給される水流路16とし
て構成された筒状の空間とが、筒状体を介して隣接して
配置して構成され、水を燃焼排ガスとの熱交換により加
熱して、水蒸気を生成し、生成した水蒸気を脱硫処理ガ
ス流路4に供給する。そして、この水蒸気生成部28に
より、余分なエネルギを消費することなく、改質処理部
36に供給される水蒸気を生成することができる。
The water vapor generating section 28 is formed between the heat insulating material section 50 and the heat insulating material section 52 as a cylindrical space formed as the combustion exhaust gas flow path 20 and the water flow path 16 to which water is supplied. A cylindrical space is arranged adjacent to each other with a cylindrical body interposed therebetween, water is heated by heat exchange with combustion exhaust gas to generate steam, and the generated steam is desulfurized gas passage 4 Supply to. The steam generator 28 can generate steam to be supplied to the reforming processor 36 without consuming extra energy.

【0039】予熱部30は、断熱材部52の外側におい
て、オフガス流路12及び燃焼用空気流路14として構
成された筒状の空間と、燃焼排ガス流路20の水蒸気生
成部28の下流側として構成された筒状の空間とが、筒
状体を介して隣接して配置して構成され、水蒸気生成部
28から排出された比較的高温の燃焼排ガスとの熱交換
により、燃焼部45に供給されるオフガス及び燃焼用空
気を予熱する。そして、この予熱部30により、燃焼排
ガスのエネルギの再生が可能となり、エネルギ効率を向
上することができる。
The preheating section 30 has a cylindrical space formed outside the heat insulating material section 52 as the off-gas flow path 12 and the combustion air flow path 14, and a downstream side of the steam generation section 28 in the combustion exhaust gas flow path 20. And a cylindrical space configured as described above are arranged adjacent to each other via a cylindrical body, and by heat exchange with the relatively high temperature combustion exhaust gas discharged from the steam generation unit 28, the combustion space 45 is formed. Preheat the supplied offgas and combustion air. The preheating unit 30 can regenerate the energy of the combustion exhaust gas and improve the energy efficiency.

【0040】また、オフガス流路12及び燃焼用空気流
路14は、図2に示すように、1つの筒状の空間を、軸
心Iにおいて120°の角度をなす2つの面により1:
2(オフガス流路12:燃焼用空気流路14)の割合で
分割して形成されている。そして、このように燃焼排ガ
ス流路20に隣接する1つの筒状の空間にオフガス流路
12及び燃焼用空気流路14の両方を形成することで、
オフガス及び燃焼用空気の両方を燃焼排ガスにより良好
に予熱することができる。
Further, as shown in FIG. 2, the off-gas flow passage 12 and the combustion air flow passage 14 form one cylindrical space with two surfaces forming an angle of 120 ° at the axis I:
2 (off-gas channel 12: combustion air channel 14). Then, by forming both the off-gas flow channel 12 and the combustion air flow channel 14 in one cylindrical space adjacent to the combustion exhaust gas flow channel 20 in this way,
Both off-gas and combustion air can be better preheated with flue gas.

【0041】また、予熱部30は、燃焼排ガス流路20
の内側に、水蒸気生成部28に供給される前の水が流通
する水流路16として構成された筒状の空間が配置され
ており、水蒸気生成部28に供給される水を燃焼排ガス
との熱交換によりある程度予熱しておくことができる。
Further, the preheating section 30 includes the combustion exhaust gas passage 20.
A cylindrical space configured as a water flow path 16 through which water before being supplied to the steam generating unit 28 flows is disposed inside the inside of the steam generating unit 28, and the water supplied to the steam generating unit 28 is heated with combustion exhaust gas. It can be preheated to some extent by replacement.

【図面の簡単な説明】[Brief description of drawings]

【図1】水素含有ガス生成装置の縦断面図FIG. 1 is a vertical sectional view of a hydrogen-containing gas generator.

【図2】水素含有ガス生成装置の改質処理部を横断する
横断面図
FIG. 2 is a transverse cross-sectional view across the reforming processing unit of the hydrogen-containing gas generation device.

【図3】水素含有ガス生成装置の処理フローを示すブロ
ック図
FIG. 3 is a block diagram showing a processing flow of a hydrogen-containing gas generator.

【符号の説明】[Explanation of symbols]

2 原燃料ガス流路 4 脱硫処理ガス流路 6 改質処理ガス流路 8 変成処理ガス流路 10 水素含有ガス流路 12 オフガス流路 14 燃焼用空気流路 16 水流路 20 燃焼排ガス流路 22 第1処理ガス熱交換部 24 第2処理ガス熱交換部 26 第3処理ガス熱交換部 28 水蒸気生成部 30 予熱部 34 脱硫処理部 36 改質処理部 38 変成処理部 40 選択酸化処理部 45 燃焼部(加熱部) 46 イグナイタ 47 混合気流路 50 断熱材部 52 断熱材部 54 断熱材部 100 水素含有ガス生成装置 G 燃料電池 2 Raw fuel gas flow path 4 Desulfurization gas passage 6 Reforming gas channel 8 Metamorphic processing gas flow path 10 Hydrogen-containing gas flow path 12 Off-gas flow path 14 Combustion air flow path 16 water channels 20 Combustion exhaust gas passage 22 First process gas heat exchange section 24 Second process gas heat exchange section 26 Third Process Gas Heat Exchange Section 28 Steam generator 30 preheating section 34 Desulfurization unit 36 Modification processing unit 38 Transformation Processing Department 40 Selective oxidation treatment section 45 Combustion part (heating part) 46 Igniter 47 mixture channel 50 Thermal insulation part 52 Thermal insulation 54 Thermal insulation part 100 Hydrogen-containing gas generator G fuel cell

フロントページの続き Fターム(参考) 4G040 EA03 EA06 EB01 EB03 EB12 EB24 EB31 EB32 EB42 EB44 5H027 AA02 BA01 BA16 BA17 Continued front page    F-term (reference) 4G040 EA03 EA06 EB01 EB03 EB12                       EB24 EB31 EB32 EB42 EB44                 5H027 AA02 BA01 BA16 BA17

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素系の原燃料ガスを脱硫処理する
脱硫処理部と、 加熱部にて加熱されて、前記脱硫処理部から供給される
脱硫処理ガスを水蒸気にて水素ガスと一酸化炭素ガスを
含む改質処理ガスに改質処理する改質処理部と、 前記改質処理ガスを前記改質処理ガス中の一酸化炭素ガ
スを二酸化炭素ガスに変成させることにより変成処理ガ
スに変成処理する変成処理部と、 前記変成処理ガスを前記変成処理ガス中の一酸化炭素を
選択酸化することにより選択酸化処理ガスに選択酸化処
理する選択酸化処理部とを備え、前記選択酸化処理ガス
を水素含有ガスとして排出する水素含有ガス生成装置で
あって、 複数の筒状体を径方向及び軸心方向に且つ同軸心上に備
え、 前記複数の筒状体間に形成された筒状の空間が、前記各
部及び前記各部に接続される各流路として構成され、 前記筒状体の軸心方向に沿って、前記改質処理部、前記
脱硫処理部、前記変成処理部、及び前記選択酸化処理部
が、記載の順に配置されていることを特徴とする水素含
有ガス生成装置。
1. A desulfurization processing section for desulfurizing a hydrocarbon-based raw fuel gas, and a desulfurization processing gas heated by a heating section and supplied from the desulfurization processing section by means of steam as hydrogen gas and carbon monoxide. A reforming treatment part for reforming into a reforming treatment gas containing a gas, and a transformation treatment gas by transforming the carbon monoxide gas in the reforming treatment gas into carbon dioxide gas. And a selective oxidation treatment unit that selectively oxidizes the transformation treatment gas into the selective oxidation treatment gas by selectively oxidizing carbon monoxide in the transformation treatment gas, wherein the selective oxidation treatment gas is hydrogen. A hydrogen-containing gas generator for discharging as a contained gas, comprising a plurality of tubular bodies in a radial direction and an axial center and coaxially, and a tubular space formed between the plurality of tubular bodies. , Each part and each part It is configured as each flow path to be connected, and along the axial direction of the tubular body, the reforming treatment unit, the desulfurization treatment unit, the shift conversion treatment unit, and the selective oxidation treatment unit are arranged in the order described. A hydrogen-containing gas generation device characterized by being provided.
【請求項2】 前記改質処理ガスが流通する改質処理ガ
ス流路として構成された前記空間と、前記原燃料ガスが
流通する原燃料ガス流路として構成された前記空間とが
前記筒状体を介して隣接して配置されて、前記改質処理
ガスと前記原燃料ガスとの間で熱交換を行なう第1処理
ガス熱交換部を設けた請求項1に記載の水素含有ガス生
成装置。
2. The tubular structure includes the space configured as a reformed gas flow channel through which the reformed gas flows and the space configured as a raw fuel gas flow channel through which the raw fuel gas flows. The hydrogen-containing gas generation device according to claim 1, further comprising a first process gas heat exchange section that is disposed adjacent to each other with the body interposed therebetween and that performs heat exchange between the reformed process gas and the raw fuel gas. .
【請求項3】 前記変成処理ガスが流通する変成処理ガ
ス流路として構成された前記空間と、前記原燃料ガス流
路の前記第1処理ガス熱交換部の上流側として構成され
た前記空間とが、前記筒状体を介して隣接して配置され
て、前記変成処理ガスと前記原燃料ガスとの間で熱交換
を行なう第2処理ガス熱交換部を設けた請求項2に記載
の水素含有ガス生成装置。
3. The space configured as a shift processing gas flow path through which the shift processing gas flows, and the space configured as an upstream side of the first process gas heat exchange section of the raw fuel gas flow path. The hydrogen according to claim 2, further comprising a second process gas heat exchange section that is disposed adjacent to each other through the tubular body and that performs heat exchange between the shift process gas and the raw fuel gas. Inclusion gas generator.
【請求項4】 前記改質処理ガス流路の前記第1処理ガ
ス熱交換部の上流側として構成された前記空間と、前記
脱硫処理ガスが流通する脱硫処理ガス流路として構成さ
れた前記空間とが、前記脱硫処理部の内側において前記
筒状体を介して隣接して配置されて、前記改質処理ガス
と前記脱硫処理ガスとの間で熱交換を行なう第3処理ガ
ス熱交換部を設けた請求項2又は3に記載の水素含有ガ
ス生成装置。
4. The space configured as an upstream side of the first process gas heat exchange section of the reforming process gas channel, and the space configured as a desulfurization process gas channel through which the desulfurization process gas flows. And a third processing gas heat exchange section that is disposed inside the desulfurization processing section so as to be adjacent to each other with the tubular body interposed therebetween and that performs heat exchange between the reforming processing gas and the desulfurization processing gas. The hydrogen-containing gas generator according to claim 2 or 3, which is provided.
【請求項5】 前記加熱部が燃料ガス流路から供給され
た燃料ガスを燃焼用空気流路から供給された燃焼用空気
を利用して燃焼させて前記改質処理部を加熱し燃焼排ガ
ス流路へ燃焼排ガスを排出する燃焼部として構成されて
いると共に、 前記燃焼排ガス流路として構成された前記空間と水が供
給される水流路として構成された空間とが前記筒状体を
介して隣接して配置され、前記水流路を流通する水を前
記燃焼排ガス流路を流通する燃焼排ガスとの熱交換によ
り加熱して、前記改質処理部へ供給される水蒸気を生成
する水蒸気生成部を設けた請求項1から4の何れか1項
に記載の水素含有ガス生成装置。
5. A combustion exhaust gas flow, wherein the heating section burns the fuel gas supplied from the fuel gas channel using the combustion air supplied from the combustion air channel to heat the reforming section. Is configured as a combustion unit that discharges combustion exhaust gas to a passage, and the space configured as the combustion exhaust gas flow passage and the space configured as a water flow passage to which water is supplied are adjacent to each other via the tubular body. And a water vapor generation unit that heats water flowing through the water flow passage by heat exchange with combustion exhaust gas flowing through the combustion exhaust gas flow passage to generate water vapor that is supplied to the reforming processing unit. The hydrogen-containing gas generator according to any one of claims 1 to 4.
【請求項6】 前記燃料ガス流路及び前記燃焼用空気流
路の少なくとも一方として構成された前記空間が、前記
燃焼排ガス流路の前記水蒸気生成部の下流側として構成
された空間とが、前記筒状体を介して隣接して配置され
て、前記燃料ガス及び前記燃焼用空気の少なくとも一方
と前記燃焼排ガスとの間で熱交換を行なう予熱部を設け
た請求項5に記載の水素含有ガス生成装置。
6. The space configured as at least one of the fuel gas flow channel and the combustion air flow channel is a space configured downstream of the steam generation unit in the combustion exhaust gas flow channel, The hydrogen-containing gas according to claim 5, further comprising a preheating unit that is disposed adjacent to each other via a tubular body and that performs heat exchange between at least one of the fuel gas and the combustion air and the combustion exhaust gas. Generator.
JP2001357731A 2001-11-22 2001-11-22 Hydrogen-containing gas generator Expired - Fee Related JP4090234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001357731A JP4090234B2 (en) 2001-11-22 2001-11-22 Hydrogen-containing gas generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001357731A JP4090234B2 (en) 2001-11-22 2001-11-22 Hydrogen-containing gas generator

Publications (2)

Publication Number Publication Date
JP2003160306A true JP2003160306A (en) 2003-06-03
JP4090234B2 JP4090234B2 (en) 2008-05-28

Family

ID=19169029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001357731A Expired - Fee Related JP4090234B2 (en) 2001-11-22 2001-11-22 Hydrogen-containing gas generator

Country Status (1)

Country Link
JP (1) JP4090234B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193135A (en) * 2004-01-06 2005-07-21 Tokyo Gas Co Ltd Catalytic reactor
JP2005247684A (en) * 2004-03-01 2005-09-15 Haldor Topsoe As Method for cooling exothermic reaction zone and reactor unit
JP2007015911A (en) * 2005-06-10 2007-01-25 Fuji Electric Holdings Co Ltd Fuel reforming apparatus
JP2007031185A (en) * 2005-07-25 2007-02-08 Fuji Electric Holdings Co Ltd Fuel reforming apparatus
JP2007055892A (en) * 2005-07-27 2007-03-08 Fuji Electric Holdings Co Ltd Fuel reforming apparatus
JP2007331985A (en) * 2006-06-15 2007-12-27 Matsushita Electric Ind Co Ltd Hydrogen generator and fuel cell power generation system using the same
US7416570B2 (en) 2003-02-14 2008-08-26 Matsushita Electric Industrial Co., Ltd. Hydrogen generator and fuel cell power generation system
JP2009096705A (en) * 2007-09-27 2009-05-07 Sanyo Electric Co Ltd Reforming apparatus for fuel cell
JP2009096706A (en) * 2007-09-27 2009-05-07 Sanyo Electric Co Ltd Reforming apparatus for fuel cell
JP2010013302A (en) * 2008-07-02 2010-01-21 Panasonic Corp Hydrogen generating unit
JP2011178620A (en) * 2010-03-02 2011-09-15 Tokyo Gas Co Ltd Multiple cylindrical steam reformer
WO2012164816A1 (en) * 2011-05-27 2012-12-06 パナソニック株式会社 Hydrogen generator and fuel cell system
US8696773B2 (en) 2007-09-27 2014-04-15 Jx Nippon Oil & Energy Corporation Reforming apparatus for fuel cell

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7416570B2 (en) 2003-02-14 2008-08-26 Matsushita Electric Industrial Co., Ltd. Hydrogen generator and fuel cell power generation system
JP2005193135A (en) * 2004-01-06 2005-07-21 Tokyo Gas Co Ltd Catalytic reactor
JP2005247684A (en) * 2004-03-01 2005-09-15 Haldor Topsoe As Method for cooling exothermic reaction zone and reactor unit
JP2007015911A (en) * 2005-06-10 2007-01-25 Fuji Electric Holdings Co Ltd Fuel reforming apparatus
JP2007031185A (en) * 2005-07-25 2007-02-08 Fuji Electric Holdings Co Ltd Fuel reforming apparatus
JP2007055892A (en) * 2005-07-27 2007-03-08 Fuji Electric Holdings Co Ltd Fuel reforming apparatus
JP2007331985A (en) * 2006-06-15 2007-12-27 Matsushita Electric Ind Co Ltd Hydrogen generator and fuel cell power generation system using the same
JP2009096705A (en) * 2007-09-27 2009-05-07 Sanyo Electric Co Ltd Reforming apparatus for fuel cell
JP2009096706A (en) * 2007-09-27 2009-05-07 Sanyo Electric Co Ltd Reforming apparatus for fuel cell
US8696773B2 (en) 2007-09-27 2014-04-15 Jx Nippon Oil & Energy Corporation Reforming apparatus for fuel cell
JP2010013302A (en) * 2008-07-02 2010-01-21 Panasonic Corp Hydrogen generating unit
JP2011178620A (en) * 2010-03-02 2011-09-15 Tokyo Gas Co Ltd Multiple cylindrical steam reformer
WO2012164816A1 (en) * 2011-05-27 2012-12-06 パナソニック株式会社 Hydrogen generator and fuel cell system
JP5895241B2 (en) * 2011-05-27 2016-03-30 パナソニックIpマネジメント株式会社 Hydrogen generator and fuel cell system
US9312554B2 (en) 2011-05-27 2016-04-12 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generator and fuel cell system

Also Published As

Publication number Publication date
JP4090234B2 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
JP4736299B2 (en) Metamorphic equipment
JP4145785B2 (en) Cylindrical steam reformer
JP2002124289A (en) Solid electrolyte fuel cell system
JP4090234B2 (en) Hydrogen-containing gas generator
JP2008088049A (en) Hydrogen generating device and fuel cell system
JP2003148881A (en) Three-fluid heat exchanger
KR20090079517A (en) Fuel Cell and Control Method Thereof
JP2009110970A (en) Fuel cell device
JP4072846B2 (en) Hydrogen production equipment
JP5807167B2 (en) Hydrogen generator
JP3490877B2 (en) Starting method of reformer for fuel cell
JP2007200709A (en) Solid oxide fuel cell stack and its operation method
JP4624382B2 (en) Operation control method for hydrogen-containing gas generator
JP4531320B2 (en) Operation control method for hydrogen-containing gas generator
JP4429032B2 (en) Method for operating hydrogen-containing gas generator and hydrogen-containing gas generator
JP4753506B2 (en) Hydrogen-containing gas generator and method for operating the same
JP2001068137A (en) Co remover and fuel cell power generating system
JP2000026104A (en) Co selective oxidation reactor
JP2000159501A (en) Hydrogen-containing gas-producing apparatus
JP4484585B2 (en) Reformer
JP5643706B2 (en) Hydrogen-containing gas generator
JP3948885B2 (en) Hydrogen-containing gas generator for fuel cells
JPH10182102A (en) Reforming unit and fuel cell using the same
JP2004193013A (en) Fuel cell power generating device
JP2004196614A (en) Method for removing co, co remover and hydrogen generating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees