JP2007331985A - Hydrogen generator and fuel cell power generation system using the same - Google Patents

Hydrogen generator and fuel cell power generation system using the same Download PDF

Info

Publication number
JP2007331985A
JP2007331985A JP2006166424A JP2006166424A JP2007331985A JP 2007331985 A JP2007331985 A JP 2007331985A JP 2006166424 A JP2006166424 A JP 2006166424A JP 2006166424 A JP2006166424 A JP 2006166424A JP 2007331985 A JP2007331985 A JP 2007331985A
Authority
JP
Japan
Prior art keywords
hydrogen
gas
containing gas
flow path
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006166424A
Other languages
Japanese (ja)
Other versions
JP4953231B2 (en
Inventor
Yuji Mukai
裕二 向井
Akira Maenishi
晃 前西
Kunihiro Ukai
邦弘 鵜飼
Masaya Tsujimoto
雅哉 辻本
Toru Nakamura
透 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd, Matsushita Electric Works Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006166424A priority Critical patent/JP4953231B2/en
Publication of JP2007331985A publication Critical patent/JP2007331985A/en
Application granted granted Critical
Publication of JP4953231B2 publication Critical patent/JP4953231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that it is difficult to control respective temperatures of a converting catalyst and an oxidation catalyst to appropriate temperatures, in an integrated type hydrogen generator. <P>SOLUTION: The hydrogen generator is equipped with: an annular first gas flow passage having a reformer 3 for producing a hydrogen-containing gas from a raw material and steam, and a mixed gas flow passage through which a mixed gas of the raw material and steam, supplied to the reformer 3, flows; and an annular second gas flow passage having a converter 4 for reducing the content of carbon monoxide in the hydrogen-containing gas sent out from the reformer 3 and a CO remover 5 for reducing the content of carbon monoxide in the hydrogen-containing gas sent out from the converter 4. Further, in the hydrogen generator, the second gas flow passage has an annular cooling passage, through which the hydrogen-containing gas sent out from the converter 4 flows, between the CO remover 5 and the mixed gas flow passage, and thereby, the hydrogen-containing gas passed through the cooling passage is turned back so as to be introduced into the CO remover 5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、炭化水素化合物と水を反応させて水素を生成する水素生成装置および、生成された水素を用いて発電を行う燃料電池を有する燃料電池発電装置に関する。   The present invention relates to a hydrogen generator that generates hydrogen by reacting a hydrocarbon compound and water, and a fuel cell generator that includes a fuel cell that generates electric power using the generated hydrogen.

燃料電池発電装置は、改質器によって炭化水素化合物と水蒸気を原料として水蒸気改質反応により水素・二酸化炭素・一酸化炭素および未反応のメタンと水蒸気を含む水素含有ガスを生成し、次に一酸化炭素低減部によって燃料電池に有害となる一酸化炭素を除去した燃料ガスを生成して、この燃料ガスを用いて燃料電池が発電を行う。   The fuel cell power generator generates a hydrogen-containing gas containing hydrogen, carbon dioxide, carbon monoxide, unreacted methane and steam by a steam reforming reaction using a hydrocarbon compound and steam as raw materials. A fuel gas from which carbon monoxide that is harmful to the fuel cell is removed is generated by the carbon oxide reduction unit, and the fuel cell generates power using the fuel gas.

水素生成装置としてはさまざまなものが考案され使用されている。例えば、図4に示した従来技術の水素生成装置1は各反応器及び各反応器に至るガス流路が互いに熱を有効利用して高い水素生成効率を実現し、またコスト的にも有利にするため各反応器及びガス流路をコンパクトに一体化した一体型の水素生成装置である(例えば、特許文献1参照)。   Various hydrogen generators have been devised and used. For example, in the prior art hydrogen generator 1 shown in FIG. 4, each reactor and the gas flow path to each reactor effectively use heat each other to realize high hydrogen generation efficiency, which is also advantageous in terms of cost. Therefore, it is an integrated hydrogen generator in which each reactor and gas flow path are integrated compactly (for example, refer to Patent Document 1).

この一体型の水素生成装置の構成及び動作について簡単に説明しておく。   The configuration and operation of this integrated hydrogen generator will be briefly described.

図4の中心に位置する2は水蒸気改質反応に必要な反応熱を供給する加熱源となるバーナ、3はルテニウムを主成分とする改質触媒を有する改質器、4は銅と亜鉛を主成分とする変成触媒を有する変成器、5はルテニウムを主成分とする酸化触媒を有するCO除去器、6はバーナ2の燃焼ガスの排気口である。原料となる都市ガス等の炭化水素と改質水は各々原料供給口7と改質水供給口8から供給される。改質水は変成触媒と酸化触媒の周囲に巻いて設置した細管9内で両触媒の発生する反応熱を受けて一部蒸発した後、原料と混合されてらせん流路からなる蒸発器10内へ送られる。蒸発器10内で未蒸発の改質水はバーナ2による燃焼ガスと変成触媒および酸化触媒の発生する反応熱によって加熱されて完全に蒸発し、また原料と混合されて改質触媒へ送られる。   4 is a burner serving as a heating source for supplying reaction heat necessary for the steam reforming reaction, 3 is a reformer having a reforming catalyst mainly composed of ruthenium, and 4 is copper and zinc. A shifter having a shift catalyst having a main component, 5 a CO remover having an oxidation catalyst having ruthenium as a main component, and 6 an exhaust port for the combustion gas of the burner 2. Hydrocarbons such as city gas and reforming water as raw materials are supplied from a raw material supply port 7 and a reforming water supply port 8, respectively. The reformed water is partially evaporated by receiving reaction heat generated by both catalysts in a narrow tube 9 wound around the shift catalyst and the oxidation catalyst, and then mixed with the raw material in the evaporator 10 consisting of a spiral channel. Sent to. The reformed water which has not evaporated in the evaporator 10 is heated by the combustion gas generated by the burner 2 and the reaction heat generated by the shift catalyst and the oxidation catalyst to completely evaporate, and is mixed with the raw material and sent to the reforming catalyst.

改質触媒内で原料と改質水蒸気は水素・二酸化炭素・一酸化炭素、および未反応のメタンと水蒸気を含む水素含有ガスとなる。この水素含有ガスは変成触媒を有する変成器4へ送られ、一酸化炭素は変成触媒によって水蒸気と反応してその濃度が1%以下程度にまで低減された水素含有ガスとなる。変成触媒を出た水素含有ガスは酸化ガス供給路11から供給された空気と混合室16で混合されて酸化触媒を有するCO除去器5に導入され、残留する一酸化炭素は酸化触媒によって燃焼除去される。生成された燃料ガスとしての水素含有ガスは、水素含有ガス出口12から燃料電池(図示せず)へ送られる。なお、図中13は水素含有ガスと空気の混合を促進するための流通口、14は水素含有ガスと空気の混合ガスを酸化触媒へ均一に供給するためのヘッダー流路、15は水素生成装置1を覆う断熱材である。
国際公開WO2002/098790号パンフレット
In the reforming catalyst, the raw material and reformed steam become hydrogen-containing gas containing hydrogen, carbon dioxide, carbon monoxide, and unreacted methane and steam. This hydrogen-containing gas is sent to a shifter 4 having a shift catalyst, and carbon monoxide reacts with water vapor by the shift catalyst to become a hydrogen-containing gas whose concentration is reduced to about 1% or less. The hydrogen-containing gas exiting the shift catalyst is mixed with the air supplied from the oxidizing gas supply passage 11 in the mixing chamber 16 and introduced into the CO remover 5 having the oxidation catalyst, and the remaining carbon monoxide is removed by combustion with the oxidation catalyst. Is done. The generated hydrogen-containing gas as the fuel gas is sent from the hydrogen-containing gas outlet 12 to a fuel cell (not shown). In the figure, 13 is a flow port for promoting mixing of the hydrogen-containing gas and air, 14 is a header channel for uniformly supplying the mixed gas of hydrogen-containing gas and air to the oxidation catalyst, and 15 is a hydrogen generator. 1 is a heat insulating material covering 1.
International Publication WO2002 / 098790 Pamphlet

水素生成装置には上述のように複数の触媒が使用され、それらは適切な動作温度が決まっている。たとえば、変成器4の下流温度は反応速度や反応平衡の点から200℃程度が望ましく、CO除去器5の温度は選択性の点から150℃程度が望ましい。具体的には、変成器下流の温度が200℃を大きく下まわると反応速度が著しく低下してしまうために触媒が有効に働くことができず、逆に200℃を大きく上まわると一酸化炭素の平衡濃度が高くなり一酸化炭素の低減が不十分になってしまうからである。CO除去器5については、水素を酸化することなく一酸化炭素を効果的に選択的に酸化する温度がおよそ140℃から160℃程度の範囲にあるためである。しかもCO除去器5の場合、温度が高すぎると自己発熱により更に温度が上昇し、酸化反応が過剰に促進してしまい水素生成装置の運転を停止せざるをえない事態に陥ってしまうこともある。そのため、変成器4下流の水素含有ガス温度は200℃程度、CO除去器5入口の水素含有ガス温度は150℃程度に維持することが必要となる。   As described above, a plurality of catalysts are used in the hydrogen generation apparatus, and they have an appropriate operating temperature. For example, the downstream temperature of the transformer 4 is desirably about 200 ° C. from the viewpoint of reaction rate and reaction equilibrium, and the temperature of the CO remover 5 is desirably about 150 ° C. from the viewpoint of selectivity. Specifically, if the temperature downstream of the transformer is greatly below 200 ° C., the reaction rate is remarkably reduced, so that the catalyst cannot work effectively. On the contrary, if the temperature is greatly above 200 ° C., carbon monoxide. This is because the equilibrium concentration of is increased and the reduction of carbon monoxide becomes insufficient. This is because the temperature for effectively selectively oxidizing carbon monoxide without oxidizing hydrogen is in the range of about 140 ° C. to 160 ° C. for the CO remover 5. In addition, in the case of the CO remover 5, if the temperature is too high, the temperature further rises due to self-heating, and the oxidation reaction is excessively promoted, so that the operation of the hydrogen generator must be stopped. is there. Therefore, it is necessary to maintain the hydrogen-containing gas temperature downstream of the transformer 4 at about 200 ° C. and the hydrogen-containing gas temperature at the CO removal unit 5 inlet at about 150 ° C.

しかし、上記特許文献1記載の水素生成装置では、上述のように変成触媒の出口付近の温度を200℃程度まで低下させ、空気と混合する混合室16において混合される空気、混合室16に隣接する改質水流路を流れる改質水、及び蒸発器10を流れる水により冷却されるが、図4に示されるような制約された混合室空間内でCO除去器5入口における水素含有ガスの温度を150℃程度まで冷却するのは、困難であった。   However, in the hydrogen generator described in Patent Document 1, the temperature in the vicinity of the outlet of the shift catalyst is reduced to about 200 ° C. as described above, and the air mixed in the mixing chamber 16 mixed with air is adjacent to the mixing chamber 16. The temperature of the hydrogen-containing gas at the inlet of the CO remover 5 within the restricted mixing chamber space as shown in FIG. 4 is cooled by the reforming water flowing through the reforming water flow path and the water flowing through the evaporator 10. It was difficult to cool to about 150 ° C.

このように150℃程度まで冷却されていない水素含有ガスをそのまま酸化触媒へ供給すると、上述のようなCO除去器5の過剰促進を引き起こす可能性があるため、変成触媒ではその出口の水素含有ガス温度が150℃程度まで冷却されるように構成せざるを得ず、この場合、変成触媒の下流部が有効に使用されないという課題があった。   When the hydrogen-containing gas that has not been cooled to about 150 ° C. is supplied to the oxidation catalyst as it is, there is a possibility of causing excessive promotion of the CO remover 5 as described above. In this case, there is a problem that the downstream portion of the shift catalyst is not effectively used.

本発明の目的は、上記課題を考慮し、変成器とCO除去器の各々の温度を適温に維持することが可能な一体型の水素生成装置を提供することである。   In view of the above problems, an object of the present invention is to provide an integrated hydrogen generator capable of maintaining the temperatures of the transformer and the CO remover at appropriate temperatures.

上記目的を達成するために、第1の本発明の水素生成装置は、原料及び水蒸気から改質反応により水素含有ガスを生成する改質器、ならびに該改質器に供給される前記原料及び水蒸気の混合ガスが流れる混合ガス流路を有する環状の第1のガス流路と、該第1のガス流路と伝熱可能な構成で前記第1のガス流路の外周に設けられ、前記改質器より送出される水素含有ガス中の一酸化炭素を低減する変成器、ならびに該変成器より送出される水素含有ガス中の一酸化炭素を低減するCO除去器を有する環状の第2のガス流路とを備え、
前記第2のガス流路は、前記CO除去器と前記混合ガス流路との間に前記変成器より送出された水素含有ガスが流れる環状の冷却路を有し、該冷却路を出た水素含有ガスが折り返して前記CO除去器に導入されるよう構成されていることを特徴とする。
To achieve the above object, the hydrogen generator of the first aspect of the present invention includes a reformer that generates a hydrogen-containing gas from a raw material and steam by a reforming reaction, and the raw material and steam supplied to the reformer. An annular first gas passage having a mixed gas passage through which the mixed gas flows, and an outer periphery of the first gas passage having a configuration capable of transferring heat to the first gas passage. An annular second gas having a converter for reducing carbon monoxide in the hydrogen-containing gas delivered from the gasifier, and a CO remover for reducing carbon monoxide in the hydrogen-containing gas delivered from the transformer A flow path,
The second gas flow path has an annular cooling path through which the hydrogen-containing gas sent from the transformer flows between the CO remover and the mixed gas flow path, and hydrogen that has exited the cooling path. The contained gas is folded and introduced into the CO remover.

また、第2の本発明の水素生成装置は、前記変成器より送出された水素含有ガスに酸化ガスを供給する酸化ガス供給路を備え、該酸化ガス供給路の出口が、前記冷却路の入口近傍に設けられていることを特徴とする。   The hydrogen generator of the second aspect of the present invention further includes an oxidizing gas supply path for supplying an oxidizing gas to the hydrogen-containing gas sent from the transformer, and an outlet of the oxidizing gas supply path is an inlet of the cooling path. It is provided in the vicinity.

また、第3の本発明の水素生成装置は、前記変成器より送出された水素含有ガスに酸化ガスを供給する酸化ガス供給路を備え、前記第2のガス流路は、前記水素含有ガスと前記酸化ガスが混合する環状の混合室を有し、前記混合室内の混合ガスが集合し、環状の前記冷却路に拡散するための連通口を有することを特徴とする。   The hydrogen generator of the third aspect of the present invention includes an oxidizing gas supply path for supplying an oxidizing gas to the hydrogen-containing gas sent from the transformer, and the second gas flow path includes the hydrogen-containing gas and the hydrogen-containing gas. It has an annular mixing chamber in which the oxidizing gas is mixed, and has a communication port for the mixed gas in the mixing chamber to gather and diffuse into the annular cooling passage.

また、第4の本発明の水素生成装置は、前記変成器より送出された水素含有ガスに酸化ガスを供給する酸化ガス供給路を備え、該酸化ガス供給路の出口が、前記連通口の近傍に設けられていることを特徴とする。   The hydrogen generator of the fourth aspect of the present invention includes an oxidizing gas supply path for supplying an oxidizing gas to the hydrogen-containing gas sent from the transformer, and an outlet of the oxidizing gas supply path is in the vicinity of the communication port. It is provided in.

また、第5の本発明の燃料電池発電装置は、上記本発明の水素生成装置と、該水素生成装置より供給される水素含有ガスを用いて発電する燃料電池とを備える。   A fuel cell power generator of the fifth aspect of the present invention includes the hydrogen generator of the present invention and a fuel cell that generates power using a hydrogen-containing gas supplied from the hydrogen generator.

本発明により、変成器の変成触媒及びCO除去器の酸化触媒の温度を一体型水素生成装置の制約された空間内で適温に調節可能な一体型の水素生成装置を提供することができる。   According to the present invention, it is possible to provide an integrated hydrogen generator capable of adjusting the temperatures of the shift catalyst of the shift converter and the oxidation catalyst of the CO remover to an appropriate temperature within a limited space of the integrated hydrogen generator.

以下、本発明の実施の形態について図を用いて説明する。
(実施の形態1)
図1は、本実施の形態1における水素生成装置17の概略構成図である。図1において、前述の従来技術の水素生成装置1と同等の構成要素には同じ符号を付しており、燃料ガスを生成する動作も同じであるため説明は省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of the hydrogen generator 17 in the first embodiment. In FIG. 1, the same components as those of the above-described prior art hydrogen generator 1 are denoted by the same reference numerals, and the operation for generating the fuel gas is also the same, so that the description thereof is omitted.

図1において、18は酸化触媒の内筒であり、蒸発器10の冷却面となる外筒19と同軸上にしかも離して配置して両者間に冷却路20を形成している。また、酸化ガス供給路21は出口を冷却路20の近傍にまで伸ばして設置している。   In FIG. 1, reference numeral 18 denotes an inner cylinder of the oxidation catalyst, which is disposed coaxially with and separated from an outer cylinder 19 serving as a cooling surface of the evaporator 10 to form a cooling path 20 therebetween. Further, the oxidizing gas supply path 21 is installed with its outlet extending to the vicinity of the cooling path 20.

また、本発明の第1のガス流路は、環状に設けられた改質触媒を有する改質器3と、原料及び水蒸気の混合ガスが流通する本発明の混合ガス流路である環状の蒸発器10とを備える。一方、本発明の第2のガス流路は、第1のガス流路の外周を覆うように設けられており、改質器3から送出された水素含有ガスが折り返して供給される変成触媒を有する変成器4と、変成器4から送出される水素含有ガスが供給される酸化触媒を有するCO除去器5とを備える。上記第2のガス流路には、CO除去器5と蒸発器10との間に変成器4より送出される水素含有ガスが流れる上記冷却路20を有し、ここで水素含有ガスは、蒸発器10を流れる未蒸発の改質水と熱交換し、冷却される。冷却路20を出た水素含有ガスは折り返してCO除去器5に供給される。   In addition, the first gas flow path of the present invention includes a reformer 3 having a reforming catalyst provided in an annular shape, and an annular evaporation that is a mixed gas flow path of the present invention through which a mixed gas of a raw material and water vapor flows. And a vessel 10. On the other hand, the second gas flow path of the present invention is provided so as to cover the outer periphery of the first gas flow path, and a shift catalyst to which the hydrogen-containing gas sent from the reformer 3 is fed back is provided. And a CO remover 5 having an oxidation catalyst to which a hydrogen-containing gas fed from the transformer 4 is supplied. The second gas flow path has the cooling passage 20 through which the hydrogen-containing gas sent from the transformer 4 flows between the CO remover 5 and the evaporator 10, where the hydrogen-containing gas is evaporated. Heat is exchanged with non-evaporated reforming water flowing through the vessel 10 and cooled. The hydrogen-containing gas exiting the cooling path 20 is turned back and supplied to the CO remover 5.

以下、本構成の水素生成装置17の作用を説明する。前述のように変成触媒下流の温度は200℃程度であるため、本実施の形態の水素生成装置17でも変成触媒下流の温度は200℃になるように構成されている。酸化ガス供給路21より供給される酸化ガスとしての空気と水素含有ガスとが混合室16で混合された後、冷却路20に入る。   Hereinafter, the operation of the hydrogen generator 17 having this configuration will be described. As described above, since the temperature downstream of the shift catalyst is about 200 ° C., the hydrogen generator 17 of the present embodiment is also configured such that the temperature downstream of the shift catalyst is 200 ° C. The air as the oxidizing gas supplied from the oxidizing gas supply path 21 and the hydrogen-containing gas are mixed in the mixing chamber 16 and then enter the cooling path 20.

冷却路20内で水素含有ガスは蒸発器10内を流れる未蒸発の改質水と原料に熱を与え、約150℃程度にまで冷却される。そして、冷却路20を出ると流れを反転させCO除去器5に供給され、残留した一酸化炭素を選択的に酸化してCO濃度が10ppm以下となった水素含有ガスとなって水素含有ガス出口12から流出する。   In the cooling passage 20, the hydrogen-containing gas gives heat to the unevaporated reforming water and the raw material flowing in the evaporator 10, and is cooled to about 150 ° C. After exiting the cooling path 20, the flow is reversed and supplied to the CO remover 5, and the remaining carbon monoxide is selectively oxidized to form a hydrogen-containing gas having a CO concentration of 10 ppm or less. 12 flows out.

上述のように従来の一体型の水素生成装置のように変成器4から送出された水素含有ガスに酸化ガスを混合させた後に、そのままCO除去器に供給するのではなく、CO除去器5の側方に位置していた蒸発器10との間に水素含有ガスを冷却するための冷却路を設けることで、コンパクト化が求められる一体型の水素生成装置の限られた空間内で変成後の水素含有ガスを所望の温度(150℃)まで冷却可能な構成とすることが可能になる。   As described above, after the oxidizing gas is mixed with the hydrogen-containing gas sent from the transformer 4 as in the conventional integrated hydrogen generator, the gas is not supplied to the CO remover as it is, but instead of the CO remover 5. By providing a cooling path for cooling the hydrogen-containing gas between the evaporator 10 located on the side, the post-transformation is performed in a limited space of an integrated hydrogen generator that is required to be compact. It becomes possible to set it as the structure which can cool hydrogen containing gas to desired temperature (150 degreeC).

また、装置の様々な構成、仕様に応じて冷却路20出口の水素含有ガスの温度を約150℃になるように調整するには、蒸発器10の外筒19と酸化触媒の内筒18の間隔を調節すれば良い。具体的には、この間隔を狭くすると、水素含有ガス側の伝熱係数が増加するために水素含有ガスの放熱量が増え、冷却路20出口の水素含有ガスを低温化できる。逆に、冷却路20出口の水素含有ガスを高くするには、間隔を広くすれば良い。   In order to adjust the temperature of the hydrogen-containing gas at the outlet of the cooling path 20 to about 150 ° C. according to various configurations and specifications of the apparatus, the outer cylinder 19 of the evaporator 10 and the inner cylinder 18 of the oxidation catalyst are used. Adjust the interval. Specifically, if this interval is narrowed, the heat transfer coefficient on the hydrogen-containing gas side increases, so the amount of heat released from the hydrogen-containing gas increases, and the temperature of the hydrogen-containing gas at the outlet of the cooling path 20 can be lowered. Conversely, in order to increase the hydrogen-containing gas at the outlet of the cooling path 20, the interval may be increased.

このように本実施の形態の水素生成装置は変成器4の変成触媒下流の温度とCO除去器5の酸化触媒の温度を各々に適した温度に設定できるため、各々の触媒を全て有効に利用することができる。   As described above, the hydrogen generator of the present embodiment can set the temperature downstream of the shift catalyst of the shift converter 4 and the temperature of the oxidation catalyst of the CO remover 5 to temperatures suitable for each, so that each catalyst can be used effectively. can do.

また、上述のように酸化ガス供給路21は酸化ガス出口を冷却路20の近傍にまで伸ばして設置しているため、従来の水素生成装置に比べ、供給された空気が銅―亜鉛系の変成触媒下流端に触れ、触媒劣化を招く可能性が低減したり、空気が貴金属系の変成触媒下流端に触れ、水素の酸化反応により水素含有ガス出口12から送出される水素量が減少する可能性が低減する。   Further, as described above, the oxidizing gas supply passage 21 is installed with the outlet of the oxidizing gas extending to the vicinity of the cooling passage 20, so that the supplied air is transformed into a copper-zinc system compared to the conventional hydrogen generator. The possibility of causing catalyst deterioration due to touching the downstream end of the catalyst may be reduced, or the amount of hydrogen delivered from the hydrogen-containing gas outlet 12 may be reduced due to the oxidation reaction of hydrogen due to contact of the air with the downstream end of the precious metal-based conversion catalyst Is reduced.

また、本実施の形態の水素生成装置を用いた燃料電池発電装置は、図2に示すように水素生成装置17から供給される水素含有ガスが燃料電池30のアノードに供給され、燃料電池30はこの水素含有ガス中の水素とカソードに供給される酸化剤ガス中の酸素との電気化学反応により発電するよう構成されている。
(実施の形態2)
図3は、本実施の形態2における水素生成装置22の概略構成図である。図3において、上述の実施の形態1の水素生成装置17と同等の構成要素には同じ符号を付しており、水素含有ガスを生成する動作も同じであるため説明は省略する。
Further, in the fuel cell power generator using the hydrogen generator of the present embodiment, the hydrogen-containing gas supplied from the hydrogen generator 17 is supplied to the anode of the fuel cell 30 as shown in FIG. Electricity is generated by an electrochemical reaction between hydrogen in the hydrogen-containing gas and oxygen in the oxidant gas supplied to the cathode.
(Embodiment 2)
FIG. 3 is a schematic configuration diagram of the hydrogen generator 22 according to the second embodiment. In FIG. 3, the same components as those of the hydrogen generator 17 of the first embodiment are denoted by the same reference numerals, and the operation for generating the hydrogen-containing gas is also the same, so that the description thereof is omitted.

図3において、本実施の形態2は、変成器4より送出される水素含有ガスと空気とが混合する環状の混合室16内の混合ガスが集合して、環状の冷却路20に導入され拡散するための連通口23を有する。本連通口23は、酸化ガス供給路21の出口近傍に設けられている。これにより空気が変成触媒に触れる可能性をより低減でき、貴金属変成触媒の場合の水素酸化により水素量の減少の可能性、もしくは、銅―亜鉛系変成触媒の場合の触媒の酸化劣化の可能性が低減される水素生成装置を得ることができる。   In FIG. 3, in the second embodiment, the mixed gas in the annular mixing chamber 16 in which the hydrogen-containing gas sent from the transformer 4 and air are mixed together is introduced into the annular cooling passage 20 and diffused. There is a communication port 23 for this purpose. The communication port 23 is provided in the vicinity of the outlet of the oxidizing gas supply path 21. This can further reduce the possibility that air will come into contact with the shift catalyst. Hydrogen oxidation in the case of a noble metal shift catalyst may reduce the amount of hydrogen, or oxidation deterioration of the catalyst in the case of a copper-zinc shift catalyst. Can be obtained.

本発明の水素生成装置は、限られた空間内で変成器及びCO除去器をそれぞれ最適な温度に制御可能な一体型の水素生成装置であり、本装置を利用した家庭用燃料電池発電装置等に有用である。   The hydrogen generator of the present invention is an integrated hydrogen generator capable of controlling the transformer and the CO remover to an optimum temperature in a limited space, such as a domestic fuel cell power generator using this device. Useful for.

本発明にかかる実施の形態1における水素生成装置の概略構成図Schematic configuration diagram of a hydrogen generator in Embodiment 1 according to the present invention 本発明にかかる実施の形態1における燃料電池発電装置の概略構成図1 is a schematic configuration diagram of a fuel cell power generator according to Embodiment 1 of the present invention. 本発明にかかる実施の形態2における水素生成装置の概略構成図Schematic configuration diagram of a hydrogen generator in Embodiment 2 according to the present invention 従来技術による水素生成装置の概略構成図Schematic configuration diagram of a conventional hydrogen generator

符号の説明Explanation of symbols

1、17、22 水素生成装置
2 バーナ
3 改質器
4 変成器
5 CO除去器
6 排気口
7 原料供給口
8 改質水供給口
9 細管
10 蒸発器
11 酸化ガス供給路
12 水素含有ガス出口
13 流通口
14 ヘッダー流路
15 断熱材
16 混合室
18 内筒
19 外筒
20 冷却路
21 酸化ガス供給路
23 連通口
30 燃料電池
1, 17, 22 Hydrogen generator 2 Burner 3 Reformer 4 Transformer 5 CO remover 6 Exhaust port 7 Raw material supply port 8 Reformed water supply port 9 Narrow tube 10 Evaporator 11 Oxidation gas supply path 12 Hydrogen-containing gas outlet 13 Distribution port 14 Header flow path 15 Heat insulating material 16 Mixing chamber 18 Inner cylinder 19 Outer cylinder 20 Cooling path 21 Oxidizing gas supply path 23 Communication port 30 Fuel cell

Claims (5)

原料及び水蒸気から改質反応により水素含有ガスを生成する改質器、ならびに該改質器に供給される前記原料及び水蒸気の混合ガスが流れる混合ガス流路を有する環状の第1のガス流路と、
該第1のガス流路と伝熱可能な構成で前記第1のガス流路の外周に設けられ、前記改質器より送出される水素含有ガス中の一酸化炭素を低減する変成器、ならびに該変成器より送出される水素含有ガス中の一酸化炭素を低減するCO除去器を有する環状の第2のガス流路とを備え、
前記第2のガス流路は、前記CO除去器と前記混合ガス流路との間に前記変成器より送出された水素含有ガスが流れる環状の冷却路を有し、該冷却路を出た水素含有ガスが折り返して前記CO除去器に導入されるよう構成されていることを特徴とする水素生成装置。
An annular first gas flow path having a reformer that generates a hydrogen-containing gas from a raw material and steam by a reforming reaction, and a mixed gas flow path through which a mixed gas of the raw material and steam supplied to the reformer flows When,
A transformer provided on the outer periphery of the first gas flow path in a configuration capable of transferring heat to the first gas flow path, and for reducing carbon monoxide in the hydrogen-containing gas delivered from the reformer; and An annular second gas flow path having a CO remover for reducing carbon monoxide in the hydrogen-containing gas delivered from the transformer,
The second gas flow path has an annular cooling path through which the hydrogen-containing gas sent from the transformer flows between the CO remover and the mixed gas flow path, and hydrogen that has exited the cooling path. A hydrogen generating apparatus, wherein the gas contained is folded back and introduced into the CO remover.
前記変成器より送出された水素含有ガスに酸化ガスを供給する酸化ガス供給路を備え、
該酸化ガス供給路の出口が、前記冷却路の入口近傍に設けられていることを特徴とする請求項1記載の水素生成装置。
An oxidizing gas supply path for supplying an oxidizing gas to the hydrogen-containing gas delivered from the transformer;
2. The hydrogen generator according to claim 1, wherein an outlet of the oxidizing gas supply path is provided in the vicinity of the inlet of the cooling path.
前記変成器より送出された水素含有ガスに酸化ガスを供給する酸化ガス供給路を備え、
前記第2のガス流路は、前記水素含有ガスと前記酸化ガスが混合する環状の混合室を有し、前記混合室内の混合ガスが集合し、環状の前記冷却路に拡散するための連通口を有することを特徴とする請求項1記載の水素生成装置。
An oxidizing gas supply path for supplying an oxidizing gas to the hydrogen-containing gas delivered from the transformer;
The second gas flow path has an annular mixing chamber in which the hydrogen-containing gas and the oxidizing gas are mixed, and a communication port through which the mixed gas in the mixing chamber collects and diffuses into the annular cooling passage The hydrogen generator according to claim 1, comprising:
前記変成器より送出された水素含有ガスに酸化ガスを供給する酸化ガス供給路を備え、
該酸化ガス供給路の出口が、前記連通口の近傍に設けられていることを特徴とする特許請求項1記載の水素生成装置。
An oxidizing gas supply path for supplying an oxidizing gas to the hydrogen-containing gas delivered from the transformer;
2. The hydrogen generator according to claim 1, wherein an outlet of the oxidizing gas supply path is provided in the vicinity of the communication port.
請求項1または2記載の水素生成装置と、該水素生成装置より供給される水素含有ガスを用いて発電する燃料電池とを備える燃料電池発電装置。   A fuel cell power generator comprising: the hydrogen generator according to claim 1; and a fuel cell that generates power using a hydrogen-containing gas supplied from the hydrogen generator.
JP2006166424A 2006-06-15 2006-06-15 Hydrogen generator and fuel cell power generator using the same Active JP4953231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006166424A JP4953231B2 (en) 2006-06-15 2006-06-15 Hydrogen generator and fuel cell power generator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006166424A JP4953231B2 (en) 2006-06-15 2006-06-15 Hydrogen generator and fuel cell power generator using the same

Publications (2)

Publication Number Publication Date
JP2007331985A true JP2007331985A (en) 2007-12-27
JP4953231B2 JP4953231B2 (en) 2012-06-13

Family

ID=38931813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006166424A Active JP4953231B2 (en) 2006-06-15 2006-06-15 Hydrogen generator and fuel cell power generator using the same

Country Status (1)

Country Link
JP (1) JP4953231B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009150792A1 (en) 2008-06-13 2009-12-17 パナソニック株式会社 Fuel processor
JP2010138037A (en) * 2008-12-11 2010-06-24 Tokyo Gas Co Ltd Multi-cylindrical steam reformer for fuel cell
WO2011083534A1 (en) * 2010-01-05 2011-07-14 パナソニック株式会社 Fuel treatment device
JP2011146170A (en) * 2010-01-12 2011-07-28 Eneos Celltech Co Ltd Fuel cell system
JP2011178613A (en) * 2010-03-02 2011-09-15 Tokyo Gas Co Ltd Multiple cylindrical steam reformer
WO2014002468A1 (en) 2012-06-25 2014-01-03 Panasonic Corporation Fuel processor
JP7373706B2 (en) 2021-02-16 2023-11-06 パナソニックIpマネジメント株式会社 hydrogen generator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098790A1 (en) * 2001-06-04 2002-12-12 Tokyo Gas Company Limited Cylindrical water vapor reforming unit
JP2003160306A (en) * 2001-11-22 2003-06-03 Osaka Gas Co Ltd Hydrogen containing gas generator
WO2003078311A1 (en) * 2002-03-15 2003-09-25 Matsushita Electric Works, Ltd. Reforming device and method for operation thereof
JP2004175637A (en) * 2002-11-29 2004-06-24 Babcock Hitachi Kk Co remover and hydrogen production apparatus
JP2004182494A (en) * 2002-11-29 2004-07-02 Toyo Radiator Co Ltd Co reduction device in reformed gas
JP2004247241A (en) * 2003-02-17 2004-09-02 Mitsubishi Electric Corp Reforming device for fuel cell
JP2005193135A (en) * 2004-01-06 2005-07-21 Tokyo Gas Co Ltd Catalytic reactor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098790A1 (en) * 2001-06-04 2002-12-12 Tokyo Gas Company Limited Cylindrical water vapor reforming unit
JP2003160306A (en) * 2001-11-22 2003-06-03 Osaka Gas Co Ltd Hydrogen containing gas generator
WO2003078311A1 (en) * 2002-03-15 2003-09-25 Matsushita Electric Works, Ltd. Reforming device and method for operation thereof
JP2004175637A (en) * 2002-11-29 2004-06-24 Babcock Hitachi Kk Co remover and hydrogen production apparatus
JP2004182494A (en) * 2002-11-29 2004-07-02 Toyo Radiator Co Ltd Co reduction device in reformed gas
JP2004247241A (en) * 2003-02-17 2004-09-02 Mitsubishi Electric Corp Reforming device for fuel cell
JP2005193135A (en) * 2004-01-06 2005-07-21 Tokyo Gas Co Ltd Catalytic reactor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009150792A1 (en) * 2008-06-13 2011-11-10 パナソニック株式会社 Fuel processor
JP4536153B2 (en) * 2008-06-13 2010-09-01 パナソニック株式会社 Fuel processor
KR100998812B1 (en) 2008-06-13 2010-12-06 파나소닉 주식회사 Fuel Treatment Apparatus
US7883675B2 (en) 2008-06-13 2011-02-08 Panasonic Corporation Fuel treatment device
CN101679033B (en) * 2008-06-13 2013-02-27 松下电器产业株式会社 Fuel processor
WO2009150792A1 (en) 2008-06-13 2009-12-17 パナソニック株式会社 Fuel processor
JP2010138037A (en) * 2008-12-11 2010-06-24 Tokyo Gas Co Ltd Multi-cylindrical steam reformer for fuel cell
JP4918629B2 (en) * 2010-01-05 2012-04-18 パナソニック株式会社 Fuel processor
WO2011083534A1 (en) * 2010-01-05 2011-07-14 パナソニック株式会社 Fuel treatment device
EP2522624A4 (en) * 2010-01-05 2018-01-03 Panasonic Intellectual Property Management Co., Ltd. Fuel treatment device
JP2011146170A (en) * 2010-01-12 2011-07-28 Eneos Celltech Co Ltd Fuel cell system
JP2011178613A (en) * 2010-03-02 2011-09-15 Tokyo Gas Co Ltd Multiple cylindrical steam reformer
WO2014002468A1 (en) 2012-06-25 2014-01-03 Panasonic Corporation Fuel processor
JP7373706B2 (en) 2021-02-16 2023-11-06 パナソニックIpマネジメント株式会社 hydrogen generator

Also Published As

Publication number Publication date
JP4953231B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4953231B2 (en) Hydrogen generator and fuel cell power generator using the same
JP5154272B2 (en) Fuel cell reformer
JP2007131513A (en) Reformer and fuel cell system utilizing the same
JP2006019268A (en) Reformer and fuel cell system including it
EP2426769A1 (en) Reformer for fuel cell
JP2007280797A (en) Solid oxide fuel cell (sofc) system and its operation method
JP5272183B2 (en) Fuel cell reformer
JP3903710B2 (en) Fuel reformer and polymer electrolyte fuel cell power generator using the same
JP2005166283A (en) Hydrogen manufacturing device for fuel cell
JP2003187849A (en) Solid polymer fuel cell power generator
JP5161621B2 (en) Fuel cell reformer
JP4210912B2 (en) Fuel reformer and fuel cell power generator
JP2007200709A (en) Solid oxide fuel cell stack and its operation method
JP2005294207A (en) Fuel cell system
JP2000281311A (en) Reforming device for fuel cell
JP4233315B2 (en) Reforming system and operation method thereof, and fuel cell system and operation method thereof
JP2001143731A (en) Fuel cell system
JP3789706B2 (en) CO conversion unit and polymer electrolyte fuel cell power generation system
JP6218591B2 (en) Fuel cell system
JP2007314419A (en) Operation control method for hydrogen-containing gas production apparatus
JP2001115172A (en) Co-reforming apparatus
JP2006059549A (en) Fuel cell power generator
WO2012032744A1 (en) Fuel cell system
JP2015140285A (en) Method for operating hydrogen-containing gas generation apparatus, and hydrogen-containing gas generation apparatus
JP5140361B2 (en) Fuel cell reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090413

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120307

R150 Certificate of patent or registration of utility model

Ref document number: 4953231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3