JP2023113226A - Method for manufacturing hydrogen generator - Google Patents

Method for manufacturing hydrogen generator Download PDF

Info

Publication number
JP2023113226A
JP2023113226A JP2022015426A JP2022015426A JP2023113226A JP 2023113226 A JP2023113226 A JP 2023113226A JP 2022015426 A JP2022015426 A JP 2022015426A JP 2022015426 A JP2022015426 A JP 2022015426A JP 2023113226 A JP2023113226 A JP 2023113226A
Authority
JP
Japan
Prior art keywords
partition
reduction
partition wall
reduction catalyst
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022015426A
Other languages
Japanese (ja)
Inventor
理 宮脇
Osamu Miyawaki
憲有 武田
Kenyu Takeda
豊 吉田
Yutaka Yoshida
柾峻 西崎
Masatoshi Nishizaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2022015426A priority Critical patent/JP2023113226A/en
Publication of JP2023113226A publication Critical patent/JP2023113226A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

To provide a hydrogen generator suppressing individual difference in concentration of CO included in hydrogen-containing gas after a conversion reaction by making a downstream position of a CO-reducing part constant.SOLUTION: A hydrogen generator is manufactured by first performing fixation of an upper shelf board of a CO-reducing part in assembling the CO-reducing part, performing filling of a CO-reducing catalyst under the condition where a gravity direction is inverted with respect to that when the hydrogen generator is used, and installing a lower shelf board of the CO-reducing part at an upstream position of the CO-reducing catalyst. As a result of this, variation in the cubic volume of the CO-reducing catalyst can be absorbed at a position where the lower shelf board of the CO-reducing part is fixed and thereby variation in the position of the upper shelf board of the CO-reducing part can be suppressed.SELECTED DRAWING: Figure 1

Description

本開示は、水素生成装置の製造方法に関する。 The present disclosure relates to a method for manufacturing a hydrogen generator.

特許文献1は、加熱部の外周を囲む燃焼筒と燃焼筒の外周を囲む加熱部隔壁との間に、燃焼排ガスを上方に流す燃焼排ガス流路が形成され、加熱部隔壁と加熱部隔壁の外周を囲む第1隔壁との間において、上側に蒸発部が、下側に改質部が、それぞれ構成され、第1隔壁と第1隔壁の外周を囲む第2隔壁との間に、CO低減部が構成され、CO低減部から流出した水素含有ガスを外部へ排出する多重円筒形状の水素生成装置を、開示している。 In Patent Document 1, a combustion exhaust gas flow path for upwardly flowing combustion exhaust gas is formed between a combustion cylinder surrounding the outer circumference of a heating part and a heating part partition wall surrounding the outer circumference of the combustion cylinder. Between the first partition surrounding the outer periphery, an evaporating section is configured on the upper side, and a reforming section is configured on the lower side, respectively, and CO reduction is provided between the first partition and the second partition surrounding the outer periphery of the first partition. A multi-cylindrical hydrogen generator is disclosed, in which a hydrogen-containing gas flowing out from the CO reduction unit is discharged to the outside.

特開2018-118863号公報JP 2018-118863 A

本開示は、CO低減部の下流位置を一定にし、CO低減部通過後の水素含有ガスに含まれるCOの濃度の個体差を抑制できる、水素生成装置の製造方法を提供する。 The present disclosure provides a method of manufacturing a hydrogen generator that can keep the downstream position of the CO reduction unit constant and suppress individual differences in the concentration of CO contained in the hydrogen-containing gas after passing through the CO reduction unit.

本開示における水素生成装置の製造方法は、加熱部と燃焼筒と加熱部隔壁と第1隔壁と燃焼排ガス流路と蒸発部と改質部と伝熱緩衝筒と第2隔壁上とCO低減部とCO低減部下棚板とCO低減部上棚板と第2隔壁下とリターン流路とを有する水素生成装置の製造方法であって、CO低減触媒充填準備工程とCO低減触媒充填工程とCO低減触媒封止工程と第2隔壁下導入工程と第2隔壁接合工程とを有することを特徴とする。 A method for manufacturing a hydrogen generator according to the present disclosure includes a heating section, a combustion cylinder, a heating section partition, a first partition, a flue gas flow path, an evaporating section, a reforming section, a heat transfer buffer, a second partition, and a CO reduction section. , a lower shelf plate of a CO reduction unit, an upper shelf plate of a CO reduction unit, a lower part of a second partition wall, and a return flow path, comprising a CO reduction catalyst filling preparation step, a CO reduction catalyst filling step, and a CO reduction catalyst It is characterized by having a sealing step, a step of introducing under the second partition wall, and a step of joining the second partition wall.

加熱部は、可燃性ガスを燃焼して、燃焼排ガスを排出するように構成されている。燃焼筒は、鉛直方向に中心軸を有し加熱部の外周を囲む筒状で、燃焼排ガスが筒の内側を下方に向かって流れるように構成されている。加熱部隔壁は、鉛直方向に中心軸を有する有底筒状で、燃焼筒との間に隙間を空けて燃焼筒を収納するように構成されている。 The heating unit is configured to burn the combustible gas and discharge flue gas. The combustion tube has a cylindrical shape having a central axis in the vertical direction and surrounds the outer circumference of the heating section, and is configured so that combustion exhaust gas flows downward inside the tube. The partition wall of the heating section has a bottomed tubular shape with a central axis in the vertical direction, and is configured to accommodate the combustion tube with a gap between it and the combustion tube.

第1隔壁は、鉛直方向に中心軸を有する略筒状で、下部の径が上部の径よりも大きく構成され、加熱部隔壁との間に隙間を空けて加熱部隔壁の外周を囲む。燃焼排ガス流路は、燃焼筒と加熱部隔壁との隙間に形成された、上方に燃焼排ガスを流す流路である。 The first partition has a substantially cylindrical shape having a central axis in the vertical direction, the diameter of the lower portion is larger than the diameter of the upper portion, and the first partition surrounds the outer circumference of the partition of the heating portion with a gap between it and the partition of the heating portion. The flue gas flow path is a flow path formed in a gap between the combustion cylinder and the partition wall of the heating section, through which the flue gas flows upward.

蒸発部は、加熱部隔壁と第1隔壁の上部との隙間に形成され、加熱部隔壁を介して伝わる熱で原料ガスと水とを加熱して、水を蒸発させるように構成されている。 The evaporating section is formed in a gap between the heating section partition and the upper portion of the first partition, and is configured to heat the material gas and water with heat transferred through the heating section partition to evaporate the water.

改質部は、加熱部隔壁と第1隔壁の下部との隙間に改質触媒を充填して形成され、蒸発部の下方で加熱部隔壁を介して熱が伝えられ、蒸発部から流出した原料ガスと水蒸気との混合ガスから改質反応で一酸化炭素を含む一次水素含有ガスを生成するように構成されている。 The reforming section is formed by filling the gap between the partition wall of the heating section and the lower part of the first partition with a reforming catalyst. It is configured to generate a primary hydrogen-containing gas containing carbon monoxide through a reforming reaction from a mixed gas of gas and water vapor.

伝熱緩衝筒は、鉛直方向に中心軸を有する略筒状で、外周面の外径が第1隔壁の下部の外周面の外径よりも大きく、第1隔壁の上部との間に伝熱緩衝用の空間が形成されるように、上下端部が内周側に曲げられて第1隔壁の上部の外周面に固定されている。 The heat transfer buffer cylinder has a substantially cylindrical shape with a central axis in the vertical direction, the outer diameter of the outer peripheral surface is larger than the outer diameter of the outer peripheral surface of the lower part of the first partition, and heat transfer is performed between the upper part of the first partition and the heat transfer buffer cylinder. The upper and lower ends are bent inward and fixed to the upper outer peripheral surface of the first partition so as to form a buffer space.

第2隔壁上は、鉛直方向に中心軸を有する略筒状で、伝熱緩衝筒との間に隙間を空けて伝熱緩衝筒の外周を囲み上端部が内周側に曲げられて第1隔壁の上部の外周面に固定されている。 The second partition wall has a substantially cylindrical shape having a central axis in the vertical direction, surrounds the outer periphery of the heat transfer buffer cylinder with a gap between it and the heat transfer buffer cylinder, and the upper end portion is bent inward to form the first partition wall. It is fixed to the outer peripheral surface of the upper part of the partition.

CO低減部は、伝熱緩衝筒と第2隔壁上との隙間にCO低減触媒を充填して形成され、改質部から流出した一次水素含有ガスに含まれる一酸化炭素の濃度を変性反応で低減して二次水素含有ガスとして排出するように構成されている。 The CO reduction section is formed by filling a gap between the heat transfer buffer cylinder and the second partition with a CO reduction catalyst, and reduces the concentration of carbon monoxide contained in the primary hydrogen-containing gas flowing out of the reforming section by a modification reaction. It is configured to be reduced and discharged as a secondary hydrogen-containing gas.

CO低減部下棚板とCO低減部上棚板は、それぞれ通気構造でドーナツ盤形状の棚板であって、CO低減部下棚板は、CO低減部のCO低減触媒が落下しないように伝熱緩衝筒と第2隔壁上との隙間に配置され、CO低減触媒を下から支持するための棚板であり、CO低減部上棚板は、CO低減部のCO低減触媒がCO低減部から上方に流出しないように伝熱緩衝筒と第2隔壁上との隙間に配置され、下面がCO低減触媒と接触するようにCO低減触媒が充填された部分の上面を覆うための棚板である。 The lower shelf plate of the CO reduction unit and the upper shelf plate of the CO reduction unit are air-permeable, doughnut-shaped shelves. and the second partition wall for supporting the CO reduction catalyst from below. It is a shelf plate for covering the upper surface of the part filled with the CO reduction catalyst so that the lower surface is in contact with the CO reduction catalyst.

第2隔壁下は、鉛直方向に中心軸を有する有底筒状で、上端がCO低減部下棚板の下面外周部と当接し、外周面における上部が第2隔壁上の内周面における下部と対向する状態で第2隔壁上と接合され、第1隔壁におけるCO低減部よりも下側の部分との間に隙間を空けて第1隔壁と加熱部隔壁を収納するように構成されている。 The lower part of the second partition wall has a bottomed cylindrical shape with a central axis in the vertical direction, the upper end abuts the outer peripheral part of the lower surface of the lower shelf plate of the CO reduction part, and the upper part of the outer peripheral surface contacts the lower part of the inner peripheral surface of the second partition wall. It is joined to the top of the second partition so as to face each other, and is configured to accommodate the first partition and the heating portion partition with a gap between them and the portion of the first partition below the CO reduction section.

リターン流路は、第1隔壁におけるCO低減部よりも下側の部分と第2隔壁下との隙間に形成され、改質部から下方に流出した一次水素含有ガスの流れを上向きに変えてCO低減部に導くための流路である。 The return flow path is formed in a gap between a portion of the first partition below the CO reduction section and the bottom of the second partition, and changes the flow of the primary hydrogen-containing gas that has flowed downward from the reforming section upward to increase CO It is a flow path for leading to the reduction part.

CO低減触媒充填準備工程は、所定位置に取り付け済みの第2隔壁上の下部には、未だ第2隔壁下が配置されておらず、第2隔壁上と伝熱緩衝筒との隙間の所定位置に、CO低減部上棚板を取り付け済みであるが、CO低減触媒とCO低減部下棚板は、未だ第2隔壁上と伝熱緩衝筒との隙間に配置していない状態にまで、水素生成装置を製造し、水素生成装置の使用時の重力方向の上下を反転させる工程である。 In the CO reduction catalyst filling preparation step, the lower portion of the second partition wall that has been attached to the predetermined position has not yet been arranged under the second partition wall, and the predetermined position of the gap between the second partition wall and the heat transfer buffer cylinder Although the upper shelf plate of the CO reduction unit has already been installed, the CO reduction catalyst and the lower shelf plate of the CO reduction unit have not yet been placed in the gap between the second partition wall and the heat transfer buffer cylinder. is produced, and the hydrogen generator is turned upside down in the direction of gravity during use.

CO低減触媒充填工程は、CO低減触媒充填準備工程が完了した状態において、第2隔壁上と伝熱緩衝筒とCO低減部上棚板とに囲まれた空間に、上方から所定重量分のCO低減触媒を充填する工程である。 In the CO reduction catalyst filling step, in a state where the CO reduction catalyst filling preparation step is completed, CO reduction of a predetermined weight is placed from above in the space surrounded by the second partition wall, the heat transfer buffer cylinder, and the CO reduction unit upper shelf plate. This is the step of filling the catalyst.

CO低減触媒封止工程は、CO低減触媒充填工程が完了した状態において、CO低減部下棚板を、上方からCO低減触媒が充填された部分に向けて導入して、CO低減部下棚板におけるCO低減触媒と対向する面が均等にCO低減触媒に当接する位置に設置する工程である。 In the CO reduction catalyst sealing step, in a state where the CO reduction catalyst filling step is completed, the CO reduction section lower shelf is introduced from above toward the portion filled with the CO reduction catalyst to remove the CO in the CO reduction section lower shelf. In this step, the surface facing the CO reduction catalyst is installed at a position where the surface is evenly in contact with the CO reduction catalyst.

第2隔壁下導入工程は、CO低減触媒封止工程が完了した状態において、第2隔壁下の底が上になるように、上下を反転させた第2隔壁下を、上方からCO低減部下棚板へ向けて導入して、第2隔壁下がCO低減部下棚板に当接する位置に設置する工程である。 In the step of introducing under the second partition, in a state where the step of sealing the CO reduction catalyst is completed, the bottom of the second partition is turned upside down so that the bottom of the bottom of the second partition faces up, and the bottom of the second partition is moved from above to the lower shelf of the CO reduction unit. In this step, the second partition is introduced toward the plate and installed at a position where the bottom of the second partition abuts the bottom shelf plate of the CO reduction unit.

第2隔壁接合工程は、第2隔壁下導入工程が完了した状態において、第2隔壁下と第2隔壁上とが近接する箇所を気密に接合する工程である。 The second partition joining step is a step of hermetically joining the portions where the second partition bottom and the second partition top are adjacent to each other in a state where the second partition bottom introduction step is completed.

また、本開示における別の水素生成装置の製造方法は、加熱部と燃焼筒と加熱部隔壁と第1隔壁と燃焼排ガス流路と蒸発部と改質部と伝熱緩衝筒と第2隔壁上とCO低減部とCO低減部下棚板とCO低減部上棚板と第2隔壁下とリターン流路とを有し、第2隔壁下とCO低減部下棚板とを一体に構成した水素生成装置の製造方法であって、先に説明した水
素生成装置の製造方法における第2隔壁下とCO低減部下棚板とを一体に構成することにより、CO低減触媒封止工程を省略したものである。
In addition, another method for manufacturing a hydrogen generator in the present disclosure includes a heating section, a combustion cylinder, a heating section partition, a first partition, a combustion exhaust gas flow path, an evaporating section, a reforming section, a heat transfer buffer, and a second partition. , a CO reduction section, a CO reduction section lower shelf, a CO reduction section upper shelf, a second partition bottom, and a return flow path, and the second partition bottom and the CO reduction section bottom shelf are integrally configured. In the manufacturing method, the step of sealing the CO reduction catalyst is omitted by integrating the bottom of the second partition and the bottom plate of the CO reduction unit in the method of manufacturing the hydrogen generator described above.

第2隔壁下は、鉛直方向に中心軸を有する有底筒状で、CO低減部下棚板と一体に構成され、外周面における上部が第2隔壁上の内周面における下部と対向する状態で第2隔壁上と接合され、第1隔壁におけるCO低減部よりも下側の部分との間に隙間を空けて第1隔壁と加熱部隔壁を収納するように構成されている。 The lower portion of the second partition wall has a bottomed cylindrical shape with a central axis in the vertical direction, and is integrally formed with the lower shelf plate of the CO reduction unit, with the upper portion of the outer peripheral surface facing the lower portion of the inner peripheral surface of the second partition wall. It is joined to the top of the second partition, and is configured to accommodate the first partition and the heating portion partition with a gap between them and the portion of the first partition below the CO reduction section.

第2隔壁下導入工程は、CO低減触媒充填工程が完了した状態において、CO低減部下棚板が下で第2隔壁下の底が上になるように上下を反転させた第2隔壁下のCO低減部下棚板を、上方からCO低減触媒が充填された部分に向けて導入して、CO低減部下棚板におけるCO低減触媒と対向する面が均等にCO低減触媒に当接する位置に設置する工程である。 In the step of introducing under the second partition, in the state where the CO reduction catalyst filling step is completed, the CO under the second partition is turned upside down so that the lower shelf plate of the CO reduction unit is at the bottom and the bottom under the second partition is at the top. A step of introducing the lower shelf plate of the reduction section from above toward the portion filled with the CO reduction catalyst, and installing the surface of the lower shelf plate of the CO reduction section facing the CO reduction catalyst evenly in contact with the CO reduction catalyst. is.

本開示における水素生成装置の製造方法は、CO低減部の組立においてCO低減部の上棚板の固定を先に行い、水素生成装置の使用時とは重力方向を反転させた状態でCO低減触媒の充填を行い、CO低減触媒の上流位置でCO低減部の下棚板を設置する製造方法とすることにより、以下の効果が得られる。 In the method of manufacturing a hydrogen generator according to the present disclosure, the upper shelf plate of the CO reduction unit is first fixed in the assembly of the CO reduction unit, and the CO reduction catalyst is installed in a state in which the direction of gravity is reversed from when the hydrogen generation unit is used. By adopting a manufacturing method in which the filling is performed and the lower shelf plate of the CO reduction section is installed upstream of the CO reduction catalyst, the following effects can be obtained.

予めCO低減部上棚板を所定の位置に固定することで、充填されたCO低減触媒の体積のバラつきをCO低減部の下棚板の固定位置で吸収することが可能となり、CO低減部の上棚板の位置のバラつきを抑制できる。 By fixing the upper shelf of the CO reduction section to a predetermined position in advance, it is possible to absorb variations in the volume of the filled CO reduction catalyst at the fixed position of the lower shelf of the CO reduction section. Variation in the position of the plate can be suppressed.

そのため、CO低減触媒の下流位置を一定にできるので、CO低減触媒の下流位置と加熱部との距離が一定となり、CO低減触媒下流部の温度を一定にすることができる。CO低減部通過後の水素含有ガスに含まれるCOの濃度は、CO低減触媒下流部の温度に依存するため、変成反応後ガス中のCO濃度の個体差を抑制することができる。 Therefore, since the downstream position of the CO reduction catalyst can be kept constant, the distance between the downstream position of the CO reduction catalyst and the heating section becomes constant, and the temperature of the downstream part of the CO reduction catalyst can be kept constant. Since the concentration of CO contained in the hydrogen-containing gas after passing through the CO reduction portion depends on the temperature of the downstream portion of the CO reduction catalyst, it is possible to suppress individual differences in the CO concentration in the post-shifting reaction gas.

実施の形態1における水素生成装置の概略構成図Schematic diagram of the hydrogen generator in Embodiment 1 実施の形態1における水素生成装置のCO低減部の組立に関する5つの製造工程を示す概略構成図Schematic configuration diagram showing five manufacturing processes for assembling the CO reduction unit of the hydrogen generator according to Embodiment 1. 実施の形態2における水素生成装置の概略構成図Schematic configuration diagram of a hydrogen generator in Embodiment 2 実施の形態2における水素生成装置のCO低減部の組立に関する4つの製造工程を示す概略構成図Schematic configuration diagram showing four manufacturing processes for assembling the CO reduction unit of the hydrogen generator according to Embodiment 2 他の形態における水素生成装置の概略構成図Schematic configuration diagram of a hydrogen generator in another form 他の形態における水素生成装置のCO低減部の組立に関する5つの製造工程を示す概略構成図Schematic configuration diagram showing five manufacturing processes for assembling a CO reduction unit of a hydrogen generator in another form

(本開示の基礎となった知見等)
発明者らが本開示を想定するに至った当時、加熱部の外周を囲む燃焼筒と燃焼筒の外周を囲む加熱部隔壁との間に、燃焼排ガスを上方に流す燃焼排ガス流路が形成され、加熱部隔壁と加熱部隔壁の外周を囲む第1隔壁との間において、上側に蒸発部が、下側に改質部が、それぞれ構成され、第1隔壁と第1隔壁の外周を囲む第2隔壁との間に、CO低減部が構成され、CO低減部から流出した水素含有ガスを外部へ排出する多重円筒形状の水素生成装置があった。
(Knowledge, etc. on which this disclosure is based)
At the time when the inventors came up with the present disclosure, a combustion exhaust gas flow path for upwardly flowing combustion exhaust gas was formed between the combustion cylinder surrounding the outer circumference of the heating part and the heating part partition wall surrounding the outer circumference of the combustion cylinder. , between the heating part partition and the first partition surrounding the outer periphery of the heating part partition, the evaporating part is configured on the upper side and the reforming part is configured on the lower side, and the first partition and the first partition surrounding the outer periphery of the first partition There was a multi-cylindrical hydrogen generator in which a CO reduction section was formed between two partition walls and the hydrogen-containing gas that flowed out from the CO reduction section was discharged to the outside.

しかしながら、従来の水素生成装置においては、CO低減部のCO低減触媒が落下しな
いようにCO低減触媒を下から支持する棚板の取付位置が、CO低減触媒を充填する前から決まっていた。
However, in the conventional hydrogen generator, the mounting position of the shelf supporting the CO reduction catalyst from below so that the CO reduction catalyst in the CO reduction unit does not drop was determined before the CO reduction catalyst was filled.

しかし、CO低減触媒は球状の物体であるため、触媒の充填量及び、触媒の充填によって生まれる隙間の差によってCO低減部の下流位置に各機体において個体差が生じる。また、一定重量となるよう管理し充填したCO低減触媒に、比重の軽いCO低減触媒が混入した場合には、CO低減除去器の体積が増加することで、CO低減部の下流位置が上方にずれる。 However, since the CO reduction catalyst is a spherical object, there are individual differences in the downstream position of the CO reduction section in each aircraft due to the difference in the amount of catalyst filled and the gap created by the filling of the catalyst. In addition, when a CO reduction catalyst with a low specific gravity is mixed with the CO reduction catalyst that is controlled and filled so as to have a constant weight, the volume of the CO reduction remover increases, and the downstream position of the CO reduction unit moves upward. deviate.

そして、CO低減部の下流位置に差が生じることによって、高温の加熱部からの距離がばらつき、CO低減部下流部及び変成反応後の水素含有ガスの温度に差が生じる。CO低減部では水性ガスシフト反応と呼ばれる化学反応が起こっており、これは発熱を伴う化学反応である。よって、CO低減触媒部が高温になれば反応物側に平衡状態が偏るため、生成ガス中のCOの濃度が上昇する。 Due to the difference in the downstream position of the CO reduction section, the distance from the high-temperature heating section varies, and the temperature of the hydrogen-containing gas downstream of the CO reduction section and the hydrogen-containing gas after the transformation reaction varies. A chemical reaction called the water-gas shift reaction takes place in the CO reduction zone, which is an exothermic chemical reaction. Therefore, when the temperature of the CO reduction catalyst portion rises, the equilibrium state is biased toward the reactants, and the concentration of CO in the generated gas increases.

これにより、変成反応後の水素含有ガスの温度に差が生じることによって変成反応後の水素含有ガスに含まれるCOの濃度に個体差が生じるという課題があった。 As a result, there is a problem that the concentration of CO contained in the hydrogen-containing gas after the shift reaction varies among individuals due to the difference in the temperature of the hydrogen-containing gas after the shift reaction.

そうした状況下において、発明者らは、初めにCO低減部の上部の棚板を固定し、水素生成装置の使用時とは重力方向が反転された状態で、CO低減触媒を充填した後にCO低減部の下部の棚板を、水素生成装置の使用時とは重力方向が反転された状態における鉛直方向の、CO低減触媒の上端位置で固定することによって、CO低減部の下流位置のバラつきを抑制することができるという着想を得た。 Under such circumstances, the inventors first fixed the upper shelf plate of the CO reduction unit, filled the CO reduction catalyst with the direction of gravity reversed from when the hydrogen generator was used, and then reduced CO. By fixing the shelf plate at the bottom of the unit at the upper end position of the CO reduction catalyst in the vertical direction in a state where the direction of gravity is reversed from when the hydrogen generator is in use, variations in the downstream position of the CO reduction unit are suppressed. I got the idea that it can be done.

しかし、CO低減部の下部の棚板は、CO低減部を構成する内側円筒部材と溶接して固定する必要があるが、CO低減部を構成する外側円筒部材に溶接トーチが干渉し、正確に溶接することが難しい。 However, the shelf plate at the bottom of the CO reduction section needs to be fixed by welding with the inner cylindrical member that makes up the CO reduction section, but the welding torch interferes with the outer cylindrical member that makes up the CO reduction section, and the welding torch interferes. difficult to weld.

さらに、発明者らは、CO低減部の上部の棚板とは異なり、下部の棚板は触媒の重みがかかるため、触媒の脱落による製品不良を防止するために確実な固定が必要であるという課題があることを発見し、その課題を解決するために本開示の主題を構成するに至った。 Furthermore, the inventors believe that unlike the upper shelf plate of the CO reduction unit, the lower shelf plate bears the weight of the catalyst, so it must be securely fixed in order to prevent product defects due to falling off of the catalyst. It has been discovered that there is a problem, and the subject matter of this disclosure has been formed in order to solve that problem.

そこで、本開示は、CO低減部の上部棚板の固定、CO低減触媒の充填、CO低減部の下部棚板の設置の順に組み立てを行い、改質反応後のガスが流れるリターン流路を形成する外側円筒部材の上端部分を、CO低減部の下部棚板に接触させ支持することによってCO低減部の下部棚板をCO低減触媒の下端位置で固定し、リターン流路を形成する外側円筒部材とCO低減部を構成する外側円筒部材とを溶接することで、各機体において上端位置を統一したCO低減部を形成して、変成反応後の水素含有ガスに含まれるCOの濃度の個体差を抑制することができる水素生成装置の製造方法を提供する。 Therefore, in the present disclosure, assembly is performed in the order of fixing the upper shelf plate of the CO reduction unit, filling the CO reduction catalyst, and installing the lower shelf plate of the CO reduction unit to form a return flow path through which the gas after the reforming reaction flows. The upper end portion of the outer cylindrical member is supported in contact with the lower shelf plate of the CO reduction section, thereby fixing the lower shelf plate of the CO reduction section at the lower end position of the CO reduction catalyst and forming the return flow path. and the outer cylindrical member that constitutes the CO reduction section are welded to form a CO reduction section with a uniform upper end position in each fuselage, and individual differences in the concentration of CO contained in the hydrogen-containing gas after the metamorphic reaction are eliminated. Provided is a method for manufacturing a hydrogen generator capable of suppressing.

以下、図面を参照しながら実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。 Hereinafter, embodiments will be described in detail with reference to the drawings. However, more detailed description than necessary may be omitted. For example, detailed descriptions of well-known matters or redundant descriptions of substantially the same configurations may be omitted.

なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。 It should be noted that the accompanying drawings and the following description are provided to allow those skilled in the art to fully understand the present disclosure and are not intended to limit the claimed subject matter thereby.

(実施の形態1)
以下、図1~図2を用いて、実施の形態1を説明する。
(Embodiment 1)
Embodiment 1 will be described below with reference to FIGS. 1 and 2. FIG.

[1-1.構成]
図1に示すように、水素生成装置100は、加熱部120と蒸発部121と改質部122とCO低減部123とCO低減部上棚板124とCO低減部下棚板125と燃焼筒130と加熱部隔壁131と第1隔壁132と第2隔壁上133と第2隔壁下134と伝熱緩衝筒135と燃焼排ガス流路140とリターン流路141とを有している。
[1-1. composition]
As shown in FIG. 1, the hydrogen generator 100 includes a heating unit 120, an evaporating unit 121, a reforming unit 122, a CO reducing unit 123, a CO reducing unit upper shelf 124, a CO reducing unit lower shelf 125, a combustion cylinder 130, and a heating unit. It has a partition wall 131 , a first partition wall 132 , a second upper partition wall 133 , a second lower partition wall 134 , a heat transfer buffer cylinder 135 , a flue gas flow path 140 and a return flow path 141 .

加熱部120は、鉛直方向に中心軸を有する燃焼筒130の内周側に配置され、燃焼用空気が混合された可燃性ガスを燃焼して燃焼排ガスを排出するバーナと、バーナに可燃性ガスを供給するガス供給管と、バーナに燃焼用空気を供給する燃焼用空気供給管と、を備えている。加熱部120のバーナは、下向きの炎を形成するように構成されている。 The heating unit 120 is arranged on the inner peripheral side of a combustion cylinder 130 having a central axis in the vertical direction, and includes a burner that burns combustible gas mixed with combustion air and discharges combustion exhaust gas, and a combustible gas in the burner. and a combustion air supply pipe for supplying combustion air to the burner. The burners of heating section 120 are configured to produce downward flames.

可燃性ガスには、原料ガス(都市ガスやLPガス)を用いることができ、その他にも、水素生成装置100が燃料電池に水素含有ガスを燃料ガスとして供給する場合は、燃料電池で利用されずに燃料電池から排出される燃料ガス(アノードオフガス)を用いることができる。 Raw material gas (city gas or LP gas) can be used as the combustible gas. In addition, when the hydrogen generator 100 supplies a hydrogen-containing gas to the fuel cell as the fuel gas, it is used in the fuel cell. A fuel gas (anode off-gas) discharged from the fuel cell can be used.

燃焼筒130は、鉛直方向に中心軸を有し加熱部120の外周を囲む筒状で、加熱部120と同軸になるように配置されている。燃焼筒130は、燃焼筒130の内周側では、燃焼排ガスを下方(鉛直方向の下向き)に流し、燃焼筒130の外周側(燃焼筒130と加熱部隔壁131との間に形成された燃焼排ガス流路140)では、燃焼排ガスを上方(鉛直方向の上向き)に流すための部材である。 Combustion cylinder 130 has a cylindrical shape having a central axis in the vertical direction and surrounds the outer periphery of heating section 120 , and is arranged coaxially with heating section 120 . In the combustion tube 130, the combustion exhaust gas flows downward (downward in the vertical direction) on the inner peripheral side of the combustion tube 130, and the combustion gas formed between the combustion tube 130 and the heating section partition 131 on the outer peripheral side of the combustion tube 130. The exhaust gas passage 140) is a member for causing the combustion exhaust gas to flow upward (upward in the vertical direction).

燃焼筒130の下端は、改質部122の下端よりも鉛直方向の下に位置し、燃焼筒130と同軸になるように配置され燃焼筒130を囲む有底円筒形の加熱部隔壁131の底部よりも鉛直方向の上に位置する。 The lower end of the combustion tube 130 is located vertically below the lower end of the reforming section 122, and the bottom of a bottomed cylindrical heating section partition 131 that surrounds the combustion tube 130 and is arranged coaxially with the combustion tube 130. located vertically above

水素生成装置100は、加熱部120のバーナの燃焼で発生した燃焼排ガスが、燃焼筒130の内周面に沿って燃焼筒130の内周側を下方に流れた後に、加熱部隔壁131の底部と燃焼筒130の下端との隙間を通って上方に折り返して流れ、燃焼筒130と加熱部隔壁131との間に形成された燃焼排ガス流路140を通って改質部122と熱交換した後に、蒸発部121と熱交換して、加熱部隔壁131における上部に設けられた燃焼排ガス出口管から水素生成装置100の外部に排出されるように構成されている。 In the hydrogen generator 100, after the flue gas generated by the combustion of the burner of the heating section 120 flows downward along the inner peripheral surface of the combustion tube 130 along the inner peripheral side of the combustion tube 130, it reaches the bottom portion of the heating section partition wall 131. and the lower end of the combustion cylinder 130 and flows upward, and after heat exchange with the reforming section 122 through the combustion exhaust gas flow path 140 formed between the combustion cylinder 130 and the heating section partition 131, , exchanges heat with the evaporating section 121 and is discharged to the outside of the hydrogen generator 100 from a combustion exhaust gas outlet pipe provided in the upper portion of the heating section partition 131 .

燃焼排ガス流路140は、燃焼筒130と加熱部隔壁131との隙間に形成された、上方に燃焼排ガスを流す流路である。 The combustion exhaust gas flow path 140 is a flow path formed in a gap between the combustion cylinder 130 and the heating section partition wall 131 and through which the combustion exhaust gas flows upward.

加熱部隔壁131は、内径が燃焼筒130の外径よりも大きく、燃焼筒130の外周面を囲み燃焼筒130と同軸になるように配置され、燃焼筒130との間に燃焼排ガス流路140を形成する有底円筒形の金属部材であり、加熱部隔壁131の底部と燃焼筒130の下端との間に燃焼排ガスが通流する隙間がある。加熱部隔壁131は、燃焼筒130との間に隙間を空けて燃焼筒130を収納するように構成されている。 The heating part partition wall 131 has an inner diameter larger than the outer diameter of the combustion cylinder 130 , surrounds the outer peripheral surface of the combustion cylinder 130 , and is arranged coaxially with the combustion cylinder 130 . There is a gap between the bottom of the heating part partition 131 and the lower end of the combustion cylinder 130 through which combustion exhaust gas flows. The heating part partition 131 is configured to accommodate the combustion cylinder 130 with a gap between it and the combustion cylinder 130 .

第1隔壁132は、鉛直方向に中心軸を有する略筒状で、内径が加熱部隔壁131の外径よりも大きく、下部の径が上部の径よりも大きく構成されている。第1隔壁132は、加熱部隔壁131との間に隙間を空けて加熱部隔壁131の外周面を囲み、加熱部隔壁131と同軸になるように配置された金属部材である。 The first partition 132 has a substantially cylindrical shape with a vertical center axis, an inner diameter larger than the outer diameter of the heating part partition 131, and a lower diameter larger than an upper diameter. The first partition 132 is a metal member that surrounds the outer peripheral surface of the heating part partition 131 with a gap between it and the heating part partition 131 and is arranged coaxially with the heating part partition 131 .

第1隔壁132の上部と加熱部隔壁131との間には、炭化水素を含む原料ガスと水とを螺旋状に流すための螺旋状に曲げられた棒材が配置され、第1隔壁132の下部と加熱
部隔壁131との間には、原料ガスと水蒸気との混合ガスから改質反応で一次水素含有ガス(一酸化炭素を含む水素含有ガス)を生成する改質触媒150が充填されている。
Between the upper portion of the first partition 132 and the heating section partition 131, a spirally bent bar is arranged for spirally flowing the raw material gas containing hydrocarbons and water. A reforming catalyst 150 that generates a primary hydrogen-containing gas (a hydrogen-containing gas containing carbon monoxide) by a reforming reaction from a mixed gas of raw material gas and steam is filled between the lower part and the heating part partition wall 131 . there is

第1隔壁132の上部と加熱部隔壁131との間で螺旋状の棒材が配置された箇所は、炭化水素を含む原料ガスと水とが加熱部隔壁131から伝わる熱で加熱されながら通過する蒸発部121となっており、第1隔壁132の下部と加熱部隔壁131との間で改質触媒150が充填された箇所は、改質部122となっている。 A raw material gas containing hydrocarbons and water pass through while being heated by the heat transmitted from the heating part partition 131 at the place where the spiral bar is arranged between the upper part of the first partition 132 and the heating part partition 131. A portion filled with the reforming catalyst 150 between the lower portion of the first partition 132 and the heating portion partition 131 serves as the reforming portion 122 .

第1隔壁132における螺旋状の棒材が配置された箇所よりも上部には、蒸発部121に原料ガスと水を供給する供給管が接続されている。 A supply pipe for supplying the raw material gas and water to the evaporator 121 is connected to a portion of the first partition 132 above the location where the spiral bar is arranged.

蒸発部121は、加熱部隔壁131と第1隔壁132の上部との隙間に螺旋状に曲げられた棒材を配置して形成(構成)され、加熱部隔壁131を介して伝わる熱(加熱部120の熱と燃焼排ガスの熱)で、炭化水素を含む原料ガスと水とを加熱して、水を蒸発させるように構成されている。 The evaporating section 121 is formed (configured) by arranging a spirally bent bar in the gap between the heating section partition 131 and the upper portion of the first partition 132 . 120 and the heat of the flue gas) to heat the raw material gas containing hydrocarbons and water to evaporate the water.

改質部122は、加熱部隔壁131と第1隔壁132の下部との隙間に改質触媒を充填して形成され、蒸発部121の下方で加熱部隔壁131を介して熱(加熱部120の熱と燃焼排ガスの熱)が伝えられ、蒸発部121から流出した原料ガスと水蒸気との混合ガスから改質反応で一酸化炭素を含む一次水素含有ガスを生成するように構成されている。 The reforming section 122 is formed by filling the gap between the heating section partition wall 131 and the lower part of the first partition wall 132 with a reforming catalyst. Heat and heat of combustion exhaust gas) are transferred, and a primary hydrogen-containing gas containing carbon monoxide is generated by a reforming reaction from the mixed gas of raw material gas and water vapor that flowed out from the evaporator 121 .

改質部122は、第1隔壁132の下部と加熱部隔壁131との間に充填される改質触媒の他に、改質部下棚板(図示せず)と、改質部上棚板(図示せず)と、を備えている。 The reforming section 122 includes a reforming section lower shelf (not shown) and a reforming section upper shelf (not shown) in addition to the reforming catalyst filled between the lower portion of the first partition 132 and the heating section partition 131 . not shown).

改質部下棚板は、改質触媒を下から支えるように第1隔壁132の下部と加熱部隔壁131との間に配置される棚板であり、改質部上棚板は、改質触媒150を上から覆うように第1隔壁132の下部と加熱部隔壁131との間に配置される棚板である。改質部下棚板と改質部上棚板は、通気構造で、ドーナツ盤形状で、改質触媒の粒子径より小さい通気孔が形成されている。 The reforming section lower shelf is a shelf arranged between the lower part of the first partition 132 and the heating section partition 131 so as to support the reforming catalyst from below. The shelf plate is arranged between the lower part of the first partition 132 and the heating part partition 131 so as to cover the . The lower shelf plate of the reforming section and the upper shelf plate of the reforming section have an air-permeable structure, are doughnut-shaped, and have vent holes smaller than the particle size of the reforming catalyst.

伝熱緩衝筒135は、鉛直方向に中心軸を有する略筒状で、外周面の外径が第1隔壁132の下部の外周面の外径よりも大きい。伝熱緩衝筒135は、第1隔壁132の上部との間に伝熱緩衝用の空間が形成されるように、上下端部が内周側に曲げられて第1隔壁132の上部の外周面に固定されている。 The heat transfer buffer cylinder 135 has a substantially tubular shape with a central axis in the vertical direction, and the outer diameter of the outer peripheral surface is larger than the outer diameter of the lower outer peripheral surface of the first partition 132 . The upper and lower ends of the heat transfer buffer cylinder 135 are bent inward so as to form a space for heat transfer buffer between the upper portion of the first partition wall 132 and the outer peripheral surface of the upper portion of the first partition wall 132 . is fixed to

伝熱緩衝筒135は、蒸発部121とCO低減部123との間に伝熱緩衝用の空間を形成するように、第1隔壁132における蒸発部121が構成されている部分の外周面に固定される筒状部材である。伝熱緩衝筒135は、第1隔壁132における蒸発部121が構成された部分の外周面を囲み第1隔壁132と同軸になるように配置されている。 The heat transfer buffer cylinder 135 is fixed to the outer peripheral surface of the portion of the first partition 132 where the evaporator 121 is formed so as to form a space for heat transfer buffer between the evaporator 121 and the CO reduction unit 123. It is a cylindrical member that is used. The heat transfer buffer cylinder 135 is arranged so as to surround the outer peripheral surface of the portion of the first partition 132 where the evaporator 121 is formed and be coaxial with the first partition 132 .

改質部122から流出した一次水素含有ガスのうち、CO低減部123を通流せずに、伝熱緩衝筒135と第1隔壁132との間を通流して、水素生成装置100の外に出てしまう一次水素含有ガスの量が許容量を超えないように、伝熱緩衝筒135の上端部と下端部とが、第1隔壁132に気密に接合される。 Of the primary hydrogen-containing gas that has flowed out of the reforming unit 122, it flows between the heat transfer buffer cylinder 135 and the first partition 132 without flowing through the CO reduction unit 123, and is discharged out of the hydrogen generator 100. The upper and lower ends of the heat transfer buffer cylinder 135 are hermetically joined to the first partition wall 132 so that the amount of the primary hydrogen-containing gas that is lost does not exceed the allowable amount.

伝熱緩衝筒135は、上端部と下端部との間の部分の内径が、第1隔壁132における蒸発部121が構成されている部分の外径よりも大きく、伝熱緩衝筒135の内周面と第1隔壁132における蒸発部121が構成された部分の内周面との間に空間を形成する。また、伝熱緩衝筒135における上端部と下端部との間の部分の外径は、第1隔壁132における改質部122が構成されている部分の外径よりも大きい。 The heat transfer buffer tube 135 has an inner diameter of a portion between the upper end and the lower end larger than the outer diameter of the portion of the first partition 132 where the evaporator 121 is formed, and the inner circumference of the heat transfer buffer tube 135 A space is formed between the surface and the inner peripheral surface of the portion of the first partition 132 where the evaporator 121 is formed. Further, the outer diameter of the portion between the upper end portion and the lower end portion of the heat transfer buffer tube 135 is larger than the outer diameter of the portion of the first partition wall 132 where the reformed portion 122 is formed.

伝熱緩衝筒135は、伝熱緩衝筒135の外周側に隣接するCO低減部123のCO低減触媒または伝熱緩衝筒135の外周面を流れるガスが、蒸発部121との熱交換によって局所的に冷却されることを抑制する伝熱緩衝空間を形成するための部材である。 In the heat transfer buffer 135, the CO reduction catalyst of the CO reduction portion 123 adjacent to the outer peripheral side of the heat transfer buffer 135 or the gas flowing on the outer peripheral surface of the heat transfer buffer 135 locally heats through heat exchange with the evaporator 121. It is a member for forming a heat transfer buffer space that suppresses cooling to the outside.

伝熱緩衝筒135は、伝熱緩衝筒135の外周面と第2隔壁上133の内周面との間に充填されるCO低減触媒が、蒸発部121との熱交換によって局所的に冷却される(CO低減触媒において温度ムラが発生する)ことを抑制する伝熱緩衝空間を形成する。 In the heat transfer buffer cylinder 135, the CO reduction catalyst filled between the outer peripheral surface of the heat transfer buffer cylinder 135 and the inner peripheral surface of the upper second partition wall 133 is locally cooled by heat exchange with the evaporator 121. A heat transfer buffer space is formed to suppress the occurrence of temperature unevenness in the CO reduction catalyst.

伝熱緩衝筒135は、伝熱緩衝筒135の内周面と第1隔壁132における蒸発部121が構成された部分の内周面との間に伝熱緩衝空間を形成し、この伝熱緩衝空間が蒸発部121とCO低減部123との間の伝熱(熱交換)を抑制する。 The heat transfer buffer cylinder 135 forms a heat transfer buffer space between the inner peripheral surface of the heat transfer buffer cylinder 135 and the inner peripheral surface of the portion of the first partition wall 132 where the evaporator 121 is formed. The space suppresses heat transfer (heat exchange) between the evaporation section 121 and the CO reduction section 123 .

第2隔壁上133は、鉛直方向に中心軸を有する略筒状で、伝熱緩衝筒135との間に隙間を空けて伝熱緩衝筒135の外周を囲み上端部が内周側に曲げられて第1隔壁132の上部の外周面に固定されている。 The second upper partition wall 133 has a substantially cylindrical shape having a central axis in the vertical direction, surrounds the outer circumference of the heat transfer buffer cylinder 135 with a gap between it and the heat transfer buffer cylinder 135, and the upper end portion is bent inward. is fixed to the outer peripheral surface of the upper portion of the first partition wall 132 .

第2隔壁上133は、内径が伝熱緩衝筒135の外径よりも大きく、第1隔壁132における蒸発部121が構成されている部分と伝熱緩衝筒135の外周面を囲み第1隔壁132(伝熱緩衝筒135)と同軸になるように配置され、伝熱緩衝筒135との間にCO低減部123を構成する金属部材である。 The upper second partition wall 133 has an inner diameter larger than the outer diameter of the heat transfer buffer cylinder 135 , and surrounds the portion of the first partition wall 132 where the evaporator 121 is configured and the outer peripheral surface of the heat transfer buffer cylinder 135 . It is a metal member that is arranged coaxially with (the heat transfer buffer cylinder 135 ) and constitutes the CO reduction part 123 between the heat transfer buffer cylinder 135 and the heat transfer buffer cylinder 135 .

第2隔壁上133は、第2隔壁上133におけるCO低減部123が構成されている部分よりも上部に二次水素含有ガスを水素生成装置100の外部に排出(供給)する出口管を備えている。 The second partition top 133 is provided with an outlet pipe for discharging (supplying) the secondary hydrogen-containing gas to the outside of the hydrogen generator 100 above the portion of the second partition top 133 where the CO reduction unit 123 is configured. there is

第2隔壁上133は、伝熱緩衝筒135との間もしくは外周面が伝熱緩衝筒135で覆われていない第1隔壁132との間に、リターン流路141を通過した一次水素含有ガスをCO低減部下棚板125(CO低減部123)まで導く流路と、CO低減部上棚板124(CO低減部123)から流出した二次水素含有ガスを出口管まで導く流路も形成している。 The second partition wall top 133 allows the primary hydrogen-containing gas that has passed through the return flow path 141 to flow between it and the heat transfer buffer cylinder 135 or between the first partition wall 132 whose outer peripheral surface is not covered with the heat transfer buffer cylinder 135. A flow path leading to the CO reduction section lower shelf 125 (CO reduction section 123) and a flow path for guiding the secondary hydrogen-containing gas flowing out from the CO reduction section upper shelf 124 (CO reduction section 123) to the outlet pipe are also formed. .

CO低減部123は、伝熱緩衝筒135と第2隔壁上133との隙間にCO低減触媒を充填して形成され、改質部122から流出した一次水素含有ガスに含まれる一酸化炭素の濃度を変性反応で低減して二次水素含有ガスとして排出するように構成されている。 The CO reduction section 123 is formed by filling a gap between the heat transfer buffer cylinder 135 and the upper second partition wall 133 with a CO reduction catalyst, and reduces the concentration of carbon monoxide contained in the primary hydrogen-containing gas flowing out of the reforming section 122. is reduced by the modification reaction and discharged as a secondary hydrogen-containing gas.

CO低減触媒は、第2隔壁上133と伝熱緩衝筒135との間に充填される直径が2~3mmの粒状のCu-Zn系の触媒である。 The CO reduction catalyst is a granular Cu—Zn catalyst with a diameter of 2 to 3 mm, which is filled between the second partition wall 133 and the heat transfer buffer cylinder 135 .

CO低減部下棚板125とCO低減部上棚板124は、それぞれ通気構造でドーナツ盤形状の棚板である。CO低減部下棚板125とCO低減部上棚板124は、CO低減触媒の粒子径より小さい直径が1mmの通気孔が形成されている。 The CO reduction unit lower shelf plate 125 and the CO reduction unit upper shelf plate 124 each have a ventilation structure and are doughnut-shaped shelf plates. The lower shelf plate 125 of the CO reduction unit and the upper shelf plate 124 of the CO reduction unit are formed with air holes having a diameter of 1 mm, which is smaller than the particle diameter of the CO reduction catalyst.

CO低減部下棚板125は、CO低減部123のCO低減触媒が落下しないように伝熱緩衝筒135と第2隔壁上133との隙間に配置され、CO低減触媒を下から支持するための棚板である。 The CO reduction section lower shelf plate 125 is arranged in a gap between the heat transfer buffer tube 135 and the second partition wall top 133 so that the CO reduction catalyst of the CO reduction section 123 does not drop, and is a shelf for supporting the CO reduction catalyst from below. is a board.

CO低減部上棚板124は、CO低減部123のCO低減触媒がCO低減部123から上方に流出しないように伝熱緩衝筒135と第2隔壁上133との隙間に配置され、下面がCO低減触媒と接触するようにCO低減触媒が充填された部分の上面を覆うための棚板
である。
The CO reduction unit upper shelf plate 124 is arranged in the gap between the heat transfer buffer cylinder 135 and the second partition wall upper part 133 so that the CO reduction catalyst of the CO reduction unit 123 does not flow upward from the CO reduction unit 123, and the lower surface is CO reduction. A shelf plate for covering the upper surface of the part filled with the CO reduction catalyst so as to be in contact with the catalyst.

第2隔壁下134は、鉛直方向に中心軸を有する有底筒状で、第2隔壁下134の上端がCO低減部下棚板125の下面外周部と当接し、第2隔壁下134の外周面における上部が第2隔壁上133の内周面における下部と対向する状態で第2隔壁上133と接合され、第1隔壁132におけるCO低減部123よりも下側の部分との間に隙間を空けて第1隔壁132と加熱部隔壁131とを収納するように構成されている。 The lower second partition wall 134 has a bottomed cylindrical shape with a central axis in the vertical direction, and the upper end of the lower second partition wall 134 abuts on the outer peripheral portion of the lower surface of the lower shelf plate 125 of the CO reduction unit. is joined to the upper second partition wall 133 in a state facing the lower portion of the inner peripheral surface of the upper second partition wall 133, and a gap is provided between the portion of the first partition wall 132 below the CO reduction portion 123 The first partition wall 132 and the heating part partition wall 131 are accommodated.

第2隔壁下134は、内径が第1隔壁132における改質部122が構成された部分の外径よりも大きく、第1隔壁132における改質部122が構成された部分の外周面を囲み第1隔壁132と同軸になるように配置され、第1隔壁132における改質部122が構成された部分との間にリターン流路141を形成する有底円筒形の金属部材であり、第2隔壁下134の底部と第1隔壁132の下端との間に一次水素含有ガスが通流する隙間がある。 The second partition bottom 134 has an inner diameter larger than the outer diameter of the portion of the first partition 132 where the reformed portion 122 is formed, and surrounds the outer peripheral surface of the portion of the first partition 132 where the reformed portion 122 is formed. It is a bottomed cylindrical metal member that is arranged coaxially with the first partition 132 and forms a return flow path 141 between the first partition 132 and the portion of the first partition 132 where the reforming section 122 is formed. Between the bottom of the lower 134 and the lower end of the first partition 132 there is a gap through which the primary hydrogen-containing gas flows.

第2隔壁下134の底部は、加熱部隔壁131の底部よりも大きく、第2隔壁下134の底部は、加熱部隔壁131の底部よりも下方に位置するように構成されている。第2隔壁下134の上端部の外径は、第2隔壁下134の上端部を第2隔壁上133の下端部と接合できるように、第2隔壁下134における上端部以外の部分の径よりも大きく構成されている。 The bottom of the second partition bottom 134 is larger than the bottom of the heating part partition 131 , and the bottom of the second partition bottom 134 is positioned below the bottom of the heating part partition 131 . The outer diameter of the upper end portion of the second lower partition wall 134 is larger than the diameter of the portion other than the upper end portion of the second lower partition wall 134 so that the upper end portion of the second lower partition wall 134 can be joined to the lower end portion of the second upper partition wall 133. is also largely constructed.

リターン流路141は、第1隔壁132におけるCO低減部123よりも下側の部分と第2隔壁下134との隙間に形成され、改質部122から下方に流出した一次水素含有ガスの流れを上向きに変えてCO低減部123に導くための流路である。 The return flow path 141 is formed in a gap between a portion of the first partition 132 below the CO reduction section 123 and the second partition bottom 134, and receives the flow of the primary hydrogen-containing gas flowing downward from the reforming section 122. It is a flow path for turning upward and leading to the CO reduction section 123 .

(水素製造装置の製造工程の構成)
図2に示すように、水素生成装置100の製造方法は、CO低減触媒充填準備工程101と、CO低減触媒充填工程102と、CO低減触媒封止工程103と、第2隔壁下導入工程104と、第2隔壁接合工程105と、を有する。
(Configuration of manufacturing process of hydrogen production device)
As shown in FIG. 2, the method for manufacturing the hydrogen generator 100 includes a CO reduction catalyst filling preparation step 101, a CO reduction catalyst filling step 102, a CO reduction catalyst sealing step 103, and a second partition bottom introduction step 104. , and a second partition bonding step 105 .

1番目のCO低減触媒充填準備工程101は、次のCO低減触媒充填工程102で、第2隔壁上133と伝熱緩衝筒135とCO低減部上棚板124とに囲まれた空間に、CO低減触媒151を充填できるように準備する工程である。 In the first CO reduction catalyst filling preparation step 101, in the next CO reduction catalyst filling step 102, a CO reduction This is a step of preparing to fill the catalyst 151 .

CO低減触媒充填準備工程101は、伝熱緩衝筒135が第1隔壁132における蒸発部121が構成された部分の外周面の所定位置に取り付け固定され、第1隔壁132の所定位置に取り付け固定済みの第2隔壁上133の下端には、未だ第2隔壁下134が配置されておらず、第2隔壁上133と伝熱緩衝筒135の間にCO低減部上棚板124を取り付け済みであるが、次のCO低減触媒充填工程102でCO低減触媒151を充填できるように、CO低減部下棚板125は未だ第2隔壁上133と伝熱緩衝筒135の間に配置していない状態まで、水素生成装置を製造して、水素生成装置の使用時の重力方向の上下を反転させる(上下逆にする)工程である。 In the CO reduction catalyst filling preparation step 101, the heat transfer buffer cylinder 135 is attached and fixed to a predetermined position on the outer peripheral surface of the portion of the first partition 132 where the evaporator 121 is configured, and is attached and fixed to a predetermined position on the first partition 132. At the lower end of the second upper partition wall 133, the lower second partition wall 134 has not yet been arranged, and the upper shelf plate 124 of the CO reduction section has already been attached between the upper second partition wall 133 and the heat transfer buffer cylinder 135. , so that the CO reduction catalyst 151 can be filled in the next CO reduction catalyst filling step 102, the hydrogen This is a step of manufacturing a hydrogen generator and turning it upside down in the direction of gravity when the hydrogen generator is in use (turning it upside down).

2番目のCO低減触媒充填工程102は、1番目のCO低減触媒充填準備工程101が完了した状態において、第2隔壁上133と伝熱緩衝筒135とCO低減部上棚板124とに囲まれた空間に、CO低減部上棚板124の上方から所定重量分のCO低減触媒151を充填する作業を行う工程である。 The second CO reduction catalyst filling step 102 is surrounded by the second partition wall upper portion 133, the heat transfer buffer cylinder 135, and the CO reduction portion upper shelf plate 124 in a state where the first CO reduction catalyst filling preparation step 101 is completed. In this step, the space is filled with a predetermined weight of the CO reduction catalyst 151 from above the upper shelf plate 124 of the CO reduction unit.

3番目のCO低減触媒封止工程103は、2番目のCO低減触媒充填工程102が完了した状態において、CO低減部下棚板125を、鉛直方向の上方からCO低減触媒151
が充填された部分に向けて導入して、CO低減部下棚板125におけるCO低減触媒151と対向する面が均等にCO低減触媒151に当接する位置に設置する作業を行う工程である。
In the third CO reduction catalyst sealing step 103, in a state where the second CO reduction catalyst filling step 102 is completed, the CO reduction section lower shelf plate 125 is vertically attached to the CO reduction catalyst 151 from above.
is introduced toward the portion filled with CO, and the surface of the lower shelf plate 125 of the CO reduction section facing the CO reduction catalyst 151 is installed at a position where the CO reduction catalyst 151 evenly contacts the CO reduction catalyst 151.

4番目の第2隔壁下導入工程104は、3番目のCO低減触媒封止工程103が完了した状態において、第2隔壁下134の底が上になるように、上下を反転させた第2隔壁下を、鉛直方向の上方からCO低減部下棚板125に向けて導入して、第2隔壁下134がCO低減部下棚板125に当接する位置に設置する作業を行う工程である。 In the fourth step 104 of introducing the second partition wall, the second partition wall is turned upside down so that the bottom of the second partition wall 134 faces up in the state where the third CO reduction catalyst sealing step 103 is completed. In this step, the lower part is introduced from above in the vertical direction toward the lower shelf plate 125 of the CO reduction section, and the lower second partition wall 134 is installed at a position where it contacts the lower shelf board 125 of the CO reduction section.

5番目の第2隔壁接合工程105は、4番目の第2隔壁下導入工程104が完了した状態において、第2隔壁上133と第2隔壁下134とが近接する箇所を全周にわたって気密に接合する作業を行う工程である。 In the fifth step 105 for joining the second partition wall, in a state where the fourth step 104 for introducing the second partition wall bottom is completed, the portion where the upper second partition wall 133 and the lower second partition wall 134 are adjacent to each other is airtightly joined over the entire circumference. It is a process of performing the work to be done.

[1-2.動作]
以上のように構成された水素生成装置100において、以下、その動作、作用を説明する。
[1-2. motion]
The operation and function of the hydrogen generator 100 configured as described above will be described below.

(水素生成装置の動作)
水素生成装置100において、必要な水素量を得るために、原料ガスと水が、適正な比率で供給管から蒸発部121に供給される。
(Operation of hydrogen generator)
In order to obtain the necessary amount of hydrogen in the hydrogen generator 100, the raw material gas and water are supplied to the evaporator 121 from the supply pipe at an appropriate ratio.

本実施の形態では、メタンを主成分とする都市ガスを原料ガスとして用いる構成とするため、蒸発部121に供給する1モルのメタンに対して3モルの水蒸気が存在するために必要な水量の水を蒸発部121に供給する。すなわち、スチームカーボン比(S/C比)が3となるように、都市ガスの供給流量に対して水の供給流量を調節して、都市ガスと水を蒸発部121に供給する。 In the present embodiment, since city gas containing methane as a main component is used as the raw material gas, the amount of water required for the presence of 3 mol of water vapor per 1 mol of methane supplied to the evaporating section 121 is Water is supplied to the evaporator 121 . That is, the city gas and water are supplied to the evaporator 121 by adjusting the water supply flow rate with respect to the city gas supply flow rate so that the steam carbon ratio (S/C ratio) becomes 3.

供給された水は、蒸発部121の螺旋状の流路に沿って流れながら加熱部隔壁131を介して伝わる加熱部120の熱(燃焼排ガスの熱を含む)によって水蒸気となり、原料ガスと混合される。 The supplied water flows along the helical flow path of the evaporator 121 and becomes water vapor by the heat of the heating unit 120 (including the heat of the combustion exhaust gas) transmitted through the heating unit partition 131, and is mixed with the raw material gas. be.

原料ガスと水蒸気の混合ガスは、改質部122へ供給され、加熱部隔壁131を介して伝わる加熱部120の熱(燃焼排ガスの熱を含む)によって改質反応に適した温度(約600℃)に加熱された改質触媒により水蒸気改質反応が行われて、一次水素含有ガスとなる。 The mixed gas of the raw material gas and water vapor is supplied to the reforming section 122, and the heat of the heating section 120 (including the heat of the combustion exhaust gas) transmitted through the heating section partition wall 131 reaches a temperature suitable for the reforming reaction (approximately 600°C). ), a steam reforming reaction is carried out by the reforming catalyst heated to ), resulting in a primary hydrogen-containing gas.

なお、本実施の形態において600℃と例示した改質触媒の温度は、典型的な温度であって、改質反応を起こす改質部122内の温度は、改質部122の構造や材質、大きさにも依存して変わる。改質反応を起こす改質部122内の温度は、例えば、400℃~650℃の範囲で変動し得る。 Note that the temperature of the reforming catalyst exemplified as 600° C. in the present embodiment is a typical temperature, and the temperature in the reforming section 122 that causes the reforming reaction depends on the structure and material of the reforming section 122, It also depends on the size. The temperature inside the reforming section 122 that causes the reforming reaction can vary, for example, in the range of 400.degree. C. to 650.degree.

改質部122から排出された一次水素含有ガスは、リターン流路141を通流して、CO低減部123に下方から供給され、CO低減触媒151により、一次水素含有ガス中の一酸化炭素と水蒸気が反応して、一次水素含有ガス中のCO濃度が0.1~0.2%程度まで低減されて二次水素含有ガスとなる。 The primary hydrogen-containing gas discharged from the reforming section 122 flows through the return flow path 141 and is supplied to the CO reduction section 123 from below. reacts to reduce the CO concentration in the primary hydrogen-containing gas to about 0.1 to 0.2%, resulting in a secondary hydrogen-containing gas.

このとき、CO低減触媒151は、改質部122(改質触媒150)から排出されCO低減部123に流入する一次水素含有ガスの熱と、蒸発部121から、第1隔壁132と伝熱緩衝空間と伝熱緩衝筒135とを介して、CO低減触媒151に伝わる冷熱とによって、変成反応に適した温度である約250℃に加熱されている。 At this time, the CO reduction catalyst 151 receives the heat of the primary hydrogen-containing gas discharged from the reforming section 122 (the reforming catalyst 150) and flowing into the CO reduction section 123, It is heated to about 250° C., which is a temperature suitable for the shift reaction, by cold heat transmitted to the CO reduction catalyst 151 through the space and the heat transfer buffer cylinder 135 .

なお、本実施の形態において250℃と例示したCO低減触媒151の温度は、典型的な温度であって、変成反応を起こすCO低減部123内の温度は、CO低減部123の構造や材質、大きさにも依存して変わる。変成反応を起こすCO低減部123内の温度は、例えば、200℃~300℃の範囲で変動し得る。 Note that the temperature of the CO reduction catalyst 151 exemplified as 250° C. in the present embodiment is a typical temperature, and the temperature in the CO reduction section 123 causing the shift reaction varies depending on the structure and material of the CO reduction section 123, It also depends on the size. The temperature in the CO reduction section 123 where the transformation reaction occurs can vary, for example, within the range of 200°C to 300°C.

CO低減部123から排出された二次水素含有ガスは、出口管から水素生成装置100の外に出ていき、燃料電池などの水素利用機器に供給される。 The secondary hydrogen-containing gas discharged from the CO reduction unit 123 exits the hydrogen generator 100 through the outlet pipe and is supplied to a hydrogen utilization device such as a fuel cell.

加熱部120のバーナの燃焼で発生した燃焼排ガスは、燃焼筒130の内周面に沿って燃焼筒130の内周側を下方に流れた後に、加熱部隔壁131の底部と燃焼筒130の下端との隙間を通って上方に折り返して、燃焼筒130と加熱部隔壁131との間に形成された燃焼排ガス流路140を、改質部122と熱交換した後に、蒸発部121と熱交換して、加熱部隔壁131における上部に設けられた燃焼排ガス出口管から水素生成装置100の外部に排出される。 The combustion exhaust gas generated by the combustion of the burner of the heating section 120 flows downward along the inner peripheral surface of the combustion tube 130 and then flows downward along the inner peripheral side of the combustion tube 130, and then reaches the bottom of the heating section partition 131 and the lower end of the combustion tube 130. The flue gas flow path 140 formed between the combustion cylinder 130 and the heating section partition wall 131 is folded upward through the gap between and heat-exchanged with the reforming section 122, and then heat-exchanged with the evaporating section 121. Then, it is discharged to the outside of the hydrogen generator 100 from a combustion exhaust gas outlet pipe provided in the upper part of the heating part partition 131 .

(水素生成装置のCO低減部に関連する製造工程)
1番目のCO低減触媒充填準備工程101では、次のCO低減触媒充填工程102で、第2隔壁上133と伝熱緩衝筒135とCO低減部上棚板124とに囲まれた空間に、CO低減触媒151を充填できるように準備する。
(Manufacturing process related to the CO reduction part of the hydrogen generator)
In the first CO reduction catalyst filling preparation step 101, in the next CO reduction catalyst filling step 102, CO reduction is filled in the space surrounded by the second partition upper 133, the heat transfer buffer cylinder 135, and the CO reduction unit upper shelf plate 124. Preparations are made so that the catalyst 151 can be filled.

1番目のCO低減触媒充填準備工程101では、具体的には、伝熱緩衝筒135が第1隔壁132における蒸発部121が構成された部分の外周面の所定位置に取り付け固定され、第1隔壁132の所定位置に取り付け固定済みの第2隔壁上133の下端には、未だ第2隔壁下134が配置されておらず、第2隔壁上133と伝熱緩衝筒135の間にCO低減部上棚板124を取り付け済みであるが、次のCO低減触媒充填工程102でCO低減触媒151を充填できるように、CO低減部下棚板125は未だ第2隔壁上133と伝熱緩衝筒135の間に配置していない状態まで、水素生成装置を製造して、水素生成装置の使用時の重力方向の上下を反転させる(上下逆にする)作業を行う。 Specifically, in the first CO reduction catalyst filling preparation step 101, the heat transfer buffer cylinder 135 is attached and fixed at a predetermined position on the outer peripheral surface of the portion of the first partition 132 where the evaporator 121 is formed, and the first partition At the lower end of the upper second partition wall 133 that has already been attached and fixed to the predetermined position of 132 , the lower second partition wall 134 is not yet arranged, and the upper shelf of the CO reduction unit is placed between the upper second partition wall 133 and the heat transfer buffer cylinder 135 . Although the plate 124 has already been attached, the CO reduction section lower shelf plate 125 is still between the second bulkhead top 133 and the heat transfer buffer cylinder 135 so that the CO reduction catalyst 151 can be filled in the next CO reduction catalyst filling step 102. The hydrogen generator is manufactured until it is not placed, and the work of turning the hydrogen generator upside down in the direction of gravity when it is in use (turning it upside down) is performed.

CO低減部上棚板124は、第2隔壁上133が伝熱緩衝筒135の外周面を囲むように第1隔壁132の所定位置に第2隔壁上133を取り付ける前に、伝熱緩衝筒135の外周面の所定位置または第2隔壁上133の内周面の所定位置のどちらか一方に溶接で固定しておく。 The CO reduction unit upper shelf plate 124 is attached to the heat transfer buffer cylinder 135 before the second partition wall top 133 is attached to a predetermined position of the first partition wall 132 so that the second partition wall top 133 surrounds the outer peripheral surface of the heat transfer buffer cylinder 135 . It is fixed by welding to either a predetermined position on the outer peripheral surface or a predetermined position on the inner peripheral surface of the second partition wall 133 .

改質部上棚板は、第1隔壁132が加熱部隔壁131の外周面を囲むように第1隔壁132を加熱部隔壁131の外周側に配置する前に、加熱部隔壁131の外周面の所定位置または第1隔壁132の下部の内周面の所定位置のどちらか一方に溶接で固定しておく。 Before the first partition 132 is arranged on the outer peripheral side of the heating part partition 131 so that the first partition 132 surrounds the outer peripheral surface of the heating part partition 131 , the reforming part upper shelf is provided with a predetermined amount of pressure on the outer peripheral surface of the heating part partition 131 . It is fixed by welding to either a position or a predetermined position on the inner peripheral surface of the lower portion of the first partition wall 132 .

改質触媒は、CO低減触媒充填準備工程101で水素生成装置の使用時の重力方向の上下を反転させる(上下逆にする)作業を行った後に、第1隔壁132の下部と加熱部隔壁131と改質部上棚板とに囲まれた空間に充填する。 The reforming catalyst is placed under the first partition 132 and the heating part partition 131 after performing the work of inverting the gravity direction when the hydrogen generator is used in the CO reduction catalyst filling preparation step 101 (upside down). and the upper shelf plate of the reforming section.

改質部上棚板は、改質触媒を充填した後で、第2隔壁下導入工程104までに、第1隔壁132の下部と加熱部隔壁131との間に配置して、第1隔壁132の下部の内周面と加熱部隔壁131の外周面の少なくともどちらか一方に溶接などで固定する。 The reforming section upper shelf plate is arranged between the lower part of the first partition wall 132 and the heating section partition wall 131 by the step 104 of introduction below the second partition wall after the reforming catalyst is filled, and the first partition wall 132 It is fixed by welding or the like to at least one of the inner peripheral surface of the lower portion and the outer peripheral surface of the heating portion partition wall 131 .

蒸発部121の螺旋状に曲げられた棒材は、第1隔壁132が加熱部隔壁131の外周面を囲むように第1隔壁132を加熱部隔壁131の外周側に配置する前に、加熱部隔壁131の外周面の所定位置に固定し、第1隔壁132が加熱部隔壁131の外周面を囲む
ように第1隔壁132を加熱部隔壁131の外周側に配置した後に、加熱部隔壁131を拡管して、螺旋状に曲げられた棒材を第1隔壁132の上部の内周面に密着させる。
Before the first partition 132 is arranged on the outer peripheral side of the heating part partition 131 so that the first partition 132 surrounds the outer peripheral surface of the heating part partition 131 , the helically bent bar of the evaporating part 121 is attached to the heating part 121 . After the first partition 132 is arranged on the outer peripheral side of the heating part partition 131 so that the first partition 132 surrounds the outer peripheral surface of the heating part partition 131, the heating part partition 131 is attached. The pipe is expanded and the helically bent bar is brought into close contact with the upper inner peripheral surface of the first partition wall 132 .

2番目のCO低減触媒充填工程102では、1番目のCO低減触媒充填準備工程101が完了した状態において、第2隔壁上133と伝熱緩衝筒135とCO低減部上棚板124とに囲まれた空間に、CO低減部上棚板124の上方から所定重量分のCO低減触媒151を充填する作業を行う。 In the second CO reduction catalyst filling step 102, in the state where the first CO reduction catalyst filling preparation step 101 is completed, the second partition wall upper part 133, the heat transfer buffer cylinder 135, and the CO reduction part upper shelf plate 124 A predetermined weight of the CO reduction catalyst 151 is filled into the space from above the CO reduction unit upper shelf plate 124 .

3番目のCO低減触媒封止工程103では、2番目のCO低減触媒充填工程102が完了した状態において、CO低減部下棚板125を、鉛直方向の上方からCO低減触媒151が充填された部分に向けて導入して、CO低減部下棚板125におけるCO低減触媒151と対向する面が均等にCO低減触媒151に当接する位置に設置する作業を行う。 In the third CO reduction catalyst sealing step 103, in a state where the second CO reduction catalyst filling step 102 is completed, the CO reduction section lower shelf plate 125 is vertically moved from above to the portion filled with the CO reduction catalyst 151. Then, the surface of the lower shelf plate 125 of the CO reduction section facing the CO reduction catalyst 151 is installed at a position where the CO reduction catalyst 151 evenly contacts the CO reduction catalyst 151 .

そのため、CO低減触媒151の充填状態によって生じるCO低減部123の体積のバラつきを、CO低減部下棚板125の設置で吸収することができる。 Therefore, the variation in the volume of the CO reduction section 123 caused by the filling state of the CO reduction catalyst 151 can be absorbed by installing the CO reduction section lower shelf plate 125 .

伝熱緩衝筒135の外径は、第1隔壁132における改質部122が構成されている部分(第1隔壁132の下部)の外径よりも大きく構成されているため、伝熱緩衝筒135の外周側に設置するCO低減部下棚板125の内径は、第1隔壁132における改質部122が構成されている部分の外径よりも大きくできる。 Since the outer diameter of the heat transfer buffer cylinder 135 is configured to be larger than the outer diameter of the portion of the first partition 132 where the reformed portion 122 is formed (the lower part of the first partition 132), the heat transfer buffer cylinder 135 The inner diameter of the CO reduction section lower shelf plate 125 installed on the outer peripheral side of is made larger than the outer diameter of the portion of the first partition wall 132 where the reforming section 122 is formed.

よって、CO低減部下棚板125を、第1隔壁132における改質部122が構成されている部分を通過させて所定位置に設置するときに、第1隔壁132における改質部122が構成されている部分に邪魔されることなく、CO低減部下棚板125を、CO低減触媒151が充填された部分に当接する位置まで導入していくことができる。 Therefore, when the CO reduction section lower shelf plate 125 is installed at a predetermined position by passing through the portion of the first partition 132 where the reforming section 122 is formed, the reforming section 122 of the first partition 132 is formed. The CO reduction unit lower shelf plate 125 can be introduced to a position where it abuts on the portion filled with the CO reduction catalyst 151 without being obstructed by the portion where the CO reduction catalyst 151 is placed.

4番目の第2隔壁下導入工程104では、3番目のCO低減触媒封止工程103が完了した状態において、第2隔壁下134の底が上になるように、上下を反転させた第2隔壁下を、鉛直方向の上方からCO低減部下棚板125に向けて導入して、第2隔壁下134がCO低減部下棚板125に当接する位置に設置する作業を行う。 In the fourth step 104 of introducing the lower second partition wall, the second partition wall is turned upside down so that the bottom of the lower second partition wall 134 faces up in the state where the third CO reduction catalyst sealing step 103 is completed. The second partition bottom 134 is installed at a position where the second partition wall bottom 134 comes into contact with the CO reduction section bottom shelf 125 by introducing the bottom from above in the vertical direction toward the CO reduction section bottom shelf 125 .

5番目の第2隔壁接合工程105は、4番目の第2隔壁下導入工程104が完了した状態において、第2隔壁上133と第2隔壁下134とが近接する箇所を全周にわたって気密に接合する作業を行う。 In the fifth step 105 for joining the second partition wall, in a state where the fourth step 104 for introducing the second partition wall bottom is completed, the portion where the upper second partition wall 133 and the lower second partition wall 134 are adjacent to each other is airtightly joined over the entire circumference. work to be done.

これにより、CO低減部下棚板125に対しては、第2隔壁上133の内周面と伝熱緩衝筒135の外周面の少なくともどちらか一方に直接接合(溶接)する作業を行うことなく、CO低減部下棚板125を下から支えるとともに第2隔壁上133と接合される第2隔壁下134によって、CO低減触媒151とCO低減部下棚板125との重みによってCO低減部下棚板125が脱落しないようにCO低減部下棚板125を固定することができる。 As a result, the lower shelf plate 125 of the CO reduction unit does not need to be directly joined (welded) to at least one of the inner peripheral surface of the upper second partition wall 133 and the outer peripheral surface of the heat transfer buffer cylinder 135. A second partition bottom 134 that supports the CO reduction section bottom shelf 125 from below and is joined to the second partition top 133 causes the weight of the CO reduction catalyst 151 and the CO reduction section bottom shelf 125 to cause the CO reduction section bottom shelf 125 to fall off. The CO reduction section lower shelf 125 can be fixed so that it does not.

[1-3.効果]
以上のように、本実施の形態における水素生成装置100は、加熱部120と燃焼筒130と加熱部隔壁131と第1隔壁132と燃焼排ガス流路140と蒸発部121と改質部122と伝熱緩衝筒135と第2隔壁上133とCO低減部123とCO低減部下棚板125とCO低減部上棚板124と第2隔壁下134とリターン流路141とを有する。
[1-3. effect]
As described above, the hydrogen generator 100 according to the present embodiment includes the heating section 120, the combustion cylinder 130, the heating section partition wall 131, the first partition wall 132, the flue gas flow path 140, the evaporating section 121, the reforming section 122, and the transmission. It has a heat buffer cylinder 135 , a second partition upper portion 133 , a CO reduction portion 123 , a CO reduction portion lower shelf plate 125 , a CO reduction portion upper shelf plate 124 , a second partition lower portion 134 , and a return channel 141 .

そして、本実施の形態における水素生成装置100の製造方法は、CO低減触媒充填準備工程101とCO低減触媒充填工程102とCO低減触媒封止工程103と第2隔壁下
導入工程104と第2隔壁接合工程105とを有する。
Then, the method for manufacturing the hydrogen generator 100 in the present embodiment includes a CO reduction catalyst filling preparation step 101, a CO reduction catalyst filling step 102, a CO reduction catalyst sealing step 103, a second partition under introduction step 104, and a second partition wall and a joining step 105 .

加熱部120は、可燃性ガスを燃焼して燃焼排ガスを排出するように構成されている。燃焼筒130は、鉛直方向に中心軸を有し加熱部120の外周を囲む筒状で、燃焼排ガスが筒の内側を下方に向かって流れるように構成されている。加熱部隔壁131は、鉛直方向に中心軸を有する有底筒状で、燃焼筒130との間に隙間を空けて燃焼筒130を収納するように構成されている。 The heating unit 120 is configured to burn combustible gas and discharge flue gas. The combustion tube 130 has a tubular shape having a central axis in the vertical direction and surrounds the outer circumference of the heating section 120, and is configured so that combustion exhaust gas flows downward inside the tube. The heating section partition 131 has a bottomed tubular shape with a central axis in the vertical direction, and is configured to accommodate the combustion tube 130 with a gap between it and the combustion tube 130 .

第1隔壁132は、鉛直方向に中心軸を有する略筒状で、下部の径が上部の径よりも大きく構成され、加熱部隔壁131との間に隙間を空けて加熱部隔壁131の外周を囲む。燃焼排ガス流路140は、燃焼筒130と加熱部隔壁131との隙間に形成された上方に燃焼排ガスを流す流路である。 The first partition wall 132 has a substantially cylindrical shape having a central axis in the vertical direction, and is configured such that the diameter of the lower portion is larger than the diameter of the upper portion, and the outer periphery of the heating portion partition wall 131 is provided with a gap between it and the heating portion partition wall 131 . surround. The combustion exhaust gas flow path 140 is a flow path formed in a gap between the combustion cylinder 130 and the heating section partition wall 131 and through which the combustion exhaust gas flows upward.

蒸発部121は、加熱部隔壁131と第1隔壁132の上部との隙間に形成され、加熱部隔壁131を介して伝わる熱で原料ガスと水とを加熱して、水を蒸発させるように構成されている。 The evaporator 121 is formed in a gap between the heating partition wall 131 and the upper portion of the first partition wall 132, and is configured to heat the raw material gas and water by heat transmitted through the heating partition wall 131, thereby evaporating the water. It is

改質部122は、加熱部隔壁131と第1隔壁132の下部との隙間に改質触媒を充填して形成され、蒸発部121の下方で加熱部隔壁131を介して熱が伝えられ、蒸発部121から流出した原料ガスと水蒸気との混合ガスから改質反応で一酸化炭素を含む一次水素含有ガスを生成するように構成されている。 The reforming section 122 is formed by filling the gap between the heating section partition 131 and the lower portion of the first partition 132 with a reforming catalyst. It is configured to generate a primary hydrogen-containing gas containing carbon monoxide through a reforming reaction from the mixed gas of the raw material gas and water vapor that flowed out of the unit 121 .

伝熱緩衝筒135は、鉛直方向に中心軸を有する略筒状で、外周面の外径が第1隔壁132の下部の外周面の外径よりも大きく、第1隔壁132の上部との間に伝熱緩衝用の空間が形成されるように、上下端部が内周側に曲げられて第1隔壁132の上部の外周面に固定されている。 The heat transfer buffer cylinder 135 has a substantially cylindrical shape with a central axis in the vertical direction, and has an outer diameter larger than that of the outer peripheral surface of the lower portion of the first partition 132 , and is spaced from the upper portion of the first partition 132 . The upper and lower ends are bent inward and fixed to the outer peripheral surface of the upper portion of the first partition wall 132 so that a space for heat transfer buffering is formed at the bottom.

第2隔壁上133は、鉛直方向に中心軸を有する略筒状で、伝熱緩衝筒135との間に隙間を空けて伝熱緩衝筒135の外周を囲み上端部が内周側に曲げられて第1隔壁132の上部の外周面に固定されている。 The second upper partition wall 133 has a substantially cylindrical shape having a central axis in the vertical direction, surrounds the outer circumference of the heat transfer buffer cylinder 135 with a gap between it and the heat transfer buffer cylinder 135, and the upper end portion is bent inward. is fixed to the outer peripheral surface of the upper portion of the first partition wall 132 .

CO低減部123は、伝熱緩衝筒135と第2隔壁上133との隙間にCO低減触媒151を充填して形成され、改質部122から流出した一次水素含有ガスに含まれる一酸化炭素の濃度を変性反応で低減して、二次水素含有ガスとして排出するように構成されている。 The CO reduction section 123 is formed by filling a gap between the heat transfer buffer cylinder 135 and the second partition wall upper portion 133 with a CO reduction catalyst 151, and reduces carbon monoxide contained in the primary hydrogen-containing gas flowing out of the reforming section 122. The concentration is reduced by a denaturation reaction and is configured to be discharged as a secondary hydrogen-containing gas.

CO低減部下棚板125は、CO低減部123のCO低減触媒151が落下しないように、伝熱緩衝筒135と第2隔壁上133との隙間に配置された、通気構造でドーナツ盤形状の棚板であって、CO低減触媒151を下から支持する。 The lower shelf plate 125 of the CO reduction section 125 is a donut disk-shaped shelf with a ventilation structure arranged in the gap between the heat transfer buffer cylinder 135 and the upper second partition wall 133 so that the CO reduction catalyst 151 of the CO reduction section 123 does not drop. It is a plate and supports the CO reduction catalyst 151 from below.

CO低減部上棚板124は、CO低減部123のCO低減触媒151がCO低減部123から上方に流出しないように、伝熱緩衝筒135と第2隔壁上133との隙間に配置された、通気構造でドーナツ盤形状の棚板であって、下面がCO低減触媒151と接触するようにCO低減触媒151が充填された部分の上面を覆う。 The CO reduction unit upper shelf plate 124 is arranged in a gap between the heat transfer buffer cylinder 135 and the second partition wall top 133 so that the CO reduction catalyst 151 of the CO reduction unit 123 does not flow upward from the CO reduction unit 123. It is a donut disk-shaped shelf plate in structure, and covers the upper surface of the part filled with the CO reduction catalyst 151 so that the lower surface contacts the CO reduction catalyst 151 .

第2隔壁下134は、鉛直方向に中心軸を有する有底筒状で、上端がCO低減部下棚板125の下面外周部と当接し、外周面における上部が第2隔壁上133の内周面における下部と対向する状態で第2隔壁上133と接合され、第1隔壁132におけるCO低減部123よりも下側の部分との間に隙間を空けて、第1隔壁132と加熱部隔壁131を収納するように構成されている。 The lower second partition wall 134 has a bottomed cylindrical shape with a central axis in the vertical direction. The first partition wall 132 and the heating part partition wall 131 are joined to the upper part of the second partition wall 133 in a state facing the lower part thereof, and a gap is provided between the first partition wall 132 and the portion below the CO reduction part 123 in the first partition wall 132 and the heating part partition wall 131. configured to store.

リターン流路141は、第1隔壁132におけるCO低減部123よりも下側の部分と第2隔壁下134との隙間に形成され、改質部122から下方に流出した一次水素含有ガスの流れを上向きに変えてCO低減部123に導くための流路である。 The return flow path 141 is formed in a gap between a portion of the first partition 132 below the CO reduction section 123 and the second partition bottom 134, and receives the flow of the primary hydrogen-containing gas flowing downward from the reforming section 122. It is a flow path for turning upward and leading to the CO reduction section 123 .

1番目のCO低減触媒充填準備工程101は、所定位置に取り付け済みの第2隔壁上133の下部には、未だ第2隔壁下134が配置されておらず、第2隔壁上133と伝熱緩衝筒135との隙間の所定位置に、CO低減部上棚板124を取り付け済みであるが、CO低減触媒151とCO低減部下棚板125は、未だ第2隔壁上133と伝熱緩衝筒135との隙間に配置していない状態にまで、水素生成装置を製造し、水素生成装置の使用時の重力方向の上下を反転させる工程である。 In the first CO reduction catalyst filling preparation step 101, the second partition wall top 133 is not yet placed below the second partition wall top 133 that has been attached to a predetermined position, and the second partition wall top 133 and the second partition wall 133 are heat transfer buffers. Although the CO reduction unit upper shelf plate 124 has already been attached to a predetermined position in the gap between the cylinder 135 and the CO reduction unit lower shelf plate 125, the CO reduction catalyst 151 and the CO reduction unit lower shelf plate 125 are still located between the second partition wall top 133 and the heat transfer buffer cylinder 135. In this process, the hydrogen generator is manufactured so that it is not placed in the gap, and the hydrogen generator is turned upside down in the direction of gravity during use.

2番目のCO低減触媒充填工程102は、1番目のCO低減触媒充填準備工程101が完了した状態において、第2隔壁上133と伝熱緩衝筒135とCO低減部上棚板124とに囲まれた空間に、上方から所定重量分のCO低減触媒151を充填する工程である。 The second CO reduction catalyst filling step 102 is surrounded by the second partition wall upper portion 133, the heat transfer buffer cylinder 135, and the CO reduction portion upper shelf plate 124 in a state where the first CO reduction catalyst filling preparation step 101 is completed. This is a step of filling the space with a predetermined weight of the CO reduction catalyst 151 from above.

3番目のCO低減触媒封止工程103は、2番目のCO低減触媒充填工程102が完了した状態において、CO低減部下棚板125を、上方からCO低減触媒151が充填された部分に向けて導入して、CO低減部下棚板125におけるCO低減触媒151と対向する面が均等にCO低減触媒151に当接する位置に設置する工程である。 In the third CO reduction catalyst sealing step 103, in a state where the second CO reduction catalyst filling step 102 is completed, the CO reduction section lower shelf plate 125 is introduced from above toward the portion filled with the CO reduction catalyst 151. Then, the surface of the lower shelf plate 125 of the CO reduction section facing the CO reduction catalyst 151 is installed at a position where the CO reduction catalyst 151 evenly contacts the CO reduction catalyst 151 .

4番目の第2隔壁下導入工程104は、3番目のCO低減触媒封止工程103が完了した状態において、第2隔壁下134の底が上になるように、上下を反転させた第2隔壁下134を、上方からCO低減部下棚板125へ向けて導入して、第2隔壁下134がCO低減部下棚板125に当接する位置に設置する工程である。 In the fourth step 104 of introducing the second partition wall, the second partition wall is turned upside down so that the bottom of the second partition wall 134 faces up in the state where the third CO reduction catalyst sealing step 103 is completed. In this step, the lower part 134 is introduced from above toward the CO reducing part lower shelf plate 125 and installed at a position where the second partition lower part 134 comes into contact with the CO reducing part lower shelf plate 125 .

5番目の第2隔壁接合工程105は、4番目の第2隔壁下導入工程104が完了した状態において、第2隔壁下134と第2隔壁上133とが近接する箇所を気密に接合する工程である。 A fifth step 105 for joining the second partition wall is a step of air-tightly joining the portions where the lower second partition wall 134 and the upper second partition wall 133 are adjacent to each other in a state where the fourth step 104 for introducing below the second partition wall is completed. be.

本実施の形態における水素生成装置100の製造方法は、CO低減部123の組立において、CO低減部上棚板124の固定を先に行い、水素生成装置100の使用時とは重力方向を反転させた状態でCO低減触媒151の充填を行い、CO低減触媒151の上流位置でCO低減部下棚板125を設置する製造方法とすることにより、以下の効果が得られる。 In the method of manufacturing the hydrogen generator 100 according to the present embodiment, in the assembly of the CO reduction unit 123, the upper shelf plate 124 of the CO reduction unit is first fixed, and the direction of gravity is reversed from that when the hydrogen generation unit 100 is used. By adopting a manufacturing method in which the CO reduction catalyst 151 is filled in the state and the CO reduction section lower shelf plate 125 is installed upstream of the CO reduction catalyst 151, the following effects can be obtained.

予めCO低減部上棚板124を所定の位置に固定することで、充填されたCO低減触媒151の体積のバラつきをCO低減部下棚板125の固定位置で吸収することが可能となり、CO低減部上棚板124の位置のバラつきを抑制できる。 By fixing the CO reduction section upper shelf plate 124 in advance at a predetermined position, it is possible to absorb variations in the volume of the filled CO reduction catalyst 151 at the fixed position of the CO reduction section lower shelf plate 125 , and the CO reduction section upper shelf plate 125 is fixed. Variation in the position of the plate 124 can be suppressed.

そのため、CO低減触媒151の下流位置を一定にできるので、CO低減触媒151の下流位置と加熱部120との距離が一定となり、CO低減触媒151下流部の温度を一定にすることができる。CO低減部123通過後の水素含有ガスに含まれるCOの濃度は、CO低減触媒151下流部の温度に依存するため、変成反応後ガス中のCO濃度の個体差を抑制することができる。 Therefore, since the downstream position of the CO reduction catalyst 151 can be kept constant, the distance between the downstream position of the CO reduction catalyst 151 and the heating unit 120 can be kept constant, and the temperature of the downstream part of the CO reduction catalyst 151 can be kept constant. Since the concentration of CO contained in the hydrogen-containing gas after passing through the CO reduction section 123 depends on the temperature of the downstream portion of the CO reduction catalyst 151, it is possible to suppress individual differences in the CO concentration in the post-shifting reaction gas.

また、CO低減部下棚板125に対しては、第2隔壁上133の内周面と伝熱緩衝筒135の外周面の少なくともどちらか一方に直接接合(溶接)する作業を行うことなく、CO低減部下棚板125を下から支えるとともに第2隔壁上133と接合される第2隔壁下134によって、CO低減触媒151とCO低減部下棚板125との重みによってCO低
減部下棚板125が脱落しないようにCO低減部下棚板125を固定することができる。
In addition, for the CO reduction unit lower shelf plate 125, the work of directly joining (welding) to at least one of the inner peripheral surface of the second partition upper 133 and the outer peripheral surface of the heat transfer buffer cylinder 135 is not performed. A second partition bottom 134 that supports the reduction section lower shelf 125 from below and is joined to the second partition top 133 prevents the CO reduction section lower shelf 125 from falling off due to the weight of the CO reduction catalyst 151 and the CO reduction section lower shelf 125. The CO reduction section lower shelf plate 125 can be fixed as follows.

(実施の形態2)
以下、図3~図4を用いて、実施の形態2を説明する。
(Embodiment 2)
Embodiment 2 will be described below with reference to FIGS. 3 and 4. FIG.

[2-1.構成]
図3に示すように、水素生成装置200は、加熱部120と蒸発部121と改質部122とCO低減部123とCO低減部上棚板124とCO低減部下棚板125と燃焼筒130と加熱部隔壁131と第1隔壁132と第2隔壁上133と第2隔壁下134と伝熱緩衝筒135と燃焼排ガス流路140とリターン流路141とを有している。
[2-1. composition]
As shown in FIG. 3, the hydrogen generator 200 includes a heating unit 120, an evaporating unit 121, a reforming unit 122, a CO reducing unit 123, a CO reducing unit upper shelf 124, a CO reducing unit lower shelf 125, a combustion cylinder 130, and a heating unit. It has a partition wall 131 , a first partition wall 132 , a second upper partition wall 133 , a second lower partition wall 134 , a heat transfer buffer cylinder 135 , a flue gas flow path 140 and a return flow path 141 .

加熱部120は、鉛直方向に中心軸を有する燃焼筒130の内周側に配置され、燃焼用空気が混合された可燃性ガスを燃焼して燃焼排ガスを排出するバーナと、バーナに可燃性ガスを供給するガス供給管と、バーナに燃焼用空気を供給する燃焼用空気供給管と、を備えている。加熱部120のバーナは、下向きの炎を形成するように構成されている。 The heating unit 120 is arranged on the inner peripheral side of a combustion cylinder 130 having a central axis in the vertical direction, and includes a burner that burns combustible gas mixed with combustion air and discharges combustion exhaust gas, and a combustible gas in the burner. and a combustion air supply pipe for supplying combustion air to the burner. The burners of heating section 120 are configured to produce downward flames.

可燃性ガスには、原料ガス(都市ガスやLPガス)を用いることができ、その他にも、水素生成装置200が燃料電池に水素含有ガスを燃料ガスとして供給する場合は、燃料電池で利用されずに燃料電池から排出される燃料ガス(アノードオフガス)を用いることができる。 Raw material gas (city gas or LP gas) can be used as the combustible gas. In addition, when the hydrogen generator 200 supplies hydrogen-containing gas to the fuel cell as fuel gas, it is used in the fuel cell. A fuel gas (anode off-gas) discharged from the fuel cell can be used.

燃焼筒130は、鉛直方向に中心軸を有し加熱部120の外周を囲む筒状で、加熱部120と同軸になるように配置されている。燃焼筒130は、燃焼筒130の内周側では、燃焼排ガスを下方(鉛直方向の下向き)に流し、燃焼筒130の外周側(燃焼筒130と加熱部隔壁131との間に形成された燃焼排ガス流路140)では、燃焼排ガスを上方(鉛直方向の上向き)に流すための部材である。 Combustion cylinder 130 has a cylindrical shape having a central axis in the vertical direction and surrounds the outer periphery of heating section 120 , and is arranged coaxially with heating section 120 . In the combustion tube 130, the combustion exhaust gas flows downward (downward in the vertical direction) on the inner peripheral side of the combustion tube 130, and the combustion gas formed between the combustion tube 130 and the heating section partition 131 on the outer peripheral side of the combustion tube 130. The exhaust gas passage 140) is a member for causing the combustion exhaust gas to flow upward (upward in the vertical direction).

燃焼筒130の下端は、改質部122の下端よりも鉛直方向の下に位置し、燃焼筒130と同軸になるように配置され燃焼筒130を囲む有底円筒形の加熱部隔壁131の底部よりも鉛直方向の上に位置する。 The lower end of the combustion tube 130 is located vertically below the lower end of the reforming section 122, and the bottom of a bottomed cylindrical heating section partition 131 that surrounds the combustion tube 130 and is arranged coaxially with the combustion tube 130. located vertically above

水素生成装置200は、加熱部120のバーナの燃焼で発生した燃焼排ガスが、燃焼筒130の内周面に沿って燃焼筒130の内周側を下方に流れた後に、加熱部隔壁131の底部と燃焼筒130の下端との隙間を通って上方に折り返して流れ、燃焼筒130と加熱部隔壁131との間に形成された燃焼排ガス流路140を通って改質部122と熱交換した後に、蒸発部121と熱交換して、加熱部隔壁131における上部に設けられた燃焼排ガス出口管から水素生成装置200の外部に排出されるように構成されている。 In the hydrogen generator 200, after the flue gas generated by the combustion of the burner of the heating section 120 flows downward along the inner peripheral surface of the combustion tube 130 along the inner peripheral side of the combustion tube 130, it reaches the bottom portion of the heating section partition wall 131. and the lower end of the combustion cylinder 130 and flows upward, and after heat exchange with the reforming section 122 through the combustion exhaust gas flow path 140 formed between the combustion cylinder 130 and the heating section partition 131, , exchanges heat with the evaporating section 121 , and is discharged to the outside of the hydrogen generator 200 from a combustion exhaust gas outlet pipe provided in the upper portion of the heating section partition 131 .

燃焼排ガス流路140は、燃焼筒130と加熱部隔壁131との隙間に形成された、上方に燃焼排ガスを流す流路である。 The combustion exhaust gas flow path 140 is a flow path formed in a gap between the combustion cylinder 130 and the heating section partition wall 131 and through which the combustion exhaust gas flows upward.

加熱部隔壁131は、内径が燃焼筒130の外径よりも大きく、燃焼筒130の外周面を囲み燃焼筒130と同軸になるように配置され、燃焼筒130との間に燃焼排ガス流路140を形成する有底円筒形の金属部材であり、加熱部隔壁131の底部と燃焼筒130の下端との間に燃焼排ガスが通流する隙間がある。加熱部隔壁131は、燃焼筒130との間に隙間を空けて燃焼筒130を収納するように構成されている。 The heating part partition wall 131 has an inner diameter larger than the outer diameter of the combustion cylinder 130 , surrounds the outer peripheral surface of the combustion cylinder 130 , and is arranged coaxially with the combustion cylinder 130 . There is a gap between the bottom of the heating part partition 131 and the lower end of the combustion cylinder 130 through which combustion exhaust gas flows. The heating part partition 131 is configured to accommodate the combustion cylinder 130 with a gap between it and the combustion cylinder 130 .

第1隔壁132は、鉛直方向に中心軸を有する略筒状で、内径が加熱部隔壁131の外径よりも大きく、下部の径が上部の径よりも大きく構成されている。第1隔壁132は、加熱部隔壁131との間に隙間を空けて加熱部隔壁131の外周面を囲み、加熱部隔壁1
31と同軸になるように配置された金属部材である。
The first partition 132 has a substantially cylindrical shape with a vertical center axis, an inner diameter larger than the outer diameter of the heating part partition 131, and a lower diameter larger than an upper diameter. The first partition 132 surrounds the outer peripheral surface of the heating part partition 131 with a gap between it and the heating part partition 131 .
It is a metal member arranged so as to be coaxial with 31 .

第1隔壁132の上部と加熱部隔壁131との間には、炭化水素を含む原料ガスと水とを螺旋状に流すための螺旋状に曲げられた棒材が配置され、第1隔壁132の下部と加熱部隔壁131との間には、原料ガスと水蒸気との混合ガスから改質反応で一次水素含有ガス(一酸化炭素を含む水素含有ガス)を生成する改質触媒150が充填されている。 Between the upper portion of the first partition 132 and the heating section partition 131, a spirally bent bar is arranged for spirally flowing the raw material gas containing hydrocarbons and water. A reforming catalyst 150 that generates a primary hydrogen-containing gas (a hydrogen-containing gas containing carbon monoxide) by a reforming reaction from a mixed gas of raw material gas and steam is filled between the lower part and the heating part partition wall 131 . there is

第1隔壁132の上部と加熱部隔壁131との間で螺旋状の棒材が配置された箇所は、炭化水素を含む原料ガスと水とが加熱部隔壁131から伝わる熱で加熱されながら通過する蒸発部121となっており、第1隔壁132の下部と加熱部隔壁131との間で改質触媒150が充填された箇所は、改質部122となっている。 A raw material gas containing hydrocarbons and water pass through while being heated by the heat transmitted from the heating part partition 131 at the place where the spiral bar is arranged between the upper part of the first partition 132 and the heating part partition 131. A portion filled with the reforming catalyst 150 between the lower portion of the first partition 132 and the heating portion partition 131 serves as the reforming portion 122 .

第1隔壁132における螺旋状の棒材が配置された箇所よりも上部には、蒸発部121に原料ガスと水を供給する供給管が接続されている。 A supply pipe for supplying the raw material gas and water to the evaporator 121 is connected to a portion of the first partition 132 above the location where the spiral bar is arranged.

蒸発部121は、加熱部隔壁131と第1隔壁132の上部との隙間に螺旋状に曲げられた棒材を配置して形成(構成)され、加熱部隔壁131を介して伝わる熱(加熱部120の熱と燃焼排ガスの熱)で、炭化水素を含む原料ガスと水とを加熱して、水を蒸発させるように構成されている。 The evaporating section 121 is formed (configured) by arranging a spirally bent bar in the gap between the heating section partition 131 and the upper portion of the first partition 132 . 120 and the heat of the flue gas) to heat the raw material gas containing hydrocarbons and water to evaporate the water.

改質部122は、加熱部隔壁131と第1隔壁132の下部との隙間に改質触媒を充填して形成され、蒸発部121の下方で加熱部隔壁131を介して熱(加熱部120の熱と燃焼排ガスの熱)が伝えられ、蒸発部121から流出した原料ガスと水蒸気との混合ガスから改質反応で一酸化炭素を含む一次水素含有ガスを生成するように構成されている。 The reforming section 122 is formed by filling the gap between the heating section partition wall 131 and the lower part of the first partition wall 132 with a reforming catalyst. Heat and heat of combustion exhaust gas) are transferred, and a primary hydrogen-containing gas containing carbon monoxide is generated by a reforming reaction from the mixed gas of raw material gas and water vapor that flowed out from the evaporator 121 .

改質部122は、第1隔壁132の下部と加熱部隔壁131との間に充填される改質触媒の他に、改質部下棚板(図示せず)と、改質部上棚板(図示せず)と、を備えている。 The reforming section 122 includes a reforming section lower shelf (not shown) and a reforming section upper shelf (not shown) in addition to the reforming catalyst filled between the lower portion of the first partition 132 and the heating section partition 131 . not shown).

改質部下棚板は、改質触媒を下から支えるように第1隔壁132の下部と加熱部隔壁131との間に配置される棚板であり、改質部上棚板は、改質触媒150を上から覆うように第1隔壁132の下部と加熱部隔壁131との間に配置される棚板である。改質部下棚板と改質部上棚板は、通気構造で、ドーナツ盤形状で、改質触媒の粒子径より小さい通気孔が形成されている。 The reforming section lower shelf is a shelf arranged between the lower part of the first partition 132 and the heating section partition 131 so as to support the reforming catalyst from below. The shelf plate is arranged between the lower part of the first partition 132 and the heating part partition 131 so as to cover the . The lower shelf plate of the reforming section and the upper shelf plate of the reforming section have an air-permeable structure, are doughnut-shaped, and have vent holes smaller than the particle size of the reforming catalyst.

伝熱緩衝筒135は、鉛直方向に中心軸を有する略筒状で、外周面の外径が第1隔壁132の下部の外周面の外径よりも大きい。伝熱緩衝筒135は、第1隔壁132の上部との間に伝熱緩衝用の空間が形成されるように、上下端部が内周側に曲げられて第1隔壁132の上部の外周面に固定されている。 The heat transfer buffer cylinder 135 has a substantially tubular shape with a central axis in the vertical direction, and the outer diameter of the outer peripheral surface is larger than the outer diameter of the lower outer peripheral surface of the first partition 132 . The upper and lower ends of the heat transfer buffer cylinder 135 are bent inward so as to form a space for heat transfer buffer between the upper portion of the first partition wall 132 and the outer peripheral surface of the upper portion of the first partition wall 132 . is fixed to

伝熱緩衝筒135は、蒸発部121とCO低減部123との間に伝熱緩衝用の空間を形成するように、第1隔壁132における蒸発部121が構成されている部分の外周面に固定される筒状部材である。伝熱緩衝筒135は、第1隔壁132における蒸発部121が構成された部分の外周面を囲み第1隔壁132と同軸になるように配置されている。 The heat transfer buffer cylinder 135 is fixed to the outer peripheral surface of the portion of the first partition 132 where the evaporator 121 is formed so as to form a space for heat transfer buffer between the evaporator 121 and the CO reduction unit 123. It is a cylindrical member that is used. The heat transfer buffer cylinder 135 is arranged so as to surround the outer peripheral surface of the portion of the first partition 132 where the evaporator 121 is formed and be coaxial with the first partition 132 .

改質部122から流出した一次水素含有ガスのうち、CO低減部123を通流せずに、伝熱緩衝筒135と第1隔壁132との間を通流して、水素生成装置200の外に出てしまう一次水素含有ガスの量が許容量を超えないように、伝熱緩衝筒135の上端部と下端部とが、第1隔壁132に気密に接合される。 Of the primary hydrogen-containing gas that has flowed out of the reforming section 122, it flows between the heat transfer buffer tube 135 and the first partition 132 without flowing through the CO reduction section 123, and is discharged outside the hydrogen generator 200. The upper and lower ends of the heat transfer buffer cylinder 135 are hermetically joined to the first partition wall 132 so that the amount of the primary hydrogen-containing gas that is lost does not exceed the allowable amount.

伝熱緩衝筒135は、上端部と下端部との間の部分の内径が、第1隔壁132における
蒸発部121が構成されている部分の外径よりも大きく、伝熱緩衝筒135の内周面と第1隔壁132における蒸発部121が構成された部分の内周面との間に空間を形成する。また、伝熱緩衝筒135における上端部と下端部との間の部分の外径は、第1隔壁132における改質部122が構成されている部分の外径よりも大きい。
The heat transfer buffer tube 135 has an inner diameter of a portion between the upper end and the lower end larger than the outer diameter of the portion of the first partition 132 where the evaporator 121 is formed, and the inner circumference of the heat transfer buffer tube 135 A space is formed between the surface and the inner peripheral surface of the portion of the first partition 132 where the evaporator 121 is formed. Further, the outer diameter of the portion between the upper end portion and the lower end portion of the heat transfer buffer tube 135 is larger than the outer diameter of the portion of the first partition wall 132 where the reformed portion 122 is formed.

伝熱緩衝筒135は、伝熱緩衝筒135の外周側に隣接するCO低減部123のCO低減触媒または伝熱緩衝筒135の外周面を流れるガスが、蒸発部121との熱交換によって局所的に冷却されることを抑制する伝熱緩衝空間を形成するための部材である。 In the heat transfer buffer 135, the CO reduction catalyst of the CO reduction portion 123 adjacent to the outer peripheral side of the heat transfer buffer 135 or the gas flowing on the outer peripheral surface of the heat transfer buffer 135 locally heats through heat exchange with the evaporator 121. It is a member for forming a heat transfer buffer space that suppresses cooling to the outside.

伝熱緩衝筒135は、伝熱緩衝筒135の外周面と第2隔壁上133の内周面との間に充填されるCO低減触媒が、蒸発部121との熱交換によって局所的に冷却される(CO低減触媒において温度ムラが発生する)ことを抑制する伝熱緩衝空間を形成する。 In the heat transfer buffer cylinder 135, the CO reduction catalyst filled between the outer peripheral surface of the heat transfer buffer cylinder 135 and the inner peripheral surface of the upper second partition wall 133 is locally cooled by heat exchange with the evaporator 121. A heat transfer buffer space is formed to suppress the occurrence of temperature unevenness in the CO reduction catalyst.

伝熱緩衝筒135は、伝熱緩衝筒135の内周面と第1隔壁132における蒸発部121が構成された部分の内周面との間に伝熱緩衝空間を形成し、この伝熱緩衝空間が蒸発部121とCO低減部123との間の伝熱(熱交換)を抑制する。 The heat transfer buffer cylinder 135 forms a heat transfer buffer space between the inner peripheral surface of the heat transfer buffer cylinder 135 and the inner peripheral surface of the portion of the first partition wall 132 where the evaporator 121 is formed. The space suppresses heat transfer (heat exchange) between the evaporation section 121 and the CO reduction section 123 .

第2隔壁上133は、鉛直方向に中心軸を有する略筒状で、伝熱緩衝筒135との間に隙間を空けて伝熱緩衝筒135の外周を囲み上端部が内周側に曲げられて第1隔壁132の上部の外周面に固定されている。 The second upper partition wall 133 has a substantially cylindrical shape having a central axis in the vertical direction, surrounds the outer circumference of the heat transfer buffer cylinder 135 with a gap between it and the heat transfer buffer cylinder 135, and the upper end portion is bent inward. is fixed to the outer peripheral surface of the upper portion of the first partition wall 132 .

第2隔壁上133は、内径が伝熱緩衝筒135の外径よりも大きく、第1隔壁132における蒸発部121が構成されている部分と伝熱緩衝筒135の外周面を囲み第1隔壁132(伝熱緩衝筒135)と同軸になるように配置され、伝熱緩衝筒135との間にCO低減部123を構成する金属部材である。 The upper second partition wall 133 has an inner diameter larger than the outer diameter of the heat transfer buffer cylinder 135 , and surrounds the portion of the first partition wall 132 where the evaporator 121 is configured and the outer peripheral surface of the heat transfer buffer cylinder 135 . It is a metal member that is arranged coaxially with (the heat transfer buffer cylinder 135 ) and constitutes the CO reduction part 123 between the heat transfer buffer cylinder 135 and the heat transfer buffer cylinder 135 .

第2隔壁上133は、第2隔壁上133におけるCO低減部123が構成されている部分よりも上部に二次水素含有ガスを水素生成装置200の外部に排出(供給)する出口管を備えている。 The second partition wall 133 is provided with an outlet pipe for discharging (supplying) the secondary hydrogen-containing gas to the outside of the hydrogen generator 200 above the portion of the second partition wall 133 where the CO reduction unit 123 is configured. there is

第2隔壁上133は、伝熱緩衝筒135との間もしくは外周面が伝熱緩衝筒135で覆われていない第1隔壁132との間に、リターン流路141を通過した一次水素含有ガスをCO低減部下棚板125(CO低減部123)まで導く流路と、CO低減部上棚板124(CO低減部123)から流出した二次水素含有ガスを出口管まで導く流路も形成している。 The second partition wall top 133 allows the primary hydrogen-containing gas that has passed through the return flow path 141 to flow between it and the heat transfer buffer cylinder 135 or between the first partition wall 132 whose outer peripheral surface is not covered with the heat transfer buffer cylinder 135. A flow path leading to the CO reduction section lower shelf 125 (CO reduction section 123) and a flow path for guiding the secondary hydrogen-containing gas flowing out from the CO reduction section upper shelf 124 (CO reduction section 123) to the outlet pipe are also formed. .

CO低減部123は、伝熱緩衝筒135と第2隔壁上133との隙間にCO低減触媒を充填して形成され、改質部122から流出した一次水素含有ガスに含まれる一酸化炭素の濃度を変性反応で低減して二次水素含有ガスとして排出するように構成されている。 The CO reduction section 123 is formed by filling a gap between the heat transfer buffer cylinder 135 and the upper second partition wall 133 with a CO reduction catalyst, and reduces the concentration of carbon monoxide contained in the primary hydrogen-containing gas flowing out of the reforming section 122. is reduced by the modification reaction and discharged as a secondary hydrogen-containing gas.

CO低減触媒は、第2隔壁上133と伝熱緩衝筒135との間に充填される直径が2~3mmの粒状のCu-Zn系の触媒である。 The CO reduction catalyst is a granular Cu—Zn catalyst with a diameter of 2 to 3 mm, which is filled between the second partition wall 133 and the heat transfer buffer cylinder 135 .

CO低減部下棚板125とCO低減部上棚板124は、それぞれ通気構造でドーナツ盤形状の棚板である。CO低減部下棚板125とCO低減部上棚板124は、CO低減触媒の粒子径より小さい直径が1mmの通気孔が形成されている。 The CO reduction unit lower shelf plate 125 and the CO reduction unit upper shelf plate 124 each have a ventilation structure and are doughnut-shaped shelf plates. The lower shelf plate 125 of the CO reduction unit and the upper shelf plate 124 of the CO reduction unit are formed with air holes having a diameter of 1 mm, which is smaller than the particle diameter of the CO reduction catalyst.

CO低減部下棚板125は、CO低減部123のCO低減触媒が落下しないように伝熱緩衝筒135と第2隔壁上133との隙間に配置され、CO低減触媒を下から支持するための棚板である。なお、本実施の形態のCO低減部下棚板125は、第2隔壁下134と
一体に構成されている。
The CO reduction section lower shelf plate 125 is arranged in a gap between the heat transfer buffer tube 135 and the second partition wall top 133 so that the CO reduction catalyst of the CO reduction section 123 does not drop, and is a shelf for supporting the CO reduction catalyst from below. is a board. In addition, the CO reduction section lower shelf 125 of the present embodiment is configured integrally with the second partition wall lower 134 .

CO低減部上棚板124は、CO低減部123のCO低減触媒がCO低減部123から上方に流出しないように伝熱緩衝筒135と第2隔壁上133との隙間に配置され、下面がCO低減触媒と接触するようにCO低減触媒が充填された部分の上面を覆うための棚板である。 The CO reduction unit upper shelf plate 124 is arranged in the gap between the heat transfer buffer cylinder 135 and the second partition wall upper part 133 so that the CO reduction catalyst of the CO reduction unit 123 does not flow upward from the CO reduction unit 123, and the lower surface is CO reduction. A shelf plate for covering the upper surface of the part filled with the CO reduction catalyst so as to be in contact with the catalyst.

第2隔壁下134は、鉛直方向に中心軸を有する有底筒状で、CO低減部下棚板125と一体に構成され、第2隔壁下134の外周面における上部が第2隔壁上133の内周面における下部と対向する状態で第2隔壁上133と接合され、第1隔壁132におけるCO低減部123よりも下側の部分との間に隙間を空けて第1隔壁132と加熱部隔壁131とを収納するように構成されている。 The second partition bottom 134 has a bottomed tubular shape with a central axis in the vertical direction, and is integrally formed with the CO reduction unit lower shelf plate 125 . The first partition wall 132 and the heating part partition wall 131 are joined to the upper part of the second partition wall 133 so as to face the lower part of the peripheral surface, and the first partition wall 132 and the heating part partition wall 131 are separated from the part of the first partition wall 132 below the CO reduction part 123 with a gap therebetween. It is configured to accommodate the

第2隔壁下134は、内径が第1隔壁132における改質部122が構成された部分の外径よりも大きく、第1隔壁132における改質部122が構成された部分の外周面を囲み第1隔壁132と同軸になるように配置され、第1隔壁132における改質部122が構成された部分との間にリターン流路141を形成する有底円筒形の金属部材であり、第2隔壁下134の底部と第1隔壁132の下端との間に一次水素含有ガスが通流する隙間がある。 The second partition bottom 134 has an inner diameter larger than the outer diameter of the portion of the first partition 132 where the reformed portion 122 is formed, and surrounds the outer peripheral surface of the portion of the first partition 132 where the reformed portion 122 is formed. It is a bottomed cylindrical metal member that is arranged coaxially with the first partition 132 and forms a return flow path 141 between the first partition 132 and the portion of the first partition 132 where the reforming section 122 is formed. Between the bottom of the lower 134 and the lower end of the first partition 132 there is a gap through which the primary hydrogen-containing gas flows.

第2隔壁下134の底部は、加熱部隔壁131の底部よりも大きく、第2隔壁下134の底部は、加熱部隔壁131の底部よりも下方に位置するように構成されている。第2隔壁下134の上端部の外径は、第2隔壁下134の上端部を第2隔壁上133の下端部と接合できるように、第2隔壁下134における上端部以外の部分の径よりも大きく構成されている。 The bottom of the second partition bottom 134 is larger than the bottom of the heating part partition 131 , and the bottom of the second partition bottom 134 is positioned below the bottom of the heating part partition 131 . The outer diameter of the upper end portion of the second lower partition wall 134 is larger than the diameter of the portion other than the upper end portion of the second lower partition wall 134 so that the upper end portion of the second lower partition wall 134 can be joined to the lower end portion of the second upper partition wall 133. is also largely constructed.

リターン流路141は、第1隔壁132におけるCO低減部123よりも下側の部分と第2隔壁下134との隙間に形成され、改質部122から下方に流出した一次水素含有ガスの流れを上向きに変えてCO低減部123に導くための流路である。 The return flow path 141 is formed in a gap between a portion of the first partition 132 below the CO reduction section 123 and the second partition bottom 134, and receives the flow of the primary hydrogen-containing gas flowing downward from the reforming section 122. It is a flow path for turning upward and leading to the CO reduction section 123 .

(水素製造装置の製造工程の構成)
図4に示すように、水素生成装置200の製造方法は、CO低減触媒充填準備工程201と、CO低減触媒充填工程202と、第2隔壁下導入工程203と、第2隔壁接合工程204と、を有する。
(Configuration of manufacturing process of hydrogen production device)
As shown in FIG. 4, the method for manufacturing the hydrogen generator 200 includes a CO reduction catalyst filling preparation step 201, a CO reduction catalyst filling step 202, a second partition under introduction step 203, a second partition wall joining step 204, have

1番目のCO低減触媒充填準備工程201は、次のCO低減触媒充填工程202で、第2隔壁上133と伝熱緩衝筒135とCO低減部上棚板124とに囲まれた空間に、CO低減触媒151を充填できるように準備する工程である。 The first CO reduction catalyst filling preparation step 201 is the following CO reduction catalyst filling step 202. In the space surrounded by the second partition upper part 133, the heat transfer buffer cylinder 135, and the CO reduction part upper shelf plate 124, CO reduction This is a step of preparing to fill the catalyst 151 .

CO低減触媒充填準備工程201は、伝熱緩衝筒135が第1隔壁132における蒸発部121が構成された部分の外周面の所定位置に取り付け固定され、第1隔壁132の所定位置に取り付け固定済みの第2隔壁上133の下端には、未だ第2隔壁下134が配置されておらず、第2隔壁上133と伝熱緩衝筒135の間にCO低減部上棚板124を取り付け済みであるが、次のCO低減触媒充填工程202でCO低減触媒151を充填できるように、CO低減触媒151と、第2隔壁下134と一体構成のCO低減部下棚板125とは、未だ第2隔壁上133と伝熱緩衝筒135の間に配置していない状態まで、水素生成装置を製造して、水素生成装置の使用時の重力方向の上下を反転させる(上下逆にする)工程である。 In the CO reduction catalyst filling preparation step 201, the heat transfer buffer cylinder 135 is attached and fixed to a predetermined position on the outer peripheral surface of the portion of the first partition 132 where the evaporator 121 is configured, and is attached and fixed to a predetermined position on the first partition 132. At the lower end of the second upper partition wall 133, the lower second partition wall 134 has not yet been arranged, and the upper shelf plate 124 of the CO reduction section has already been attached between the upper second partition wall 133 and the heat transfer buffer cylinder 135. , so that the CO reduction catalyst 151 can be filled in the next CO reduction catalyst filling step 202, the CO reduction catalyst 151 and the CO reduction unit lower shelf plate 125 integrated with the second partition bottom 134 are still in the second partition top 133 and the heat transfer buffer cylinder 135, and then turn the hydrogen generator upside down in the direction of gravity when it is in use (upside down).

2番目のCO低減触媒充填工程202は、1番目のCO低減触媒充填準備工程201が
完了した状態において、第2隔壁上133と伝熱緩衝筒135とCO低減部上棚板124とに囲まれた空間に、CO低減部上棚板124の上方から所定重量分のCO低減触媒151を充填する作業を行う工程である。
The second CO reduction catalyst filling process 202 is surrounded by the second partition upper part 133, the heat transfer buffer cylinder 135, and the CO reduction part upper shelf plate 124 in the state where the first CO reduction catalyst filling preparation process 201 is completed. In this step, the space is filled with a predetermined weight of the CO reduction catalyst 151 from above the upper shelf plate 124 of the CO reduction unit.

3番目の第2隔壁下導入工程203は、2番目のCO低減触媒充填工程202が完了した状態において、CO低減部下棚板125が下で第2隔壁下134の底が上になるように上下を反転させた第2隔壁下134のCO低減部下棚板125を、上方からCO低減触媒151が充填された部分に向けて導入して、CO低減部下棚板125におけるCO低減触媒151と対向する面が均等にCO低減触媒151に当接する位置に設置する作業を行う工程である。 In the third second partition bottom introduction step 203, in a state where the second CO reduction catalyst filling step 202 is completed, the CO reduction section lower shelf plate 125 is at the bottom and the bottom of the second partition bottom 134 is at the top. is introduced from above toward the portion filled with the CO reduction catalyst 151 to face the CO reduction catalyst 151 on the CO reduction section lower shelf 125. In this step, the surface is installed at a position where it evenly abuts on the CO reduction catalyst 151 .

4番目の第2隔壁接合工程204は、3番目の第2隔壁下導入工程203が完了した状態において、第2隔壁上133と第2隔壁下134とが近接する箇所を全周にわたって気密に接合する作業を行う工程である。 In the fourth step 204 for joining the second partition wall, in a state where the third step 203 for introducing the second partition wall below is completed, the portion where the upper second partition wall 133 and the lower second partition wall 134 are adjacent to each other is airtightly joined over the entire circumference. It is a process of performing the work to be done.

[2-2.動作]
以上のように構成された水素生成装置200において、以下、その動作、作用を説明する。
[2-2. motion]
The operation and function of the hydrogen generator 200 configured as described above will be described below.

(水素生成装置の動作)
水素生成装置200において、必要な水素量を得るために、原料ガスと水が、適正な比率で供給管から蒸発部121に供給される。
(Operation of hydrogen generator)
In order to obtain the necessary amount of hydrogen in the hydrogen generator 200, the material gas and water are supplied to the evaporation section 121 from the supply pipe in a proper ratio.

供給された水は、蒸発部121の螺旋状の流路に沿って流れながら加熱部隔壁131を介して伝わる加熱部120の熱(燃焼排ガスの熱を含む)によって水蒸気となり、原料ガスと混合される。 The supplied water flows along the helical flow path of the evaporator 121 and becomes water vapor by the heat of the heating unit 120 (including the heat of the combustion exhaust gas) transmitted through the heating unit partition 131, and is mixed with the raw material gas. be.

原料ガスと水蒸気の混合ガスは、改質部122へ供給され、加熱部隔壁131を介して伝わる加熱部120の熱(燃焼排ガスの熱を含む)によって改質反応に適した温度に加熱された改質触媒により水蒸気改質反応が行われて、一次水素含有ガスとなる。 The mixed gas of the raw material gas and water vapor is supplied to the reforming section 122 and heated to a temperature suitable for the reforming reaction by the heat of the heating section 120 (including the heat of the combustion exhaust gas) transmitted through the heating section partition wall 131. A steam reforming reaction is performed by the reforming catalyst to produce a primary hydrogen-containing gas.

改質部122から排出された一次水素含有ガスは、リターン流路141を通流して、CO低減部123に下方から供給され、CO低減触媒151により、一次水素含有ガス中の一酸化炭素と水蒸気が反応して、一次水素含有ガス中のCO濃度が0.1~0.2%程度まで低減されて二次水素含有ガスとなる。 The primary hydrogen-containing gas discharged from the reforming section 122 flows through the return flow path 141 and is supplied to the CO reduction section 123 from below. reacts to reduce the CO concentration in the primary hydrogen-containing gas to about 0.1 to 0.2%, resulting in a secondary hydrogen-containing gas.

このとき、CO低減触媒151は、改質部122(改質触媒150)から排出されCO低減部123に流入する一次水素含有ガスの熱と、蒸発部121から、第1隔壁132と伝熱緩衝空間と伝熱緩衝筒135とを介して、CO低減触媒151に伝わる冷熱とによって、変成反応に適した温度に加熱されている。 At this time, the CO reduction catalyst 151 receives the heat of the primary hydrogen-containing gas discharged from the reforming section 122 (the reforming catalyst 150) and flowing into the CO reduction section 123, It is heated to a temperature suitable for the shift reaction by cold heat transmitted to the CO reduction catalyst 151 through the space and the heat transfer buffer cylinder 135 .

CO低減部123から排出された二次水素含有ガスは、出口管から水素生成装置200の外に出ていき、燃料電池などの水素利用機器に供給される。 The secondary hydrogen-containing gas discharged from the CO reduction unit 123 exits the hydrogen generator 200 through the outlet pipe and is supplied to a hydrogen utilization device such as a fuel cell.

加熱部120のバーナの燃焼で発生した燃焼排ガスは、燃焼筒130の内周面に沿って燃焼筒130の内周側を下方に流れた後に、加熱部隔壁131の底部と燃焼筒130の下端との隙間を通って上方に折り返して、燃焼筒130と加熱部隔壁131との間に形成された燃焼排ガス流路140を、改質部122と熱交換した後に、蒸発部121と熱交換して、加熱部隔壁131における上部に設けられた燃焼排ガス出口管から水素生成装置200の外部に排出される。 The combustion exhaust gas generated by the combustion of the burner of the heating section 120 flows downward along the inner peripheral surface of the combustion tube 130 and then flows downward along the inner peripheral side of the combustion tube 130, and then reaches the bottom of the heating section partition 131 and the lower end of the combustion tube 130. The flue gas flow path 140 formed between the combustion cylinder 130 and the heating section partition wall 131 is folded upward through the gap between and heat-exchanged with the reforming section 122, and then heat-exchanged with the evaporating section 121. Then, it is discharged to the outside of the hydrogen generator 200 from a combustion exhaust gas outlet pipe provided in the upper part of the heating part partition 131 .

(水素生成装置のCO低減部に関連する製造工程)
1番目のCO低減触媒充填準備工程201では、次のCO低減触媒充填工程202で、第2隔壁上133と伝熱緩衝筒135とCO低減部上棚板124とに囲まれた空間に、CO低減触媒151を充填できるように準備する。
(Manufacturing process related to the CO reduction part of the hydrogen generator)
In the first CO reduction catalyst filling preparation step 201, in the next CO reduction catalyst filling step 202, CO reduction is filled in the space surrounded by the second partition upper 133, the heat transfer buffer cylinder 135, and the CO reduction unit upper shelf plate 124. Preparations are made so that the catalyst 151 can be filled.

1番目のCO低減触媒充填準備工程201では、具体的には、伝熱緩衝筒135が第1隔壁132における蒸発部121が構成された部分の外周面の所定位置に取り付け固定され、第1隔壁132の所定位置に取り付け固定済みの第2隔壁上133の下端には、未だ第2隔壁下134が配置されておらず、第2隔壁上133と伝熱緩衝筒135の間にCO低減部上棚板124を取り付け済みであるが、次のCO低減触媒充填工程202でCO低減触媒151を充填できるように、CO低減触媒151と、第2隔壁下134と一体構成のCO低減部下棚板125とは、未だ第2隔壁上133と伝熱緩衝筒135の間に配置していない状態まで、水素生成装置を製造して、水素生成装置の使用時の重力方向の上下を反転させる(上下逆にする)作業を行う。 Specifically, in the first CO reduction catalyst filling preparation step 201, the heat transfer buffer cylinder 135 is attached and fixed to a predetermined position on the outer peripheral surface of the portion of the first partition 132 where the evaporator 121 is formed, and the first partition At the lower end of the upper second partition wall 133 that has already been attached and fixed to the predetermined position of 132 , the lower second partition wall 134 is not yet arranged, and the upper shelf of the CO reduction unit is placed between the upper second partition wall 133 and the heat transfer buffer cylinder 135 . Although the plate 124 has been attached, the CO reduction catalyst 151 and the CO reduction section lower shelf plate 125 integrated with the second partition wall lower 134 are added so that the CO reduction catalyst 151 can be filled in the next CO reduction catalyst filling step 202. is to manufacture the hydrogen generator until it is not yet placed between the second partition top 133 and the heat transfer buffer cylinder 135, and turn the hydrogen generator upside down in the direction of gravity during use (upside down work).

CO低減部上棚板124は、第2隔壁上133が伝熱緩衝筒135の外周面を囲むように第1隔壁132の所定位置に第2隔壁上133を取り付ける前に、伝熱緩衝筒135の外周面の所定位置または第2隔壁上133の内周面の所定位置のどちらか一方に溶接で固定しておく。 The CO reduction unit upper shelf plate 124 is attached to the heat transfer buffer cylinder 135 before the second partition wall top 133 is attached to a predetermined position of the first partition wall 132 so that the second partition wall top 133 surrounds the outer peripheral surface of the heat transfer buffer cylinder 135 . It is fixed by welding to either a predetermined position on the outer peripheral surface or a predetermined position on the inner peripheral surface of the second partition wall 133 .

改質部上棚板は、第1隔壁132が加熱部隔壁131の外周面を囲むように第1隔壁132を加熱部隔壁131の外周側に配置する前に、加熱部隔壁131の外周面の所定位置または第1隔壁132の下部の内周面の所定位置のどちらか一方に溶接で固定しておく。 Before the first partition 132 is arranged on the outer peripheral side of the heating part partition 131 so that the first partition 132 surrounds the outer peripheral surface of the heating part partition 131 , the reforming part upper shelf is provided with a predetermined amount of pressure on the outer peripheral surface of the heating part partition 131 . It is fixed by welding to either a position or a predetermined position on the inner peripheral surface of the lower portion of the first partition wall 132 .

改質触媒は、CO低減触媒充填準備工程101で水素生成装置の使用時の重力方向の上下を反転させる(上下逆にする)作業を行った後に、第1隔壁132の下部と加熱部隔壁131と改質部上棚板とに囲まれた空間に充填する。 The reforming catalyst is placed under the first partition 132 and the heating part partition 131 after performing the work of inverting the gravity direction when the hydrogen generator is used in the CO reduction catalyst filling preparation step 101 (upside down). and the upper shelf plate of the reforming section.

改質部上棚板は、改質触媒を充填した後で、第2隔壁下導入工程203までに、第1隔壁132の下部と加熱部隔壁131との間に配置して、第1隔壁132の下部の内周面と加熱部隔壁131の外周面の少なくともどちらか一方に溶接などで固定する。 After the reforming catalyst is filled, the reforming section upper shelf plate is arranged between the lower part of the first partition wall 132 and the heating section partition wall 131 by the step 203 of introduction below the second partition wall. It is fixed by welding or the like to at least one of the inner peripheral surface of the lower portion and the outer peripheral surface of the heating portion partition wall 131 .

蒸発部121の螺旋状に曲げられた棒材は、第1隔壁132が加熱部隔壁131の外周面を囲むように第1隔壁132を加熱部隔壁131の外周側に配置する前に、加熱部隔壁131の外周面の所定位置に固定し、第1隔壁132が加熱部隔壁131の外周面を囲むように第1隔壁132を加熱部隔壁131の外周側に配置した後に、加熱部隔壁131を拡管して、螺旋状に曲げられた棒材を第1隔壁132の上部の内周面に密着させる。 Before the first partition 132 is arranged on the outer peripheral side of the heating part partition 131 so that the first partition 132 surrounds the outer peripheral surface of the heating part partition 131 , the helically bent bar of the evaporating part 121 is attached to the heating part 121 . After the first partition 132 is arranged on the outer peripheral side of the heating part partition 131 so that the first partition 132 surrounds the outer peripheral surface of the heating part partition 131, the heating part partition 131 is attached. The pipe is expanded and the helically bent bar is brought into close contact with the upper inner peripheral surface of the first partition wall 132 .

2番目のCO低減触媒充填工程202では、1番目のCO低減触媒充填準備工程201が完了した状態において、第2隔壁上133と伝熱緩衝筒135とCO低減部上棚板124とに囲まれた空間に、CO低減部上棚板124の上方から所定重量分のCO低減触媒151を充填する作業を行う。 In the second CO reduction catalyst filling step 202, in the state where the first CO reduction catalyst filling preparation step 201 is completed, the second partition wall upper part 133, the heat transfer buffer cylinder 135, and the CO reduction part upper shelf plate 124 A predetermined weight of the CO reduction catalyst 151 is filled into the space from above the CO reduction unit upper shelf plate 124 .

3番目の第2隔壁下導入工程203では、2番目のCO低減触媒充填工程202が完了した状態において、CO低減部下棚板125が下で第2隔壁下134の底が上になるように上下を反転させた第2隔壁下134のCO低減部下棚板125を、上方からCO低減触媒151が充填された部分に向けて導入して、CO低減部下棚板125におけるCO低減触媒151と対向する面が均等にCO低減触媒151に当接する位置に設置する作業を行う。 In the third step 203 of introducing under the second partition, in the state where the second CO reduction catalyst filling step 202 is completed, the lower shelf plate 125 of the CO reduction section is lowered and the bottom of the lower second partition 134 is raised. is introduced from above toward the portion filled with the CO reduction catalyst 151 to face the CO reduction catalyst 151 on the CO reduction section lower shelf 125. The work is carried out so that the surface is evenly in contact with the CO reduction catalyst 151 .

4番目の第2隔壁接合工程204では、3番目の第2隔壁下導入工程203が完了した状態において、第2隔壁上133と第2隔壁下134とが近接する箇所を全周にわたって気密に接合する作業を行う。 In the fourth second partition wall joining step 204, in a state where the third second partition bottom introduction step 203 is completed, the portion where the second partition wall top 133 and the second partition bottom 134 are close to each other is airtightly bonded over the entire circumference. work to be done.

このように本実施の形態では、CO低減部下棚板125が第2隔壁下134と一体に構成されているので、CO低減部下棚板125を、第2隔壁上133の内周面と伝熱緩衝筒135の外周面の少なくともどちらか一方に直接接合(溶接)する作業を行うことなく、第2隔壁下134を第2隔壁上133に接合することよって、CO低減触媒151の重みによってCO低減部下棚板125が脱落しないようにCO低減部下棚板125を固定することができる。 As described above, in the present embodiment, since the lower shelf plate 125 of the CO reduction unit is integrated with the lower second partition wall 134, the lower shelf plate 125 of the CO reduction unit and the inner peripheral surface of the upper second partition wall 133 are heat-transferable. By joining the lower second partition wall 134 to the upper second partition wall 133 without directly joining (welding) to at least one of the outer peripheral surfaces of the buffer cylinder 135, the weight of the CO reduction catalyst 151 reduces CO. The CO reduction subordinate shelf 125 can be fixed so that the subordinate shelf 125 does not fall off.

[2-3.効果]
以上のように、本実施の形態における水素生成装置200は、加熱部120と燃焼筒130と加熱部隔壁131と第1隔壁132と燃焼排ガス流路140と蒸発部121と改質部122と伝熱緩衝筒135と第2隔壁上133とCO低減部123とCO低減部下棚板125とCO低減部上棚板124と第2隔壁下134とリターン流路141とを有しており、CO低減部下棚板125を第2隔壁下134と一体に構成した点で、図1に示す実施の形態1の水素生成装置100と異なる。
[2-3. effect]
As described above, the hydrogen generator 200 according to the present embodiment includes the heating section 120, the combustion cylinder 130, the heating section partition wall 131, the first partition wall 132, the flue gas flow path 140, the evaporating section 121, the reforming section 122, and the transmission. It has a heat buffer cylinder 135, a second partition upper part 133, a CO reduction part 123, a CO reduction part lower shelf plate 125, a CO reduction part upper shelf plate 124, a second partition lower part 134, and a return channel 141, and a CO reduction part lower part. It differs from the hydrogen generator 100 of Embodiment 1 shown in FIG.

そして、本実施の形態における水素生成装置200の製造方法は、CO低減触媒充填準備工程201とCO低減触媒充填工程202と第2隔壁下導入工程203と第2隔壁接合工程204とを有する。 The method for manufacturing the hydrogen generator 200 according to the present embodiment includes a CO reduction catalyst filling preparation step 201 , a CO reduction catalyst filling step 202 , a second partition bottom introduction step 203 , and a second partition wall bonding step 204 .

加熱部120は、可燃性ガスを燃焼して燃焼排ガスを排出するように構成されている。燃焼筒130は、鉛直方向に中心軸を有し加熱部120の外周を囲む筒状で、燃焼排ガスが筒の内側を下方に向かって流れるように構成されている。加熱部隔壁131は、鉛直方向に中心軸を有する有底筒状で、燃焼筒130との間に隙間を空けて燃焼筒130を収納するように構成されている。 The heating unit 120 is configured to burn combustible gas and discharge flue gas. The combustion tube 130 has a tubular shape having a central axis in the vertical direction and surrounds the outer circumference of the heating section 120, and is configured so that combustion exhaust gas flows downward inside the tube. The heating section partition 131 has a bottomed tubular shape with a central axis in the vertical direction, and is configured to accommodate the combustion tube 130 with a gap between it and the combustion tube 130 .

第1隔壁132は、鉛直方向に中心軸を有する略筒状で、下部の径が上部の径よりも大きく構成され、加熱部隔壁131との間に隙間を空けて加熱部隔壁131の外周を囲む。燃焼排ガス流路140は、燃焼筒130と加熱部隔壁131との隙間に形成された上方に燃焼排ガスを流す流路である。 The first partition wall 132 has a substantially cylindrical shape having a central axis in the vertical direction, and is configured such that the diameter of the lower portion is larger than the diameter of the upper portion, and the outer periphery of the heating portion partition wall 131 is provided with a gap between it and the heating portion partition wall 131 . surround. The combustion exhaust gas flow path 140 is a flow path formed in a gap between the combustion cylinder 130 and the heating section partition wall 131 and through which the combustion exhaust gas flows upward.

蒸発部121は、加熱部隔壁131と第1隔壁132の上部との隙間に形成され、加熱部隔壁131を介して伝わる熱で原料ガスと水とを加熱して、水を蒸発させるように構成されている。 The evaporator 121 is formed in a gap between the heating partition wall 131 and the upper portion of the first partition wall 132, and is configured to heat the raw material gas and water by heat transmitted through the heating partition wall 131, thereby evaporating the water. It is

改質部122は、加熱部隔壁131と第1隔壁132の下部との隙間に改質触媒を充填して形成され、蒸発部121の下方で加熱部隔壁131を介して熱が伝えられ、蒸発部121から流出した原料ガスと水蒸気との混合ガスから改質反応で一酸化炭素を含む一次水素含有ガスを生成するように構成されている。 The reforming section 122 is formed by filling the gap between the heating section partition 131 and the lower portion of the first partition 132 with a reforming catalyst. It is configured to generate a primary hydrogen-containing gas containing carbon monoxide through a reforming reaction from the mixed gas of the raw material gas and water vapor that flowed out of the unit 121 .

伝熱緩衝筒135は、鉛直方向に中心軸を有する略筒状で、外周面の外径が第1隔壁132の下部の外周面の外径よりも大きく、第1隔壁132の上部との間に伝熱緩衝用の空間が形成されるように、上下端部が内周側に曲げられて第1隔壁132の上部の外周面に固定されている。 The heat transfer buffer cylinder 135 has a substantially cylindrical shape with a central axis in the vertical direction, and has an outer diameter larger than that of the outer peripheral surface of the lower portion of the first partition 132 , and is spaced from the upper portion of the first partition 132 . The upper and lower ends are bent inward and fixed to the outer peripheral surface of the upper portion of the first partition wall 132 so that a space for heat transfer buffering is formed at the bottom.

第2隔壁上133は、鉛直方向に中心軸を有する略筒状で、伝熱緩衝筒135との間に
隙間を空けて伝熱緩衝筒135の外周を囲み上端部が内周側に曲げられて第1隔壁132の上部の外周面に固定されている。
The second upper partition wall 133 has a substantially cylindrical shape having a central axis in the vertical direction, surrounds the outer circumference of the heat transfer buffer cylinder 135 with a gap between it and the heat transfer buffer cylinder 135, and the upper end portion is bent inward. is fixed to the outer peripheral surface of the upper portion of the first partition wall 132 .

CO低減部123は、伝熱緩衝筒135と第2隔壁上133との隙間にCO低減触媒151を充填して形成され、改質部122から流出した一次水素含有ガスに含まれる一酸化炭素の濃度を変性反応で低減して、二次水素含有ガスとして排出するように構成されている。 The CO reduction section 123 is formed by filling a gap between the heat transfer buffer cylinder 135 and the second partition wall upper portion 133 with a CO reduction catalyst 151, and reduces carbon monoxide contained in the primary hydrogen-containing gas flowing out of the reforming section 122. The concentration is reduced by a denaturation reaction and is configured to be discharged as a secondary hydrogen-containing gas.

CO低減部下棚板125は、CO低減部123のCO低減触媒151が落下しないように、伝熱緩衝筒135と第2隔壁上133との隙間に配置された、通気構造でドーナツ盤形状の棚板であって、CO低減触媒151を下から支持する。 The lower shelf plate 125 of the CO reduction section 125 is a donut disk-shaped shelf with a ventilation structure arranged in the gap between the heat transfer buffer cylinder 135 and the upper second partition wall 133 so that the CO reduction catalyst 151 of the CO reduction section 123 does not drop. It is a plate and supports the CO reduction catalyst 151 from below.

CO低減部上棚板124は、CO低減部123のCO低減触媒151がCO低減部123から上方に流出しないように、伝熱緩衝筒135と第2隔壁上133との隙間に配置された、通気構造でドーナツ盤形状の棚板であって、下面がCO低減触媒151と接触するようにCO低減触媒151が充填された部分の上面を覆う。 The CO reduction unit upper shelf plate 124 is arranged in a gap between the heat transfer buffer cylinder 135 and the second partition wall top 133 so that the CO reduction catalyst 151 of the CO reduction unit 123 does not flow upward from the CO reduction unit 123. It is a donut disk-shaped shelf plate in structure, and covers the upper surface of the part filled with the CO reduction catalyst 151 so that the lower surface contacts the CO reduction catalyst 151 .

第2隔壁下134は、鉛直方向に中心軸を有する有底筒状で、CO低減部下棚板125と一体に構成され、第2隔壁下134の外周面における上部が第2隔壁上133の内周面における下部と対向する状態で第2隔壁上133と接合され、第1隔壁132におけるCO低減部123よりも下側の部分との間に隙間を空けて、第1隔壁132と加熱部隔壁131とを収納するように構成されている。 The second partition bottom 134 has a bottomed tubular shape with a central axis in the vertical direction, and is integrally formed with the CO reduction unit lower shelf plate 125 . The first partition wall 132 and the heating part partition wall are joined to the upper part of the second partition wall 133 in a state facing the lower part of the peripheral surface, and the first partition wall 132 and the heating part partition wall are separated from each other with a gap between them and the portion of the first partition wall 132 below the CO reduction part 123. 131.

リターン流路141は、第1隔壁132におけるCO低減部123よりも下側の部分と第2隔壁下134との隙間に形成され、改質部122から下方に流出した一次水素含有ガスの流れを上向きに変えてCO低減部123に導くための流路である。 The return flow path 141 is formed in a gap between a portion of the first partition 132 below the CO reduction section 123 and the second partition bottom 134, and receives the flow of the primary hydrogen-containing gas flowing downward from the reforming section 122. It is a flow path for turning upward and leading to the CO reduction section 123 .

1番目のCO低減触媒充填準備工程201は、所定位置に取り付け済みの第2隔壁上133の下部には、未だ第2隔壁下134が配置されておらず、第2隔壁上133と伝熱緩衝筒135との隙間の所定位置に、CO低減部上棚板124を取り付け済みであるが、CO低減触媒151は、未だ第2隔壁上133と伝熱緩衝筒135との隙間に配置していない状態にまで、水素生成装置を製造し、水素生成装置の使用時の重力方向の上下を反転させる工程である。 In the first CO reduction catalyst filling preparation step 201, the second partition wall top 133 is not yet placed below the second partition wall top 133 that has been attached to a predetermined position, and the second partition wall top 133 and the second partition wall 133 are heat transfer buffers. The CO reduction unit upper shelf plate 124 has already been attached to a predetermined position in the gap between the cylinder 135, but the CO reduction catalyst 151 has not yet been placed in the gap between the second partition wall 133 and the heat transfer buffer cylinder 135. It is a step of manufacturing a hydrogen generator up to and inverting the direction of gravity when the hydrogen generator is in use.

2番目のCO低減触媒充填工程202は、1番目のCO低減触媒充填準備工程201が完了した状態において、第2隔壁上133と伝熱緩衝筒135とCO低減部上棚板124とに囲まれた空間に、CO低減部上棚板124の上方から所定重量分のCO低減触媒151を充填する作業を行う工程である。 The second CO reduction catalyst filling process 202 is surrounded by the second partition upper part 133, the heat transfer buffer cylinder 135, and the CO reduction part upper shelf plate 124 in the state where the first CO reduction catalyst filling preparation process 201 is completed. In this step, the space is filled with a predetermined weight of the CO reduction catalyst 151 from above the upper shelf plate 124 of the CO reduction unit.

3番目の第2隔壁下導入工程203は、2番目のCO低減触媒充填工程202が完了した状態において、CO低減部下棚板125が下で第2隔壁下134の底が上になるように上下を反転させた第2隔壁下134のCO低減部下棚板125を、上方からCO低減触媒151が充填された部分に向けて導入して、CO低減部下棚板125におけるCO低減触媒151と対向する面が均等にCO低減触媒151に当接する位置に設置する作業を行う工程である。 In the third second partition bottom introduction step 203, in a state where the second CO reduction catalyst filling step 202 is completed, the CO reduction section lower shelf plate 125 is at the bottom and the bottom of the second partition bottom 134 is at the top. is introduced from above toward the portion filled with the CO reduction catalyst 151 to face the CO reduction catalyst 151 on the CO reduction section lower shelf 125. In this step, the surface is installed at a position where it evenly abuts on the CO reduction catalyst 151 .

4番目の第2隔壁接合工程204は、3番目の第2隔壁下導入工程203が完了した状態において、第2隔壁上133と第2隔壁下134とが近接する箇所を全周にわたって気密に接合する作業を行う工程である。 In the fourth step 204 for joining the second partition wall, in a state where the third step 203 for introducing the second partition wall below is completed, the portion where the upper second partition wall 133 and the lower second partition wall 134 are adjacent to each other is airtightly joined over the entire circumference. It is a process of performing the work to be done.

本実施の形態における水素生成装置200の製造方法は、CO低減部123の組立において、CO低減部上棚板124の固定を先に行い、水素生成装置200の使用時とは重力方向を反転させた状態でCO低減触媒151の充填を行い、CO低減触媒151の上流位置でCO低減部下棚板125を設置する製造方法とすることにより、以下の効果が得られる。 In the method for manufacturing the hydrogen generator 200 according to the present embodiment, in the assembly of the CO reduction unit 123, the upper shelf plate 124 of the CO reduction unit is first fixed, and the direction of gravity is reversed from that when the hydrogen generation unit 200 is used. By adopting a manufacturing method in which the CO reduction catalyst 151 is filled in the state and the CO reduction section lower shelf plate 125 is installed upstream of the CO reduction catalyst 151, the following effects can be obtained.

予めCO低減部上棚板124を所定の位置に固定することで、充填されたCO低減触媒151の体積のバラつきをCO低減部下棚板125の固定位置で吸収することが可能となり、CO低減部上棚板124の位置のバラつきを抑制できる。 By fixing the CO reduction section upper shelf plate 124 in advance at a predetermined position, it is possible to absorb variations in the volume of the filled CO reduction catalyst 151 at the fixed position of the CO reduction section lower shelf plate 125 , and the CO reduction section upper shelf plate 125 is fixed. Variation in the position of the plate 124 can be suppressed.

そのため、CO低減触媒151の下流位置を一定にできるので、CO低減触媒151の下流位置と加熱部120との距離が一定となり、CO低減触媒151下流部の温度を一定にすることができる。CO低減部123通過後の水素含有ガスに含まれるCOの濃度は、CO低減触媒151下流部の温度に依存するため、変成反応後ガス中のCO濃度の個体差を抑制することができる。 Therefore, since the downstream position of the CO reduction catalyst 151 can be kept constant, the distance between the downstream position of the CO reduction catalyst 151 and the heating unit 120 can be kept constant, and the temperature of the downstream part of the CO reduction catalyst 151 can be kept constant. Since the concentration of CO contained in the hydrogen-containing gas after passing through the CO reduction section 123 depends on the temperature of the downstream portion of the CO reduction catalyst 151, it is possible to suppress individual differences in the CO concentration in the post-shifting reaction gas.

また、本実施の形態では、CO低減部下棚板125を第2隔壁下134と一体に構成したので、CO低減部下棚板125を、第2隔壁上133の内周面と伝熱緩衝筒135の外周面の少なくともどちらか一方に直接接合(溶接)する作業を行うことなく、第2隔壁下134を第2隔壁上133に接合することよって、CO低減触媒151の重みによってCO低減部下棚板125が脱落しないようにCO低減部下棚板125を固定することができる。 In addition, in the present embodiment, since the lower shelf plate 125 of the CO reduction unit is integrated with the lower second partition wall 134 , the lower shelf plate 125 of the CO reduction unit is integrated with the inner peripheral surface of the upper second partition wall 133 and the heat transfer buffer cylinder 135 . By joining the lower second partition wall 134 to the upper second partition wall 133 without directly joining (welding) to at least one of the outer peripheral surfaces of the CO reduction part lower shelf plate due to the weight of the CO reduction catalyst 151 The lower CO reduction shelf 125 can be fixed so that 125 does not fall off.

また、CO低減部下棚板125と第2隔壁下134とを一体に構成することによって、部材点数を削減することができ、組立工程を簡素化することができる。 In addition, by integrating the lower shelf plate 125 of the CO reduction unit and the lower second partition wall 134, the number of parts can be reduced, and the assembly process can be simplified.

(他の実施の形態)
以上のように、本出願において開示する技術の例示として、実施の形態1および実施の形態2を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態1および実施の形態2で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
(Other embodiments)
As described above, Embodiment 1 and Embodiment 2 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to embodiments with modifications, replacements, additions, omissions, and the like. Also, it is possible to combine the components described in the first and second embodiments to form a new embodiment.

そこで、以下、図5を用いて、他の実施の形態を例示する。実施の形態1および実施の形態2では、触媒として改質触媒150とCO低減触媒151を備える構成を説明した。 Therefore, another embodiment will be illustrated below with reference to FIG. In Embodiments 1 and 2, a configuration including reforming catalyst 150 and CO reduction catalyst 151 as catalysts has been described.

図5のように、水素生成装置300は、CO低減触媒151の下流(上方)にCO低減部123から流出した二次水素含有ガスに含まれる一酸化炭素の濃度を選択酸化反応でさらに低減することにより三次水素含有ガスを生成するCO除去触媒を充填したCO除去部142を設けてもよい。 As shown in FIG. 5, the hydrogen generator 300 further reduces the concentration of carbon monoxide contained in the secondary hydrogen-containing gas that has flowed out of the CO reduction unit 123 to the downstream (upper) side of the CO reduction catalyst 151 through a selective oxidation reaction. A CO removal section 142 filled with a CO removal catalyst that produces a tertiary hydrogen-containing gas may be provided.

CO除去触媒は、直径が2~3mmの粒状のRu系の触媒である。CO除去触媒は、CO除去部下棚板144で下から支えられ(下方向への移動を制限され)、CO除去部上棚板143によって上から覆われ(上方向への移動を制限され)ており、CO除去部下棚板144とCO除去部上棚板143との間に保持されている。 The CO removal catalyst is a granular Ru-based catalyst with a diameter of 2-3 mm. The CO removal catalyst is supported from below by the CO removal section lower shelf 144 (downward movement is restricted), and is covered from above by the CO removal section upper shelf 143 (upward movement is restricted). , is held between the lower shelf plate 144 of the CO removal section and the upper shelf plate 143 of the CO removal section.

CO除去部下棚板144およびCO除去部上棚板143は、ともに、CO除去触媒の粒子径より小さい直径が1mmの通気孔が形成されているドーナツ盤形状の板である。 Both the lower shelf plate 144 of the CO removal part and the upper shelf plate 143 of the CO removal part are doughnut-shaped plates in which vent holes having a diameter of 1 mm smaller than the particle diameter of the CO removal catalyst are formed.

これにより、CO除去触媒によって、水素生成装置300から排出(供給)される水素
含有ガスに含まれる一酸化炭素の濃度を実施の形態1の水素生成装置100よりもさらに低減することができる。そのため、信頼性の高い水素生成装置300を提供することができる。
As a result, the CO removal catalyst can further reduce the concentration of carbon monoxide contained in the hydrogen-containing gas discharged (supplied) from the hydrogen generator 300 compared to the hydrogen generator 100 of the first embodiment. Therefore, a highly reliable hydrogen generator 300 can be provided.

CO除去触媒の充填作業は、充填の前にCO除去部下棚板144を設置して、水素生成装置は使用時の向き(上下正常状態)で行い、CO除去触媒の充填後に、CO除去部上棚板143を設置することで、CO除去触媒をCO除去部下棚板144とCO除去部上棚板143との間に保持することができる。 Before filling the CO removal catalyst, the lower shelf plate 144 of the CO removal part is installed, and the hydrogen generator is oriented in use (vertical normal state). By installing the plate 143 , the CO removal catalyst can be held between the CO removal section lower shelf plate 144 and the CO removal section upper shelf plate 143 .

なお、上下正常状態で、CO除去触媒の充填後に、CO除去部上棚板143を設置するために、CO除去触媒の充填作業をするときは、第2隔壁上133と伝熱緩衝筒135との間に設置されたCO除去部上棚板143の上方に、上からCO除去触媒を充填してCO除去部上棚板143を設置するのを妨害する障害物が存在しないように、第2隔壁上133などを構成しておく必要がある。 In addition, when the CO removal catalyst is charged in order to install the CO removal unit upper shelf plate 143 after the CO removal catalyst is charged in the normal state, the upper second partition wall 133 and the heat transfer buffer cylinder 135 Above the upper shelf plate 143 of the CO removal part installed therebetween, the upper part of the second partition wall 133 is arranged so that there is no obstacle that prevents the installation of the upper shelf plate 143 of the CO removal part by filling the CO removal catalyst from above. etc. must be configured.

なお、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Note that the above-described embodiment is for illustrating the technology in the present disclosure, and various changes, replacements, additions, omissions, etc. can be made within the scope of the claims or equivalents thereof.

また、以下、図6を用いて、他の実施の形態を例示する。 Another embodiment will be illustrated below with reference to FIG.

実施の形態1および実施の形態2では、CO低減触媒充填準備工程101、CO低減触媒充填準備工程201において、予め改質触媒150を充填し改質部122が形成されている状態からの製造方法を説明した。 In Embodiments 1 and 2, in the CO reduction catalyst filling preparation step 101 and the CO reduction catalyst filling preparation step 201, the reforming catalyst 150 is filled in advance and the reforming section 122 is formed. explained.

図6のように、水素生成装置300は、CO低減触媒の充填と略同時に(略同じ工程において)、改質触媒の充填を行う製造方法でもよい。 As shown in FIG. 6, the hydrogen generator 300 may be manufactured by filling the reforming catalyst at substantially the same time as the CO reduction catalyst (substantially in the same process).

CO低減触媒充填工程102,202において、CO低減触媒151の充填と同時に改質部上棚板126の上に改質触媒150を充填するか、または、CO低減触媒151の充填の直前または直後に改質部上棚板126の上に改質触媒150を充填してもよい。 In the CO reduction catalyst filling steps 102 and 202, the reforming catalyst 150 is filled on the reforming section upper shelf plate 126 at the same time as the CO reduction catalyst 151 is filled, or the reforming catalyst 150 is filled immediately before or after the CO reduction catalyst 151 is filled. A reforming catalyst 150 may be packed on the quality section upper shelf 126 .

そして、改質部下棚板127による改質触媒の封止を、CO低減触媒封止工程103において、CO低減触媒を封止する作業と同時に行うか、CO低減触媒を封止する作業の直前または直後に行ってもよい。 In the CO reduction catalyst sealing step 103, the reforming catalyst is sealed by the reformer lower shelf plate 127 at the same time as the CO reduction catalyst is sealed, or immediately before or immediately before the CO reduction catalyst is sealed. You can go right after.

しかし、CO低減部下棚板125を第2隔壁下134と一体に構成した場合には、改質部下棚板127による改質触媒の封止は、CO低減触媒充填工程202の後で、第2隔壁下導入工程203の前に、行う必要がある。 However, when the CO reduction section lower shelf 125 is configured integrally with the second partition lower 134, the reforming catalyst is sealed by the reforming section lower shelf 127 after the CO reduction catalyst filling step 202. It must be done before the under-septum introduction step 203 .

これによって、改質部およびCO低減部の製造に要する工数を減らすことができ、製造工程を簡素化することができる。 As a result, the man-hours required for manufacturing the reforming section and the CO reduction section can be reduced, and the manufacturing process can be simplified.

なお、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Note that the above-described embodiment is for illustrating the technology in the present disclosure, and various changes, replacements, additions, omissions, etc. can be made within the scope of the claims or equivalents thereof.

本開示は、加熱部隔壁と加熱部隔壁を囲む第1隔壁との間に蒸発部と改質部とが配置され、第1隔壁における蒸発部が構成されている部分と、その部分を囲む第2隔壁上との間
にCO低減部が配置され、第1隔壁における改質部が構成されている部分の外径が、第1隔壁における蒸発部が構成されている部分の外径よりも大きい水素生成装置に適用可能である。
In the present disclosure, an evaporating section and a reforming section are arranged between a heating section partition and a first partition surrounding the heating section partition, a portion of the first partition where the evaporating section is configured, and a first partition surrounding the portion. The CO reduction section is arranged between the two partition walls, and the outer diameter of the portion of the first partition where the reforming section is configured is larger than the outer diameter of the portion of the first partition where the evaporating section is configured. Applicable to hydrogen generators.

100 水素生成装置
101 CO低減触媒充填準備工程
102 CO低減触媒充填工程
103 CO低減触媒封止工程
104 第2隔壁下導入工程
105 第2隔壁接合工程
120 加熱部
121 蒸発部
122 改質部
123 CO低減部
124 CO低減部上棚板
125 CO低減部下棚板
126 改質部上棚板
127 改質部下棚板
130 燃焼筒
131 加熱部隔壁
132 第1隔壁
133 第2隔壁上
134 第2隔壁下
135 伝熱緩衝筒
140 燃焼排ガス流路
141 リターン流路
142 CO除去部
143 CO除去部上棚板
144 CO除去部下棚板
150 改質触媒
151 CO低減触媒
200 水素生成装置
201 CO低減触媒充填準備工程
202 CO低減触媒充填工程
203 第2隔壁下導入工程
204 第2隔壁接合工程
300 水素生成装置
100 Hydrogen Generator 101 CO Reduction Catalyst Filling Preparatory Step 102 CO Reduction Catalyst Filling Step 103 CO Reduction Catalyst Sealing Step 104 Second Partition Below Introduction Step 105 Second Partition Wall Joining Step 120 Heating Section 121 Evaporating Section 122 Reforming Section 123 CO Reduction Part 124 CO reduction section upper shelf 125 CO reduction section lower shelf 126 reforming section upper shelf 127 reforming section lower shelf 130 combustion tube 131 heating section partition 132 first partition 133 second partition upper 134 second partition lower 135 heat transfer buffer Cylinder 140 flue gas flow path 141 return flow path 142 CO removal section 143 CO removal section upper shelf plate 144 CO removal section lower shelf plate 150 reforming catalyst 151 CO reduction catalyst 200 hydrogen generator 201 CO reduction catalyst filling preparation step 202 CO reduction catalyst filling Step 203 Step of introduction below second partition wall 204 Step of joining second partition wall 300 Hydrogen generator

Claims (2)

可燃性ガスを燃焼して、燃焼排ガスを排出する加熱部と、
鉛直方向に中心軸を有する筒状で、前記燃焼排ガスが筒の内側を下方に向かって流れるように前記加熱部の外周を囲む燃焼筒と、
鉛直方向に中心軸を有する有底筒状で、前記燃焼筒との間に隙間を空けて前記燃焼筒を収納する加熱部隔壁と、
鉛直方向に中心軸を有する略筒状で、下部の径が上部の径よりも大きく構成され、前記加熱部隔壁との間に隙間を空けて前記加熱部隔壁の外周を囲む第1隔壁と、
前記燃焼筒と前記加熱部隔壁との隙間に形成され、上方に前記燃焼排ガスを流す燃焼排ガス流路と、
前記加熱部隔壁と前記第1隔壁の前記上部との隙間に形成され、前記加熱部隔壁を介して伝わる熱で原料ガスと水とを加熱して、前記水を蒸発させる蒸発部と、
前記加熱部隔壁と前記第1隔壁の前記下部との隙間に改質触媒を充填して形成され、前記蒸発部の下方で前記加熱部隔壁を介して熱が伝えられ、前記蒸発部から流出した前記原料ガスと水蒸気との混合ガスから改質反応で一酸化炭素を含む一次水素含有ガスを生成する改質部と、
鉛直方向に中心軸を有する略筒状で、外周面の外径が前記第1隔壁の前記下部の外周面の外径よりも大きく、前記第1隔壁の前記上部との間に伝熱緩衝用の空間が形成されるように、上下端部が内周側に曲げられて前記第1隔壁の前記上部の外周面に固定された伝熱緩衝筒と、
鉛直方向に中心軸を有する略筒状で、前記伝熱緩衝筒との間に隙間を空けて前記伝熱緩衝筒の外周を囲み上端部が内周側に曲げられて前記第1隔壁の前記上部の外周面に固定された第2隔壁上と、
前記伝熱緩衝筒と前記第2隔壁上との隙間にCO低減触媒を充填して形成され、前記改質部から流出した前記一次水素含有ガスに含まれる一酸化炭素の濃度を変性反応で低減して二次水素含有ガスとして排出するCO低減部と、
前記CO低減部の前記CO低減触媒が落下しないように前記伝熱緩衝筒と前記第2隔壁上との隙間に配置され、前記CO低減触媒を下から支持する通気構造でドーナツ盤形状のCO低減部下棚板と、
前記CO低減部の前記CO低減触媒が前記CO低減部から上方に流出しないように前記伝熱緩衝筒と前記第2隔壁上との隙間に配置され、下面が前記CO低減触媒と接触するように前記CO低減触媒が充填された部分の上面を覆う通気構造でドーナツ盤形状のCO低減部上棚板と、
鉛直方向に中心軸を有する有底筒状で、上端が前記CO低減部下棚板の下面外周部と当接し、外周面における上部が前記第2隔壁上の内周面における下部と対向する状態で前記第2隔壁上と接合され、前記第1隔壁における前記CO低減部よりも下側の部分との間に隙間を空けて前記第1隔壁と前記加熱部隔壁を収納する第2隔壁下と、
前記第1隔壁における前記CO低減部よりも下側の部分と前記第2隔壁下との隙間に形成され、前記改質部から下方に流出した前記一次水素含有ガスの流れを上向きに変えて前記CO低減部に導くリターン流路と、を有する水素生成装置の製造方法であって、
所定位置に取り付け済みの前記第2隔壁上の下部には、未だ前記第2隔壁下が配置されておらず、前記第2隔壁上と前記伝熱緩衝筒との隙間の所定位置に、前記CO低減部上棚板を取り付け済みであるが、前記CO低減触媒と前記CO低減部下棚板は、未だ前記第2隔壁上と前記伝熱緩衝筒との隙間に配置していない状態にまで、水素生成装置を製造し、水素生成装置の使用時の重力方向の上下を反転させるCO低減触媒充填準備工程と、
前記CO低減触媒充填準備工程が完了した状態において、前記第2隔壁上と前記伝熱緩衝筒と前記CO低減部上棚板とに囲まれた空間に、上方から所定重量分の前記CO低減触媒を充填するCO低減触媒充填工程と、
前記CO低減触媒充填工程が完了した状態において、前記CO低減部下棚板を、上方か
ら前記CO低減触媒が充填された部分に向けて導入して、前記CO低減部下棚板における前記CO低減触媒と対向する面が均等に前記CO低減触媒に当接する位置に設置するCO低減触媒封止工程と、
前記CO低減触媒封止工程が完了した状態において、前記第2隔壁下の底が上になるように上下を反転させた前記第2隔壁下を、上方から前記CO低減部下棚板へ向けて導入して、前記第2隔壁下が前記CO低減部下棚板に当接する位置に設置する第2隔壁下導入工程と、
前記第2隔壁下導入工程が完了した状態において、前記第2隔壁下と前記第2隔壁上とが近接する箇所を気密に接合する第2隔壁接合工程と、を有する、水素生成装置の製造方法。
a heating unit that burns combustible gas and discharges combustion exhaust gas;
a cylindrical combustion cylinder having a central axis in the vertical direction and surrounding the outer periphery of the heating part so that the combustion exhaust gas flows downward inside the cylinder;
a heating part partition having a bottomed tubular shape having a central axis in a vertical direction and accommodating the combustion cylinder with a gap between it and the combustion cylinder;
a first partition having a substantially cylindrical shape having a central axis in the vertical direction, having a lower diameter larger than an upper diameter, and surrounding the outer periphery of the heating part partition with a gap between it and the heating part partition;
a flue gas flow path formed in a gap between the combustion cylinder and the partition wall of the heating section for upwardly flowing the flue gas;
an evaporator that is formed in a gap between the heating part partition and the upper part of the first partition, heats a source gas and water with heat transmitted through the heating part partition, and evaporates the water;
A reforming catalyst is formed by filling a gap between the heating part partition wall and the lower part of the first partition wall, and heat is transmitted through the heating part partition below the evaporating part and flows out from the evaporating part. a reforming unit for generating a primary hydrogen-containing gas containing carbon monoxide by a reforming reaction from the mixed gas of the raw material gas and water vapor;
It has a substantially cylindrical shape with a central axis in the vertical direction, the outer diameter of the outer peripheral surface thereof is larger than the outer diameter of the outer peripheral surface of the lower portion of the first partition wall, and is for heat transfer buffering between the upper portion of the first partition wall and the lower portion of the first partition wall. a heat transfer buffer cylinder having upper and lower ends bent inward and fixed to the outer peripheral surface of the upper portion of the first partition wall so as to form a space of
It has a substantially cylindrical shape having a central axis in the vertical direction, surrounds the outer circumference of the heat transfer buffer cylinder with a gap between it and the heat transfer buffer cylinder, and has an upper end portion bent inward to form the first partition wall. on the second partition fixed to the outer peripheral surface of the upper part;
The gap between the heat transfer buffer cylinder and the second partition is filled with a CO reduction catalyst, and the concentration of carbon monoxide contained in the primary hydrogen-containing gas flowing out of the reforming section is reduced by a modification reaction. and a CO reduction unit that discharges as a secondary hydrogen-containing gas;
It is arranged in the gap between the heat transfer buffer cylinder and the second partition so that the CO reduction catalyst of the CO reduction part does not fall, and has a ventilation structure that supports the CO reduction catalyst from below and has a donut-shaped CO reduction. subordinate shelf board,
The CO reduction catalyst of the CO reduction portion is arranged in a gap between the heat transfer buffer cylinder and the second partition so that the CO reduction catalyst does not flow upward from the CO reduction portion, and the lower surface is in contact with the CO reduction catalyst. a donut disk-shaped CO reduction unit upper shelf plate having a ventilation structure covering the upper surface of the portion filled with the CO reduction catalyst;
It has a bottomed cylindrical shape with a central axis in the vertical direction, the upper end is in contact with the outer peripheral portion of the lower surface of the lower shelf plate of the CO reduction section, and the upper portion of the outer peripheral surface is opposed to the lower portion of the inner peripheral surface on the second partition wall. a second partition bottom that is joined to the top of the second partition and accommodates the first partition and the heating part partition with a gap between a portion of the first partition that is below the CO reduction unit;
Formed in a gap between a portion of the first partition below the CO reduction portion and the bottom of the second partition, the flow of the primary hydrogen-containing gas that has flowed downward from the reforming portion is changed upward, and the A method for manufacturing a hydrogen generator having a return flow path leading to a CO reduction unit,
The bottom of the second partition is not yet arranged at the lower part of the second partition that has been attached to a predetermined position, and the CO Although the upper shelf plate of the reduction section has been installed, the CO reduction catalyst and the lower shelf board of the CO reduction section are not yet arranged in the gap between the second partition wall and the heat transfer buffer cylinder. A CO reduction catalyst filling preparation step of manufacturing a device and inverting the direction of gravity when the hydrogen generator is in use;
In a state where the CO reduction catalyst filling preparation step is completed, a predetermined weight of the CO reduction catalyst is placed from above in the space surrounded by the second partition wall, the heat transfer buffer cylinder, and the CO reduction unit upper shelf plate. a filling CO reduction catalyst filling step;
In a state where the CO reduction catalyst filling step is completed, the CO reduction section lower shelf is introduced from above toward the portion filled with the CO reduction catalyst, and the CO reduction catalyst in the CO reduction section lower shelf is introduced from above. a CO reduction catalyst sealing step in which the opposing surfaces are installed at positions where they evenly abut against the CO reduction catalyst;
In a state where the CO reduction catalyst sealing step is completed, the bottom of the second partition, which is turned upside down so that the bottom of the bottom of the second partition faces upward, is introduced from above toward the lower shelf plate of the CO reduction unit. Then, a second partition lower introduction step of installing at a position where the lower of the second partition is in contact with the lower shelf plate of the CO reduction unit;
a second partition bonding step of air-tightly joining a portion where the bottom of the second partition and the top of the second partition are close to each other in a state where the step of introducing below the second partition is completed. .
可燃性ガスを燃焼して、燃焼排ガスを排出する加熱部と、
鉛直方向に中心軸を有する筒状で、前記燃焼排ガスが筒の内側を下方に向かって流れるように前記加熱部の外周を囲む燃焼筒と、
鉛直方向に中心軸を有する有底筒状で、前記燃焼筒との間に隙間を空けて前記燃焼筒を収納する加熱部隔壁と、
鉛直方向に中心軸を有する略筒状で、下部の径が上部の径よりも大きく構成され、前記加熱部隔壁との間に隙間を空けて前記加熱部隔壁の外周を囲む第1隔壁と、
前記燃焼筒と前記加熱部隔壁との隙間に形成され、上方に前記燃焼排ガスを流す燃焼排ガス流路と、
前記加熱部隔壁と前記第1隔壁の前記上部との隙間に形成され、前記加熱部隔壁を介して伝わる熱で原料ガスと水とを加熱して、前記水を蒸発させる蒸発部と、
前記加熱部隔壁と前記第1隔壁の前記下部との隙間に改質触媒を充填して形成され、前記蒸発部の下方で前記加熱部隔壁を介して熱が伝えられ、前記蒸発部から流出した前記原料ガスと水蒸気との混合ガスから改質反応で一酸化炭素を含む一次水素含有ガスを生成する改質部と、
鉛直方向に中心軸を有する略筒状で、外周面の外径が前記第1隔壁の前記下部の外周面の外径よりも大きく、前記第1隔壁の前記上部との間に伝熱緩衝用の空間が形成されるように、上下端部が内周側に曲げられて前記第1隔壁の前記上部の外周面に固定された伝熱緩衝筒と、
鉛直方向に中心軸を有する略筒状で、前記伝熱緩衝筒との間に隙間を空けて前記伝熱緩衝筒の外周を囲み上端部が内周側に曲げられて前記第1隔壁の前記上部の外周面に固定された第2隔壁上と、
前記伝熱緩衝筒と前記第2隔壁上との隙間にCO低減触媒を充填して形成され、前記改質部から流出した前記一次水素含有ガスに含まれる一酸化炭素の濃度を変性反応で低減して二次水素含有ガスとして排出するCO低減部と、
前記CO低減部の前記CO低減触媒が落下しないように前記伝熱緩衝筒と前記第2隔壁上との隙間に配置され、前記CO低減触媒を下から支持する通気構造でドーナツ盤形状のCO低減部下棚板と、
前記CO低減部の前記CO低減触媒が前記CO低減部から上方に流出しないように前記伝熱緩衝筒と前記第2隔壁上との隙間に配置され、下面が前記CO低減触媒と接触するように前記CO低減触媒が充填された部分の上面を覆う通気構造でドーナツ盤形状のCO低減部上棚板と、
鉛直方向に中心軸を有する有底筒状で、前記CO低減部下棚板と一体に構成され、外周面における上部が前記第2隔壁上の内周面における下部と対向する状態で前記第2隔壁上と接合され、前記第1隔壁における前記CO低減部よりも下側の部分との間に隙間を空けて前記第1隔壁と前記加熱部隔壁を収納する第2隔壁下と、
前記第1隔壁における前記CO低減部よりも下側の部分と前記第2隔壁下との隙間に形成され、前記改質部から下方に流出した前記一次水素含有ガスの流れを上向きに変えて前記CO低減部に導くリターン流路と、を有する水素生成装置の製造方法であって、
所定位置に取り付け済みの前記第2隔壁上の下部には、未だ前記第2隔壁下が配置されておらず、前記第2隔壁上と前記伝熱緩衝筒との隙間の所定位置に、前記CO低減部上棚板を取り付け済みであるが、前記CO低減触媒は、未だ前記第2隔壁上と前記伝熱緩衝筒との隙間に配置していない状態にまで、水素生成装置を製造し、水素生成装置の使用時の重力方向の上下を反転させるCO低減触媒充填準備工程と、
前記CO低減触媒充填準備工程が完了した状態において、前記第2隔壁上と前記伝熱緩衝筒と前記CO低減部上棚板とに囲まれた空間に、上方から所定重量分の前記CO低減触媒を充填するCO低減触媒充填工程と、
前記CO低減触媒充填工程が完了した状態において、前記CO低減部下棚板が下で前記第2隔壁下の底が上になるように上下を反転させた前記第2隔壁下の前記CO低減部下棚板を、上方から前記CO低減触媒が充填された部分に向けて導入して、前記CO低減部下棚板における前記CO低減触媒と対向する面が均等に前記CO低減触媒に当接する位置に設置する第2隔壁下導入工程と、
前記第2隔壁下導入工程が完了した状態において、前記第2隔壁下と前記第2隔壁上とが近接する箇所を気密に接合する第2隔壁接合工程と、を有する、水素生成装置の製造方法。
a heating unit that burns combustible gas and discharges combustion exhaust gas;
a cylindrical combustion cylinder having a central axis in the vertical direction and surrounding the outer periphery of the heating part so that the combustion exhaust gas flows downward inside the cylinder;
a heating part partition having a bottomed tubular shape having a central axis in a vertical direction and accommodating the combustion cylinder with a gap between it and the combustion cylinder;
a first partition having a substantially cylindrical shape having a central axis in the vertical direction, having a lower diameter larger than an upper diameter, and surrounding the outer periphery of the heating part partition with a gap between it and the heating part partition;
a flue gas flow path formed in a gap between the combustion cylinder and the partition wall of the heating section for upwardly flowing the flue gas;
an evaporator that is formed in a gap between the heating part partition and the upper part of the first partition, heats a source gas and water with heat transmitted through the heating part partition, and evaporates the water;
A reforming catalyst is formed by filling a gap between the heating part partition wall and the lower part of the first partition wall, and heat is transmitted through the heating part partition below the evaporating part and flows out from the evaporating part. a reforming unit for generating a primary hydrogen-containing gas containing carbon monoxide by a reforming reaction from the mixed gas of the raw material gas and water vapor;
It has a substantially cylindrical shape with a central axis in the vertical direction, the outer diameter of the outer peripheral surface thereof is larger than the outer diameter of the outer peripheral surface of the lower portion of the first partition wall, and is for heat transfer buffering between the upper portion of the first partition wall and the lower portion of the first partition wall. a heat transfer buffer cylinder having upper and lower ends bent inward and fixed to the outer peripheral surface of the upper portion of the first partition wall so as to form a space of
It has a substantially cylindrical shape having a central axis in the vertical direction, surrounds the outer circumference of the heat transfer buffer cylinder with a gap between it and the heat transfer buffer cylinder, and has an upper end portion bent inward to form the first partition wall. on the second partition fixed to the outer peripheral surface of the upper part;
The gap between the heat transfer buffer cylinder and the second partition is filled with a CO reduction catalyst, and the concentration of carbon monoxide contained in the primary hydrogen-containing gas flowing out of the reforming section is reduced by a modification reaction. and a CO reduction unit that discharges as a secondary hydrogen-containing gas;
It is arranged in the gap between the heat transfer buffer cylinder and the second partition so that the CO reduction catalyst of the CO reduction part does not fall, and has a ventilation structure that supports the CO reduction catalyst from below and has a donut-shaped CO reduction. subordinate shelf board,
The CO reduction catalyst of the CO reduction portion is arranged in a gap between the heat transfer buffer cylinder and the second partition so that the CO reduction catalyst does not flow upward from the CO reduction portion, and the lower surface is in contact with the CO reduction catalyst. a donut disk-shaped CO reduction unit upper shelf plate having a ventilation structure covering the upper surface of the portion filled with the CO reduction catalyst;
The second partition wall has a bottomed cylindrical shape with a central axis in the vertical direction, and is integrally formed with the lower shelf plate of the CO reduction unit, and the upper portion of the outer peripheral surface faces the lower portion of the inner peripheral surface of the second partition wall. a second partition bottom that is joined to the top and accommodates the first partition and the heating part partition with a gap between the portion of the first partition that is below the CO reduction unit;
Formed in a gap between a portion of the first partition below the CO reduction portion and the bottom of the second partition, the flow of the primary hydrogen-containing gas that has flowed downward from the reforming portion is changed upward, and the A method for manufacturing a hydrogen generator having a return flow path leading to a CO reduction unit,
The bottom of the second partition is not yet arranged at the lower part of the second partition that has been attached to a predetermined position, and the CO The hydrogen generator is manufactured so that the reducing part upper shelf plate is already attached, but the CO reduction catalyst is not yet arranged in the gap between the second partition wall and the heat transfer buffer cylinder, and hydrogen generation is performed. A CO reduction catalyst filling preparation step of turning the apparatus upside down in the direction of gravity during use;
In a state where the CO reduction catalyst filling preparation step is completed, a predetermined weight of the CO reduction catalyst is placed from above in the space surrounded by the second partition wall, the heat transfer buffer cylinder, and the CO reduction unit upper shelf plate. a filling CO reduction catalyst filling step;
In a state in which the CO reduction catalyst filling step is completed, the CO reduction section lower shelf under the second partition is turned upside down so that the CO reduction section lower shelf is at the bottom and the bottom under the second partition is at the top. A plate is introduced from above toward the portion filled with the CO reduction catalyst, and installed at a position where the surface of the CO reduction unit lower shelf plate facing the CO reduction catalyst evenly abuts the CO reduction catalyst. a step of introducing under the second partition;
a second partition bonding step of air-tightly joining a portion where the bottom of the second partition and the top of the second partition are close to each other in a state where the step of introducing below the second partition is completed. .
JP2022015426A 2022-02-03 2022-02-03 Method for manufacturing hydrogen generator Pending JP2023113226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022015426A JP2023113226A (en) 2022-02-03 2022-02-03 Method for manufacturing hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022015426A JP2023113226A (en) 2022-02-03 2022-02-03 Method for manufacturing hydrogen generator

Publications (1)

Publication Number Publication Date
JP2023113226A true JP2023113226A (en) 2023-08-16

Family

ID=87566268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022015426A Pending JP2023113226A (en) 2022-02-03 2022-02-03 Method for manufacturing hydrogen generator

Country Status (1)

Country Link
JP (1) JP2023113226A (en)

Similar Documents

Publication Publication Date Title
US7517373B2 (en) Reformer
CA2413388C (en) Improved system for hydrogen generation through steam reforming of hydrocarbons and integrated chemical reactor for hydrogen production from hydrocarbons
US7494516B2 (en) Highly integrated fuel processor for distributed hydrogen production
US20050097819A1 (en) System for hydrogen generation through steam reforming of hydrocarbons and intergrated chemical reactor for hydrogen production from hydrocarbons
EP1094031A1 (en) Single-pipe cylindrical reformer and operation method therefor
JP2017193488A (en) Hydrogen generation assemblies and hydrogen purification devices
JP4504016B2 (en) Highly efficient and compact reformer unit for producing hydrogen from gaseous hydrocarbons in the low power range
JP2015514654A (en) Catalytic combustion integrated heat reformer for hydrogen production
JP2004323353A (en) Single tube cylindrical reformer and operating method therefor
JP2023113226A (en) Method for manufacturing hydrogen generator
JP2022121769A (en) Hydrogen generating apparatus
JP2023073554A (en) Hydrogen generator, and manufacturing method therefor
JP7349604B2 (en) hydrogen generator
JP2023078531A (en) Method of manufacturing hydrogen production device
JP2002356306A (en) Reformer
JP2023147445A (en) Hydrogen production device
JP4316975B2 (en) Reformer
JP5534901B2 (en) Hydrogen production apparatus and fuel cell system
JP2024066791A (en) Hydrogen Generator
JP7373706B2 (en) hydrogen generator
JP2023065735A (en) CO catalyst unit
JP2023121196A (en) reforming catalyst unit
JP5196540B2 (en) Gas treatment device for fuel cell
JP2022117540A (en) Hydrogen generation apparatus and manufacturing method of the same
JP2017077992A (en) Hydrogen generator and fuel cell system using the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221024

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20240729

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20240801