JP2703831B2 - Fuel reformer - Google Patents

Fuel reformer

Info

Publication number
JP2703831B2
JP2703831B2 JP3062226A JP6222691A JP2703831B2 JP 2703831 B2 JP2703831 B2 JP 2703831B2 JP 3062226 A JP3062226 A JP 3062226A JP 6222691 A JP6222691 A JP 6222691A JP 2703831 B2 JP2703831 B2 JP 2703831B2
Authority
JP
Japan
Prior art keywords
reforming
reforming catalyst
tube
fuel reformer
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3062226A
Other languages
Japanese (ja)
Other versions
JPH05303972A (en
Inventor
元一 池田
信弘 岩佐
弘正 吉田
浩一 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Fuji Electric Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3062226A priority Critical patent/JP2703831B2/en
Publication of JPH05303972A publication Critical patent/JPH05303972A/en
Application granted granted Critical
Publication of JP2703831B2 publication Critical patent/JP2703831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、炭化水素系の原燃料を
改質管に通流し、この原燃料を改質触媒により水蒸気改
質して水素に富む改質ガスに改質する燃料電池発電装置
用の燃料改質器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell in which a hydrocarbon-based raw fuel is passed through a reforming pipe, and the raw fuel is steam-reformed with a reforming catalyst to reform a hydrogen-rich reformed gas. The present invention relates to a fuel reformer for a power generator.

【0002】[0002]

【従来の技術】天然ガスやナフサ等の炭化水素系の原燃
料から水蒸気を付加した上で熱媒体により加熱しつつ改
質触媒により水素に富む改質ガスを生成し、この改質ガ
スを一酸化炭素変成器を経て燃料電池に供給する燃料改
質器として図3に示すものが特願平2−40038とし
て同じ出願人より既に提案されている。図3において1
はその少なくとも下部を炉容器3で覆われている改質管
であり、その内側にバーナ2が配設されている。改質管
1は直立した仕切円筒4と、これを挟んでこの内外に同
心円状に配設され下部を仕切円筒4の下端から離してリ
ング状の底板7で接続された内筒5と外筒6とで形成さ
れている。このような構成により改質管1には下端部で
通じる内側環状空間8および外側環状空間9の二重環状
空間が形成される。外側環状空間9の上部には原料ガス
マニホールド10を介して原料ガス入口11が形成さ
れ、また内側環状空間8の上部には改質ガスマニホール
ド12を介して改質ガス出口13が形成されている。改
質管1には改質ガスマニホールド12を除く内側環状空
間8の全部に粒状改質触媒14が充填される。バーナ2
は改質管1の内側に配設されている。改質管1の下方お
よび周囲には改質管と間隔を置いて耐火断熱材15が配
置され、改質管1との間にバーナ2からの熱媒体を導く
熱媒体通路16が形成されている。この熱媒体通路16
の上部には熱媒体出口マニホールド17を介して熱媒体
出口18が形成されている。
2. Description of the Related Art Hydrogen-rich reformed gas is generated from a hydrocarbon-based raw fuel such as natural gas or naphtha by adding steam and heating with a heat medium while using a reforming catalyst to generate hydrogen-rich reformed gas. A fuel reformer shown in FIG. 3 has been already proposed by the same applicant as Japanese Patent Application No. 2-40038 as a fuel reformer supplied to a fuel cell via a carbon oxide converter. In FIG.
Is a reforming tube of which at least a lower part is covered by a furnace container 3, and a burner 2 is disposed inside the reforming tube. The reforming tube 1 includes an upright partition cylinder 4, and an inner cylinder 5 and an outer cylinder which are concentrically arranged inside and outside of the partition cylinder 4 with a lower portion separated from a lower end of the partition cylinder 4 and connected by a ring-shaped bottom plate 7. 6 are formed. With such a configuration, a double annular space of the inner annular space 8 and the outer annular space 9 communicating with the lower end portion is formed in the reforming tube 1. A source gas inlet 11 is formed above the outer annular space 9 via a source gas manifold 10, and a reformed gas outlet 13 is formed above the inner annular space 8 via a reformed gas manifold 12. . The reforming pipe 1 is filled with a granular reforming catalyst 14 in the entire inner annular space 8 except for the reformed gas manifold 12. Burner 2
Is disposed inside the reforming tube 1. A refractory heat insulating material 15 is disposed below and around the reforming tube 1 at a distance from the reforming tube, and a heat medium passage 16 for guiding a heat medium from the burner 2 is formed between the heat insulating material 15 and the reforming tube 1. I have. This heat medium passage 16
A heat medium outlet 18 is formed at an upper portion of the device through a heat medium outlet manifold 17.

【0003】以上のような構成の燃料改質器において、
バーナ2には燃料入口19からは燃料(燃料電池運転時
には燃料電池本体からの排出燃料ガス)が導入され、空
気入口20からの燃焼空気により燃焼し、燃焼ガスとし
ての熱媒体を生成する。熱媒体は改質管1の内側を改質
触媒充填部に沿って下方に流れ、引続いて熱媒体通路1
6を流れ、熱媒体マニホールド17を通って熱媒体出口
18から排出される。一方、原燃料と水蒸気とからなる
原料ガスは原料ガス入口11から流入し、原料ガスマニ
ホールド10を通って外側環状空間9を下方に流れ仕切
円筒4の下端部に折返し内側環状空間8に入り、内側環
状空間8に充填された改質触媒層中を上向きに流れ水素
に富んだ改質ガスに改質され、改質ガスマニホールド1
2を通って改質ガス出口13から出ていく。なお、熱媒
体通路16の間隙を狭くして熱媒体の流速を上げること
により、外側環状空間9を流れる原料ガスへの熱伝達を
良好にし、これに伴って熱媒体排出ガスの温度を下げる
ことができる。
[0003] In the fuel reformer configured as described above,
Fuel (fuel gas exhausted from the fuel cell main body during fuel cell operation) is introduced into the burner 2 from a fuel inlet 19 and burns with combustion air from an air inlet 20 to generate a heat medium as combustion gas. The heat medium flows downward along the inside of the reforming tube 1 along the reforming catalyst filling portion, and subsequently flows through the heat medium passage 1.
6, and is discharged from the heat medium outlet 18 through the heat medium manifold 17. On the other hand, the raw material gas composed of raw fuel and water vapor flows in from the raw material gas inlet 11, flows downward through the outer annular space 9 through the raw material gas manifold 10, returns to the lower end of the partitioning cylinder 4, and enters the inner annular space 8. The gas flows upward in the reforming catalyst layer filled in the inner annular space 8 and is reformed into a reformed gas rich in hydrogen.
2 through the reformed gas outlet 13. The heat transfer to the raw material gas flowing through the outer annular space 9 is improved by narrowing the gap of the heat medium passage 16 to increase the flow rate of the heat medium, and accordingly, the temperature of the heat medium exhaust gas is reduced. Can be.

【0004】上述のような燃料改質器において、天然ガ
スのような原燃料を水蒸気改質する際には高温の運転温
度で改質反応が行なわれ、改質管1を形成している耐熱
鋼の表面温度は、運転条件にもよるが700〜900℃
にもなる。また上述の燃料改質器は、この燃料改質器で
得られた水素に富む改質ガスを一酸化炭素変成器にて一
酸化炭素濃度の低いガスにした改質ガスを燃料電池の燃
料として供給して燃料電池により発電する燃料電池発電
装置に組込まれる。このような燃料電池発電装置に組込
まれる。このような燃料電池発電装置全体の起動ならび
に停止時間は、発電装置であるという必要性から、より
短いことが望まれており、1〜2時間程度とすることが
目標となっている。また最も頻度が高い場合には毎日起
動,停止を繰り返す場合がある。これらは、化学プラン
ト用に用いられている燃料改質器と比較して起動時間は
約10〜100分の1、起動,停止頻度は約250倍で
あり、極めて過酷な条件下で起動,停止が行なわれる。
In the above-described fuel reformer, when a raw fuel such as natural gas is subjected to steam reforming, a reforming reaction is carried out at a high operating temperature, and the heat-resistant The surface temperature of steel is 700-900 ° C, depending on operating conditions.
Also. Further, the above-mentioned fuel reformer uses the reformed gas obtained by converting the hydrogen-rich reformed gas obtained in the fuel reformer into a gas having a low carbon monoxide concentration in a carbon monoxide converter as fuel for a fuel cell. It is incorporated in a fuel cell power generator that supplies power and generates power using a fuel cell. It is incorporated in such a fuel cell power generator. It is desired that the start and stop time of the entire fuel cell power generation device be shorter because of the necessity of being a power generation device, and the target is to be about 1 to 2 hours. If the frequency is the highest, start and stop may be repeated every day. These have a startup time of about 10 to 100 times and a startup and shutdown frequency of about 250 times that of a fuel reformer used for a chemical plant, and start and stop under extremely severe conditions. Is performed.

【0005】[0005]

【発明が解決しようとする課題】前記した従来技術によ
る燃料電池発電装置用の燃料改質器は、化学プラント用
の改質器と比較して極めて過酷な温度変化条件下で頻繁
な起動,停止が繰り返され、これに伴い改質管を構成し
ている金属板は膨張,収縮を繰り返す。特に図3で示す
改質管のバーナ2に近い部分Aと原料ガスの入口に近い
部分Bの起動時の昇温曲線は、図4に示すようにバーナ
近接部の改質管表面温度Pはバーナの点火とともに急速
に上昇するのに対して、原料ガス入口部の改質管表面温
度Qはバーナ点火直後は熱媒体の持つ熱量が改質管等の
加熱に費やされるため温度の上昇度が遅く、このためバ
ーナ点火直後には改質管に大きい温度差の温度分布が生
じる。この大きい温度差の温度分布によって、改質管の
外筒や仕切円筒よりも内筒の方が急速に熱膨張すること
となり、改質触媒層はいったん半径方向に加圧力を受け
る。この加圧力を受けた粒状改質触媒は仕切円筒に阻止
されて半径方向に移動できないため原料ガスの移動する
方向と一致する方向の軸方向に移動しようとし、結果と
して粒状改質触媒は軸方向に加圧力を受けることとな
る。こうした加圧力によって粒状改質触媒は最悪の場合
は圧壊を受けることとなり、粒状改質触媒が圧壊して粉
状になると改質触媒層の流体に対する圧力損失が大きく
なり、最悪の場合燃料電池発電装置の運転の継続を不可
能にすることとなる。
The above-described fuel reformer for a fuel cell power generator according to the prior art is frequently started and stopped under extremely severe temperature change conditions as compared with a reformer for a chemical plant. Are repeated, and the metal plate constituting the reforming tube repeats expansion and contraction. In particular, the temperature rise curves at the time of startup of the portion A of the reforming tube close to the burner 2 and the portion B close to the inlet of the raw material gas shown in FIG. While the temperature rises rapidly with the ignition of the burner, the surface temperature Q of the reforming tube at the inlet of the raw material gas increases immediately after the burner ignition because the amount of heat of the heat medium is consumed for heating the reforming tube and the like. Lately, this results in a temperature distribution with a large temperature difference in the reforming tube immediately after the burner ignition. Due to the temperature distribution of the large temperature difference, the inner cylinder of the reforming tube expands more rapidly than the outer cylinder and the partition cylinder, and the reforming catalyst layer is once subjected to a pressing force in the radial direction. The granular reforming catalyst that has received this pressing force is blocked by the partition cylinder and cannot move in the radial direction, and thus tries to move in the axial direction that matches the direction in which the raw material gas moves. As a result, the granular reforming catalyst moves in the axial direction. Will be subjected to pressure. In the worst case, such a pressing force causes the granular reforming catalyst to be crushed. When the granular reforming catalyst is crushed and becomes powdery, the pressure loss to the fluid in the reforming catalyst layer increases, and in the worst case, the fuel cell power generation This makes it impossible to continue the operation of the device.

【0006】これを回避する対策として、粒状改質触媒
に所要の圧壊強度を持たせることが必要となり、触媒自
体の圧壊強度を増大させるには触媒の担体であるアルミ
ナの強度を増加させることが必要となる。このためには
担体製作時の焼成温度を上昇させるか焼成時間を長くす
るかのいずれかの方法によって、γアルミナをαアルミ
ナに変成して結晶度を上げるようにする。しかしながら
結晶度を上げる結果、担体内部の細孔容積が減少してし
まうことになる。ところで担体内部の細孔は触媒反応速
度に直接寄与し、細孔容積が大きいほど触媒反応速度が
上昇し、触媒活性が向上する関係にあるため、細孔容積
の減少は触媒活性を低下させることになっていた。
As a countermeasure to avoid this, it is necessary to provide the granular reforming catalyst with a required crushing strength. In order to increase the crushing strength of the catalyst itself, it is necessary to increase the strength of alumina as a carrier of the catalyst. Required. For this purpose, the γ-alumina is converted into α-alumina to increase the crystallinity by either raising the firing temperature during the production of the carrier or lengthening the firing time. However, as a result of increasing the crystallinity, the pore volume inside the carrier is reduced. By the way, the pores inside the carrier directly contribute to the catalytic reaction rate, and the larger the pore volume, the higher the catalytic reaction rate and the higher the catalytic activity. Had become.

【0007】このように触媒の圧壊強度と活性の関係は
相反する関係にあり、このために燃料電池発電装置用燃
料改質器の改質触媒は、圧壊強度と触媒活性とを適度に
バランスさせて製作しており、この結果改質触媒容積を
減少させることができず、例えばオンサイト用の燃料電
池発電装置のような場合には、燃料改質器のサイズをあ
る程度以下にすることができないという問題があった。
[0007] As described above, the relationship between the crushing strength and the activity of the catalyst is in a contradictory relationship. Therefore, the reforming catalyst of the fuel reformer for a fuel cell power generator appropriately balances the crushing strength and the catalytic activity. As a result, the reforming catalyst volume cannot be reduced, and for example, in the case of an on-site fuel cell power generator, the size of the fuel reformer cannot be reduced to a certain extent or less. There was a problem.

【0008】本発明の目的は、改質管内の改質触媒層の
粒状改質触媒が燃料改質器の起動,停止動作時の昇温,
降温時において圧壊することのない燃料改質器を提供す
ることにある。
An object of the present invention is to provide a reforming catalyst layer in a reforming tube in which a particulate reforming catalyst is used for starting and stopping a fuel reformer,
An object of the present invention is to provide a fuel reformer that does not collapse at the time of temperature decrease.

【0009】[0009]

【課題を解決するための手段】本発明では、前記目的はAccording to the present invention, the object is

【0010】1)改質触媒が充填されている二重円筒構造
の改質管と、この改質管の内側に設置され前記改質管を
加熱するための熱媒体を供給するバーナと、この熱媒体
の経路を形成し少なくとも前記改質管の下部を包囲する
よう構成された炉容器とからなり、炭化水素系の原燃料
を改質管に通流し、この原燃料を改質触媒により水蒸気
改質して水素に富む改質ガスに改質する燃料改質器にお
いて、前記改質管内の改質触媒層に、改質管の熱変形に
より前記改質触媒に生じる応力を吸収する可撓性の応力
吸収体の層を、原料ガスの通流方向に対して直角な面に
設けたこと、また
1) a reforming tube having a double cylindrical structure filled with a reforming catalyst, a burner installed inside the reforming tube and supplying a heat medium for heating the reforming tube; A furnace vessel configured to form a path of a heat medium and surround at least a lower portion of the reforming pipe. The hydrocarbon-based raw fuel flows through the reforming pipe, and the raw fuel is steamed by the reforming catalyst. In a fuel reformer for reforming into a reformed gas rich in hydrogen, a reforming catalyst layer in the reforming tube is provided with a flexible material for absorbing stress generated in the reforming catalyst due to thermal deformation of the reforming tube. A layer of a neutral stress absorber on a surface perpendicular to the flow direction of the raw material gas, and

【0011】2)前記1項記載の手段において、応力吸収
体の層数が1ないしそれ以上の層数であること、また
2) The means according to the above item 1, wherein the number of layers of the stress absorber is one or more.

【0012】3)改質触媒が充填されている二重円筒構造
の改質器と、この改質器の内側に設置され前記改質管を
加熱するための熱媒体を供給するバーナと、この熱媒体
の経路を形成し少なくとも前記改質管の下部を包囲する
よう構成された炉容器とからなり、炭化水素系の原燃料
を改質管に通流し、この原燃料を改質触媒により水蒸気
改質して水素に富む改質ガスに改質する燃料改質器にお
いて、前記改質管内の改質触媒層に改質管の熱変形によ
り前記改質触媒に生じる応力を吸収する可撓性の小片状
応力吸収体を、前記改質触媒層を構成する粒状改質触媒
とともに混在したこと、さらにまた
3) A reformer having a double cylindrical structure filled with a reforming catalyst, a burner installed inside the reformer and supplying a heat medium for heating the reforming tube, A furnace vessel configured to form a path of a heat medium and surround at least a lower portion of the reforming pipe. The hydrocarbon-based raw fuel flows through the reforming pipe, and the raw fuel is steamed by the reforming catalyst. In a fuel reformer for reforming into a reformed gas rich in hydrogen, a reforming catalyst layer in the reforming tube has a flexibility of absorbing stress generated in the reforming catalyst due to thermal deformation of the reforming tube. Of the small particle-shaped stress absorber together with the particulate reforming catalyst constituting the reforming catalyst layer,

【0013】4)前記1項ないし3項記載の手段におい
て、応力吸収体が金属細線の編組体であること、により
達成される。
[0013] 4) In the means described in the above items 1 to 3, this is achieved by the fact that the stress absorber is a braided thin metal wire.

【0014】[0014]

【作用】本発明においては、前述の構成としたので、粒
状改質触媒からなる改質触媒層を有する燃料改質器の起
動,停止動作時に生じる温度差の大きい温度分布により
改質管に熱変形が生じ、これが原因で改質触媒層に圧縮
応力が加わるが、その際改質触媒層に原料ガスの通流方
向と一致する方向の軸方向に対して直角に設けた可撓性
の応力吸収体の層もしくは改質触媒層に粒状改質触媒と
混在させた可撓性の小片状応力吸収体が、加えられた応
力に応じてその見掛容積を収縮し、改質触媒に加わる圧
縮応力を低減する。なお燃料改質器が定常運転に入り、
改質管に生じる温度差が減少し、改質触媒層に加わる圧
縮応力が減少した場合には、応力吸収体の見掛容積はほ
ぼ元に戻り、これに伴い改質触媒層もほぼ元の形状に戻
る。
In the present invention, since the above-described structure is employed, heat is applied to the reforming tube by a temperature distribution having a large temperature difference generated when the fuel reformer having the reforming catalyst layer composed of the granular reforming catalyst is started and stopped. Deformation occurs, and compressive stress is applied to the reforming catalyst layer due to this. At this time, a flexible stress is provided on the reforming catalyst layer at right angles to the axial direction in the direction coinciding with the flow direction of the raw material gas. The flexible flake-shaped stress absorber mixed with the particulate reforming catalyst in the absorber layer or the reforming catalyst layer shrinks its apparent volume according to the applied stress, and is added to the reforming catalyst Reduce compressive stress. The fuel reformer goes into steady operation,
When the temperature difference generated in the reforming tube is reduced and the compressive stress applied to the reforming catalyst layer is reduced, the apparent volume of the stress absorber substantially returns to the original, and the reforming catalyst layer is also substantially restored to the original volume. Return to shape.

【0015】[0015]

【実施例】以下本発明の実施例を、図面を参照して詳細
に説明する。図1は本発明の一実施例の燃料改質器の断
面図である。なお図1において図3の従来例と同一部品
には同じ符号を付し、その説明を省略する。図1におい
て従来例と異なるのは改質管1の改質触媒層に、可撓性
の例えばステンレス鋼などの金属製細線の編組体からな
る応力吸収体21の層を、原料ガスの通流方向と一致す
る方向の軸方向に対して直角な面に1ないしそれ以上の
層数設けたことである。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a sectional view of a fuel reformer according to one embodiment of the present invention. In FIG. 1, the same components as those in the conventional example of FIG. 3 are denoted by the same reference numerals, and the description thereof will be omitted. 1 is different from the conventional example in that a layer of a stress absorber 21 made of a braided flexible thin metal wire such as stainless steel is formed on the reforming catalyst layer of the reforming tube 1 by flowing a raw material gas. That is, one or more layers are provided on a plane perpendicular to the axial direction in the direction corresponding to the direction.

【0016】このような構成とすることにより、燃料改
質器の起動,停止動作時に生じる温度差の大きい温度分
布により改質管に熱変形が生じ、これが原因で改質触媒
層に加わる圧縮応力が低減される。図5は改質触媒層の
半径方向厚さ25mmのものにおいて改質管の厚さの減少
に対して改質触媒層の軸方向に加わる圧縮応力に関する
実験結果である。従来技術の構成により応力吸収体なし
の場合の圧縮応力Rに対して、本発明による応力吸収体
ありの場合(応力吸収体比率容積で5%)の圧縮応力S
はおよそ1/5に大幅に減少している。
[0016] With such a configuration, a thermal distribution is generated in the reforming tube due to a large temperature difference generated during the start and stop operations of the fuel reformer, which causes a compressive stress applied to the reforming catalyst layer. Is reduced. FIG. 5 shows the results of an experiment on the compressive stress applied to the reforming catalyst layer in the axial direction with respect to the reduction in the thickness of the reforming tube when the thickness of the reforming catalyst layer is 25 mm in the radial direction. Compared to the compressive stress R without the stress absorber according to the configuration of the prior art, the compressive stress S with the stress absorber according to the present invention (5% in the ratio volume of the stress absorber).
Is greatly reduced to about 1/5.

【0017】なお、応力吸収体21は改質触媒層の厚さ
方向の寸法とほぼ同等の幅寸法を持ち、改質触媒層の内
径とほぼ同等の内径を持つリング状に形成したものとす
るが、改質触媒層の厚さ方向の寸法とほぼ同等かもしく
はこれよりやや小さい寸法を持つ直方体状に形成したも
のをリング状の改質触媒層に沿って配置したものとする
のが燃料改質器の組立作業上好ましい。
The stress absorber 21 has a width substantially equal to the dimension of the reforming catalyst layer in the thickness direction, and is formed in a ring shape having an inner diameter substantially equal to the inner diameter of the reforming catalyst layer. However, it is assumed that the fuel reformation is such that a rectangular parallelepiped having dimensions substantially equal to or slightly smaller than the thickness direction of the reforming catalyst layer is arranged along the ring-shaped reforming catalyst layer. This is preferable for the work of assembling the porcelain.

【0018】図2は本発明の異なる実施例の燃料改質器
の断面図である。なお、図2において図1の本発明の一
実施例ならびに図3の従来例と同一部品には同じ符号を
付し、その説明を省略する。図2において図1の本発明
の一実施例と異なるのは可撓性の小片状応力吸収体22
が改質触媒層に粒状改質触媒14と混在されて収納され
ていることである。
FIG. 2 is a sectional view of a fuel reformer according to another embodiment of the present invention. 2, the same components as those of the embodiment of the present invention shown in FIG. 1 and the conventional example shown in FIG. 3 are denoted by the same reference numerals, and the description thereof will be omitted. 2 is different from the embodiment of the present invention shown in FIG.
Is contained in the reforming catalyst layer while being mixed with the granular reforming catalyst 14.

【0019】このような構成とすることにより、前記し
た応力吸収体21を改質触媒層に設けることの利点以外
に、あらかじめ粒状改質触媒14に可撓性の小片状応力
吸収体22を所定の容積比率で混合しておいたものを、
改質管1中に投入することで改質触媒と応力吸収体の装
填が同時にしかも簡単な作業で行なうことができ、燃料
改質器の組立作業上好ましい利点を生ずる。
With such a configuration, in addition to the advantage of providing the stress absorber 21 in the reforming catalyst layer, a flexible flake-shaped stress absorber 22 is previously provided on the granular reforming catalyst 14. What was mixed at a predetermined volume ratio,
The charging of the reforming catalyst and the stress absorber can be performed at the same time and by a simple operation by charging the fuel into the reforming tube 1, which brings about a favorable advantage in the assembly operation of the fuel reformer.

【0020】[0020]

【発明の効果】本発明によれば、改質管内の改質触媒か
らなる改質触媒層内に原料ガスの通流方向と一致する方
向の軸方向に対して直角な面に設けた可撓性の応力吸収
体の層もしくは粒状改質触媒に混在させた可撓性の小片
状応力吸収体により、燃料改質器の起動,停止動作時の
改質管に生じる大きい温度差の温度分布による熱変形に
よって改質触媒層に生じる応力を吸収することで、改質
触媒に加わる圧縮応力を大幅に低減できる。このために
粒状改質触媒として有孔容積が大きくしたがって圧壊強
度は低いが反応速度の大きい触媒を使用することが可能
となり、改質触媒層の容積を小さくでき、これにより燃
料改質器をコンパクトにすることができるという効果を
奏する。
According to the present invention, there is provided a flexible catalyst provided in a reforming catalyst layer made of a reforming catalyst in a reforming pipe on a surface perpendicular to an axial direction in a direction coinciding with a flow direction of a raw material gas. Temperature distribution of large temperature difference generated in the reforming pipe at the time of starting and stopping operation of the fuel reformer due to the layer of flexible stress absorber or the flexible flake-shaped stress absorber mixed in the granular reforming catalyst By absorbing the stress generated in the reforming catalyst layer due to the thermal deformation due to, the compressive stress applied to the reforming catalyst can be significantly reduced. For this reason, it is possible to use a catalyst having a large perforated volume and therefore a low crushing strength but a high reaction rate as a granular reforming catalyst, and the volume of the reforming catalyst layer can be reduced, thereby making the fuel reformer compact. The effect that it can be made is produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による燃料改質器の断面図FIG. 1 is a sectional view of a fuel reformer according to one embodiment of the present invention.

【図2】本発明の異なる実施例による燃料改質器の断面
FIG. 2 is a cross-sectional view of a fuel reformer according to another embodiment of the present invention.

【図3】従来の燃料改質器の断面図FIG. 3 is a sectional view of a conventional fuel reformer.

【図4】燃料改質器の起動時の改質管の昇温特性を示す
FIG. 4 is a diagram showing a temperature rise characteristic of a reforming tube when a fuel reformer is started.

【図5】燃料改質器の改質管の厚さの減少と圧縮応力の
関係を示す図
FIG. 5 is a diagram showing a relationship between a reduction in the thickness of a reforming tube of a fuel reformer and a compressive stress.

【符号の説明】[Explanation of symbols]

1 改質管 2 バーナ 3 炉容器 14 粒状改質触媒 21 応力吸収体 22 小片状応力吸収体 DESCRIPTION OF SYMBOLS 1 Reforming pipe 2 Burner 3 Furnace container 14 Granular reforming catalyst 21 Stress absorber 22 Small stress absorber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 弘正 愛知県名古屋市西区押切一丁目9番6号 (72)発明者 金子 浩一 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (56)参考文献 特開 昭63−201001(JP,A) 特開 昭61−114730(JP,A) 特開 平4−50101(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hiromasa Yoshida 1-9-6 Oshikiri, Nishi-ku, Nagoya-shi, Aichi Prefecture (72) Inventor Koichi Kaneko 1-1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. (56) References JP-A-63-201001 (JP, A) JP-A-61-114730 (JP, A) JP-A-4-50101 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】改質触媒が充填されている二重円筒構造の
改質管と、この改質管の内側に設置され前記改質管を加
熱するための熱媒体を供給するバーナと、この熱媒体の
経路を形成し少なくとも前記改質管の下部を包囲するよ
う構成された炉容器とからなり、炭化水素系の原燃料を
改質管に通流し、この原燃料を改質触媒により水蒸気改
質して水素に富む改質ガスに改質する燃料改質器におい
て、前記改質管内の改質触媒層に、改質管の熱変形によ
り前記改質触媒に生じる応力を吸収する可撓性の応力吸
収体の層を、原料ガスの通流方向に対して直角な面に設
けたことを特徴とする燃料改質器。
1. A reforming tube having a double cylindrical structure filled with a reforming catalyst, a burner installed inside the reforming tube and supplying a heat medium for heating the reforming tube. A furnace vessel configured to form a path of a heat medium and surround at least a lower portion of the reforming pipe. The hydrocarbon-based raw fuel flows through the reforming pipe, and the raw fuel is steamed by the reforming catalyst. In a fuel reformer for reforming into a reformed gas rich in hydrogen, a reforming catalyst layer in the reforming tube is provided with a flexible material for absorbing stress generated in the reforming catalyst due to thermal deformation of the reforming tube. A fuel reformer, characterized in that a layer of an elastic stress absorber is provided on a plane perpendicular to the flow direction of the raw material gas.
【請求項2】請求項1記載のものにおいて、応力吸収体
の層数が1ないしそれ以上の層数であることを特徴とす
る燃料改質器。
2. The fuel reformer according to claim 1, wherein the number of layers of the stress absorber is one or more.
【請求項3】改質触媒が充填されている二重円筒構造の
改質管と、この改質管の内側に設置され前記改質管を加
熱するための熱媒体を供給するバーナと、この熱媒体の
経路を形成し少なくとも前記改質管の下部を包囲するよ
う構成された炉容器とからなり、炭化水素系の原燃料を
改質管に通流し、この原燃料を改質触媒により水蒸気改
質して水素に富む改質ガスに改質する燃料改質器におい
て、前記改質管内の改質触媒層に改質管の熱変形により
前記改質触媒に生じる応力を吸収する可撓性の小片状
力吸収体を、前記改質触媒層を構成する粒状改質触媒と
ともに混在して収納したことを特徴とする燃料改質器。
3. A reforming tube having a double cylindrical structure filled with a reforming catalyst, a burner installed inside the reforming tube and supplying a heat medium for heating the reforming tube, A furnace vessel configured to form a path of a heat medium and surround at least a lower portion of the reforming pipe. The hydrocarbon-based raw fuel flows through the reforming pipe, and the raw fuel is steamed by the reforming catalyst. In a fuel reformer for reforming into a reformed gas rich in hydrogen, a reforming catalyst layer in the reforming tube has a flexibility of absorbing stress generated in the reforming catalyst due to thermal deformation of the reforming tube. A fuel reformer characterized in that the small-piece-shaped stress absorber is mixed and stored together with the granular reforming catalyst constituting the reforming catalyst layer.
【請求項4】請求項1または3記載のものにおいて、応
力吸収体が金属細線の編組体であることを特徴とする燃
料改質器。
4. The fuel reformer according to claim 1, wherein the stress absorber is a thin metal wire braid.
JP3062226A 1991-03-27 1991-03-27 Fuel reformer Expired - Fee Related JP2703831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3062226A JP2703831B2 (en) 1991-03-27 1991-03-27 Fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3062226A JP2703831B2 (en) 1991-03-27 1991-03-27 Fuel reformer

Publications (2)

Publication Number Publication Date
JPH05303972A JPH05303972A (en) 1993-11-16
JP2703831B2 true JP2703831B2 (en) 1998-01-26

Family

ID=13194035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3062226A Expired - Fee Related JP2703831B2 (en) 1991-03-27 1991-03-27 Fuel reformer

Country Status (1)

Country Link
JP (1) JP2703831B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6936567B2 (en) 2000-06-28 2005-08-30 Sanyo Electric Co., Ltd. Fuel reformer and manufacturing method of the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797244B1 (en) * 1999-05-27 2004-09-28 Dtc Fuel Cells Llc Compact light weight autothermal reformer assembly
US6746650B1 (en) * 1999-06-14 2004-06-08 Utc Fuel Cells, Llc Compact, light weight methanol fuel gas autothermal reformer assembly
JP2005263618A (en) * 2004-02-16 2005-09-29 Fuji Electric Holdings Co Ltd Fuel reformer
JP4574243B2 (en) * 2004-06-22 2010-11-04 株式会社ティラド Catalyst packing structure
JP4712321B2 (en) * 2004-06-25 2011-06-29 出光興産株式会社 Reformer, hydrogen production system and fuel cell system
WO2008056724A1 (en) 2006-11-08 2008-05-15 Idemitsu Kosan Co., Ltd. Reformer, reforming unit, and fuel cell system
JP5312279B2 (en) * 2009-09-30 2013-10-09 Jx日鉱日石エネルギー株式会社 Fuel processor for fuel cell
US8591609B2 (en) 2009-12-24 2013-11-26 Samsung Sdi Co., Ltd. Reformer with high durability
WO2023153134A1 (en) * 2022-02-08 2023-08-17 日本碍子株式会社 Reactor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115737A (en) * 1982-12-21 1984-07-04 Babcock Hitachi Kk Catalytic combustion type reactor
JPH01107844A (en) * 1987-10-21 1989-04-25 Toshiba Corp Reformer
JPH01215340A (en) * 1988-02-24 1989-08-29 Hitachi Ltd Fuel reformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6936567B2 (en) 2000-06-28 2005-08-30 Sanyo Electric Co., Ltd. Fuel reformer and manufacturing method of the same

Also Published As

Publication number Publication date
JPH05303972A (en) 1993-11-16

Similar Documents

Publication Publication Date Title
US4981676A (en) Catalytic ceramic membrane steam/hydrocarbon reformer
CA2038289C (en) Endothermic reaction apparatus
RU2411075C2 (en) Compact reforming reactor
JP4869696B2 (en) Small cylindrical reformer
CA2413388C (en) Improved system for hydrogen generation through steam reforming of hydrocarbons and integrated chemical reactor for hydrogen production from hydrocarbons
KR20040012890A (en) Cylindrical water vapor reforming unit
JP2008524817A (en) Fuel cell reformer
JP2703831B2 (en) Fuel reformer
US20230089656A1 (en) Process for producing synthesis gas with reduced steam export
US4495154A (en) Fuel reformer
KR100857703B1 (en) Reaction vessel and reaction device
EP0247384B1 (en) Reformer
JP3437684B2 (en) Fuel reformer for fuel cell power plant and operation method thereof
JPH07183043A (en) Fuel-cell power generating facility
JP2572251B2 (en) Fuel reformer
US20030157002A1 (en) Apparatus for the conversion of hydrocarbons
JPH04363133A (en) Fuel reformer
JP2005263618A (en) Fuel reformer
WO2002075832A2 (en) Chambered reactor for fuel processing
JPH10134838A (en) Reformer for fuel cell and its control method
JP2998217B2 (en) Fuel reformer
US6667014B1 (en) Catalytic reactor and catalyst configuration designed to reduce catalyst slumping and crushing
JP2712766B2 (en) Fuel reformer
JP2738988B2 (en) Fuel reformer
JPH1143304A (en) Reforming unit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees