JP2572251B2 - Fuel reformer - Google Patents

Fuel reformer

Info

Publication number
JP2572251B2
JP2572251B2 JP63028752A JP2875288A JP2572251B2 JP 2572251 B2 JP2572251 B2 JP 2572251B2 JP 63028752 A JP63028752 A JP 63028752A JP 2875288 A JP2875288 A JP 2875288A JP 2572251 B2 JP2572251 B2 JP 2572251B2
Authority
JP
Japan
Prior art keywords
reforming
hydrogen
tube
pipe
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63028752A
Other languages
Japanese (ja)
Other versions
JPH01208303A (en
Inventor
洋 内田
洋州 太田
勲 苧畑
義明 天野
晨夫 半澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Gas Co Ltd
Original Assignee
Hitachi Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Tokyo Gas Co Ltd filed Critical Hitachi Ltd
Priority to JP63028752A priority Critical patent/JP2572251B2/en
Publication of JPH01208303A publication Critical patent/JPH01208303A/en
Application granted granted Critical
Publication of JP2572251B2 publication Critical patent/JP2572251B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアルコール類や炭化水素系燃料を水蒸気改質
して水素を生成する燃料改質装置で、特に、たとえば,
燃料電池システムあるいは水素製造装置に使用するのに
好適な燃料改質装置に関する。
Description: TECHNICAL FIELD The present invention relates to a fuel reformer for producing hydrogen by steam reforming an alcohol or a hydrocarbon-based fuel.
The present invention relates to a fuel reformer suitable for use in a fuel cell system or a hydrogen production device.

(従来技術) 従来、アルコール類や炭化水素系燃料を水蒸気改質し
て水素を生成する燃料改質装置が知られている。
(Prior Art) Conventionally, a fuel reformer that generates hydrogen by steam reforming an alcohol or a hydrocarbon-based fuel is known.

第5図は特開昭60−264302号に記載の従来知られてい
る燃料改質装置の一例であり、改質器容器20の内側に低
温断熱層21と高温断熱層22とを配し、高温断熱層22で囲
まれて形成された燃焼室23に空気導入管24とガス導入管
25とを連通させるとともに、多数の改質管26を並設し、
改質管26内には改質触媒27を充填し、改質管26の間には
伝熱充填層28を配設したものである。改質管26は改質触
媒27の加熱を効率よく行うために、リターンパス29を内
設した二重管構造となっている。空気導入管24から導入
した空気とガス導入管25から導入した燃焼ガスを燃焼質
23で燃焼させると高温の燃焼ガスが得られ、この燃焼ガ
スを改質触媒27に通して加熱する。原料ガス導入管30か
ら原料ガスを水蒸気とともに導入すると、改質管26を通
過する間に加熱され、改質触媒27で改質され、リターン
パス29を下降する間に改質触媒27に熱を与えて温度が低
下し出口管31から改質ガスとして排出される。
FIG. 5 is an example of a conventionally known fuel reforming apparatus described in Japanese Patent Application Laid-Open No. 60-264302, in which a low-temperature insulating layer 21 and a high-temperature insulating layer 22 are arranged inside a reformer container 20, An air introduction pipe 24 and a gas introduction pipe are provided in a combustion chamber 23 formed by being surrounded by a high-temperature insulation layer 22.
25, and a number of reforming tubes 26 are installed side by side.
The reforming tube 26 is filled with a reforming catalyst 27, and a heat transfer packed layer 28 is provided between the reforming tubes 26. The reforming pipe 26 has a double pipe structure in which a return path 29 is provided in order to efficiently heat the reforming catalyst 27. The air introduced from the air introduction pipe 24 and the combustion gas introduced from the gas introduction pipe 25
Combustion at 23 yields high-temperature combustion gas, which is passed through the reforming catalyst 27 and heated. When the raw material gas is introduced from the raw gas introduction pipe 30 together with the steam, the raw material gas is heated while passing through the reforming pipe 26, reformed by the reforming catalyst 27, and heat is transferred to the reforming catalyst 27 while descending the return path 29. As a result, the temperature decreases and the gas is discharged from the outlet pipe 31 as reformed gas.

このような二重管構造の改質管を用いた燃料改質装置
は、構成が比較的単純であり効率も良いため、コンパク
ト化を指向する燃料電池システム等に適用されている
が、燃料電池システム等では、改質効率が高くて設置ス
ペースが小さくてすむコンパクトな燃料改質装置が要請
されている。
The fuel reformer using such a double-tube reforming tube has a relatively simple structure and high efficiency, and is therefore applied to a fuel cell system or the like that aims to be compact. In systems and the like, there is a demand for a compact fuel reformer that has a high reforming efficiency and requires a small installation space.

(問題を解決するための手段) 本発明は上記の点にかんがみてなされたもので、本発
明に係る燃料改質装置の構成は、改質容器内に複数本の
改質管を配設し、改質管の外周を高温の燃焼ガスを流通
させる加熱領域とし、改質管内に、原料ガスから水素リ
ッチガスを生成するための改質触媒層と、生成した水素
リッチガスを取り出すための流路となる内管とを有する
二重管構造の燃料改質装置において、内管の材料として
改質触媒層からの水素の吸蔵反応および内管内部への水
素の放出反応を行いうる水素吸蔵合金を用いたものであ
る。
(Means for Solving the Problems) The present invention has been made in view of the above points, and a configuration of a fuel reformer according to the present invention has a structure in which a plurality of reforming tubes are provided in a reforming vessel. A heating region through which the high-temperature combustion gas flows through the outer periphery of the reforming tube, and inside the reforming tube, a reforming catalyst layer for generating a hydrogen-rich gas from a raw material gas, and a flow path for extracting the generated hydrogen-rich gas. In a fuel reformer having a double-pipe structure having an inner pipe, a hydrogen storage alloy capable of performing a hydrogen storage reaction from the reforming catalyst layer and a hydrogen release reaction into the inner pipe is used as a material of the inner pipe. It was what was.

(作 用) 本発明におけるように、二重管構造の改質管の内管の
材料に水素吸蔵合金を使用すると、内管が改質触媒層で
発生する水素を吸蔵して内管内側に放出するとともに、
水素が内管外側に吸蔵される際発生する熱を改質媒体層
に反応熱として与え、水素が内管内側に放出される際の
吸熱により高温のリターンガスから熱回収されるので、
熱の移動と水素の移動の相乗効果が得られる。
(Operation) As in the present invention, when a hydrogen storage alloy is used as the material of the inner tube of the reforming tube having the double tube structure, the inner tube absorbs hydrogen generated in the reforming catalyst layer and becomes inside the inner tube. Release,
Heat generated when hydrogen is occluded outside the inner tube is given as reaction heat to the reforming medium layer, and heat is recovered from high-temperature return gas by heat absorption when hydrogen is released inside the inner tube.
A synergistic effect of heat transfer and hydrogen transfer is obtained.

水素吸蔵合金は、水素吸蔵反応が発熱反応、水素放出
反応が吸熱反応であるという性質があり、後述する第3
図に示すように、低温で水素吸蔵、高温で水素放出、ま
た高圧で水素吸蔵、低圧で水素放出を行うものである。
The hydrogen storage alloy has a property that the hydrogen storage reaction is an exothermic reaction and the hydrogen release reaction is an endothermic reaction.
As shown in the figure, hydrogen is stored at low temperature, hydrogen is released at high temperature, hydrogen is stored at high pressure, and hydrogen is released at low pressure.

したがって、内管外側の改質触媒層と改質ガス流路と
なる内管内側とはそれぞれ低温高圧と高温低圧設定され
るため、改質触媒層への発熱による熱伝達の促進と内管
内側の吸熱による熱回収とを合せて行うことができ、熱
伝達の促進による伝熱面積の縮減が可能となり、高効率
且つ小型でコンパクトな燃料改質装置を構成することが
できる。
Accordingly, since the reforming catalyst layer on the outer side of the inner tube and the inner side of the inner tube serving as the reformed gas flow path are set at a low temperature and a high pressure and a high temperature and a low pressure, respectively, the heat transfer to the reforming catalyst layer due to heat generation is promoted, and And heat recovery by heat absorption by heat absorption, the heat transfer area can be reduced by promoting heat transfer, and a highly efficient, compact and compact fuel reformer can be configured.

(実施例) 以下、本発明を第1図ないし第4図を参照して説明す
る。
(Example) Hereinafter, the present invention will be described with reference to FIG. 1 to FIG.

まず、第1図は本発明による燃料改質装置の一実施例
の縦断面図、第2図は従来技術と本発明とを比較する温
度分布図、第3図は水素吸蔵合金の特性図である。
First, FIG. 1 is a longitudinal sectional view of one embodiment of a fuel reformer according to the present invention, FIG. 2 is a temperature distribution diagram comparing the prior art and the present invention, and FIG. 3 is a characteristic diagram of a hydrogen storage alloy. is there.

第1図において、1は改質管を構成する外管、2は原
料ガスから水素リッチガスを生成するための改質触媒、
3は改質の結果得られた水素リッチガスを取り出すため
の流路となる内管、4は改質容器を構成する胴、5は胴
4の内側に設けた断熱材、6は胴4の下部に配置した燃
焼装置、7は胴4の上部に設けた原料ガス入口、8は内
管3に連通する改質ガス出口、9は燃焼用の燃料を供給
するための燃料入口、10は燃焼用の空気を供給するため
の空気入口、11は胴4に設けた燃焼ガス出口、12は伝熱
粒子である。
In FIG. 1, 1 is an outer tube constituting a reforming tube, 2 is a reforming catalyst for generating a hydrogen-rich gas from a raw material gas,
Reference numeral 3 denotes an inner pipe serving as a flow path for taking out the hydrogen-rich gas obtained as a result of the reforming, 4 denotes a body constituting the reforming vessel, 5 denotes a heat insulating material provided inside the body 4, and 6 denotes a lower part of the body 4. , A raw material gas inlet provided at the upper part of the body 4, a reformed gas outlet 8 communicating with the inner pipe 3, a fuel inlet 9 for supplying fuel for combustion, and a fuel inlet 10 for combustion. Is an air inlet for supplying air, 11 is a combustion gas outlet provided on the body 4, and 12 is heat transfer particles.

すなわち、本実施例の燃料改質装置は、複数本の外管
1と内管3とからなる二重管構造の改質管を胴4内に配
設し、外管1の外周と胴4の内側に備えた断熱剤5との
間には、伝熱促進を図るための耐熱性のアルミナ球を用
いた伝熱粒子12を充填して伝熱粒子充填層を形成してい
る。この伝熱粒子充填層は改質管の外周に高温の燃焼ガ
スを流通させる加熱領域として機能する。
That is, the fuel reforming apparatus of the present embodiment has a double-pipe reforming pipe composed of a plurality of outer pipes 1 and inner pipes 3 arranged in the body 4, and an outer periphery of the outer pipe 1 and the body 4. A heat transfer particle 12 using heat-resistant alumina spheres for promoting heat transfer is filled between the heat transfer agent 12 and the heat insulating agent 5 provided inside the heat transfer agent 5 to form a heat transfer particle packed layer. The heat transfer particle packed layer functions as a heating region for flowing a high-temperature combustion gas around the outer periphery of the reforming tube.

二重管構造の改質管内には、外管1と内管3との間の
環状部に改質触媒2を充填し改質触媒層を形成してい
る。改質触媒2にはたとえばアルミナ球にNi系触媒を担
持させたものが用いられる。
In the reforming tube having the double tube structure, the reforming catalyst 2 is filled in an annular portion between the outer tube 1 and the inner tube 3 to form a reforming catalyst layer. What the reforming catalyst 2 was supported N i based catalyst, for example alumina balls are used.

本実施例における内管3は水素吸蔵合金を焼結するな
どの方法により管状にしたものである。水素吸蔵合金と
しては、MgH2、Mg2NiH4などのマグネシウム系水素吸蔵
合金が用いられ、このマグネシウム系水素吸蔵合金は使
用温度250℃以上でその特性を利用できるものである。
The inner tube 3 in the present embodiment is formed by a method such as sintering a hydrogen storage alloy. As the hydrogen storage alloy, M g H 2, M g2 N i magnesium-based hydrogen storage alloys such as H 4 is used, the magnesium-based hydrogen storage alloy is that available its properties at the temperature of use 250 ° C. or higher.

燃焼装置6としては一般的にはバーナが用いられる
が、燃焼触媒を用いた触媒燃焼方式としてもよい。
Although a burner is generally used as the combustion device 6, a catalytic combustion system using a combustion catalyst may be used.

改質される原料ガスとしては、炭化水素やアルコール
類を水蒸気と混合したものが用いられる。
As a raw material gas to be reformed, a mixture of hydrocarbons and alcohols with steam is used.

次に本実施例の燃料改質装置の作用を第1図ないし第
3図を参照して説明する。
Next, the operation of the fuel reforming apparatus according to the present embodiment will be described with reference to FIGS.

第2図は、横軸に従来技術における反応管(改質管)
の軸方向距離の比をとり、縦軸に温度および反応率をと
って、従来技術(1点鎖線)と本発明に係る本実施例
(実線)とを比較して示したものである。
FIG. 2 shows a conventional reaction tube (reforming tube) on the horizontal axis.
The ratio of the distance in the axial direction is taken, and the temperature and the reaction rate are plotted on the vertical axis, and the prior art (dashed line) is compared with the present embodiment (solid line) according to the present invention.

また、第3図の水素吸蔵合金の特性図は、横軸に温
度、縦軸に圧力をとって、水素吸蔵反応と水素放出反応
の範囲を実線と矢印によって示したものである。先にも
述べたように、水素吸蔵反応は発熱反応、水素放出反応
は吸熱反応であり、低温で水素吸蔵、高温で水素放出、
また高圧で水素吸蔵、低圧で水素放出を行うものである
から、第3図において線Aから矢印a方向が水素吸蔵、
線Bから矢印b方向が水素放出の範囲を示している。
In addition, the characteristic diagram of the hydrogen storage alloy in FIG. 3 shows the range of the hydrogen storage reaction and the hydrogen release reaction by solid lines and arrows, with the horizontal axis representing temperature and the vertical axis representing pressure. As mentioned above, the hydrogen storage reaction is an exothermic reaction, and the hydrogen release reaction is an endothermic reaction.
In addition, since hydrogen is absorbed at high pressure and hydrogen is released at low pressure, the direction of arrow a from line A in FIG.
The direction of the arrow b from the line B indicates the range of hydrogen release.

原料ガスは原料ガス入口7から導入され、胴4内の外
管1と内管3との間に配設された改質触媒層に供給され
る。
The raw material gas is introduced from a raw material gas inlet 7 and supplied to a reforming catalyst layer disposed between the outer pipe 1 and the inner pipe 3 in the body 4.

一方、燃料入口9から導入された燃料と空気入口10か
ら導入された空気は燃焼装置6内で燃焼して高温の燃焼
ガスを生成するが、その高温燃焼ガスは胴4内の伝熱粒
子充填層を流通し、燃焼ガス出口11から排出される。す
なわち、高温燃焼ガスは外管1の外周の加熱領域を下部
から上部へ流通する。
On the other hand, the fuel introduced from the fuel inlet 9 and the air introduced from the air inlet 10 are burned in the combustion device 6 to generate a high-temperature combustion gas. It flows through the bed and is discharged from the combustion gas outlet 11. That is, the high-temperature combustion gas flows from the lower part to the upper part in the heating region on the outer periphery of the outer tube 1.

改質触媒層に入った原料ガスは改質反応を開始し、徐
々に水素リッチガスに改質される。この反応は吸熱反応
であるため、第2図に示すように、反応開始後急激な温
度降下を起こす。低温になった改質中のガスは、外管1
側からの伝熱と、低温になったことにより発生する水素
吸蔵反応による発熱および内管3からの伝熱とにより、
徐々に温度上昇をともないながら改質反応を続ける。
The raw material gas entering the reforming catalyst layer starts a reforming reaction and is gradually reformed into a hydrogen-rich gas. Since this reaction is an endothermic reaction, a rapid temperature drop occurs after the start of the reaction as shown in FIG. The gas being reformed at low temperature is supplied to the outer tube 1
The heat transfer from the side, the heat generated by the hydrogen storage reaction generated due to the low temperature, and the heat transfer from the inner tube 3
The reforming reaction is continued while gradually increasing the temperature.

次に、改質反応の終った改質ガスは、内管3の内部を
通り、改質触媒層への伝熱と、高温であるために発生す
る水素放出反応による吸熱とにより温度を徐々に下げ、
改質ガス出口8から導き出される。
Next, the reformed gas after the reforming reaction passes through the inside of the inner tube 3 and gradually reduces the temperature by heat transfer to the reforming catalyst layer and endothermic by the hydrogen release reaction generated due to the high temperature. Lower,
It is derived from the reformed gas outlet 8.

内管3に使用されている水素吸蔵合金は、改質触媒層
により改質された水素の吸蔵と、その水素の内管3への
放出を同時に連続的に行うため飽和状態にはならない。
The hydrogen storage alloy used for the inner tube 3 does not become saturated because the storage of the hydrogen reformed by the reforming catalyst layer and the release of the hydrogen to the inner tube 3 are simultaneously and continuously performed.

第2図には、先にも述べたように、改質管内の温度分
布を従来技術の場合と本実施例の場合とを比較して示し
ている。
FIG. 2 shows the temperature distribution in the reforming tube in comparison with the case of the prior art and the case of the present embodiment, as described above.

第2図において、14は本実施例における燃焼ガス温度
分布、15は従来技術における燃焼ガス温度分布を示して
おり、燃焼ガス温度は従来と本実施例とでは同じ条件で
あることを示す。
In FIG. 2, reference numeral 14 denotes a combustion gas temperature distribution in the present embodiment, and reference numeral 15 denotes a combustion gas temperature distribution in the prior art, and shows that the combustion gas temperature is the same under the conventional and the present embodiments.

16は本実施例における改質ガス温度の分布、17は従来
技術における改質ガス温度の分布、18は本実施例による
改質反応の反応率、19は従来技術による改質反応の反応
率である。
16 is the distribution of the reformed gas temperature in the present embodiment, 17 is the distribution of the reformed gas temperature in the prior art, 18 is the reaction rate of the reforming reaction according to the present embodiment, and 19 is the reaction rate of the reforming reaction according to the prior art. is there.

本実施例(実線)を示すの線16と18は、従来技術の反
応管(改質管)の軸方向長さを1としたときの比を示
し、第2図ではその比が0.9となっている。すなわち、
本実施例では、水素吸蔵反応にともなう発熱による熱伝
達の促進と水素放出反応による熱回収との相乗効果によ
る高効率化により、伝熱面積を縮減することができるた
め、反応管の長さを第2図に示すように約10%短縮でき
ることになる。
Lines 16 and 18 showing the present embodiment (solid line) show the ratio when the axial length of the conventional reaction tube (reforming tube) is 1, and in FIG. 2, the ratio is 0.9. ing. That is,
In the present embodiment, the heat transfer area can be reduced by promoting the heat transfer due to the heat generated by the hydrogen storage reaction and the synergistic effect of the heat recovery by the hydrogen release reaction, thereby reducing the heat transfer area. As shown in FIG. 2, it can be reduced by about 10%.

このように本実施例によれば、内管に水素吸蔵合金を
使用しているため、必要触媒量に対する伝熱面積を構造
を全く変えることなく減少することができるとともに、
熱回収を効率的に行うことができるので、燃料改質装置
の小形化およびコンパクト化と高効率化を容易に達成す
ることができる。
As described above, according to the present embodiment, since the hydrogen absorbing alloy is used for the inner tube, the heat transfer area with respect to the required amount of catalyst can be reduced without changing the structure at all.
Since heat recovery can be performed efficiently, downsizing, compactness, and high efficiency of the fuel reformer can be easily achieved.

次に、本発明の他の実施例を第4図を参照して説明す
る。
Next, another embodiment of the present invention will be described with reference to FIG.

第4図は本発明による燃料改質装置の他の実施例の縦
断面図であり、図中、第1図と同じ符号は先の実施例と
同じ構成部分を示しているためその説明を省略する。
FIG. 4 is a longitudinal sectional view of another embodiment of the fuel reforming apparatus according to the present invention. In FIG. 4, the same reference numerals as those in FIG. I do.

第4図の実施例が第1図の実施例と異なる点は、外管
1の外周の加熱領域に、高温燃焼ガスの流路を曲折する
ための複数の折流板13を胴4内に交互に配設したことで
ある。このように折流板13を胴4内に交互に配設するこ
とによって燃焼装置6から供給される高温の燃焼ガスは
矢印のように折流して流れて外管1を外周から加熱する
ことになり、第1図の実施例における伝熱粒子12の充填
層と同様の機能を果たすことになる。
The embodiment of FIG. 4 differs from the embodiment of FIG. 1 in that a plurality of diverting plates 13 for bending the flow path of the high-temperature combustion gas are provided in the body 4 in the heating region on the outer periphery of the outer tube 1. That is, they were arranged alternately. By alternately arranging the folding plates 13 in the body 4 in this manner, the high-temperature combustion gas supplied from the combustion device 6 is bent and flows as shown by the arrow to heat the outer pipe 1 from the outer periphery. Thus, the same function as the packed layer of the heat transfer particles 12 in the embodiment of FIG. 1 is performed.

内管3の材料に第1図の実施例と同様に水素吸蔵合金
を用いる点は同じであるから、寧効率の点では先の第1
図の実施例と同様の効果が得られる。
Since the hydrogen absorbing alloy is used in the same manner as the embodiment of FIG. 1 for the material of the inner tube 3, the first tube is used in terms of efficiency.
The same effect as that of the embodiment shown in the drawing can be obtained.

また、ここに図示して説明しないが、第1図あるいは
第4図の燃料改質装置において、内管3の内部に伝熱粒
子を充填するようにしてもよい。この場合も、先の各実
施例と同様の効果が期待され、より効果的に改質反応を
行わしめることができる。
Although not shown and described here, the inside of the inner tube 3 may be filled with heat transfer particles in the fuel reformer of FIG. 1 or FIG. In this case, the same effects as those of the above embodiments are expected, and the reforming reaction can be performed more effectively.

(発明の効果) 以上説明したように、本発明においては、二重管構造
の改質器の内管の材料に水素吸蔵合金を用いることによ
り、従来の構造を何ら変更することなしに、燃料改質の
高効率化を図ることができるため、装置の小形化、コン
パクト化を図ることができ、燃料電池などに応用したと
き燃料電池の小形化が可能になるなど、応用分野での効
果は大きいものがある。
(Effect of the Invention) As described above, in the present invention, by using a hydrogen storage alloy as the material of the inner pipe of the reformer having the double pipe structure, the fuel can be used without any change in the conventional structure. Since the reforming can be made more efficient, the size and size of the device can be reduced, and when applied to fuel cells, etc., the fuel cell can be downsized. Some are big.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による燃料改質装置の一実施例の縦断面
図、第2図は改質管の温度分布図を従来技術と本発明で
比較して示す図、第3図は水素吸蔵合金の特性図、第4
図は本発明による燃料改質装置の他の実施例の縦断面
図、第5図は従来の燃料改質装置の一例の縦断面図であ
る。 1……外管、2……改質触媒、3……内管、4……胴、
6……燃焼装置、7……原料入口、8……改質ガス出
口、9……燃料入口、10……空気入口、11……燃排ガス
出口、12……伝熱粒子、13……折流板
FIG. 1 is a longitudinal sectional view of an embodiment of a fuel reforming apparatus according to the present invention, FIG. 2 is a diagram showing a temperature distribution diagram of a reforming tube in comparison with the prior art and the present invention, and FIG. Characteristic diagram of alloy, 4th
FIG. 5 is a longitudinal sectional view of another embodiment of the fuel reformer according to the present invention, and FIG. 5 is a longitudinal sectional view of an example of a conventional fuel reformer. 1 ... outer tube, 2 ... reforming catalyst, 3 ... inner tube, 4 ... trunk,
6 combustion device, 7 material inlet, 8 reformed gas outlet, 9 fuel inlet, 10 air inlet, 11 flue gas outlet, 12 heat transfer particles, 13 fold Sink

───────────────────────────────────────────────────── フロントページの続き (72)発明者 天野 義明 茨城県土浦市神立町603番地 株式会社 日立製作所土浦工場内 (72)発明者 半澤 晨夫 茨城県土浦市神立町603番地 株式会社 日立製作所土浦工場内 ──────────────────────────────────────────────────の Continued on the front page (72) Yoshiaki Amano 603, Kandamachi, Tsuchiura-shi, Ibaraki Pref.Hitachi, Ltd. Tsuchiura Plant (72) Inventor Akio Hanzawa 603, Kandamachi, Tsuchiura-shi, Ibaraki Hitachi, Ltd. in the factory

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数本の改質管を改質容器内に配設し、該
改質管の外周に高温燃焼ガスを流通させて改質管の加熱
領域とし、前記改質管内に改質触媒層と、該改質触媒層
により改質されたガスを取り出すための流路となる内管
とを設けた二重管構成の燃料改質装置において、前記内
管の材料に、改質触媒層からの水素の吸蔵および内管内
部への水素の放出を行いうる水素吸蔵合金を用いたこと
を特徴とする燃料改質装置。
A reforming pipe is provided in a reforming vessel, and a high-temperature combustion gas is circulated around an outer periphery of the reforming pipe to form a heating region of the reforming pipe. In a fuel reforming apparatus having a double-pipe structure provided with a catalyst layer and an inner pipe serving as a flow path for taking out a gas reformed by the reforming catalyst layer, the material of the inner pipe may be a reforming catalyst. A fuel reformer using a hydrogen storage alloy capable of storing hydrogen from a layer and releasing hydrogen into the inner tube.
【請求項2】改質管の外周の加熱領域には伝熱粒子が充
填されたことを特徴とする特許請求の範囲第1項に記載
の燃料改質装置。
2. The fuel reformer according to claim 1, wherein a heat transfer particle is filled in a heating region on an outer periphery of the reforming tube.
【請求項3】改質管の外周の加熱領域には、高温燃焼ガ
スの流路を曲折するための複数の折流板を配設したこと
を特徴とする特許請求の範囲第1項に記載の燃料改質装
置。
3. The method according to claim 1, wherein a plurality of flow plates for bending the flow path of the high-temperature combustion gas are provided in a heating region on an outer periphery of the reforming tube. Fuel reformer.
【請求項4】内管の内部に伝熱粒子を設けたことを特徴
とする特許請求の範囲第1項に記載の燃料改質装置。
4. The fuel reformer according to claim 1, wherein heat transfer particles are provided inside the inner tube.
JP63028752A 1988-02-12 1988-02-12 Fuel reformer Expired - Lifetime JP2572251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63028752A JP2572251B2 (en) 1988-02-12 1988-02-12 Fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63028752A JP2572251B2 (en) 1988-02-12 1988-02-12 Fuel reformer

Publications (2)

Publication Number Publication Date
JPH01208303A JPH01208303A (en) 1989-08-22
JP2572251B2 true JP2572251B2 (en) 1997-01-16

Family

ID=12257140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63028752A Expired - Lifetime JP2572251B2 (en) 1988-02-12 1988-02-12 Fuel reformer

Country Status (1)

Country Link
JP (1) JP2572251B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3442167B2 (en) * 1993-12-28 2003-09-02 千代田化工建設株式会社 Heat transfer method in reformer
KR101121315B1 (en) * 2004-01-30 2012-03-23 이데미쓰 고산 가부시키가이샤 Reformer
US20070000173A1 (en) * 2005-06-28 2007-01-04 Michael Boe Compact reforming reactor
US20070000172A1 (en) * 2005-06-28 2007-01-04 Michael Boe Compact reforming reactor
KR101422630B1 (en) * 2011-12-30 2014-07-23 두산중공업 주식회사 Heat exchange type prereformer
EP4025333A1 (en) 2019-09-03 2022-07-13 Haldor Topsøe A/S Reformer furnace with supported reformer tubes

Also Published As

Publication number Publication date
JPH01208303A (en) 1989-08-22

Similar Documents

Publication Publication Date Title
US7494518B2 (en) Highly integrated fuel processor for distributed hydrogen production
US6497856B1 (en) System for hydrogen generation through steam reforming of hydrocarbons and integrated chemical reactor for hydrogen production from hydrocarbons
RU2411075C2 (en) Compact reforming reactor
CA2413388C (en) Improved system for hydrogen generation through steam reforming of hydrocarbons and integrated chemical reactor for hydrogen production from hydrocarbons
US8202499B2 (en) Small cylindrical reformer
US5458857A (en) Combined reformer and shift reactor
JP4541646B2 (en) Compact steam reformer
AU2006264046B2 (en) Compact reforming reactor
ES2310303T3 (en) PROCESS TO REFRIGERATE AN EXOTHERMAL REACTION AREA AND REACTOR UNIT.
US20030044331A1 (en) Annular heat exchanging reactor system
JPS63162503A (en) Gas producer
JP2572251B2 (en) Fuel reformer
JP2703831B2 (en) Fuel reformer
JP3364069B2 (en) Solid oxide fuel cell module
JP2646101B2 (en) Fuel reformer
JPH0640704A (en) Reactor for dehydrogenation reaction
JP2733308B2 (en) Apparatus and method for producing reformed gas containing hydrogen as a main component
JPH08208203A (en) Fuel reformer
JPH03199102A (en) Reforming device for methanol