JPH03199102A - Reforming device for methanol - Google Patents
Reforming device for methanolInfo
- Publication number
- JPH03199102A JPH03199102A JP33828489A JP33828489A JPH03199102A JP H03199102 A JPH03199102 A JP H03199102A JP 33828489 A JP33828489 A JP 33828489A JP 33828489 A JP33828489 A JP 33828489A JP H03199102 A JPH03199102 A JP H03199102A
- Authority
- JP
- Japan
- Prior art keywords
- combustion gas
- raw material
- gas
- methanol
- reforming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002407 reforming Methods 0.000 title claims abstract description 30
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 title claims description 64
- 239000000567 combustion gas Substances 0.000 claims abstract description 69
- 239000002994 raw material Substances 0.000 claims abstract description 60
- 238000006057 reforming reaction Methods 0.000 claims abstract description 32
- 239000003054 catalyst Substances 0.000 claims abstract description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000003303 reheating Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 abstract description 41
- 239000000203 mixture Substances 0.000 abstract description 18
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 abstract description 15
- 239000007795 chemical reaction product Substances 0.000 abstract description 6
- 238000012423 maintenance Methods 0.000 abstract description 2
- 238000002485 combustion reaction Methods 0.000 abstract 1
- 238000007689 inspection Methods 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000000446 fuel Substances 0.000 description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- 238000012546 transfer Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 239000003350 kerosene Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 238000010926 purge Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000010949 copper Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- -1 Copper-zinc-aluminum Chemical compound 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002431 hydrogen Chemical group 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000006011 modification reaction Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01B—BOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
- B01B1/00—Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
- B01B1/005—Evaporation for physical or chemical purposes; Evaporation apparatus therefor, e.g. evaporation of liquids for gas phase reactions
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、メタノールのスチームリフォーミング(改質
)反応により水素を主成分とする改質ガスを製造するメ
タノール改質反応装置の改良に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an improvement in a methanol reforming reaction apparatus for producing a reformed gas containing hydrogen as a main component by a steam reforming (reforming) reaction of methanol.
メタノールを原料とする水素を主成分とする改質ガスの
製造法は、原料メタノールの輸送、および、貯蔵が容易
であり、しかも比較的低い温度で容易に改質反応が行わ
れて、極めて容易に所望の品質の水素ガスを製造するこ
とができるため、化学工業分野のみならず、電子産業や
食品工業、そして燃料電池発電等の新規産業分野におい
ても採用されるようになってきた。The method for producing reformed gas, which uses methanol as a raw material and whose main component is hydrogen, is extremely simple, as the raw material methanol is easy to transport and store, and the reforming reaction is easily carried out at a relatively low temperature. Since it is possible to produce hydrogen gas of desired quality, it has come to be adopted not only in the chemical industry, but also in new industrial fields such as the electronics industry, the food industry, and fuel cell power generation.
メタノールと水との混合蒸気は、改質反応器中の触媒に
よってメタノール分解反応とCO変性反応を起こして水
素を主成分とする改質ガスになる。The mixed vapor of methanol and water undergoes a methanol decomposition reaction and a CO modification reaction by a catalyst in a reforming reactor, and becomes a reformed gas containing hydrogen as a main component.
CH30H+H20# CO2+ 3H214,8kc
al/moleメタノールの改質(分解)反応は吸熱反
応であり、改質反応に要する熱量は、触媒が充填された
反応管を外部より加熱する方法で供給しなければならな
い。通常一般に、反応熱の供給、即ち、反応管の加熱は
、触媒管の外側を流れる熱媒油によってなされる。熱媒
油を用いる加熱方法は、総括伝熱係数が大きく、反応器
をコンパクトに設計することができ、しかも、反応温度
の制御が極めて容易であると言った特徴があり、既に、
工業装置として実用化されている。しかし、反応装置・
反応器の他に熱媒油ボイラーや熱媒循環ポンプ等の付帯
設備を要し、改質反応装置としてはかなり複雑で高価な
ものになると言った欠点がある。CH30H+H20# CO2+ 3H214,8kc
The reforming (decomposition) reaction of al/mole methanol is an endothermic reaction, and the amount of heat required for the reforming reaction must be supplied by heating the reaction tube filled with the catalyst from the outside. In general, the heat of reaction is supplied, ie, the reaction tube is heated, by means of heat transfer oil flowing outside the catalyst tube. The heating method using heat transfer oil has the characteristics that the overall heat transfer coefficient is large, the reactor can be designed compactly, and the reaction temperature is extremely easy to control.
It has been put into practical use as an industrial device. However, the reactor
In addition to the reactor, it requires incidental equipment such as a heat medium oil boiler and a heat medium circulation pump, which has the drawback that the reforming reaction apparatus is quite complex and expensive.
改質反応器(管)の中に、燃焼ガス発生装置を一体の装
置として組み込んで、熱媒油を用いることなく、直接に
燃焼ガスで触媒管を加熱するように設計すると、熱媒油
ボイラー等の付帯設備が不要で、極めて簡単な改質反応
装置となるため、既に、燃料電池用燃料改質装置やメタ
ノール燃料自動車用オンボートリフォーミング装置等と
しての種々の提案がなされている(特公昭54−236
83号、特開昭62−70202号、特開昭62260
701号、特開昭63−138301号、特開昭63−
138306号等)。しかし、燃焼ガスによる触媒管の
加熱は、熱媒油を用いた場合に比べて総括伝熱係数が1
/10以下と極めて小さく、伝熱効率、および、負荷追
従性の点でより高温の燃焼ガスが必要となる。熱媒体で
ある燃焼ガスの温度を高くすると、より耐熱性に優れた
触媒が必要となる。既に、白金等の貴金属を有効成分と
する耐熱性触媒に関する提案もなされているが、極めて
高価で、しかも、副反応生成物(COガス)が多いと言
った欠点がある。If the combustion gas generator is integrated into the reforming reactor (tube) and designed to heat the catalyst tube directly with the combustion gas without using heat transfer oil, it will become a heat transfer oil boiler. Because it is an extremely simple reforming reaction device that does not require any incidental equipment such as 54-236
No. 83, JP-A-62-70202, JP-A-62260
No. 701, JP-A-63-138301, JP-A-63-
138306 etc.). However, when heating the catalyst tube with combustion gas, the overall heat transfer coefficient is 1 compared to when heating oil is used.
/10 or less, which requires higher temperature combustion gas in terms of heat transfer efficiency and load followability. Increasing the temperature of combustion gas, which is a heating medium, requires a catalyst with better heat resistance. Proposals have already been made regarding heat-resistant catalysts containing noble metals such as platinum as an active ingredient, but these have drawbacks such as being extremely expensive and producing many side reaction products (CO gas).
一方、既に、メタノール改質触媒として賞月されている
銅系触媒は、低温で高活性で、副反応生成物が少なく、
触媒寿命が長く、しかも、安価であり工業用触媒として
理想的なものであるが、耐熱性が低いと言った特徴・特
質を有している。この対策として、例えば、■耐熱性の
異なる触媒(300℃、520℃)を充填した反応器を
直列に配置する(特公昭57−42678号)方法や■
高温の燃焼ガスに大量の二次空気を混合して得た低温の
燃焼ガス(380℃)を加熱媒体とする方法(特開昭6
0−246201号)等が提案されている。On the other hand, copper-based catalysts, which have already been praised as methanol reforming catalysts, are highly active at low temperatures and produce few side reaction products.
It has a long catalyst life and is inexpensive, making it ideal as an industrial catalyst, but it has the characteristic of low heat resistance. As a countermeasure against this, for example, there is a method (Japanese Patent Publication No. 57-42678) of arranging reactors filled with catalysts with different heat resistance (300°C, 520°C) in series;
A method in which low-temperature combustion gas (380°C) obtained by mixing a large amount of secondary air with high-temperature combustion gas is used as a heating medium (JP-A-6
No. 0-246201) etc. have been proposed.
上記の■の方法では、触媒寿命の長期化、操業性は改善
されるが、反応装置が2系列となるため改質装置が複雑
になり、コンパクト化が難かしく、一方、■の方法では
負荷追従性はかなり改善されるものと期待されるが、大
量の二次空気を必要とするため、所要動力が大きくなり
、安価な水素ガスを得ることが極めて困難であるものと
推測される。Method (2) above extends the catalyst life and improves operability, but the reformer is complicated because it requires two reactors, making it difficult to make it compact. Although it is expected that the followability will be considerably improved, since a large amount of secondary air is required, the required power will be large, and it is presumed that it will be extremely difficult to obtain inexpensive hydrogen gas.
また、通常一般に、公害防止、並びに、省エネルギー等
の観点から、燃焼ガス発生装置用燃料として灯油、およ
び、或いは、メタノール、および、水素精製装置m!(
P S A)のパージガスが使用されている。しかし、
一般に、通常、起動時にはパージガスが利用が出来ない
ために燃焼ガスの組成が異なり、管外側の伝熱係数が変
化する。また、負荷変動時には、管内外の伝熱係数が変
化するため、触媒層の温度分布を改質触媒の最適使用温
度範囲内に制御することが困難であり、改質触媒の性能
を最大限に発揮させることができないと言った欠点があ
る。Generally, from the viewpoint of pollution prevention and energy saving, kerosene and/or methanol are used as fuel for combustion gas generators, and hydrogen purifiers m! (
PSA) purge gas is used. but,
Generally, since purge gas is not available during startup, the composition of the combustion gas changes, and the heat transfer coefficient outside the tube changes. In addition, when the load fluctuates, the heat transfer coefficient inside and outside the tube changes, making it difficult to control the temperature distribution of the catalyst layer within the optimum operating temperature range of the reforming catalyst. There is a drawback in that it cannot be used to its full potential.
発明者は、熱媒体として燃焼ガスを用いるメタノール改
質装置の構成機器の構造と配置、および、それらの総括
伝熱係数との関係について鋭意検討を行った結果、燃焼
ガス発生装置を燃焼ガス発生装置(1)と燃焼ガス発生
装置(2)にに分割し、しかも、原料蒸発器、および、
改質反応器を複数の垂直管群として構成すると共に、燃
焼ガスの流れの方向順に原料蒸発器、燃焼ガス発生装置
(2)、原料過熱器、改質反応器、および、原料予熱器
を設置して、先ず、高温の燃焼ガスを原料蒸発器の熱源
として利用したのち、温度の下がった中温の燃焼ガスを
燃焼ガス発生装置(2〉で適温にまで再昇温して改質反
応器の熱源とすると共に改質反応温度の制御を、燃焼ガ
スの再加熱温度の制御によって行ない、最後に、更に温
度の低下した低温の燃焼ガスを原料予熱器熱源として利
用するように構成したことによって改質反応器の触媒層
の温度、換言すれば、反応温度を改質反応器(管)の熱
源となる燃焼ガスの温度を制御・調節する方法で極めて
容易に、しかも、高精度に改質反応温度、即ち、触媒層
の温度分布を所定の温度範囲内に制御・調節できること
を見出した。本発明者は、本知見を基にして、鋭意改良
研究を重ねて完成させたものである。The inventor conducted intensive studies on the structure and arrangement of the components of a methanol reformer that uses combustion gas as a heat medium, and the relationship between them and the overall heat transfer coefficient. It is divided into a device (1) and a combustion gas generating device (2), and further includes a raw material evaporator, and
The reforming reactor is configured as a group of multiple vertical tubes, and the raw material evaporator, combustion gas generator (2), raw material superheater, reforming reactor, and raw material preheater are installed in the order of the flow direction of the combustion gas. First, the high-temperature combustion gas is used as a heat source for the raw material evaporator, and then the lowered temperature of the medium-temperature combustion gas is reheated to an appropriate temperature in the combustion gas generator (2) and then used in the reforming reactor. In addition to using it as a heat source, the reforming reaction temperature is controlled by controlling the reheating temperature of the combustion gas, and finally, the low-temperature combustion gas whose temperature has further decreased is used as a heat source for the raw material preheater. By controlling and adjusting the temperature of the catalyst layer of the reforming reactor, in other words, the reaction temperature, the temperature of the combustion gas that is the heat source of the reforming reactor (tube), the reforming reaction can be carried out extremely easily and with high precision. It has been discovered that the temperature, that is, the temperature distribution of the catalyst layer, can be controlled and adjusted within a predetermined temperature range.Based on this knowledge, the present inventors have completed extensive improvement research.
以下、本発明を工程図に基づいて、更に具体的に説明す
る。第1図は、本発明によるメタノール改質反応装置の
工程図であり、第2図は本発明の実施例による基本構成
図であると共に、好ましい実施態様の具体的な例である
。Hereinafter, the present invention will be explained in more detail based on process diagrams. FIG. 1 is a process diagram of a methanol reforming reactor according to the present invention, and FIG. 2 is a basic configuration diagram according to an embodiment of the present invention, as well as a specific example of a preferred embodiment.
原料貯槽(第1図では省略されている)から定量ポンプ
(第1図では省略されている)、流路12を経て供給さ
れた原料メタノール−水混合液は、原料予熱器9に導か
れて改質反応管群への熱の供給を終えた低温の燃焼ガス
によって加熱されて大兄140℃にまで予熱される。予
熱された原料メタノール−水混合液は、流路13、混合
液ヘッダー3を経て原料蒸発器2に導かれて高温の燃焼
ガスにより加熱されて蒸発・気化し、原料ガスヘッダー
4を経て、流路14と流路15に分岐・分割される。流
路14に分岐された原料ガスは、原料ガス過熱器5に導
かれて燃焼ガス発生装置(200によって最適温度に再
加熱された燃焼ガスによって加熱されて過熱ガスになる
。過熱ガスは、流路15、流量制御弁^からの原料ガス
と合流・混合して、或いは、合流・混合することなく、
改質反応に最適の温度に調節・制御されて原料混合ガス
入口ヘッダ−7を経て改質反応管6に導かれて改質反応
を起こして反応生成ガスになる。The raw material methanol-water mixture supplied from the raw material storage tank (omitted in FIG. 1) through the metering pump (not shown in FIG. 1) and the flow path 12 is led to the raw material preheater 9. It is heated by the low-temperature combustion gas that has finished supplying heat to the reforming reaction tube group and is preheated to 140°C. The preheated raw material methanol-water mixture is led to the raw material evaporator 2 via the flow path 13 and the mixed liquid header 3, where it is heated by high-temperature combustion gas, evaporates and vaporizes, and passes through the raw material gas header 4 to the raw material evaporator 2. It is branched and divided into a path 14 and a flow path 15. The raw material gas branched into the flow path 14 is guided to the raw material gas superheater 5 and heated by the combustion gas reheated to an optimum temperature by the combustion gas generator (200) to become superheated gas. Route 15, by merging and mixing with the raw material gas from the flow rate control valve ^, or without merging and mixing,
The temperature is adjusted and controlled to be optimal for the reforming reaction, and the raw material mixed gas is guided through the inlet header 7 to the reforming reaction tube 6 where a reforming reaction occurs and becomes a reaction product gas.
改質反応によって生成した反応生成ガスは、反応ガス出
口ヘッダ−8、流路16を経て反応生成ガスとして取り
出されて次工程へ送られて精製されて、或いは、そのま
ま適宜に利用される。The reaction product gas produced by the reforming reaction is taken out as a reaction product gas through the reaction gas outlet header 8 and the flow path 16, and sent to the next step for purification, or used as it is as appropriate.
燃焼ガス発生装置(1)1で発生した高温の燃焼ガスは
、先ず、原料蒸発器2で原料メタノール−水混合液を蒸
発・気化させたのち燃焼ガス発生装置(2)10で所定
の温度に再加熱されて原料過熱器5に至り、原料ガスを
過熱して自らは中温の燃焼ガスとなって改質反応器6に
導かれる。中温の燃焼ガスは、改質反応管群を加熱して
反応熱を与えて低温の燃焼ガスとなり、原料予熱器9に
導かれて保有する残余の熱量を原料メタノール−水混合
液の顕熱として与えたのち流路18より大気中に排出さ
れる。The high-temperature combustion gas generated in the combustion gas generator (1) 1 first evaporates and vaporizes the raw material methanol-water mixture in the raw material evaporator 2, and then reaches a predetermined temperature in the combustion gas generator (2) 10. The raw material gas is reheated and reaches the raw material superheater 5, where the raw material gas is superheated and becomes medium-temperature combustion gas, which is guided to the reforming reactor 6. The medium-temperature combustion gas heats the reforming reaction tube group to give reaction heat and becomes low-temperature combustion gas, and is led to the raw material preheater 9 where the remaining heat is used as the sensible heat of the raw material methanol-water mixture. After that, it is discharged into the atmosphere from the flow path 18.
本発明を実施するとき、原料メタノール、および、水は
、予め原料貯槽内で所定の割合に均一に混合しておいて
も良いし、或いは、別々に貯蔵しておいて常法に従って
流路12内で所定の割合に均一に混合しても良く任意で
ある。When carrying out the present invention, raw material methanol and water may be uniformly mixed in a predetermined ratio in a raw material storage tank in advance, or they may be stored separately and used in a flow path 12 according to a conventional method. They may be mixed uniformly at a predetermined ratio within the range.
また、第2図に例示するように、燃焼ガス発生装置(1
)1 と原料蒸発器2は、同一の同心円筒容器内に、内
側に燃焼ガス発生装置(1)lを、外側に原料蒸発器2
を複数の管群として配置すると共に、燃焼ガス発生装置
(1)と原料蒸発器との間に隔壁11を設けて隔離し、
原料蒸発管群への高温の燃焼ガスの直接的な接触の防止
と燃焼ガスの流れ方向を明確に規制するのが好ましい。In addition, as illustrated in Fig. 2, a combustion gas generator (1
) 1 and the raw material evaporator 2 are placed in the same concentric cylindrical container, with the combustion gas generator (1) l on the inside and the raw material evaporator 2 on the outside.
are arranged as a plurality of tube groups, and a partition wall 11 is provided between the combustion gas generator (1) and the raw material evaporator to isolate them,
It is preferable to prevent direct contact of high-temperature combustion gas to the group of raw material evaporation tubes and to clearly regulate the flow direction of combustion gas.
なお、燃焼ガス発生装置(2)10と原料過熱器5は、
燃焼ガス流路17の中に設けるのが好ましい。In addition, the combustion gas generator (2) 10 and the raw material superheater 5 are
Preferably, it is provided in the combustion gas flow path 17.
また、改質反応管6と原料予熱器9は、原料蒸発器2と
は分離して別途の同一の同心円筒容器内に、内側に改質
反応管6を複数の反応管群として、外側に原料予熱器9
を蛇管・コイルとして配置すると共に、改質反応管と原
料予熱器との間に隔壁11 を設けて隔離して燃焼ガ
スの流路を規制して、燃焼ガスの流れ方向に温度勾配を
明確に設けるのが好ましい。In addition, the reforming reaction tube 6 and the raw material preheater 9 are separated from the raw material evaporator 2 in the same concentric cylindrical container, with the reforming reaction tube 6 inside as a plurality of reaction tube groups and the outside. Raw material preheater 9
At the same time, a partition wall 11 is installed between the reforming reaction tube and the raw material preheater to regulate the flow path of the combustion gas, thereby creating a clear temperature gradient in the flow direction of the combustion gas. It is preferable to provide one.
本発明を実施するとき、燃焼ガス発生装置1は、一般に
、第2図に例示したように、メインテナンスの容易さの
観点から同心円筒容器内の上部に配置される。従って、
通常、燃焼ガスの流れ方向は、先ず、内筒を上から下へ
流れて燃焼ガス温度の均一化が図られたのち、原料蒸発
器に至り、原料蒸発管群を下から上に流れるように設計
されるが、必ずしもこれに限定されるものではなく、所
望によって、燃焼ガス発生装置を下部に配置して燃焼ガ
スの流れ方向の順序を逆にしても良い。When carrying out the present invention, the combustion gas generating device 1 is generally placed in the upper part of a concentric cylindrical container from the viewpoint of ease of maintenance, as illustrated in FIG. Therefore,
Normally, the flow direction of the combustion gas is such that it first flows through the inner cylinder from top to bottom to equalize the combustion gas temperature, then reaches the raw material evaporator and flows from the bottom to the top through the raw material evaporation tube group. Although the design is not limited thereto, if desired, the combustion gas generating device may be placed at the bottom and the flow direction of the combustion gases may be reversed.
また、改質反応器、即ち、改質反応管群における燃焼ガ
スと原料ガス(反応ガスの流れ方向は、改質反応速度、
換言すれば、吸熱速度の観点から、一般に、並流が好ま
しいが、使用する改質触媒の耐熱性能の如何によっては
向流としても良く、任意である。なお、原料予熱器にお
ける原料メタノール−水混合液の流れ方向は燃焼ガスに
対して向流とするのが好ましい。In addition, the flow direction of the combustion gas and raw material gas (reactant gas in the reforming reactor, that is, the group of reforming reaction tubes is determined by the reforming reaction rate,
In other words, from the viewpoint of heat absorption rate, cocurrent flow is generally preferred, but countercurrent flow may be used depending on the heat resistance performance of the reforming catalyst used, and is optional. Note that the flow direction of the raw material methanol-water mixture in the raw material preheater is preferably countercurrent to the combustion gas.
以下、本発明の実施例を、第2図に示した改質反応装置
を使用して実施した好適な例について説明する。なお、
以下に例示した実施例は、単に本発明の効果を具体的に
説明するためのものであって、これにより本発明の技術
範囲が限定されるものではない。Hereinafter, a preferred embodiment of the present invention will be described in which the reforming reaction apparatus shown in FIG. 2 is used. In addition,
The examples illustrated below are merely for concretely explaining the effects of the present invention, and are not intended to limit the technical scope of the present invention.
実施例1
以下第2図に示した改質装置を使用して実施した実施例
によって、本発明をより詳細に説明する。以下の実施例
では、硝酸銅と硝酸亜鉛とを原料として共沈法で調製し
た共沈澱物にアルミナゾルを加えて焼成したのち3.0
φX3.Qmmの円柱状に成形した銅−亜鉛−アルミニ
ウム系触媒〔触媒組成原子比Cu:Zn:A1=1.0
0:0.75:0.25、特開昭59−189937号
実施例1 参照〕の2Ilを、呼び径Bl・1/4イン
チ、長さ2.4mの各改質反応管(48本)に充填し、
常法に従って水素ガスで触媒を還元して賦活させた活性
化メタノール改質触媒を使用した。Example 1 The present invention will be explained in more detail with reference to an example carried out using the reformer shown in FIG. 2. In the following examples, alumina sol was added to a coprecipitate prepared by a coprecipitation method using copper nitrate and zinc nitrate as raw materials, and the mixture was calcined.
φX3. Copper-zinc-aluminum catalyst formed into a cylindrical shape of Qmm [catalyst composition atomic ratio Cu:Zn:A1=1.0
0:0.75:0.25, see Example 1 of JP-A No. 59-189937] were added to each reforming reaction tube (48 tubes) with a nominal diameter Bl 1/4 inch and a length of 2.4 m. Fill it with
An activated methanol reforming catalyst was used, which was activated by reducing the catalyst with hydrogen gas according to a conventional method.
実施例1は、燃焼ガス発生装置(l〉1用燃料として灯
油のみを使用した場合で、当該装置の冷起動時を想定し
たものである。先ず、当該装置内を水素ガスで置換した
のち、常法に従って燃焼ガス発生装置(1)1に点火し
た。徐々に当該装置が暖められて約30分の後に改質触
媒層の温度が230〜260℃に、改質ガス出口ヘッダ
−7の温度が260℃になった。Example 1 is a case in which only kerosene is used as the fuel for the combustion gas generator (l>1), and it is assumed that the device is started cold. First, after replacing the inside of the device with hydrogen gas, The combustion gas generator (1) 1 was ignited according to a conventional method.The device was gradually warmed up and after about 30 minutes, the temperature of the reforming catalyst layer reached 230-260°C, and the temperature of the reformed gas outlet header 7 increased. became 260℃.
ここで、燃焼ガス発生装置(1)■の燃料流量を0.9
kg/hに設定し、更に、燃焼ガス発生装置(2)10
に点火したのち、原料メタノール−水混合液供給ポンプ
(第2図では省略されている)を起動し、原料メタノー
ル−水混合液(混合モル比CH,OH:H20・1.0
:1.5)を流路12、原料予熱器9、流路13、およ
び、混合液ヘッダー3を経て原料蒸発器2に供給(流量
10.0kg/h) して気化させた。ここに気化した
原料メタノール−水混合ガスは、流路14、および、流
路15に分岐・分割された後、再び合流して、混合ガス
ヘッダー8を経て改質反応器6 に導かれて改質反応を
開始した。Here, the fuel flow rate of the combustion gas generator (1) ■ is 0.9
kg/h, and further, the combustion gas generator (2) 10
After igniting the raw material methanol-water mixture supply pump (omitted in Figure 2), the raw material methanol-water mixture (mixed molar ratio CH, OH: H20.1.0
:1.5) was supplied to the raw material evaporator 2 via the flow path 12, the raw material preheater 9, the flow path 13, and the mixed liquid header 3 (flow rate: 10.0 kg/h), and was vaporized. The raw material methanol-water mixed gas vaporized here is branched and divided into a flow path 14 and a flow path 15, and then joins together again and is led to the reforming reactor 6 via the mixed gas header 8 and reformed. The quality reaction started.
次いで、常法に従って改質反応系のガス圧力(改質反応
圧力)を1Oataに維持しながら、徐々に燃料流量、
および、原料メタノール−水混合液流量を増量させて原
料メタノール−水混合液流量を23.6 kg/hに設
定した。この間、改質反応管の管壁温度が360℃を越
えないように、また、原料メタノール−水混合ガスの混
合ガスヘッダー8における温度が230℃になるように
、更にまた、触媒層の温度分布の幅が最小値になるよう
に流量制御弁^、流量制御弁B1および、燃料流量の調
整・制御を行った。Next, while maintaining the gas pressure in the reforming reaction system (reforming reaction pressure) at 1 Oata according to a conventional method, the fuel flow rate is gradually increased.
Then, the flow rate of the raw methanol-water mixture was increased to set the flow rate of the raw methanol-water mixture to 23.6 kg/h. During this time, the temperature distribution of the catalyst layer is controlled so that the tube wall temperature of the reforming reaction tube does not exceed 360°C, and the temperature of the raw methanol-water mixed gas in the mixed gas header 8 becomes 230°C. The flow control valve ^, the flow control valve B1, and the fuel flow rate were adjusted and controlled so that the width of the flow rate was the minimum value.
このようにして、原料メタノール−水混合液の供給を開
始した時から約55分間の後に当該装置の運転情況は定
常状態となり、流路16より毎時40.5Nm’/h(
平均値)の改質ガスが得られた。In this way, approximately 55 minutes after the start of supply of the raw material methanol-water mixture, the operating condition of the device reached a steady state, and the flow rate of 40.5 Nm'/h (
(average value) of the reformed gas was obtained.
引き続いて、定常状態を保ちながら36時間改質反応実
験を続けて第1表、および、第2表の結果(平均値)を
得た。本実験におけるメタノール転化率(平均値)は9
9%で、燃料の消費量(平均値〉は、燃焼ガス発生装置
(1) 1.2 kg/h、燃焼ガス発生装置(2)
0.7 kg/hで、改質反応器触媒層の温度分布は、
触媒層の長さ方向に対して230〜260℃、その変動
幅は10〜20℃と実質的に一定であった。なお、改質
反応装置円筒壁面からのヒートロスは、大兄670kc
al/hであった。Subsequently, the reforming reaction experiment was continued for 36 hours while maintaining a steady state, and the results (average values) shown in Tables 1 and 2 were obtained. The methanol conversion rate (average value) in this experiment was 9
At 9%, the fuel consumption (average value) is 1.2 kg/h for combustion gas generator (1), and 1.2 kg/h for combustion gas generator (2).
At 0.7 kg/h, the temperature distribution of the reforming reactor catalyst layer is
The temperature was 230 to 260°C in the longitudinal direction of the catalyst layer, and the fluctuation range was substantially constant at 10 to 20°C. Furthermore, the heat loss from the cylindrical wall of the reforming reactor is 670kc.
It was al/h.
第1表 各機器および燃焼ガスの温度
第2表 ガ ス 組成
実施例2
実施例2は、燃焼ガス発生装置(1)1用燃料として水
素ガス精製装置(プレッシャースイング吸着精製法)か
らのパージガスと灯油とを併用する場合で、当該装置の
通常の定常運転時を想定したものである。Table 1 Temperature of each device and combustion gas Table 2 Gas Composition Example 2 In Example 2, purge gas from a hydrogen gas purification device (pressure swing adsorption purification method) was used as fuel for combustion gas generator (1) 1. This assumes the use of kerosene in conjunction with normal steady operation of the device.
実施例1において、燃焼ガス発生装置(1)1用の燃料
として灯油の替わりに水素ガス精製装置からのパージガ
スを使用(必要に応じて灯油を補助燃料として併用した
)し、原料メタノール−水混合液流量を59.0 kg
/hに変更した以外は、全て実施例1と同様にして72
時間の連続改質反応を続けて、毎時1100N’/hの
改質ガスと、第3表、および、第4表の結果(平均値)
を得た。本実験におけるメタノール転化率(平均値〉9
7%であった。また、燃焼ガス発生装置(1)の燃料消
費!(定常状態、平均値)は、パージガス34 Nrn
3/h、灯油0.0 kg/hであった。In Example 1, the purge gas from the hydrogen gas purification device was used instead of kerosene as the fuel for the combustion gas generator (1) 1 (kerosene was also used as an auxiliary fuel if necessary), and the raw material methanol-water mixture was used. Liquid flow rate: 59.0 kg
72 in the same manner as in Example 1 except that /h was changed.
Continuing the continuous reforming reaction for hours, using reformed gas at 1100 N'/h per hour, the results shown in Tables 3 and 4 (average values)
I got it. Methanol conversion rate in this experiment (average value>9
It was 7%. Also, the fuel consumption of the combustion gas generator (1)! (Steady state, average value) is purge gas 34 Nrn
3/h, and kerosene 0.0 kg/h.
また、燃焼ガス発生装置く2)の燃料消費量(定常状態
、平均値〉 は、灯油1.5kg/hであった。In addition, the fuel consumption (steady state, average value) of the combustion gas generator (2) was 1.5 kg/h of kerosene.
改質反応器触媒層の温度分布は、触媒層の長さ方向に対
して230〜263℃で、その変動範囲は10〜20℃
と実質的に一定であった。なお、改質反応装置円筒壁面
からのヒートロスは、大兄1.680 kcal/hで
あった。The temperature distribution of the reforming reactor catalyst layer is 230 to 263 degrees Celsius in the length direction of the catalyst layer, and the fluctuation range is 10 to 20 degrees Celsius.
remained essentially constant. Note that the heat loss from the cylindrical wall surface of the reforming reactor was 1.680 kcal/h.
比較例1
実施例2において、燃焼ガス発生装置(2)を使用する
ことなく燃焼ガス発生装置(1) のみを使用して実施
例2と同様に操作したところ、メタノール転化率(平均
値〉が80.9%と極めて低い値となった。Comparative Example 1 In Example 2, when the same operation as in Example 2 was performed using only the combustion gas generator (1) without using the combustion gas generator (2), the methanol conversion rate (average value) was The value was extremely low at 80.9%.
本発明によれば、改質反応触媒層の温度の制御を燃焼ガ
スの温度制御、更に具体的に言えば燃焼ガス発生装置(
2〉への燃料の供給量の制御によって実施することが出
来るため、改質反応装置の構造が極めて簡単になり、そ
の結果、運転操作が容易で、しかも、装置・機器の保守
点検・整備の容易な、オンサイト型水素ガス発生装置と
なる。According to the present invention, the temperature of the reforming reaction catalyst layer can be controlled by controlling the temperature of the combustion gas, and more specifically, the temperature of the combustion gas generator (
2) can be carried out by controlling the amount of fuel supplied to This is an easy on-site hydrogen gas generator.
第1図は、本発明のメタノール改質反応装置の工程図で
あり、第2図、および、第3図は、本発明によるメタノ
ール改質反応装置の一実施例を示し、第2図はメタノー
ル改質反応装置の断面図、第3図は第2図のa−a線断
面図である。
1:燃焼ガス発生装置(1)、
2:原料蒸発器、
3:混合液ヘツダー
第2図
原料ガスヘッダー
原料ガス過熱器、
改質反応管、
原料ガス入口ヘッダー
反応ガス出口ヘッダー
原料予熱器、
燃焼ガス発生装置(2)、
隔壁、
流量制御弁、
流量制御弁FIG. 1 is a process diagram of the methanol reforming reactor of the present invention, FIG. 2 and FIG. 3 show an embodiment of the methanol reforming reactor of the present invention, and FIG. A cross-sectional view of the reforming reactor, FIG. 3 is a cross-sectional view taken along line a-a in FIG. 2. 1: Combustion gas generator (1), 2: Raw material evaporator, 3: Mixed liquid header Figure 2 Raw material gas header Raw material gas superheater, Reforming reaction tube, Raw material gas inlet header Reaction gas outlet header Raw material preheater, Combustion Gas generator (2), bulkhead, flow control valve, flow control valve
Claims (1)
より反応を行うメタノール改質反応装置において、燃焼
ガス発生装置(1)で発生した燃焼ガスの流れ方向に原
料蒸発器、燃焼ガス発生装置(2)、原料過熱器、改質
反応器、および、原料予熱器を順次配置して、改質反応
温度の制御を、燃焼ガスの再加熱温度の制御によって行
うようにしたメタノール改質反応装置。In a methanol reforming reactor in which a mixed vapor of methanol and water is reacted with combustion gas in the presence of a catalyst, a raw material evaporator, a combustion gas generator ( 2) A methanol reforming reaction apparatus in which a raw material superheater, a reforming reactor, and a raw material preheater are arranged in sequence, and the reforming reaction temperature is controlled by controlling the reheating temperature of combustion gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1338284A JP2773334B2 (en) | 1989-12-28 | 1989-12-28 | Methanol reforming reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1338284A JP2773334B2 (en) | 1989-12-28 | 1989-12-28 | Methanol reforming reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03199102A true JPH03199102A (en) | 1991-08-30 |
JP2773334B2 JP2773334B2 (en) | 1998-07-09 |
Family
ID=18316679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1338284A Expired - Lifetime JP2773334B2 (en) | 1989-12-28 | 1989-12-28 | Methanol reforming reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2773334B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7005114B2 (en) * | 2000-11-17 | 2006-02-28 | Nucellsys Gmbh | Gas generation system for a reformer and method for providing a gas flow to a reformer |
-
1989
- 1989-12-28 JP JP1338284A patent/JP2773334B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7005114B2 (en) * | 2000-11-17 | 2006-02-28 | Nucellsys Gmbh | Gas generation system for a reformer and method for providing a gas flow to a reformer |
Also Published As
Publication number | Publication date |
---|---|
JP2773334B2 (en) | 1998-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5229102A (en) | Catalytic ceramic membrane steam-hydrocarbon reformer | |
RU2411075C2 (en) | Compact reforming reactor | |
US6299994B1 (en) | Process for providing a pure hydrogen stream for use with fuel cells | |
ES2780385T3 (en) | Method and system for the production of hydrogen | |
KR100891928B1 (en) | Single chamber compact fuel processor | |
US8202499B2 (en) | Small cylindrical reformer | |
US8057559B2 (en) | Hydrogen generator and hydrogenation apparatus | |
EP1893858B1 (en) | Reforming process for production of hydrogen from hydrocarbon fuel | |
KR100423544B1 (en) | Compact steam reformer | |
RU2415073C2 (en) | Compact reforming reactor | |
CA2377372A1 (en) | Apparatus for providing a pure hydrogen stream for use with fuel cells | |
JP2008538097A (en) | Method and apparatus for a heat integrated hydrogen generation system | |
JP2010513834A (en) | Heat transfer unit for steam generation and gas preheating | |
KR101817569B1 (en) | A heat-exchange reactor producing hydrogen from carbon compound | |
RU113729U1 (en) | PROCESSOR FOR CONVERSION OF HYDROCARBON FUELS IN SYNTHESIS-GAS FOR APPLICATION IN SOLID-OXIDE FUEL ELEMENTS | |
JPH0794322B2 (en) | Methanol reformer | |
JPH03199102A (en) | Reforming device for methanol | |
JP2803266B2 (en) | Methanol reforming reactor | |
KR102005715B1 (en) | Hydrogen production reactor including feed preheating part | |
JP4278393B2 (en) | Hydrogen production apparatus and fuel cell system | |
KR101830954B1 (en) | Hydrogen production system including unit for removal of carbon monoxide |