JP2803266B2 - Methanol reforming reactor - Google Patents
Methanol reforming reactorInfo
- Publication number
- JP2803266B2 JP2803266B2 JP1338285A JP33828589A JP2803266B2 JP 2803266 B2 JP2803266 B2 JP 2803266B2 JP 1338285 A JP1338285 A JP 1338285A JP 33828589 A JP33828589 A JP 33828589A JP 2803266 B2 JP2803266 B2 JP 2803266B2
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- methanol
- gas
- combustion gas
- reforming reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01B—BOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
- B01B1/00—Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
- B01B1/005—Evaporation for physical or chemical purposes; Evaporation apparatus therefor, e.g. evaporation of liquids for gas phase reactions
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、メタノールのスチームリフォーミング(改
質)反応により水素を主成分とする改質ガスを製造する
メタノール改質反応装置の改良に関する。Description: TECHNICAL FIELD The present invention relates to an improvement in a methanol reforming reaction apparatus for producing a reformed gas containing hydrogen as a main component by a steam reforming (reforming) reaction of methanol.
(従来の技術) メタノールを原料とする水素を主成分とする改質ガス
の製造法は、原料メタノールの輸送、および、貯蔵が容
易であり、しかも比較的低い温度で容易に改質反応が行
われて、極めて容易に所望の品質の水素ガスを製造する
ことができるため、化学工業分野のみならず、電子産業
や食品工業、そして燃料電池発電等の新規産業分野にお
いても採用されるようになってきた。(Prior art) A method for producing a reformed gas mainly composed of hydrogen using methanol as a raw material is easy to transport and store the raw material methanol, and the reforming reaction can be easily performed at a relatively low temperature. Since hydrogen gas of desired quality can be produced very easily, it has been adopted not only in the chemical industry, but also in new industries such as the electronics industry, food industry, and fuel cell power generation. Have been.
メタノールと水との混合蒸気は、改質反応器中の触媒
によってメタノール分解反応とCO変性反応を起こして水
素を主成分とする改質ガスになる。The mixed vapor of methanol and water undergoes a methanol decomposition reaction and a CO denaturation reaction by a catalyst in the reforming reactor to become a reformed gas containing hydrogen as a main component.
CH3OH CO +2H2−23.5kcal/moleCO + H2OCO2+ H2+ 8.7kcal/mole CH3OH+H2OCO2+3H2−14.8kcal/mole メタノールの改質(分解)反応は吸熱反応であり、改
質反応に要する熱量は、触媒が充填された反応管を外部
より加熱する方法で供給しなければならない。通常一般
に、反応熱の供給、即ち、反応管の加熱は、触媒管の外
側を流れる熱触油によってなされる。熱媒油を用いる加
熱方法は、総括伝熱係数が大きく、反応器をコンパクト
に設計することができ、しかも、反応温度の制御が極め
て容易であると言った特徴があり、既に、工業装置とし
て実用化されている。しかし、反応装置・反応器の他に
熱媒油ボイラーや熱媒循環ポンプ等の付帯設備を要し、
改質反応装置としてはかなり複雑で高価なものになると
言った欠点がある。CH 3 OH CO + 2H 2 -23.5kcal / mole CO + H 2 OCO 2 + H 2 + 8.7kcal / mole CH 3 OH + H 2 OCO 2 + 3H 2 -14.8kcal / mole Methanol reforming (decomposition) is an endothermic reaction In some cases, the amount of heat required for the reforming reaction must be supplied by a method of externally heating the reaction tube filled with the catalyst. Generally, the supply of the heat of reaction, that is, the heating of the reaction tube, is performed by a hot oil flowing outside the catalyst tube. The heating method using heat transfer oil has the characteristics that the overall heat transfer coefficient is large, the reactor can be designed compact, and the control of the reaction temperature is extremely easy. Has been put to practical use. However, in addition to the reactor and reactor, additional equipment such as a heat transfer oil boiler and heat transfer pump is required.
There is a drawback that the reforming reactor becomes considerably complicated and expensive.
改質反応器(管)の中に、燃焼ガス発生装置を一体の
装置として組み込んで、熱媒油を用いることなく、直接
に燃焼ガスで触媒管を加熱するように設計すると、熱媒
油ボイラー等の付帯設備が不要で、極めて簡単な改質反
応装置となるため、既に、燃料電池用燃料改質装置やメ
タノール燃料自動車用オンボードリフォーミング装置等
としての種々の提案がなされている(特公昭54−23683
号、特開昭62−70202号、特開昭62−260701号、特開昭6
3−138301号、特開昭63−138306号等)。しかし、燃焼
ガスによる触媒管の加熱は、熱媒油を用いた場合に比べ
て総括伝熱係数が1/10以下と極めて小さく、伝熱効率、
および、負荷追従性の点でより高熱の燃焼ガスが必要と
なる。熱媒体である燃焼ガスの温度を高くすると、より
耐熱性に優れた触媒が必要となる。既に、白金等の貴金
属を有効成分とする耐熱性触媒に関する提案もなされて
いるが、極めて高価で、しかも、副反応生成物(COガ
ス)が多いと言った欠点がある。If a combustion gas generator is incorporated into the reforming reactor (tube) as an integrated device and the catalyst tube is designed to be heated directly by the combustion gas without using a heating medium oil, the heating medium oil boiler Since there is no need for ancillary equipment such as the above, the reforming reaction device becomes extremely simple, and various proposals have already been made as a fuel reforming device for a fuel cell, an on-board reforming device for a methanol fueled vehicle, etc. Kosho 54-23683
No., JP-A-62-70202, JP-A-62-260701, JP-A-62
3-138301, JP-A-63-138306, etc.). However, the heating of the catalyst tube by the combustion gas has an extremely small overall heat transfer coefficient of 1/10 or less as compared with the case of using the heat transfer oil, and the heat transfer efficiency,
In addition, a combustion gas having higher heat is required in terms of load followability. When the temperature of the combustion gas as the heat medium is increased, a catalyst having more excellent heat resistance is required. Proposals for heat-resistant catalysts containing a noble metal such as platinum as an active ingredient have already been made, but have the disadvantage that they are extremely expensive and that there are many by-products (CO gas).
一方、既に、メタノール改質触媒として賞用されてい
る銅系触媒は、低温で高活性で、副反応生成物が少な
く、触媒寿命が長く、しかも、安価であり工業用触媒と
して理想的なものであるが、耐熱性が低いと言った特徴
・特質を有している。この対策として、例えば、耐熱
性の異なる触媒(300℃、520℃)を充填した反応器を直
列に配置する(特公昭57−42678号)方法や高温の燃
焼ガスに大量の二次空気を混合して得た低温の燃焼ガス
(380℃)を加熱触媒とする方法(特開昭60−246201
号)等が提案されている。On the other hand, copper-based catalysts, which have already been awarded as methanol reforming catalysts, are highly active at low temperatures, have few by-products, have a long catalyst life, and are inexpensive, making them ideal as industrial catalysts. However, it has features and characteristics such as low heat resistance. As a countermeasure, for example, a reactor filled with catalysts having different heat resistances (300 ° C, 520 ° C) is arranged in series (Japanese Patent Publication No. 57-42678), or a large amount of secondary air is mixed with high-temperature combustion gas. Using low-temperature combustion gas (380 ° C.) obtained as a heating catalyst (JP-A-60-246201)
No.) has been proposed.
上記のの方法では、触媒寿命の長期化、操業性は改
善されるが、反応装置が2系列となるため改質装置が複
雑になり、コンパクト化が難かしく、一方、の方法で
は負荷追従性はかなり改善されるものと期待されるが、
大量の二次空気を必要とするため、所要動力が大きくな
り、安価な水素ガスを得ることが極めて困難であるもの
と推測される。In the above method, the catalyst life is prolonged and the operability is improved, but the reformer becomes complicated and the downsizing is difficult due to the use of two reactors. Is expected to be considerably improved,
Since a large amount of secondary air is required, the required power is large, and it is presumed that it is extremely difficult to obtain inexpensive hydrogen gas.
また、通常一般に、公害防止、並びに、省エネルギー
等の観点から、燃焼ガス発生装置用燃料として灯油、お
よび、或いは、メタノール、および、水素精製装置(PS
A)のパージガスが使用されている。しかし、一般に、
通常、起動時にはパージガスが利用が出来ないために燃
焼ガスの組成が異なり、管外側の伝熱係数が変化する。
また、負荷変動時には、管内外の伝熱係数が変化するた
め、触媒層の温度分布を改質触媒の最適使用温度範囲内
に制御することが困難であり、改質触媒の性能を最大限
に発揮させることができないと言った欠点がある。In general, from the viewpoints of pollution prevention and energy saving, kerosene and / or methanol and / or a hydrogen purifier (PS) are used as fuel for a combustion gas generator.
A) Purge gas is used. However, in general,
Usually, at the time of startup, the composition of the combustion gas is different because the purge gas cannot be used, and the heat transfer coefficient outside the tube changes.
In addition, when the load fluctuates, the heat transfer coefficient inside and outside the pipe changes, so it is difficult to control the temperature distribution of the catalyst layer within the optimum operating temperature range of the reforming catalyst, and to maximize the performance of the reforming catalyst. There is a drawback that it cannot be demonstrated.
発明者は、熱媒体として燃焼ガスを用いるメタノール
改質装置の構成機器の改造と配置、および、それらの総
括伝熱係数との関係について鋭意検討を行った結果、原
料蒸発器を原料蒸発器(1)と原料蒸発器(2)に分割
し、しかも、原料蒸発器、および、改質反応器を複数の
垂直管群として構成すると共に、燃焼ガスの流れの方向
順に原料蒸発器(1)、原料過熱器、改質反応器、原料
蒸発器(2)を設置して、先ず、高温の燃焼ガスを原料
蒸発器(1)、および、原料過熱器の熱源として利用し
たのち、温度の下がった中温の燃焼ガスを改質反応器の
熱源として利用して、最後に、更に温度の低下した低温
の燃焼ガスを原料蒸発器(2)の熱源として利用するよ
うに各機器を配置し、更に、改質反応器の触媒層の温
度、換言すれば、反応温度を原料メタノール−水混合液
の原料蒸発器(1)、および、原料蒸発器(2)への分
配供給比を変更する方法で極めて容易に、しかも、高精
度に、触媒層の温度分布を所定の温度範囲内に制御でき
ることを見出した。本発明者は、本知見を基にして、鋭
意改良研究を実施し、本発明を完成させた。The inventor has conducted extensive studies on the modification and arrangement of the components of the methanol reformer using combustion gas as a heat medium, and on the relationship between these components and the overall heat transfer coefficient. As a result, the raw material evaporator was replaced with the raw material evaporator ( 1) and a raw material evaporator (2), and the raw material evaporator and the reforming reactor are configured as a plurality of vertical tube groups, and the raw material evaporators (1), A raw material superheater, a reforming reactor, and a raw material evaporator (2) were installed. First, a high-temperature combustion gas was used as a heat source for the raw material evaporator (1) and a raw material superheater, and then the temperature dropped. Each device is arranged so that the medium-temperature combustion gas is used as a heat source of the reforming reactor, and finally, the low-temperature combustion gas whose temperature is further reduced is used as a heat source of the raw material evaporator (2). The temperature of the catalyst layer of the reforming reactor, in other words, the reaction The temperature distribution of the catalyst layer can be extremely easily and precisely adjusted by changing the distribution and supply ratio of the raw material methanol-water mixture to the raw material evaporator (1) and the raw material evaporator (2). It has been found that the temperature can be controlled within a predetermined temperature range. The present inventor has made intensive studies on the basis of this finding and completed the present invention.
以下、本発明を基本構成図に基づいて、更に具体的に
説明する。第1図、および、第2図は、本発明によるメ
タノール改質反応装置の基本構成図であると共に、好ま
しい実施態様の具体的な例である。Hereinafter, the present invention will be described more specifically based on a basic configuration diagram. FIG. 1 and FIG. 2 are basic structural diagrams of a methanol reforming reaction device according to the present invention, and are specific examples of preferred embodiments.
原料貯槽(第1図では省略されている)から定量ポン
プ(第1図では省略されている)、流路12を経て供給さ
れた原料メタノール−水混合液は、流路13、および、流
路14に分岐・分割される。流路14に分岐・分割された原
料メタノール−水混合液は、流量制御弁A、および、混
合液ヘッダ−(1)3を経て原料蒸発器(1)2に導か
れて高温の燃焼ガスにより加熱されて蒸発・気化し、原
料ガスヘッダー(1)4、原料ガス過熱器5を経て原料
混合ガス入口ヘッダー8へと導かれる。一方、流路13に
分岐・分割された原料メタノール−水混合液は、混合液
ヘッダー(2)10を経て原料蒸発器(2)9に導かれ
て、改質反応管群への熱の供給を終えた低温の燃焼ガス
によって加熱されて蒸発・気化し、原料ガスヘッダー
(2)11を経て原料ガスヘッダー(1)4へと導かれる
と共に、その一部が流量制御弁Bを経て原料過熱器5か
らの過熱ガス中に導かれる。原料ガスヘッダー(1)4
で混合された原料ガスは、原料過熱器5に導かれて高温
の燃料ガスによって加熱されて過熱ガスになる。過熱ガ
スは流量制御弁Bからの原料ガスと合流・混合して、或
いは、合流・混合することなく、改質反応に最適の温度
範囲に調節・制御されて原料混合ガス入口ヘッダー8を
経て改質反応管6に導かれて改質反応を起こして反応生
成ガスになる。A raw material methanol-water mixture supplied from a raw material storage tank (omitted in FIG. 1) through a metering pump (omitted in FIG. 1) and a flow path 12 is supplied to a flow path 13 and a flow path Branched and split into 14. The raw material methanol-water mixture branched and divided into the flow path 14 is guided to the raw material evaporator (1) 2 through the flow control valve A and the mixed solution header (1) 3, and is heated by the high-temperature combustion gas. It is heated and evaporated and vaporized, and is led to the raw material mixed gas inlet header 8 via the raw material gas header (1) 4 and the raw material gas superheater 5. On the other hand, the raw material methanol-water mixed liquid branched and divided into the flow path 13 is guided to the raw material evaporator (2) 9 via the mixed liquid header (2) 10, and heat is supplied to the reforming reaction tube group. Is heated and evaporated and vaporized by the low-temperature combustion gas that has been subjected to the heat treatment, is led to the raw material gas header (1) 4 through the raw material gas header (2) 11, and a part of the raw material is superheated through the flow control valve B. Into the superheated gas from the vessel 5. Raw material gas header (1) 4
The raw material gas mixed in step (1) is led to the raw material superheater 5 and is heated by the high-temperature fuel gas to become a superheated gas. The superheated gas is combined with or mixed with the raw material gas from the flow control valve B, or is adjusted and controlled to the optimum temperature range for the reforming reaction without being combined and mixed, and is reformed through the raw material mixed gas inlet header 8. The reaction gas is led to the reaction tube 6 to cause a reforming reaction to become a reaction product gas.
改質反応によって生成した反応生成ガスは、反応ガス
出口ヘッダー7、流路18を経て反応生成ガスとして取り
出されて次工程へ送られて精製されて、或いは、そのま
ま適宜に利用される。The reaction product gas generated by the reforming reaction is taken out as a reaction product gas through the reaction gas outlet header 7 and the flow path 18 and sent to the next step to be purified or used as it is.
既に記述したように、燃焼ガス発生装置1で発生した
高温の燃焼ガスは、先ず、原料蒸発器(1)2で原料メ
タノール−水混合液を蒸発・気化させたのち原料過熱器
5で原料ガスを過熱して自らは中温の燃焼ガスとなって
改質反応管群6に導かれる。中温の燃焼ガスは、改質反
応管群を過熱して反応熱を与えて低温の燃焼ガスとな
る。低温の燃焼ガスは、流路15を経て原料蒸発器(2)
9に導かれて保有する残余の熱量を原料メタノール−水
混合液の蒸発潜熱として与えたのち流路16より大気中に
排出される。As described above, the high-temperature combustion gas generated by the combustion gas generator 1 is first vaporized and vaporized in a raw material methanol-water mixture in a raw material evaporator (1) 2 and then in a raw material superheater 5. Is heated to become a medium-temperature combustion gas and is led to the reforming reaction tube group 6. The medium-temperature combustion gas overheats the reforming reaction tube group to give reaction heat, and becomes a low-temperature combustion gas. The low-temperature combustion gas passes through the passage 15 and is fed to the raw material evaporator
After being supplied to 9 and giving the remaining amount of heat as latent heat of vaporization of the raw material methanol-water mixture, it is discharged from the flow passage 16 into the atmosphere.
本発明を実施するとき、第1図、および、第2図に例
示するように、原料蒸発器(1)、原料過熱器、およ
び、改質反応管は、同一の同心円筒容器内の内側に原料
蒸発器(1)と原料過熱器を配置し、その外側に改質反
応管を配置すると共に、原料蒸発器(1)と改質反応管
との間に隔壁17を設けて隔離して改質反応管への高温の
燃焼ガスの直接的な接触を防止すると共に、燃焼ガスの
流路を規制して、燃焼ガスの流れ方向に温度勾配を明確
に設けるのが好ましい。また、原料蒸発器(2)は、改
質反応管等と同じ円筒容器内に設置しても良いが、別置
の円筒容器内に設置する方が製作が容易で簡便である。When practicing the present invention, as illustrated in FIGS. 1 and 2, the raw material evaporator (1), the raw material superheater, and the reforming reaction tube are placed inside the same concentric cylindrical container. A raw material evaporator (1) and a raw material superheater are arranged, a reforming reaction tube is arranged outside the raw material evaporator (1), and a partition wall 17 is provided between the raw material evaporator (1) and the reforming reaction tube so as to be isolated and improved. It is preferable to prevent direct contact of the high-temperature combustion gas to the quality reaction tube and to regulate the flow path of the combustion gas so that a temperature gradient is clearly provided in the flow direction of the combustion gas. Further, the raw material evaporator (2) may be installed in the same cylindrical container as the reforming reaction tube and the like, but it is easier and simpler to install it in a separate cylindrical container.
本発明を実施するとき、燃焼ガス発生装置1は、一般
に、第1図に例示したように、メインテナンスの容易さ
の観点から同心円筒容器内の上部に配置される。従っ
て、通常、燃焼ガスの流れ方向は、先ず、内筒を下から
上へ流れて原料蒸発器(1)と原料過熱器に熱を与えて
中温となったのち、改質反応管群部を上から下に流れる
ように設計されるが、必ずしもこれに限定されるもので
はなく、所望によって、燃焼ガス発生装置を下部に配置
して燃焼ガスの流れ方向の順序を逆にしても良い。ま
た、改質反応管群部の燃焼ガスと反応ガスの流れ方向
は、改質反応速度、即ち、吸熱速度の観点から、一般
に、並流が好ましいが、触媒の耐熱性能の如何によって
は向流としても良く、任意である。When carrying out the present invention, the combustion gas generator 1 is generally arranged at the upper part in a concentric cylindrical container from the viewpoint of ease of maintenance, as illustrated in FIG. Therefore, usually, the flow direction of the combustion gas is as follows. First, after flowing through the inner cylinder from the bottom to the top and applying heat to the raw material evaporator (1) and the raw material superheater to reach a medium temperature, the reforming reaction tube group section Although it is designed to flow from the top to the bottom, it is not necessarily limited to this, and the order of the flow direction of the combustion gas may be reversed by arranging the combustion gas generator at the lower part if desired. In addition, the flow directions of the combustion gas and the reaction gas in the reforming reaction tube group are generally preferably co-current from the viewpoint of the reforming reaction rate, that is, the heat absorption rate, but depending on the heat resistance performance of the catalyst, the flow is countercurrent. It may be optional.
原料蒸発器(1)、および、改質反応管は、同心円容
器内の同心円周上の所定の位置に、また、原料過熱器
は、原料蒸発器(1)の上部の燃焼ガス発生装置の廻り
の燃焼ガス流路内にスパイラル状に配置するのが好まし
い。また、原料蒸発器(2)は、改質反応管とは別置の
円筒容器内に設置する方が製作が容易で、簡便で好まし
い。The raw material evaporator (1) and the reforming reaction tube are located at predetermined positions on a concentric circle in a concentric vessel, and the raw material superheater is located around a combustion gas generator above the raw material evaporator (1). It is preferable to arrange spirally in the combustion gas flow path. It is preferable to install the raw material evaporator (2) in a cylindrical container separate from the reforming reaction tube because it is easy to manufacture, simple and convenient.
以下、本発明の実施例を、第1図に示した改質反応装
置を使用して実施した好適な例について説明する。な
お、以下に例示した実施例は、単に本発明の効果を具体
的に説明するためのものであって、これにより本発明の
技術範囲が限定されるものではない。Hereinafter, a preferred example in which the embodiment of the present invention is implemented using the reforming reaction apparatus shown in FIG. 1 will be described. The embodiments illustrated below are merely for specifically describing the effects of the present invention, and do not limit the technical scope of the present invention.
実施例1 以下第1図に示した改質装置を使用して実施した実施
例によって、本発明をより詳細に説明する。以下の実施
例では、硝酸銅と硝酸亜鉛とを原料として共沈法で調製
した共沈殿物にアルミナゾルを加えて焼成したのち3.0
φ×3.0mmの円柱状に成形した銅−亜鉛−アルミニウム
系触媒〔触媒組成 原子比 Cu:Zn:Al=1.00:0.75:0.2
5、特開昭59−189937号 実施例1 参照〕の2を、呼
び径B1・1/4インチ、長さ2.4mの各改質反応管(48本)
に充填し、常法に従って水素ガスで触媒を還元して賦活
させた活性化メタノール改質触媒を使用した。Embodiment 1 Hereinafter, the present invention will be described in more detail with reference to an embodiment implemented using the reformer shown in FIG. In the following examples, after adding alumina sol to a coprecipitate prepared by a coprecipitation method using copper nitrate and zinc nitrate as raw materials and calcining 3.0
Copper-zinc-aluminum-based catalyst formed into a cylindrical shape of φ × 3.0 mm (catalyst composition atomic ratio Cu: Zn: Al = 1.00: 0.75: 0.2
5, refer to Example 1 of JP-A-59-189937), and replace each of the two reforming reaction tubes (48 tubes) with a nominal diameter of B1 / 4 inch and a length of 2.4 m.
And an activated methanol reforming catalyst which was activated by reducing the catalyst with hydrogen gas according to a conventional method.
実施例1は、燃焼ガス発生装置1用燃料として灯油の
みを使用した場合で、当該装置の冷起動時を想定したも
のである。先ず、当該装置内を水素ガスで置換したの
ち、常法に従って、燃焼ガス発生装置1に点火した。徐
々に当該装置が暖められて約30分の後に改質触媒層の温
度が230〜250℃に、改質ガス出口ヘッダー8の温度が25
0℃になった。The first embodiment is a case where only kerosene is used as fuel for the combustion gas generator 1, and assumes a cold start of the device. First, after the inside of the device was replaced with hydrogen gas, the combustion gas generator 1 was ignited according to a conventional method. About 30 minutes after the apparatus is gradually warmed, the temperature of the reforming catalyst layer becomes 230 to 250 ° C., and the temperature of the reformed gas outlet header 8 becomes 25
The temperature reached 0 ° C.
ここで、燃料流量を0.9kg/hに設定して、原料メタノ
ール−水混合液供給ポンプ(第1図では省略されてい
る)を起動して原料メタノール−水混合液(混合モル比
CH3OH:H2O=1.0:1.5)を予熱器(第1図では省略されて
いる。予熱温度100℃)、流路12を経て流路13、およ
び、流路14に分割・分流させて流路13、混合液ヘッダー
(2)10を経て原料蒸発器(2)9、並びに、流路14、
流量制御弁A、および、混合液ヘッダー(1)3を経て
原料蒸発器(1)2に供給(流量10.0kg/h)して改質反
応を開始させた。Here, the fuel flow rate was set to 0.9 kg / h, and the raw material methanol-water mixed liquid supply pump (omitted in FIG. 1) was started to start the raw material methanol-water mixed liquid (mixed molar ratio).
CH 3 OH: H 2 O = 1.0: 1.5) is divided and divided into a preheater (omitted in FIG. 1; preheat temperature 100 ° C.), a flow path 13 and a flow path 14 via a flow path 12. And the raw material evaporator (2) 9 via the mixed liquid header (2) 10
The reforming reaction was started by supplying (flow rate 10.0 kg / h) to the raw material evaporator (1) 2 via the flow control valve A and the mixed liquid header (1) 3.
次いで、常法に従って改質反応系のガス圧力(改質反
応圧力)を10ataに維持しながら、徐々に燃料流量、お
よび、原料メタノール−水混合液流量を増量させて原料
メタノール−水混合液流量を23.6kg/hに設定した。この
間、改質反応管の管壁温度が360℃を越えないように、
また、原料メタノール−水混合ガスの混合ガスヘッダー
8における温度が230℃になるように、更にまた、触媒
層の温度分布の幅が最小値になるように流量制御弁A、
流量制御弁B、および、燃料流量の調製・制御を行っ
た。Then, while maintaining the gas pressure (reforming reaction pressure) of the reforming reaction system at 10 at in a conventional manner, gradually increase the fuel flow rate and the raw material methanol-water mixed liquid flow rate to increase the raw material methanol-water mixed liquid flow rate. Was set to 23.6 kg / h. During this time, the wall temperature of the reforming reaction tube should not exceed 360 ° C.
Also, the flow control valves A,
Preparation and control of the flow rate control valve B and the fuel flow rate were performed.
このようにして、原料メタノール−水混合液の供給を
開始した時から約55分間の後に当該装置の運転状況は定
常状態となり、毎時41Nm3/hの改質ガスが生成した。In this way, about 55 minutes after the supply of the raw material methanol-water mixture was started, the operation state of the apparatus became a steady state, and a reformed gas of 41 Nm 3 / h was generated every hour.
引き続いて、定常状態を保ちながら36時間改質反応実
験を続けて第1表、および、第2表に示す結果(平均
値)を得た。本実験における原料蒸発器(1)、およ
び、原料蒸発器(2)の蒸発量割合(平均値)は12:1で
あり、メタノール転化率(平均値)99%であった。燃料
の消費量(平均値)は1.9Kg/hで、改質反応器触媒層の
温度分布は、触媒層の長さ方向に対して230〜259℃で、
その変動幅は10〜20℃と実質的に一定であった。なお、
改質反応装置円筒壁面からのヒートロスは、大凡670kca
l/hであった。Subsequently, the reforming reaction experiment was continued for 36 hours while maintaining the steady state, and the results (average values) shown in Tables 1 and 2 were obtained. The evaporation rate (average value) of the raw material evaporator (1) and the raw material evaporator (2) in this experiment was 12: 1, and the methanol conversion rate (average value) was 99%. The fuel consumption (average value) is 1.9 kg / h, and the temperature distribution of the reforming reactor catalyst layer is 230-259 ° C in the length direction of the catalyst layer.
The fluctuation range was substantially constant at 10 to 20 ° C. In addition,
Heat loss from the cylindrical wall of the reforming reactor is approximately 670 kca
l / h.
実施例2 実施例2は、燃焼ガス発生装置1用燃料として水素ガ
ス精製装置(プレッシヤースイング吸着精製法)からの
パージガスと灯油とを併用する場合で、当該装置の通常
の定常運転時を想定したものである。 Example 2 Example 2 is a case in which a purge gas from a hydrogen gas purification device (pressure swing adsorption purification method) and kerosene are used in combination as fuel for the combustion gas generator 1, and it is assumed that the device is in normal normal operation. It was done.
実施例1において、燃焼ガス発生装置1用燃料として
灯油のみの替わりに水素ガス精製装置からのパージガス
と灯油とを併用し、原料メタノール−水混合液流量59.0
kg/hに変更した以外は、全て実施例1と同様にして72時
間の連続改質反応を続けて、毎時100Nm3/hの改質ガスと
第3表、および、第4表に示した結果(平均値)を得
た。本実験における原料蒸発器(1)、および、原料蒸
発器(2)の蒸発量割合(平均値)は4.3:1であり、メ
タノール転化率(平均値)は98%であった。また、燃料
の消費量(平均値)はパージガス34Nm3/h、灯油1.3kg/h
で、改質反応器触媒層の温度分布は、触媒層の長さ方向
に対して230〜266℃で、その変動範囲は10〜20℃と実質
的に一定であった。なお、改質反応装置円筒壁面からの
ヒートロスは、大凡1,680kcal/hであった。In Example 1, a purge gas from a hydrogen gas purifier and kerosene were used in combination as the fuel for the combustion gas generator 1 instead of kerosene alone, and the raw material methanol-water mixture flow rate was 59.0%.
A continuous reforming reaction for 72 hours was carried out in the same manner as in Example 1 except that the gas was changed to kg / h, and the reformed gas of 100 Nm 3 / h per hour and the results shown in Tables 3 and 4 were obtained. The result (average value) was obtained. In this experiment, the evaporation rate (average value) of the raw material evaporator (1) and the raw material evaporator (2) was 4.3: 1, and the methanol conversion rate (average value) was 98%. The fuel consumption (average value) is 34 Nm 3 / h for purge gas and 1.3 kg / h for kerosene.
The temperature distribution of the reforming reactor catalyst layer was 230 to 266 ° C. in the longitudinal direction of the catalyst layer, and the fluctuation range was substantially constant at 10 to 20 ° C. The heat loss from the cylindrical wall surface of the reforming reactor was approximately 1,680 kcal / h.
比較例1 実施例2において、流路13の遮断弁Cを閉鎖して、原
料メタノール−水混合の気化・蒸発を原料蒸発器(1)
2のみによって実施した以外は、全て実施例2と同様に
して改質反応を実施したところ、改質反応管6入口部に
おける燃焼ガス温度が680℃にまで低下し、メタノール
転化率(平均値)が、81.2%と極めて低い値となった。 Comparative Example 1 In Example 2, the shut-off valve C of the flow path 13 was closed, and the vaporization / evaporation of the raw material methanol-water mixture was performed in the raw material evaporator (1).
The reforming reaction was carried out in the same manner as in Example 2 except that the reforming reaction was carried out only in Example 2. As a result, the combustion gas temperature at the inlet of the reforming reaction tube 6 was lowered to 680 ° C., and the methanol conversion (average value) However, the value was extremely low at 81.2%.
本発明によれば、改質反応温度の制御を原料物質であ
るメタノール−水混合液の原料蒸発器(1)、および、
原料蒸発器(2)への分配供給比を変更することによっ
て実施することが出来るため、改質反応装置の構造が極
めて簡単になり、その結果、運転操作が容易で、しか
も、装置・機器の保守点検・整備の容易な、オンサイト
型水素ガス発生装置となる。According to the present invention, the control of the reforming reaction temperature is carried out by using a raw material evaporator (1) of a methanol-water mixed liquid as a raw material, and
Since it can be carried out by changing the distribution ratio to the raw material evaporator (2), the structure of the reforming reactor becomes extremely simple, and as a result, the operation is easy and the equipment An on-site hydrogen gas generator that is easy to maintain and inspect.
第1図、および、第2図は、本発明によるメタノール改
質反応装置の一実施例を示し、第1図はメタノール改質
反応装置の断面図、第2図は第1図のa−a線断面図で
ある。 1:燃焼ガス発生装置、 2:原料蒸発器(1)、 3:混合液ヘッダー(1) 4:原料ガスヘッダー(1)、 5:原料ガス過熱器、 6:改質反応管、 7:反応ガス出口ヘッダー、 8:原料ガス入口ヘッダー、 9:原料蒸発器(2)、 10:混合液ヘッダー(2)、 11:原料ガスヘッダー(2)、 17:隔壁、 A:流量制御弁、 B:流量制御弁 C:遮断弁1 and 2 show an embodiment of a methanol reforming reaction device according to the present invention. FIG. 1 is a sectional view of the methanol reforming reaction device, and FIG. 2 is aa of FIG. It is a line sectional view. 1: Combustion gas generator, 2: Raw material evaporator (1), 3: Mixed liquid header (1) 4: Raw material gas header (1), 5: Raw gas superheater, 6: Reforming reaction tube, 7: Reaction Gas outlet header, 8: Source gas inlet header, 9: Source evaporator (2), 10: Mixed liquid header (2), 11: Source gas header (2), 17: Partition wall, A: Flow control valve, B: Flow control valve C: Shut-off valve
Claims (1)
で燃焼ガスにより反応を行うメタノール改質反応装置に
おいて、燃焼ガスの流れ方向に原料蒸発器(1)、原料
過熱器、改質反応器、および、原料蒸発器(2)を順次
配置し、原料蒸発器(1)、および、原料蒸発器(2)
への原料メタノール−水混合液の分配供給比を制御・変
更することにより改質反応温度を制御することを特徴と
するメタノール改質反応装置。1. A raw material evaporator (1), a raw material superheater, a reforming reaction in a methanol reforming reaction apparatus in which a mixed vapor of methanol and water is reacted with a combustion gas in the presence of a catalyst in the flow direction of the combustion gas. A vessel and a raw material evaporator (2) are sequentially arranged, and a raw material evaporator (1) and a raw material evaporator (2)
A methanol reforming reaction apparatus characterized in that a reforming reaction temperature is controlled by controlling / changing a distribution / feed ratio of a raw material methanol-water mixture to a reactor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1338285A JP2803266B2 (en) | 1989-12-28 | 1989-12-28 | Methanol reforming reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1338285A JP2803266B2 (en) | 1989-12-28 | 1989-12-28 | Methanol reforming reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03199103A JPH03199103A (en) | 1991-08-30 |
JP2803266B2 true JP2803266B2 (en) | 1998-09-24 |
Family
ID=18316690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1338285A Expired - Lifetime JP2803266B2 (en) | 1989-12-28 | 1989-12-28 | Methanol reforming reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2803266B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10057018A1 (en) * | 2000-11-17 | 2002-05-23 | Xcellsis Gmbh | Gas generating system for a reformer and method for providing a gas stream to be supplied to a reformer |
-
1989
- 1989-12-28 JP JP1338285A patent/JP2803266B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03199103A (en) | 1991-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8202499B2 (en) | Small cylindrical reformer | |
KR100891928B1 (en) | Single chamber compact fuel processor | |
CN101222975B (en) | Compact reforming reactor | |
RU2415073C2 (en) | Compact reforming reactor | |
US5229102A (en) | Catalytic ceramic membrane steam-hydrocarbon reformer | |
KR100677016B1 (en) | Cylindrical steam reforming unit | |
JP4857258B2 (en) | Compact steam reformer | |
US6497856B1 (en) | System for hydrogen generation through steam reforming of hydrocarbons and integrated chemical reactor for hydrogen production from hydrocarbons | |
JP3830854B2 (en) | Compact steam reformer | |
WO2007102278A1 (en) | Hydrogen generator and hydrogenation apparatus | |
JP2003502812A (en) | Method for providing a pure hydrogen stream for a fuel cell | |
JP2004531447A (en) | Compact steam reformer | |
JP2008538097A (en) | Method and apparatus for a heat integrated hydrogen generation system | |
JP2010513834A (en) | Heat transfer unit for steam generation and gas preheating | |
JP2652690B2 (en) | Method for continuously generating and preheating a hydrocarbon gas / steam mixture as a charge for a reforming process for producing hydrogen or synthesis gas and an upright heat exchanger | |
EP0247384B1 (en) | Reformer | |
KR101817569B1 (en) | A heat-exchange reactor producing hydrogen from carbon compound | |
JP2803266B2 (en) | Methanol reforming reactor | |
RU113729U1 (en) | PROCESSOR FOR CONVERSION OF HYDROCARBON FUELS IN SYNTHESIS-GAS FOR APPLICATION IN SOLID-OXIDE FUEL ELEMENTS | |
JPH0794322B2 (en) | Methanol reformer | |
JP2773334B2 (en) | Methanol reforming reactor | |
JPS5826002A (en) | Steam reforming method and reaction tube for steam reforming | |
KR102005715B1 (en) | Hydrogen production reactor including feed preheating part | |
JP4278393B2 (en) | Hydrogen production apparatus and fuel cell system | |
JPS606985B2 (en) | How to keep carbon monoxide converter warm |