JPH03199103A - Reforming device for methanol - Google Patents

Reforming device for methanol

Info

Publication number
JPH03199103A
JPH03199103A JP33828589A JP33828589A JPH03199103A JP H03199103 A JPH03199103 A JP H03199103A JP 33828589 A JP33828589 A JP 33828589A JP 33828589 A JP33828589 A JP 33828589A JP H03199103 A JPH03199103 A JP H03199103A
Authority
JP
Japan
Prior art keywords
gas
raw material
methanol
raw
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33828589A
Other languages
Japanese (ja)
Other versions
JP2803266B2 (en
Inventor
Kazuo Yamamoto
和夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP1338285A priority Critical patent/JP2803266B2/en
Publication of JPH03199103A publication Critical patent/JPH03199103A/en
Application granted granted Critical
Publication of JP2803266B2 publication Critical patent/JP2803266B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01BBOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
    • B01B1/00Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
    • B01B1/005Evaporation for physical or chemical purposes; Evaporation apparatus therefor, e.g. evaporation of liquids for gas phase reactions

Abstract

PURPOSE:To facilitate operation and the maintenance and inspection of device and equipment at the time of reforming a methanol-water mixed vapor in the presence of a catalyst with a combustion gas by controlling and changing the distribution ratio of the raw gas liq. mixture. CONSTITUTION:The raw methanol-water liq. mixture separated into a passage 13 is introduced into a raw material evaporator 9 through a mixing header 10, heated by the low-temp. combustion gas after giving off its heat to a reforming tube bank, vaporized and sent to a raw gas header 4 through a raw gas header 11, and a part of the gas is introduced into a superheated gas from a raw material superheater 5 through a flow control valve B. The raw gas mixed by the raw gas header 4 is introduced into the raw gas superheater 5, heated by the high-temp. combustion gas and superheated. The superheated gas is adjusted to an optimum temp. for the reforming reaction and passed through a raw gaseous mixture inlet header 8 and a reforming tube to form a gaseous product.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、メタノールのスチームリフォーミング(改質
)反応により水素を主成分とする改質ガスを製造するメ
タノール改質反応装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an improvement in a methanol reforming reaction apparatus for producing a reformed gas containing hydrogen as a main component by a steam reforming reaction of methanol.

(従来の技術) メタノールを原料とする水素を主成分とする改質ガスの
製造法は、原料メタノールの輸送、および、貯蔵が容易
であり、しかも比較的低い温度で容易に改質反応が行わ
れて、極めて容易に所望の品質の水素ガスを製造するこ
とができるため、化学工業分野のみならず、電子産業や
食品工業、そして燃料電池発電等の新規産業分野におい
ても採用されるようになってきた。
(Prior art) The method for producing reformed gas whose main component is hydrogen using methanol as a raw material is easy to transport and store the raw methanol, and the reforming reaction can be easily carried out at a relatively low temperature. As hydrogen gas of the desired quality can be produced extremely easily, it has come to be used not only in the chemical industry, but also in the electronics industry, food industry, and new industrial fields such as fuel cell power generation. It's here.

メタノールと水との混合蒸気は、改質反応器中の触媒に
よってメタノール分解反応とco変性反応を起こして水
素を主成分とする改質ガスになる。
The mixed vapor of methanol and water undergoes a methanol decomposition reaction and a co-modification reaction by a catalyst in a reforming reactor, and becomes a reformed gas containing hydrogen as a main component.

CH30H+H20# CO2+3H214,8kca
l/moleメタノールの改質(分解)反応は吸熱反応
であり、改質反応に要する熱量は、触媒が充填された反
応管を外部より加熱する方法で供給しなければならない
。通常一般に、反応熱の供給、即ち、反応管の加熱は、
触媒管の外側を流れる熱媒油によってなされる。熱媒油
を用いる加熱方法は、総括伝熱係数が大きく、反応器を
コンパクトに設計することができ、しかも、反応温度の
制御が極めて容易であると言った特徴があり、既に、工
業装置として実用化されている。しかし、反応装置・反
応器の他に熱媒油ボイラーや熱媒循環ポンプ等の付帯設
備を要し、改質反応装置としてはかなり複雑で高価なも
のになると言った欠点がある。
CH30H+H20# CO2+3H214,8kca
The reforming (decomposition) reaction of l/mole methanol is an endothermic reaction, and the amount of heat required for the reforming reaction must be supplied by heating the reaction tube filled with the catalyst from the outside. Generally speaking, the supply of reaction heat, that is, the heating of the reaction tube, is
This is done by heat transfer oil flowing outside the catalyst tube. The heating method using heat transfer oil has a large overall heat transfer coefficient, allows for a compact reactor design, and is extremely easy to control the reaction temperature, so it has already been used as an industrial device. It has been put into practical use. However, in addition to the reactor/reactor, it requires incidental equipment such as a heat medium oil boiler and a heat medium circulation pump, and has the disadvantage that the reforming reaction apparatus is quite complicated and expensive.

改質反応器(管)の中に、燃焼ガス発生装置を一体の装
置として組み込んで、熱媒油を用いることなく、直接に
燃焼ガスで触媒管を加熱するように設計すると、熱媒油
ボイラー等の付帯設備が不要で、極めて簡単な改質反応
装置となるため、既に、燃料電池用燃料改質装置やメタ
ノール燃料自動車用オンボートリフォーミング装置等と
しての種々の提案がなされている(特公昭54−236
83号、特開昭62−70202号、特開昭62−26
0701号、特開昭63−138301号、特開昭63
−138306号等)。しかし、燃焼ガスによる触媒管
の加熱は、熱媒油を用いた場合に比べて総括伝熱係数が
1/lO以下と極めて小さく、伝熱効率、および、負荷
追従性の点でより高温の燃焼ガスが必要となる。熱媒体
である燃焼ガスの温度を高くすると、より耐熱性に優れ
た触媒が必要となる。既に、白金等の貴金属を有効成分
とする耐熱性触媒に関する提案もなされているが、極め
て高価で、しかも、副反応生成物(COガス)が多いと
言った欠点がある。
If the combustion gas generator is integrated into the reforming reactor (tube) and designed to heat the catalyst tube directly with the combustion gas without using heat transfer oil, it will become a heat transfer oil boiler. Because it is an extremely simple reforming reaction device that does not require any incidental equipment such as 54-236
No. 83, JP-A-62-70202, JP-A-62-26
No. 0701, JP-A-63-138301, JP-A-63
-138306 etc.). However, when heating the catalyst tubes with combustion gas, the overall heat transfer coefficient is extremely small, less than 1/1O, compared to when heating oil is used. Is required. Increasing the temperature of combustion gas, which is a heating medium, requires a catalyst with better heat resistance. Proposals have already been made regarding heat-resistant catalysts containing noble metals such as platinum as an active ingredient, but these have drawbacks such as being extremely expensive and producing many side reaction products (CO gas).

一方、既に、メタノニル改質触媒として賞月されている
銅系触媒は、低温で高活性で、副反応生成物が少なく、
触媒寿命が長く、しかも、安価であり工業用触媒として
理想的なものであるが、耐熱性が低いと言った特徴・特
質を有している。この対策として、例えば、■耐熱性の
異なる触媒(300℃、520℃)を充填した反応器を
直列に配置する(特公昭57−42678号)方法や■
高温の燃焼ガスに大量の二次空気を混合して得た低温の
燃焼ガス(380℃〉を加熱媒体とする方法(特開昭6
0−246201号〉等が提案されている。
On the other hand, copper-based catalysts, which have already been praised as methanonyl reforming catalysts, are highly active at low temperatures and produce few side reaction products.
It has a long catalyst life and is inexpensive, making it ideal as an industrial catalyst, but it has the characteristic of low heat resistance. As a countermeasure against this, for example, there is a method (Japanese Patent Publication No. 57-42678) of arranging reactors filled with catalysts with different heat resistance (300°C, 520°C) in series;
A method using low-temperature combustion gas (380°C) obtained by mixing a large amount of secondary air with high-temperature combustion gas as a heating medium (Japanese Unexamined Patent Publication No. 6
No. 0-246201> etc. have been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の■の方法では、触媒寿命の長期化、操業性は改善
されるが、反応装置が2系列となるため改質装置が複雑
になり、コンパクト化が難かしく、一方、■の方法では
負荷追従性はかなり改善されるものと期待されるが、大
量の二次空気を必要とするため、所要動力が大きくなり
、安価な水素ガスを得ることが極めて困難であるものと
推測される。
Method (2) above extends the catalyst life and improves operability, but the reformer is complicated because it requires two reactors, making it difficult to make it compact. Although it is expected that the followability will be considerably improved, since a large amount of secondary air is required, the required power will be large, and it is presumed that it will be extremely difficult to obtain inexpensive hydrogen gas.

また、通常一般に、公害防止、並びに、省エネルギー等
の観点から、燃焼ガス発生装置用燃料として灯油、およ
び、或いは、メタノール、および、水素精製装置(PS
A)のパージガスが使用されている。しかし、一般に、
通常、起動時にはパージガスが利用が出来ないために燃
焼ガスの組成が異なり、管外側の伝熱係数が変化する。
In addition, from the viewpoint of pollution prevention and energy saving, kerosene and/or methanol are generally used as fuel for combustion gas generators, and hydrogen purifiers (PS) are used as fuel for combustion gas generators.
A) purge gas is used. However, in general,
Normally, at startup, purge gas is not available, so the composition of the combustion gas changes, and the heat transfer coefficient on the outside of the tube changes.

また、負荷変動時には、管内外の伝熱係数が変化するた
め、触媒層の温度分布を改質触媒の最適使用温度範囲内
に制御することが困難であり、改質触媒の性能を最大限
に発揮させることかできないと言った欠点がある。
In addition, when the load fluctuates, the heat transfer coefficient inside and outside the tube changes, making it difficult to control the temperature distribution of the catalyst layer within the optimum operating temperature range of the reforming catalyst. It has a drawback in that it can only be used to its fullest potential.

〔問題点を解決するための手段〕[Means for solving problems]

発明者は、熱媒体として燃焼ガスを用いるメタノール改
質装置の構成機器の構造と配置、および、それらの総括
伝熱係数との関係について鋭意検討を行った結果、原料
蒸発器を原料蒸発器(1)と原料蒸発器(2)に分割し
、しかも、原料蒸発器、および、改質反応器を複数の垂
直管群として構成すると共に、燃焼ガスの流れの方向順
に原料蒸発器(1)、原料過熱器、改質反応器、原料蒸
発器(2)を設置して、先ず、高温の燃焼ガスを原料蒸
発器(1)、および、原料過熱器の熱源として利用した
のち、温度の下がった中温の燃焼ガスを改質反応器の熱
源として利用して、最後に、更に温度の低下した低温の
燃焼ガスを原料蒸発器(2)の熱源として利用するよう
に各機器を配置し、更に、改質反応器の触媒層の温度、
換言すれば、反応温度を原料メタノール−水混合液の原
料蒸発器(1)、および、原料蒸発器(2)への分配供
給比を変更する方法で極めて容易に、しかも、高精度に
、触媒層の温度分布を所定の温度範囲内に制御できるこ
とを見出した。本発明者は、本知見を基にして、鋭意改
良研究を実施し、本発明を完成させた。
The inventor conducted intensive studies on the structure and arrangement of the components of a methanol reformer that uses combustion gas as a heat medium, and the relationship between them and the overall heat transfer coefficient. Furthermore, the raw material evaporator and the reforming reactor are configured as a plurality of vertical tube groups, and the raw material evaporator (1), The raw material superheater, reforming reactor, and raw material evaporator (2) are installed, and the high temperature combustion gas is first used as a heat source for the raw material evaporator (1) and the raw material superheater, and then the temperature is lowered. Each device is arranged so that the medium-temperature combustion gas is used as a heat source for the reforming reactor, and finally, the low-temperature combustion gas whose temperature has further decreased is used as a heat source for the raw material evaporator (2), and further, temperature of the catalyst layer of the reforming reactor,
In other words, the reaction temperature can be adjusted very easily and precisely by changing the distribution and supply ratio of the raw methanol-water mixture to the raw material evaporator (1) and the raw material evaporator (2). It has been found that the temperature distribution of the layer can be controlled within a predetermined temperature range. Based on this knowledge, the present inventor conducted intensive improvement research and completed the present invention.

以下、本発明を基本構成図に基づいて、更に具体的に説
明する。第1図、および、第2図は、本発明によるメタ
ノール改質反応装置の基本構成図であると共に、好まし
い実施態様の具体的な例である。
Hereinafter, the present invention will be explained in more detail based on a basic configuration diagram. 1 and 2 are basic configuration diagrams of a methanol reforming reactor according to the present invention, and are specific examples of preferred embodiments.

原料貯槽(第1図では省略されている)から定量ポンプ
(第1図では省略されている)、流路12を経て供給さ
れた原料メタノール−水混合液は、流路13、および、
流路14に分岐・分割される。流路14に分岐・分割さ
れた原料メタノール−水混合液は、流量制御弁A1およ
び、混合液ヘッダー(1)3を経て原料蒸発器(1)2
に導かれて高温の燃焼ガスにより加熱されて蒸発・気化
し、原料ガスヘッダー(1)4、原料ガス過熱器5を経
て原料混合ガス入口ヘッダ−8へと導かれる。一方、流
路13に分岐・分割された原料メタノール−水混合液は
、混合液ヘッダー(2)10を経て原料蒸発器(2)9
に導かれて、改質反応管群への熱の供給を終えた低温の
燃焼ガスによって加熱されて蒸発・気化し、原料ガスヘ
ッダー(2)11を経て原料ガスヘッダー(1)4へと
導かれると共に、その一部が流量制御弁Bを経て原料過
熱器5からの過熱ガス中に導かれる。
The raw material methanol-water mixture supplied from the raw material storage tank (not shown in FIG. 1) through the metering pump (not shown in FIG. 1) and the flow path 12 is transferred to the flow path 13 and
It is branched and divided into a flow path 14. The raw material methanol-water mixture branched and divided into the flow path 14 passes through the flow rate control valve A1 and the mixed liquid header (1) 3 to the raw material evaporator (1) 2.
The raw material gas is heated by high-temperature combustion gas to evaporate and vaporize, and then is guided to the raw material mixed gas inlet header 8 via the raw material gas header (1) 4 and the raw material gas superheater 5. On the other hand, the raw material methanol-water mixture branched and divided into the flow path 13 passes through the mixed liquid header (2) 10 to the raw material evaporator (2) 9
It is heated by the low-temperature combustion gas that has finished supplying heat to the reforming reaction tube group, evaporates and vaporizes, and is led to the raw material gas header (1) 4 via the raw material gas header (2) 11. At the same time, a part of it is introduced into the superheated gas from the raw material superheater 5 via the flow rate control valve B.

原料ガスヘッダー(1)4で混合された原料ガスは、原
料過熱器5に導かれて高温の燃焼ガスによって加熱され
て過熱ガスになる。過熱ガスは流量制御弁Bからの原料
ガスと合流・混合して、或いは、合流・混合することな
く、改質反応に最適の温度範囲に調節・制御されて原料
混合ガス入口ヘッダ−8を経て改質反応管6に導かれて
改質反応を起こして反応生成ガスになる。
The raw material gases mixed in the raw material gas header (1) 4 are guided to the raw material superheater 5 and heated by high-temperature combustion gas to become superheated gas. The superheated gas is regulated and controlled to the optimum temperature range for the reforming reaction, either by merging and mixing with the raw material gas from flow control valve B, or without merging or mixing, and then passing through the raw material mixed gas inlet header 8. The gas is introduced into the reforming reaction tube 6, undergoes a reforming reaction, and becomes a reaction product gas.

改質反応によって生成した反応生成ガスは、反応ガス出
口ヘッダ−7、流路18を経て反応生成ガスとして取り
出されて次工程へ送られて精製されて、或いは、そのま
ま適宜に利用される。
The reaction product gas generated by the reforming reaction is taken out as a reaction product gas through the reaction gas outlet header 7 and the flow path 18, and sent to the next step for purification, or used as it is as appropriate.

既に記述したように、燃焼ガス発生装置1で発生した高
温の燃焼ガスは、先ず、原料蒸発器(1〉2で原料メタ
ノール−水混合液を蒸発・気化させたのち原料過熱器5
で原料ガスを過熱して自らは中温の燃焼ガスとなって改
質反応管群6に導かれる。中温の燃焼ガスは、改質反応
管群を加熱して反応熱を与えて低温の燃焼ガスとなる。
As already described, the high-temperature combustion gas generated in the combustion gas generator 1 is first evaporated and vaporized in the raw material evaporator (1>2) and then passed through the raw material superheater 5.
The raw material gas is superheated to become medium-temperature combustion gas and guided to the reforming reaction tube group 6. The medium-temperature combustion gas heats the reforming reaction tube group to provide reaction heat and becomes low-temperature combustion gas.

低温の燃焼ガスは、流路15を経て原料蒸発器(2)9
に導かれて保有する残余の熱量を原料メタノール−水混
合液の蒸発潜熱として与えたのち流路16より大気中に
排出される。
The low-temperature combustion gas passes through the flow path 15 to the raw material evaporator (2) 9
The remaining heat is given as the latent heat of vaporization of the raw material methanol-water mixture, and then discharged into the atmosphere through the flow path 16.

本発明を実施するとき、第1図、および、第2図に例示
するように、原料蒸発器(1)、原料過熱器、および、
改質反応管は、同一の同心円筒容器内の内側に原料蒸発
器(1)と原料過熱器を配置し、その外側に改質反応管
を配置すると共に、原料蒸発器(1)と改質反応管との
間に隔壁17を設けて隔離して改質反応管への高温の燃
焼ガスの直接的な接触を防止すると共に、燃焼ガスの流
路を規制して、燃焼ガスの流れ方向に温度勾配を明確に
設けるのが好ましい。また、原料蒸発器(2) は、改
質反応管等と同じ円筒容器内に設置しても良いが、別置
の円筒容器内に設置する方が製作が容易で簡便である。
When carrying out the present invention, as illustrated in FIGS. 1 and 2, a raw material evaporator (1), a raw material superheater, and
In the reforming reaction tube, a raw material evaporator (1) and a raw material superheater are arranged inside the same concentric cylindrical container, and a reforming reaction tube is arranged outside of the same. A partition wall 17 is provided between the reaction tube and the reforming reaction tube to prevent direct contact of high-temperature combustion gas to the reforming reaction tube. It is preferable to provide a clear temperature gradient. Further, the raw material evaporator (2) may be installed in the same cylindrical container as the reforming reaction tube, etc., but it is easier and simpler to manufacture it if it is installed in a separate cylindrical container.

本発明を実施するとき、燃焼ガス発生装置1は、一般に
、第1図に例示したように、メインテナンスの容易さの
観点から同心円筒容器内の上部に配置される。従って、
通常、燃焼ガスの流れ方向は、先ず、内筒を下から上へ
流れて原料蒸発器(1)と原料過熱器に熱を与えて中温
となったのち、改質反応管群部を上から下に流れるよう
に設計されるが、必ずしもこれに限定されるものではな
く、所望によって、燃焼ガス発生装置を下部に配置して
燃焼ガスの流れ方向の順序を逆にしても良い。また、改
質反応管群部の燃焼ガスと反応ガスの流れ方向は、改質
反応速度、即ち、吸熱速度の観点から、一般に、並流が
好ましいが、触媒の耐熱性能の如何によっては向流とし
ても良く、任意である。
When carrying out the present invention, the combustion gas generator 1 is generally placed in the upper part of a concentric cylindrical container from the viewpoint of ease of maintenance, as illustrated in FIG. Therefore,
Normally, the flow direction of combustion gas is that it first flows through the inner cylinder from the bottom to the top, gives heat to the raw material evaporator (1) and the raw material superheater to reach a medium temperature, and then flows through the reforming reaction tube group from the top. Although it is designed to flow downward, it is not necessarily limited thereto, and if desired, the combustion gas generation device may be placed at the bottom to reverse the flow direction of the combustion gases. In addition, the flow direction of the combustion gas and the reaction gas in the reforming reaction tube group is generally preferably parallel flow from the viewpoint of the reforming reaction rate, that is, the heat absorption rate, but countercurrent flow may be preferable depending on the heat resistance performance of the catalyst. may be used, and is optional.

原料蒸発器(1)、および、改質反応管は、同心円筒容
器内の同心円周上の所定の位置に、また、原料過熱器は
、原料蒸発器(1〉 の上部の燃焼ガス発生装置の廻り
の燃焼ガス流路内にスパイラル状に配置するのが好まし
い。また、原料蒸発器(2)は、改質反応管とは別置の
円筒容器内に設置する方が製作が容易で、簡便で好まし
い。
The raw material evaporator (1) and the reforming reaction tube are located at predetermined positions on the concentric circumference within the concentric cylindrical container, and the raw material superheater is located at the upper part of the raw material evaporator (1) of the combustion gas generator. It is preferable to arrange the raw material evaporator (2) in a spiral shape in the surrounding combustion gas flow path.In addition, it is easier to manufacture the raw material evaporator (2) and install it in a cylindrical container separate from the reforming reaction tube. It is preferable.

以下、本発明の実施例を、第1図に示した改質反応装置
を使用して実施した好適な例について説明する。なお、
以下に例示した実施例は、単に本発明の効果を具体的に
説明するためのものであって、これにより本発明の技術
範囲が限定されるものではない。
Hereinafter, a preferred embodiment of the present invention will be described in which the reforming reaction apparatus shown in FIG. 1 is used. In addition,
The examples illustrated below are merely for concretely explaining the effects of the present invention, and are not intended to limit the technical scope of the present invention.

実施例1 以下第1図に示した改質装置を使用して実施した実施例
によって、本発明をより詳細に説明する。以下の実施例
では、硝酸銅と硝酸亜鉛とを原料として共沈法で調製し
た共沈澱物にアルミナゾルを加えて焼成したのち3.0
φX3.Qmmの円柱状に成形した銅−亜鉛−アルミニ
ウム系触媒〔触媒組成原子比Cu:2n:A1=1.o
o:o、 75:0.25、特開昭59−189937
号実施例1 参照〕の21を、呼び径81・1/4イン
チ、長さ2.4mの各改質反応管(48本)に充填し、
常法に従って水素ガスで触媒を還元して賦活させた活性
化メタノール改質触媒を使用した。
Example 1 The present invention will be explained in more detail with reference to an example carried out using the reformer shown in FIG. 1. In the following examples, alumina sol was added to a coprecipitate prepared by a coprecipitation method using copper nitrate and zinc nitrate as raw materials, and the mixture was calcined.
φX3. Copper-zinc-aluminum catalyst formed into a cylindrical shape of Qmm [catalyst composition atomic ratio Cu:2n:A1=1. o
o:o, 75:0.25, JP-A-59-189937
No. 21 of Example 1] was filled into each reforming reaction tube (48 tubes) with a nominal diameter of 81 1/4 inches and a length of 2.4 m.
An activated methanol reforming catalyst was used, which was activated by reducing the catalyst with hydrogen gas according to a conventional method.

実施例1は、燃焼ガス発生装置1用燃料として灯油のみ
を使用した場合で、当該装置の冷起動時を想定したもの
である。先ず、当該装置内を水素ガスで置換したのち、
常法に従って、燃焼ガス発生装置1に点火した。徐々に
当該装置が暖められて約30分の後に改質触媒層の温度
が230〜250℃に、改質ガス出口ヘッダ−8の温度
が250℃になった。
Example 1 is a case in which only kerosene is used as the fuel for the combustion gas generating device 1, and assumes that the device is cold-started. First, after replacing the inside of the device with hydrogen gas,
The combustion gas generator 1 was ignited according to a conventional method. After about 30 minutes after the apparatus was gradually warmed up, the temperature of the reforming catalyst layer reached 230 to 250°C, and the temperature of the reformed gas outlet header 8 reached 250°C.

ここで、燃料流量を0.9 kg/hに設定して、原料
メタノール−水混合液供給ポンプ(第1図では省略され
ている)を起動して原料メタノール−水混合液(混合モ
ル比CI1.OH:H20=1.0:1.5)を予熱器
(第1図では省略されている。予熱温度100℃)、流
路12を経て流路13、および、流路14に分割・分流
させて流路13、混合液ヘッダー(2)10を経て原料
蒸発器(2)9、並びに、流路14、流量制御弁A1お
よび、混合液ヘッダー(1)3を経て原料蒸発器(1)
2に供給(流量IO30kg/h) L、、て改質反応
を開始させた。
Here, the fuel flow rate is set to 0.9 kg/h, the raw material methanol-water mixture supply pump (omitted in Fig. 1) is started, and the raw material methanol-water mixture (mixture molar ratio CI1) is started. .OH:H20=1.0:1.5) is divided into flow path 13 and flow path 14 via a preheater (omitted in Figure 1, preheating temperature 100°C) and flow path 12. The flow path 13 passes through the mixed liquid header (2) 10 to the raw material evaporator (2) 9, and the flow path 14, the flow rate control valve A1, and the mixed liquid header (1) 3 to the raw material evaporator (1).
2 (flow rate: IO 30 kg/h), the reforming reaction was started.

次いで、常法に従って改質反応系のガス圧力(改質反応
圧力)をIQ ataに維持しながら、徐々に燃料流量
、および、原料メタノール−水混合液流量を増量させて
原料メタノール−水混合液流量を23.6 kg/hに
設定した。この間、改質反応管の管壁温度が360℃を
越えないように、また、原料メタノール−水混合ガスの
混合ガスヘッダー8における温度が230℃になるよう
に、更にまた、触媒層の温度分布の幅が最小値になるよ
うに流量制御弁A1流量制御弁B1および、燃料流量の
調整・制御を行った。
Next, while maintaining the gas pressure (reforming reaction pressure) in the reforming reaction system at IQ ata according to a conventional method, the fuel flow rate and the flow rate of the raw material methanol-water mixture are gradually increased to reduce the raw material methanol-water mixture. The flow rate was set at 23.6 kg/h. During this time, the temperature distribution of the catalyst layer is controlled so that the tube wall temperature of the reforming reaction tube does not exceed 360°C, and the temperature of the raw methanol-water mixed gas in the mixed gas header 8 becomes 230°C. The flow control valve A1, the flow control valve B1, and the fuel flow rate were adjusted and controlled so that the width of the flow rate was the minimum value.

このようにして、原料メタノール−水混合液の供給を開
始した時から約55分間の後に当該装置の運転情況は定
常状態となり、毎時41 Nm3/hの改質ガスが生成
した。
In this way, approximately 55 minutes after starting the supply of the raw material methanol-water mixture, the operating condition of the apparatus reached a steady state, and 41 Nm3/h of reformed gas was produced.

引き続いて、定常状態を保ちながら36時間改質反応実
験を続けて第1表、および、第2表に示す結果(平均値
)を得た。本実験における原料蒸発器(1)、および、
原料蒸発器(2)の蒸発量割合(平均値)は12 : 
1であり、メタノール転化率(平均値)99%であった
。燃料の消費量(平均値)は1.9kg/hで、改質反
応器触媒層の温度分布は、触媒層の長さ方向に対して2
30〜259℃で、その変動幅は10〜20℃と実質的
に一定であった。なお、改質反応装置円筒壁面からのヒ
ートロスは、犬死670 kcal/hであった。
Subsequently, the reforming reaction experiment was continued for 36 hours while maintaining a steady state, and the results (average values) shown in Tables 1 and 2 were obtained. Raw material evaporator (1) in this experiment, and
The evaporation rate (average value) of the raw material evaporator (2) is 12:
1, and the methanol conversion rate (average value) was 99%. The fuel consumption (average value) is 1.9 kg/h, and the temperature distribution of the reforming reactor catalyst layer is 2 in the length direction of the catalyst layer.
The temperature range was 30 to 259°C, and the fluctuation range was substantially constant at 10 to 20°C. The heat loss from the cylindrical wall of the reforming reactor was 670 kcal/h.

第2表 改質ガス組成(モル分率) 実施例2 実施例2は、燃焼ガス発生装置1用燃料として水素ガス
精製装置(プレッシャースイング吸着精製法)からのパ
ージガスと灯油とを併用する場合で、当該装置の通常の
定常運転時を想定したものである。
Table 2 Reformed gas composition (mole fraction) Example 2 Example 2 is a case in which purge gas from a hydrogen gas purification device (pressure swing adsorption purification method) and kerosene are used together as the fuel for the combustion gas generator 1. , assuming normal steady operation of the device.

実施例1において、燃焼ガス発生装置1用燃料として灯
油のみの替わりに水素ガス精製装置からのパージガスと
灯油とを併用し、原料メタノール−水混合液流量を59
.0 kg/hに変更した以外は、全て実施例1と同様
にして72時間の連続改質反応を続けて、毎時1010
0N/hの改質ガスと第3表、および、第4表に示した
結果(平均値)を得た。本実験における原料蒸発器(1
)、および、原料蒸発器(2)の蒸発量割合(平均値)
は4.3:1であり、メタノール転化率(平均値)は9
8%であった。また、燃料の消費量(平均値)はパージ
ガス34 Nm3/h、灯油1.3kg/hで、改質反
応器触媒層の温度分布は、触媒層の長さ方向に対して2
30〜266℃で、その変動範囲は10〜20℃と実質
的に一定であった。
In Example 1, the purge gas from the hydrogen gas purification device and kerosene were used together instead of only kerosene as the fuel for the combustion gas generator 1, and the raw material methanol-water mixture flow rate was 59.
.. The continuous reforming reaction was continued for 72 hours in the same manner as in Example 1 except that the rate was changed to 1010 kg/h.
0 N/h of the reformed gas and the results (average values) shown in Tables 3 and 4 were obtained. The raw material evaporator (1
), and the evaporation rate (average value) of the raw material evaporator (2)
is 4.3:1, and the methanol conversion rate (average value) is 9.
It was 8%. In addition, the fuel consumption (average value) is 34 Nm3/h of purge gas and 1.3 kg/h of kerosene, and the temperature distribution of the reforming reactor catalyst layer is 2 in the length direction of the catalyst layer.
The temperature range was 30-266°C, and the variation range was substantially constant at 10-20°C.

なお、改質反応装置円筒壁面からのヒートロスは、火元
1.680 kcal/hであった。
Note that the heat loss from the cylindrical wall surface of the reforming reactor was 1.680 kcal/h at the fire source.

第4表 改質ガス組成(モル分率) 比較例1 実施例2において、流路13の遮断弁Cを閉鎖して、原
料メタノール−水混合液の気化・蒸発を原料蒸発器(1
)2のみによって実施した以外は、全て実施例2と同様
にして改質反応を実施したところ、改質反応管6人口部
における燃焼ガス温度が680℃にまで低下し、メタノ
ール転化率(平均値)が、81.2%と極めて低い値と
なった。
Table 4 Reformed Gas Composition (Mole Fraction) Comparative Example 1 In Example 2, the shutoff valve C of the flow path 13 was closed to prevent the vaporization and evaporation of the raw material methanol-water mixture from the raw material evaporator (1
)2 except that the reforming reaction was carried out in the same manner as in Example 2. As a result, the combustion gas temperature in the reforming reaction tube 6 population decreased to 680°C, and the methanol conversion rate (average value ) was an extremely low value of 81.2%.

〔効  果〕〔effect〕

本発明によれば、改質反応温度の制御を原料物質である
メタノール−水混合液の原料蒸発器(1)、および、原
料蒸発器(2)への分配供給比を変更することによって
実施することが出来るため、改質反応装置の構造が極め
て簡単になり、その結果、運転操作が容易で、しかも・
、装置・機器の保守点検・整備の容易な、オンサイト型
水素ガス発生装置となる。
According to the present invention, the reforming reaction temperature is controlled by changing the distribution and supply ratio of the methanol-water mixture, which is the raw material, to the raw material evaporator (1) and the raw material evaporator (2). As a result, the structure of the reforming reactor is extremely simple, and as a result, it is easy to operate and
This is an on-site hydrogen gas generator that allows for easy maintenance, inspection, and maintenance of equipment and equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、および、第2図は、本発明によるメタノール改
質反応装置の一実施例を示し、第1図はメタノール改質
反応装置の断面図、第2図は第1図のa−a線断面図で
ある。 1:燃焼ガス発生装置、 2:原料蒸発器(1)、 3:混合液ヘッダー(1) 4:原料ガスヘッダー(1)、 5:原料ガス過熱器、 6:改質反応管、 7:反応ガス出口ヘッダー 8:原料ガス人口ヘッダー 9:原料蒸発器(2)、 混合液ヘッダー(2)、 原料ガスヘッダー(2)、 隔壁、 流量制御弁、 流量制御弁 遮断弁
1 and 2 show an embodiment of the methanol reforming reactor according to the present invention, FIG. 1 is a sectional view of the methanol reforming reactor, and FIG. 2 is a-a in FIG. 1. FIG. 1: Combustion gas generator, 2: Raw material evaporator (1), 3: Mixed liquid header (1) 4: Raw material gas header (1), 5: Raw material gas superheater, 6: Reforming reaction tube, 7: Reaction Gas outlet header 8: Raw material gas population header 9: Raw material evaporator (2), mixed liquid header (2), raw material gas header (2), bulkhead, flow control valve, flow control valve shutoff valve

Claims (1)

【特許請求の範囲】[Claims] メタノールと水の混合蒸気を触媒の存在下で燃焼ガスに
より反応を行うメタノール改質反応装置において、燃焼
ガスの流れ方向に原料蒸発器(1)、原料過熱器、改質
反応器、および、原料蒸発器(2)を順次配置し、原料
蒸発器(1)、および、原料蒸発器(2)への原料メタ
ノール−水混合液の分配供給比を制御・変更することに
より改質反応温度を制御することを特徴とするメタノー
ル改質反応装置。
In a methanol reforming reactor that reacts a mixed vapor of methanol and water with combustion gas in the presence of a catalyst, a raw material evaporator (1), a raw material superheater, a reforming reactor, and a raw material are arranged in the flow direction of the combustion gas. The reforming reaction temperature is controlled by sequentially arranging the evaporators (2) and controlling and changing the distribution and supply ratio of the raw material methanol-water mixture to the raw material evaporator (1) and the raw material evaporator (2). A methanol reforming reaction device characterized by:
JP1338285A 1989-12-28 1989-12-28 Methanol reforming reactor Expired - Lifetime JP2803266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1338285A JP2803266B2 (en) 1989-12-28 1989-12-28 Methanol reforming reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1338285A JP2803266B2 (en) 1989-12-28 1989-12-28 Methanol reforming reactor

Publications (2)

Publication Number Publication Date
JPH03199103A true JPH03199103A (en) 1991-08-30
JP2803266B2 JP2803266B2 (en) 1998-09-24

Family

ID=18316690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1338285A Expired - Lifetime JP2803266B2 (en) 1989-12-28 1989-12-28 Methanol reforming reactor

Country Status (1)

Country Link
JP (1) JP2803266B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7005114B2 (en) * 2000-11-17 2006-02-28 Nucellsys Gmbh Gas generation system for a reformer and method for providing a gas flow to a reformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7005114B2 (en) * 2000-11-17 2006-02-28 Nucellsys Gmbh Gas generation system for a reformer and method for providing a gas flow to a reformer

Also Published As

Publication number Publication date
JP2803266B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
RU2411075C2 (en) Compact reforming reactor
KR100677016B1 (en) Cylindrical steam reforming unit
RU2415073C2 (en) Compact reforming reactor
EP2004544B1 (en) Fuel steam reformer system and reformer startup process
WO2007102278A1 (en) Hydrogen generator and hydrogenation apparatus
KR20040024535A (en) Single chamber compact fuel processor
JP2010513834A (en) Heat transfer unit for steam generation and gas preheating
KR101817569B1 (en) A heat-exchange reactor producing hydrogen from carbon compound
JP4464230B2 (en) Reforming apparatus and method, and fuel cell system
RU113729U1 (en) PROCESSOR FOR CONVERSION OF HYDROCARBON FUELS IN SYNTHESIS-GAS FOR APPLICATION IN SOLID-OXIDE FUEL ELEMENTS
JPH0733241B2 (en) Method and apparatus for producing hydrogen by reforming methanol
JPH0794322B2 (en) Methanol reformer
JPH03199103A (en) Reforming device for methanol
JPS5826002A (en) Steam reforming method and reaction tube for steam reforming
JP2773334B2 (en) Methanol reforming reactor
JP4278393B2 (en) Hydrogen production apparatus and fuel cell system
KR101830954B1 (en) Hydrogen production system including unit for removal of carbon monoxide
KR102005715B1 (en) Hydrogen production reactor including feed preheating part
JPS5973403A (en) Reforming device for hydrocarbon gas