JPH0640704A - Reactor for dehydrogenation reaction - Google Patents

Reactor for dehydrogenation reaction

Info

Publication number
JPH0640704A
JPH0640704A JP4126929A JP12692992A JPH0640704A JP H0640704 A JPH0640704 A JP H0640704A JP 4126929 A JP4126929 A JP 4126929A JP 12692992 A JP12692992 A JP 12692992A JP H0640704 A JPH0640704 A JP H0640704A
Authority
JP
Japan
Prior art keywords
gas
reactor
hydrogen
combustion
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4126929A
Other languages
Japanese (ja)
Inventor
Shinsuke Ota
眞輔 太田
Kazuto Kobayashi
一登 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4126929A priority Critical patent/JPH0640704A/en
Publication of JPH0640704A publication Critical patent/JPH0640704A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To improve the thermal efficiency of the reactor by disposing several heat exchangers in the reactor and using the waste heat of combustion waste gas after heating the reforming reactor tube to preheat the air for combustion and the source material gas, and using the sensible heat of the product hydrogen to preheat the sweep gas. CONSTITUTION:The source gas 1 containing (oxygen-contg.) hydrocarbon and steam is preheated in a preheating heat exchanger 22 and then introduced to a reforming reactor 2. At same time, air 6 and methane 4A are supplied to a burner 11 attached to the center part of the reforming reactor 2 to be burned with a combustion catalyst 3 and the heat required for the reforming reaction is supplied to the reactor tube 2. Thus, the source gas 1 is reformed into hydrogen-contg. gas and then hydrogen is selectively recovered by a hydrogen separation means 14. The waste heat of the combustion waste gas 12 after heating the reactor tube 2 is supplied to the heat exchangers 22 and 23 and used to preheat the source gas 1 and the air 17 for combustion. Further, the sensible heat of the product hydrogen gas is supplied to the heat exchanger 24 and effectively used to preheat the sweep gas 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は化学工業および燃料電池
に有利に適用される脱水素反応用リアクタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor for dehydrogenation reaction which is advantageously applied to the chemical industry and fuel cells.

【0002】[0002]

【従来の技術】原料供給口、生成物取出口を各々有し、
内部に改質触媒が充填され、リアクタ内部または外部に
加熱手段を備えたリアクタにおいて、該リアクタの改質
触媒充填層に水素を選択的に分離する手段を設置し、該
反応管の外部より触媒燃焼により、反応に必要な熱を供
給し、反応管内から反応生成物の水素の一部を除外しな
がら、同時に反応を行わせることにより、その温度にお
ける平衡転化率以上の転化率を得ることができる脱水素
反応用リアクタが従来より提案されている。
2. Description of the Related Art A raw material supply port and a product extraction port are provided,
In a reactor having a reforming catalyst filled inside and a heating means inside or outside the reactor, a means for selectively separating hydrogen is installed in the reforming catalyst packed bed of the reactor, and the catalyst is introduced from outside the reaction tube. By supplying the heat necessary for the reaction by combustion and removing a part of the hydrogen of the reaction product from the inside of the reaction tube, it is possible to obtain a conversion rate equal to or higher than the equilibrium conversion rate at the same time by causing the reaction to occur simultaneously. A possible reactor for dehydrogenation reaction has been conventionally proposed.

【0003】ここで、上記の水素を選択的に分離する手
段に使用される水素選択性分離膜としては、(1)ポリ
イミド膜などの高分子膜、(2)多孔質ガラス、(3)
多孔質ガラスに、パラジウムまたはパラジウム合金薄膜
をコーティングしたもの、(4)多孔質金属に、パラジ
ウムまたはパラジウム合金薄膜をコーティングしたもの
などが提案されている。
The hydrogen-selective separation membrane used in the means for selectively separating hydrogen is (1) a polymer membrane such as a polyimide membrane, (2) porous glass, (3).
There are proposed porous glass coated with palladium or a palladium alloy thin film, (4) porous metal coated with a palladium or palladium alloy thin film, and the like.

【0004】なお、上記の脱水素反応用リアクタは通常
より低い温度で、高い転化率を得ることができるもので
あるが、そのためには該リアクタにおいて、反応に必要
な熱をバーナ燃焼でなく触媒燃焼により供給し、反応温
度を低く維持することが望ましく効果的であることが知
られている。
The above-mentioned reactor for dehydrogenation reaction can obtain a high conversion at a temperature lower than usual, but for that purpose, in the reactor, the heat required for the reaction is not generated by the burner combustion but by the catalyst. It is known that it is desirable and effective to feed by combustion and keep the reaction temperature low.

【0005】図2に従来のメタンの水蒸気改質反応用リ
アクタの構成例を示す。この従来リアクタの場合、改質
反応管2を加熱後の燃焼ガスは燃焼排ガス管12より該
リアクタの外部へ排出され排熱が有効に回収されない。
またスイープガスを流す場合にあっても高温の製品水素
ガスは水素回収ノズル5より該リアクタ外部へスイープ
ガスと熱交換することなく排出され、その顕熱が有効に
回収されない構成となっている。
FIG. 2 shows a structural example of a conventional reactor for steam reforming reaction of methane. In the case of this conventional reactor, the combustion gas after heating the reforming reaction tube 2 is discharged from the combustion exhaust gas tube 12 to the outside of the reactor, and the exhaust heat is not effectively recovered.
Even when the sweep gas is supplied, the high-temperature product hydrogen gas is discharged from the hydrogen recovery nozzle 5 to the outside of the reactor without heat exchange with the sweep gas, and the sensible heat thereof is not effectively recovered.

【0006】[0006]

【発明が解決しようとする課題】図2に例示した従来の
原料ガスおよび燃焼用空気の予熱およびスイープガスを
流す場合にあってはスイープガスの予熱を目的とする熱
交換器をリアクタ外部に各々有しリアクタ内部または外
部に加熱手段を備え、選択的な水素分離機能を有する水
素分離手段を反応管内に設置し、該反応管の外部より触
媒燃焼により反応に必要な熱を供給し、反応管内から反
応生成物の水素の一部を除外しながら脱水素反応を行わ
せるリアクタには以下の欠点がある。
In the case of the conventional preheating of the raw material gas and combustion air illustrated in FIG. 2 and the flow of the sweep gas, heat exchangers for the purpose of preheating the sweep gas are respectively provided outside the reactor. The reactor is provided with a heating means inside or outside, and a hydrogen separation means having a selective hydrogen separation function is installed in the reaction tube, and the heat necessary for the reaction is supplied from the outside of the reaction tube by catalytic combustion, and the reaction tube is heated. The reactor which carries out the dehydrogenation reaction while excluding a part of the hydrogen of the reaction product has the following drawbacks.

【0007】(1)原料ガスおよび燃焼用空気の予熱お
よびスイープガスを流す場合にあってはスイープガスの
予熱を目的とする熱交換器をリアクタ外部に各々設置す
るため該リアクタからの熱損失が多く熱効率が悪い。そ
の結果、該リアクタからの熱損失を小とし熱効率を向上
させるため配管および該リアクタの保温施工が増大する
ことになる。 (2)また該リアクタ外部に上記熱交換器を各々設置す
るため機器、配管および保温施工などの点数が増加し、
系全体の大型化、複雑化が避けられない。
(1) When the preheating of the raw material gas and the combustion air and the flow of the sweep gas are made to flow, heat exchangers for preheating the sweep gas are installed outside the reactor, so that heat loss from the reactor is reduced. Many have poor thermal efficiency. As a result, heat loss from the reactor is reduced and thermal efficiency is improved, so that heat insulation work for the piping and the reactor is increased. (2) Moreover, since the above heat exchangers are installed outside the reactor, the number of equipment, piping, heat insulation work, etc. increases,
Increasing the size and complexity of the entire system is inevitable.

【0008】本発明は上記技術水準に鑑み、従来の脱水
素反応用リアクタの有する欠点を解消した脱水素反応用
リアクタを提供しようとするものである。
In view of the above-mentioned state of the art, the present invention intends to provide a dehydrogenation reaction reactor in which the drawbacks of the conventional dehydrogenation reaction reactor are eliminated.

【0009】[0009]

【課題を解決するための手段】本発明は炭化水素または
含酸素炭化水素と水蒸気との原料ガスを水素含有ガスに
改質し水素分離機能を有する水素分離手段により水素を
分離する複数の改質反応管と、該複数の改質反応管の中
央部に設けられた加熱手段と、該加熱手段の周囲に設け
られた触媒燃焼用の燃料供給手段と、該燃料供給手段か
ら燃料が供給され前記改質反応管の周囲に配置された燃
焼触媒と、原料ガスおよび燃焼用空気の予熱およびスイ
ープガスの予熱を目的とする熱交換器を該リアクタ内部
に各々具備してなることを特徴とする脱水素反応用リア
クタである。
The present invention provides a plurality of reformers for reforming a raw material gas of a hydrocarbon or an oxygen-containing hydrocarbon and steam into a hydrogen-containing gas and separating the hydrogen by a hydrogen separating means having a hydrogen separating function. A reaction tube, heating means provided in the center of the plurality of reforming reaction tubes, fuel supply means for catalytic combustion provided around the heating means, and fuel supplied from the fuel supply means. Dehydration, characterized in that it comprises a combustion catalyst arranged around the reforming reaction tube and a heat exchanger for preheating the raw material gas and the combustion air and the preheating of the sweep gas inside the reactor. It is a reactor for elementary reaction.

【0010】[0010]

【作用】脱水素反応用リアクタにおいて、該リアクタ内
部に原料ガスおよび燃焼用空気の予熱、およびスイープ
ガスの予熱を目的とする熱交換器を各々設置したことに
より次のような作用が期待できる。
In the dehydrogenation reaction reactor, the following effects can be expected by installing heat exchangers for preheating the source gas and the combustion air and the preheating of the sweep gas inside the reactor.

【0011】(1)リアクタ内部に原料ガスおよび燃焼
用空気の予熱、およびスイープガスの予熱を目的とする
熱交換器を各々設置し複合化するため熱効率が向上し、
該リアクタからの熱損失が少ない高効率のリアクタを提
供できる。またこの結果、配管および該リアクタの保温
施工を最小限にできる。 (2)リアクタ外部に上記熱交換器が不要となるため、
機器、配管及び保温施工などの点数が大幅に減少し、系
全体を小型化かつ単純化できる。
(1) Since heat exchangers for the purpose of preheating the source gas and the combustion air and the preheating of the sweep gas are installed inside the reactor and are combined, the thermal efficiency is improved.
A highly efficient reactor with less heat loss from the reactor can be provided. Further, as a result, the heat insulation work for the piping and the reactor can be minimized. (2) Since the heat exchanger is not required outside the reactor,
The number of equipment, piping, and heat insulation work is greatly reduced, and the entire system can be made smaller and simpler.

【0012】[0012]

【実施例】メタンの水蒸気改質反応用リアクタを例とし
た場合について、本発明の一実施例を図1によって説明
する。メタンと水蒸気とを混合した改質原料ガスは原料
ガス供給管1から原料ガスの予熱用熱交換器22を経由
し改質反応管2に導入され、改質触媒8により水素と二
酸化炭素を主成分とするプロダクトガスに改質される。
このプロダクトガスのうち、水素は選択的な水素分離機
能を有する水素分離手段、この実施例では円管状水素分
離膜14により選択的に回収され、製品水素ガスとして
水素回収ノズル5から排出される。このとき、回収をよ
り効果的に行い、かつより高い反応転化率を得るため、
スイープガス管10を円管状水素分離膜14の内側に挿
入し、水蒸気、水素または窒素などよりなるスイープガ
スをスイープガス供給ノズル9より流すようにする。こ
の場合、分離された製品水素ガスの顕熱を有効に利用す
るため、コイル状の熱交換器24を水素回収チャンバー
16内に設置し上記スイープガスを昇温する。一方、水
素分離後の二酸化炭素を含む未反応原料ガスは未反応ガ
ス排出管13より排出される。
EXAMPLE An example of the present invention will be described with reference to FIG. 1 in the case of a methane steam reforming reaction reactor as an example. The reforming raw material gas in which methane and steam are mixed is introduced from the raw material gas supply pipe 1 into the reforming reaction pipe 2 through the heat exchanger 22 for preheating the raw material gas, and the reforming catalyst 8 mainly supplies hydrogen and carbon dioxide. It is reformed into the product gas as an ingredient.
Of this product gas, hydrogen is selectively recovered by a hydrogen separation means having a selective hydrogen separation function, in this embodiment, a circular tubular hydrogen separation membrane 14, and discharged from the hydrogen recovery nozzle 5 as product hydrogen gas. At this time, in order to perform the recovery more effectively and to obtain a higher reaction conversion rate,
A sweep gas pipe 10 is inserted inside the circular tubular hydrogen separation membrane 14 so that a sweep gas composed of water vapor, hydrogen, nitrogen or the like is caused to flow from the sweep gas supply nozzle 9. In this case, in order to effectively utilize the sensible heat of the separated product hydrogen gas, the coil-shaped heat exchanger 24 is installed in the hydrogen recovery chamber 16 to raise the temperature of the sweep gas. On the other hand, the unreacted raw material gas containing carbon dioxide after hydrogen separation is discharged from the unreacted gas discharge pipe 13.

【0013】この改質反応に必要な熱源として、起動用
のパイロットバーナ11及び燃焼触媒3(格子形状)よ
り主要部をなす燃焼触媒管19をリアクタ中央部に内蔵
させ、空気供給管6からの空気とメタン配管4Aより供
給するメタンを燃焼触媒3(格子形状)にて、高温燃焼
ガスとし燃焼触媒管19より流出させる。なお、上記燃
焼触媒3(格子形状)を燃焼バーナとしても、同様の効
果が得られることは言うまでもない。一方、メタン配管
4Bより燃料ガス供給管20を通じて、該燃料ガス供給
管20に適宜開口した燃料ガス分散孔21より燃焼触媒
管19との熱交換で予熱された燃料ガスを噴出させる。
この燃料ガスは上述の燃焼触媒管19より流入する燃焼
ガスと均一に分散、混合され、改質反応管2の周囲に配
された燃焼触媒7(ペレット形状)にて多段燃焼され、
改質反応管2に反応に必要な熱を充分に供給す。次に改
質反応管2の加熱後のまだ十分高温の燃焼ガスは胴体外
周部に設けられたジャケット15へ上部より流入し、コ
イル状に各々配設された原料ガスの予熱用熱交換器2
2、引続き燃焼用空気の予熱用熱交換器23と各々シリ
ーズに熱交換し排熱回収され、低温度となって燃焼排ガ
ス管12より排出される。さらに詳しく言えば、改質原
料ガスはジャケット15を貫通して熱交換器22と連結
された原料ガス供給管1から導入され、燃焼ガスと熱交
換して昇温され改質反応管2に供給される。燃焼用空気
はジャケット15を貫通して熱交換器23と連結された
空気の入口17より導入され、引続き燃焼ガスと熱交換
して昇温され空気の出口18より流出し、先述の空気供
給管6より高温燃焼用空気としてリアクタ内に導かれ
る。
As a heat source necessary for this reforming reaction, a combustion catalyst pipe 19 which is a main part of the starting pilot burner 11 and the combustion catalyst 3 (lattice shape) is built in the central portion of the reactor, and the air supply pipe 6 Air and methane supplied from the methane pipe 4A are made into high-temperature combustion gas by the combustion catalyst 3 (lattice shape) and flow out from the combustion catalyst pipe 19. Needless to say, the same effect can be obtained by using the combustion catalyst 3 (lattice shape) as a combustion burner. On the other hand, through the fuel gas supply pipe 20 from the methane pipe 4B, the fuel gas preheated by heat exchange with the combustion catalyst pipe 19 is ejected from the fuel gas dispersion hole 21 opened appropriately in the fuel gas supply pipe 20.
This fuel gas is uniformly dispersed and mixed with the combustion gas flowing in from the above-mentioned combustion catalyst pipe 19, and is multi-stage burned by the combustion catalyst 7 (pellet shape) arranged around the reforming reaction pipe 2.
The reforming reaction tube 2 is sufficiently supplied with heat necessary for the reaction. Next, the combustion gas, which is still sufficiently high in temperature after heating the reforming reaction tube 2, flows into the jacket 15 provided on the outer periphery of the body from above, and the heat exchangers 2 for preheating the raw material gas are respectively arranged in a coil shape.
2. Subsequently, heat is exchanged with the heat exchanger 23 for preheating combustion air and each series to recover the exhaust heat, and the exhaust heat becomes a low temperature and is discharged from the combustion exhaust gas pipe 12. More specifically, the reforming raw material gas is introduced from the raw material gas supply pipe 1 which penetrates the jacket 15 and is connected to the heat exchanger 22, and heat-exchanges with the combustion gas to be heated and supplied to the reforming reaction pipe 2. To be done. Combustion air is introduced from an air inlet 17 that penetrates through the jacket 15 and is connected to a heat exchanger 23, and is then heated by exchanging heat with the combustion gas to flow out from an air outlet 18, and the air supply pipe described above. 6 is introduced into the reactor as high temperature combustion air.

【0014】上記実施例装置と図2に示した従来の脱水
素反応用リアクタの比較データを下記に示す。
Comparative data of the apparatus of the above embodiment and the conventional reactor for dehydrogenation reaction shown in FIG. 2 are shown below.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】本発明により下記の効果を奏する。 (1)リアクタ内部に原料ガスおよび燃焼用空気の予熱
およびスイープガスの予熱を目的とする熱交換器を各々
設置し複合化したため熱効率が向上し、該リアクタから
の熱損失が少ない高効率のリアクタを提供できる。また
配管および該リアクタの保温施工を最小限とできる。 (2)リアクタ外部に上記熱交換器が不要となるため、
機器、配管および保温施工などの点数が大幅に減少し、
系全体を小型化かつ単純化できる。
The present invention has the following effects. (1) A highly efficient reactor in which heat efficiency is improved and heat loss from the reactor is small because heat exchangers for the purpose of preheating the raw material gas and combustion air and the preheating of the sweep gas are installed and combined inside the reactor. Can be provided. Further, the heat insulation work for the piping and the reactor can be minimized. (2) Since the heat exchanger is not required outside the reactor,
The number of equipment, piping, and heat insulation work has decreased significantly,
The whole system can be miniaturized and simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るメタンの水蒸気改質反
応用リアクタの構成図。
FIG. 1 is a configuration diagram of a methane steam reforming reaction reactor according to an embodiment of the present invention.

【図2】従来のメタン水蒸気改質反応用リアクタの構成
図。
FIG. 2 is a block diagram of a conventional reactor for methane steam reforming reaction.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素または含酸素炭化水素と水蒸気
との原料ガスを水素含有ガスに改質し水素分離機能を有
する水素分離手段により水素を分離する複数の改質反応
管と、該複数の改質反応管の中央部に設けられた加熱手
段と、該加熱手段の周囲に設けられた触媒燃焼用の燃料
供給手段と、該燃料供給手段から燃料が供給され前記改
質反応管の周囲に配置された燃焼触媒とを具備してなる
脱水素反応用リアクタにおいて、改質反応管加熱後の燃
焼排ガスの排熱を原料ガスおよび燃焼用空気の予熱に、
また、製品水素ガスの顕熱をスイープガスの予熱に有効
に利用するため、該リアクタ内部に熱交換器を各々配設
したことを特徴とする脱水素反応用リアクタ。
1. A plurality of reforming reaction tubes for reforming a raw material gas of a hydrocarbon or an oxygen-containing hydrocarbon and steam into a hydrogen-containing gas and separating the hydrogen by a hydrogen separating means having a hydrogen separating function, and a plurality of the reforming reaction tubes. Heating means provided at the center of the reforming reaction tube, fuel supply means for catalytic combustion provided around the heating means, and fuel supplied from the fuel supply means around the reforming reaction tube. In the reactor for dehydrogenation reaction, which comprises the arranged combustion catalyst, the exhaust heat of the combustion exhaust gas after heating the reforming reaction tube is used to preheat the raw material gas and the combustion air,
Further, in order to effectively use the sensible heat of the product hydrogen gas for preheating the sweep gas, a dehydrogenation reactor is provided with a heat exchanger inside the reactor.
JP4126929A 1992-05-20 1992-05-20 Reactor for dehydrogenation reaction Withdrawn JPH0640704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4126929A JPH0640704A (en) 1992-05-20 1992-05-20 Reactor for dehydrogenation reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4126929A JPH0640704A (en) 1992-05-20 1992-05-20 Reactor for dehydrogenation reaction

Publications (1)

Publication Number Publication Date
JPH0640704A true JPH0640704A (en) 1994-02-15

Family

ID=14947399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4126929A Withdrawn JPH0640704A (en) 1992-05-20 1992-05-20 Reactor for dehydrogenation reaction

Country Status (1)

Country Link
JP (1) JPH0640704A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032753A1 (en) * 1995-04-12 1996-10-17 International Fuel Cells Corporation Fuel processing apparatus having a furnace for fuel cell power plant
KR100423544B1 (en) * 2001-04-23 2004-03-18 주식회사 경동도시가스 Compact steam reformer
JP2006176350A (en) * 2004-12-21 2006-07-06 Mitsubishi Kakoki Kaisha Ltd Methanol reformer
JP2008222526A (en) * 2007-03-15 2008-09-25 Ngk Insulators Ltd Selective permeation membrane type reactor, and hydrogen production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032753A1 (en) * 1995-04-12 1996-10-17 International Fuel Cells Corporation Fuel processing apparatus having a furnace for fuel cell power plant
US5931658A (en) * 1995-04-12 1999-08-03 International Fuel Cells Fuel cell power plant furnace
KR100417362B1 (en) * 1995-04-12 2004-04-17 인터내셔널 퓨얼 셀즈 코포레이션 Fuel processing apparatus having a furnace for fuel cell power plant
KR100423544B1 (en) * 2001-04-23 2004-03-18 주식회사 경동도시가스 Compact steam reformer
JP2006176350A (en) * 2004-12-21 2006-07-06 Mitsubishi Kakoki Kaisha Ltd Methanol reformer
JP2008222526A (en) * 2007-03-15 2008-09-25 Ngk Insulators Ltd Selective permeation membrane type reactor, and hydrogen production method

Similar Documents

Publication Publication Date Title
JP4903339B2 (en) Method for producing carbon monoxide by catalytic reverse conversion
US4666680A (en) Autothermal production of synthesis gas
CA2501137C (en) Reforming and hydrogen purification system
US7481857B2 (en) Carbon monoxide conversion process and reactor
JP4045564B2 (en) Self-oxidation internal heating type reformer and method
JP4521735B2 (en) Method for producing synthesis gas by steam reforming using catalytic equipment
US5888273A (en) High temperature gas purification system
CA2442781A1 (en) Single chamber compact fuel processor
JPS6158801A (en) Method of improving hydrocarbon and reactor
JP4959105B2 (en) Syngas production method and apparatus
JPH0585701A (en) Self-heating type steam reforming method
BRPI0609781A2 (en) process for preparing hydrogen in a fuel processor assembly and apparatus for producing hydrogen
US6923944B2 (en) Membrane reactor for gas extraction
JP2004269344A (en) Method and apparatus for producing synthesis gas
US7354465B2 (en) Device for cooling and humidifying reformate
US7267804B2 (en) Membrane reactor for gas extraction
JPH0640704A (en) Reactor for dehydrogenation reaction
JP2572251B2 (en) Fuel reformer
JPH05132301A (en) Reactor for hydrogenation reaction
JP4278984B2 (en) Membrane reactor for gas extraction
JP3839599B2 (en) Hydrogen production equipment
JPS6384629A (en) Heat exchanger type reactor used for performing reaction accompanying generation of hydrogen
US20040136883A1 (en) Membrane reactor for gas extraction
RU2088517C1 (en) Method of two-step catalytic conversion of hydrocarbon raw material
RU2152378C1 (en) Method of preparing methanol

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803