JPS6384629A - Heat exchanger type reactor used for performing reaction accompanying generation of hydrogen - Google Patents
Heat exchanger type reactor used for performing reaction accompanying generation of hydrogenInfo
- Publication number
- JPS6384629A JPS6384629A JP22828086A JP22828086A JPS6384629A JP S6384629 A JPS6384629 A JP S6384629A JP 22828086 A JP22828086 A JP 22828086A JP 22828086 A JP22828086 A JP 22828086A JP S6384629 A JPS6384629 A JP S6384629A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- gas
- porous material
- reaction
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 49
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 36
- 239000001257 hydrogen Substances 0.000 title claims abstract description 36
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 239000007789 gas Substances 0.000 claims abstract description 34
- 239000011148 porous material Substances 0.000 claims abstract description 30
- 150000002431 hydrogen Chemical class 0.000 claims abstract description 6
- 239000002994 raw material Substances 0.000 claims abstract description 4
- 239000003054 catalyst Substances 0.000 claims description 40
- 230000002093 peripheral effect Effects 0.000 claims description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 abstract description 15
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 abstract description 13
- 238000010438 heat treatment Methods 0.000 abstract description 9
- 239000012466 permeate Substances 0.000 abstract description 6
- 230000003197 catalytic effect Effects 0.000 abstract 4
- 238000006356 dehydrogenation reaction Methods 0.000 description 22
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical group 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 239000010953 base metal Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- -1 on the other hand Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0207—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、水素の発生を伴う反応を行わせるために用い
る熱交換器量の反応装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat exchanger type reactor used for carrying out reactions involving the generation of hydrogen.
水素の発生を伴う反応で代表的なものは、脱水素反応で
ある。この脱水素反応は、石油精製、石油化学および有
機合成化学上重要な反応であり、列えばつぎのようなも
のがある。A typical reaction that involves the generation of hydrogen is a dehydrogenation reaction. This dehydrogenation reaction is an important reaction in petroleum refining, petrochemistry, and organic synthesis chemistry, and includes the following reactions.
■ パラフィンおよびオレフィンからオレフィンおよび
ジオレフイIり脱水素
■ アルキル芳香族からアルケニル芳香族への脱水素
■ アルキル異部環状化合物からアルケニル異部環状化
合物への脱水素
■ アルコールからアルデヒドあるいはケトンへの脱水
素
■ 異部環状化合物の脱水素
■ シクロパラフィン(す7テン」からシクロオレフィ
ンおよび芳香族への脱水素
■ )七ラフインおよびオレフィンから芳香族への環化
脱水素
ま九個の水素の発生を伴う反応としては、COとH2O
によるシフト反応がある。■ Dehydrogenation of paraffins and olefins to olefins and diolefins ■ Dehydrogenation of alkylaromatics to alkenylaromatics ■ Dehydrogenation of alkyl heterocyclics to alkenyl heterocyclics ■ Dehydrogenation of alcohols to aldehydes or ketones ■ Dehydrogenation of heterocyclic compounds ■ Dehydrogenation of cycloparaffins (su7ten) to cycloolefins and aromatics■ Cyclization dehydrogenation of sevenrafins and olefins to aromatics accompanied by the generation of nine hydrogens The reaction is CO and H2O
There is a shift reaction due to
水素の発生を伴う反応のうち脱水素反応は、スチレンや
ブタジェンなどの製造にみられるように、工業的に重要
な反応のひとつである。これらの脱水素反応はすべて吸
熱反応であり、そのために高温度において多量の熱量を
補給しなければならない。ま六このような高温条件下で
は、脱水素の他に炭化水素の分解も起こりやすく、特に
金属触媒ではそれが顕著であって、炭素析出による触媒
の活性劣化が著しい、そのために工業プロセスでは難還
元性の金属酸化物や高温でも安定な0aBNi(PO4
)6などが触媒として使われる。Among reactions that involve the generation of hydrogen, dehydrogenation is one of the industrially important reactions, as seen in the production of styrene, butadiene, etc. All of these dehydrogenation reactions are endothermic reactions, and therefore a large amount of heat must be supplied at high temperatures. Under such high-temperature conditions, in addition to dehydrogenation, decomposition of hydrocarbons is also likely to occur, and this is particularly noticeable with metal catalysts, and the deterioration of catalyst activity due to carbon deposition is significant, making it difficult to perform in industrial processes. 0aBNi (PO4) is stable even with reducing metal oxides and high temperatures.
) 6 etc. are used as catalysts.
また脱水素反応は、モル数の増加する反応であるから、
平衡論的には低圧が好ましい、工業的操作では、原料供
給の流れに多量の高温スチームを導入することにより高
温低圧の条件を実現し、同時にこの多量のスチーム共存
によって、触媒表面上へのコーク状物質の蓄積を抑制し
、また触媒表面の過度の還元状態への変化をも防止して
触媒活性の安定保持をおこなっている。Also, since the dehydrogenation reaction is a reaction in which the number of moles increases,
In industrial operations, where low pressure is preferred from an equilibrium standpoint, high temperature and low pressure conditions are achieved by introducing large amounts of high temperature steam into the feed stream, and at the same time, the coexistence of this large amount of steam causes coke to form on the catalyst surface. This suppresses the accumulation of such substances and also prevents the catalyst surface from changing to an excessively reduced state, thereby stably maintaining the catalyst activity.
本発明者等は先に特願昭60−042413号において
、含水素ガス中の水素をシクロヘキサンに変えて貯蔵し
、使用に際してはシクロヘキサンから再度水素を取り出
す方法を提案したが、シクロヘキサンの脱水素反応も、
上述のスチレンやブタジェンの製造と同様に高温におけ
る多量の熱量の補給、炭素析出などの問題が発生する。The present inventors previously proposed in Japanese Patent Application No. 60-042413 a method for converting hydrogen in hydrogen-containing gas into cyclohexane and storing it, and then extracting hydrogen from the cyclohexane again before use, but the dehydrogenation reaction of cyclohexane too,
Similar to the production of styrene and butadiene mentioned above, problems such as replenishment of a large amount of heat at high temperatures and carbon precipitation occur.
炭化水素の脱水素反応は、大きな吸熱反応であって熱力
学平衡の制約のために亮い反応温度を必要とする。その
ためにこの反応を行わせるためには、高温下において多
量の熱量を供給する必要がある。またこのように反応温
度が高いので、脱水素の他に炭化水素の分解も起こりや
すぐ、特にFe4’Nlのような卑金属触媒上ではそれ
が顕著であって、炭素析出による触媒の活性劣化が著し
い。The dehydrogenation reaction of hydrocarbons is a highly endothermic reaction and requires high reaction temperatures due to thermodynamic equilibrium constraints. Therefore, in order to carry out this reaction, it is necessary to supply a large amount of heat at a high temperature. In addition, since the reaction temperature is high, in addition to dehydrogenation, decomposition of hydrocarbons also occurs quickly, especially on base metal catalysts such as Fe4'Nl, and the activity of the catalyst deteriorates due to carbon deposition. Significant.
本発明は上記問題点を解決し、低温度において脱水素反
応を進行させ、且つ反応速度を促進させる効率的な熱交
換器型反応装置を提供することを目的とする。An object of the present invention is to solve the above-mentioned problems and provide an efficient heat exchanger type reactor that allows the dehydrogenation reaction to proceed at low temperatures and accelerates the reaction rate.
上記目的を達成する九めの本発明の技術的手段は、触媒
の存在下で水素の発生を伴う反応をおこなわせるための
反応装置において、多孔質材料管の外周面に触媒充填層
を設け、周辺に熱媒体の流通空間を形成した触媒層外筒
にて前記触媒充填層を包被し、前記多孔質材料管には触
媒充填層から該多孔質材料管の管壁を介して透過分離さ
れた水素リッチガスの排出路を設けるとともに、前記触
媒充填層には原料ガスの導入路と多孔質材料管の未透過
ガスの排出路と全設け、さらに前記流通空間には熱媒体
の導入路と排出路とを設けたことを特徴とする水素の発
生を伴う反応を行わせるために用いる熱交換器型反応装
置である。A ninth technical means of the present invention to achieve the above object is to provide a catalyst packed layer on the outer peripheral surface of a porous material tube in a reaction apparatus for carrying out a reaction accompanied by hydrogen generation in the presence of a catalyst, The catalyst packed layer is covered with a catalyst layer outer cylinder around which a heat medium circulation space is formed, and the porous material tube is provided with permeation and separation from the catalyst packed layer through the wall of the porous material tube. In addition, the catalyst packed bed is provided with an inlet path for raw material gas and an outlet path for unpermeated gas in the porous material pipe, and the circulation space is also provided with an inlet path for heat transfer medium and an outlet path. This is a heat exchanger type reactor used for carrying out a reaction accompanied by the generation of hydrogen, characterized in that it is provided with a passage.
このように本発明では、触媒の存在のもとて水素の発生
を伴う反応を行わせながら、他方では触媒充填層と直接
に接するように配置した多孔質材料管によシ、水素の発
生を伴う反応で生成した水素を直ちに選択的に系外に引
き抜き、化学平衡をずらすことにより平衡転化率を上昇
させて反応温度を低下させ、ま喪反応速度を促進させる
ことができる。In this way, in the present invention, while a reaction accompanied by hydrogen generation occurs in the presence of a catalyst, on the other hand, hydrogen generation is caused by a porous material tube placed in direct contact with a catalyst packed bed. Hydrogen produced in the accompanying reaction is immediately and selectively drawn out of the system to shift the chemical equilibrium, thereby increasing the equilibrium conversion rate, lowering the reaction temperature, and accelerating the reaction rate.
また触媒をチューブ内に充填して充填層を形成すること
によシ、多量の熱量を効率的に充填層外部から供給する
ことができる。なお本発明における多孔質材料管の材料
としては、ガラス、セラミックス、金属粉の焼結物、金
属箔などを用いることができ、加工性の点ではガラスが
優れている。Furthermore, by filling the tube with the catalyst to form a packed bed, a large amount of heat can be efficiently supplied from outside the packed bed. Note that as the material for the porous material tube in the present invention, glass, ceramics, sintered metal powder, metal foil, etc. can be used, and glass is excellent in terms of workability.
以下本発明の実施列を図面によシ説明する。 Embodiments of the present invention will be explained below with reference to the drawings.
第1図は熱交換器型反応装置の側断面図である。FIG. 1 is a side sectional view of a heat exchanger type reactor.
4は多孔質材料管であシ、この管の外周面を直接取り巻
くように触媒充填層3が形成され、これら触媒充填層3
は触媒層外筒13によって包被され、それぞれこの外筒
13を介して間接的に熱媒体流通空間14と接している
。触媒充填層3の一端側は反応用ガスの触媒層導入路2
を形成し、他端側は水素の発生を併う反応で発生して多
孔質材料管4内に透過しなかった未透過オフガスが流出
できるように多孔質材料管未透過ガス排出路8を形成し
ている。また多孔質材料管4には、触媒充填層3内で発
生しこの管壁を透過して分離された水素を主とする水素
リッチガスを取り出すために、多孔質材料管透過ガス排
出路9が設けられている。4 is a porous material tube, a catalyst packed layer 3 is formed so as to directly surround the outer peripheral surface of this tube, and these catalyst packed layers 3
are covered by a catalyst layer outer cylinder 13, and are in indirect contact with the heat medium circulation space 14 via this outer cylinder 13, respectively. One end side of the catalyst packed bed 3 is a catalyst bed introduction path 2 for reaction gas.
, and the other end side forms a porous material pipe non-permeated gas discharge passage 8 so that non-permeated off-gas generated by a reaction accompanied by hydrogen generation and not permeated into the porous material pipe 4 can flow out. are doing. In addition, the porous material tube 4 is provided with a porous material tube permeation gas discharge passage 9 in order to take out hydrogen-rich gas mainly composed of hydrogen generated in the catalyst packed bed 3 and separated by passing through the tube wall. It is being
このように多孔質材料管4t−内部に有し、多孔質材料
管4の外周面を取シ巻く触媒充填層3を形成する触媒層
外筒13とを1つのユニットとし、これらユニット間が
熱媒体の流通空間14を形成するように間隙金膜けて反
応装置本体5の内部に並列的に配置され、また流通空間
14には熱媒体の導入路6および排出路7が設けられて
いる。In this way, the porous material tube 4t and the catalyst layer outer tube 13 which is provided inside the porous material tube 4 and forms the catalyst packed layer 3 surrounding the outer peripheral surface of the porous material tube 4 are considered as one unit, and the heat between these units is The gold films are arranged in parallel inside the reactor main body 5 across the gap to form a medium circulation space 14, and the heat medium introduction passage 6 and discharge passage 7 are provided in the circulation space 14.
反応装置本体5には、反応用ガス金導入するための反応
装置本体人口1と、前記多孔質材料管4内に透過した水
素リッチガスを合流させて取シ出すための反応装置本体
透過ガス出口10と、さらに触媒充填層3から流出した
オフガスを合流させて排出する反応装置本体未透過ガス
出口11を有するつ
次にこの熱交換器型反応装置を用いて水素の発生全件う
反応を行わせる場合について、シクロヘキサンの脱水素
反応を例にしてその作用とともに具体的に説明する。The reactor main body 5 includes a reactor main body port 1 for introducing reaction gas gold, and a reactor main body permeated gas outlet 10 for combining and taking out the hydrogen-rich gas that has permeated into the porous material tube 4. This heat exchanger type reactor is then used to carry out all the reactions for hydrogen generation. The case will be specifically explained along with its action using the dehydrogenation reaction of cyclohexane as an example.
水素を含有するガス中の水素をベンゼンと反応させて、
液状のシクロヘキサンとして貯蔵した後にシクロヘキサ
ンから再度水素として取シ出すために、シクロヘキサン
金気化させた後、第1図に示す反応装置本体人口1より
供給すると、この気化されたシクロヘキサンは触媒層導
入路2に分配される。触媒充填層3は円筒型で反応装置
本体5の内部に十数本〜数十本設置されておシ、触媒層
導入路2から供給されたシクロヘキサンは、触媒充填層
3で脱水素反応によりベンゼンと水素とになる。水素は
選択的に多孔質材料管4を透過して管内に引き抜かれ、
水素リッチな透過ガスとして多孔質材料管透過ガス排出
路9および反応装置本体透過ガス出口10を通シ、真空
ポンプ12によシ系外に排出される。この真空ポンプ1
2は、透過ガスを引き抜くための補助的手段であって、
操作条件によっては不必要な場合もある。一方ペンゼン
リッチな未透過ガスは、多孔質材料管未透過ガス排出路
8および反応装置本体未透過ガス出口11を通り系外に
排出される5本実施列では、触媒充填層3に熱を供給す
るための熱媒体としてスチームを用い、スチームは熱媒
体導入路6から供給され、反応装置5の内部で熱交換を
行つ±のち、熱媒体排出路7から系外に排出されるつこ
の装着において、触媒としてPt−At203系触媒を
充填し、圧力1kf/c+JG、温度2−50℃。By reacting hydrogen in a hydrogen-containing gas with benzene,
In order to extract hydrogen from cyclohexane again after storing it as liquid cyclohexane, the cyclohexane is vaporized and then supplied from the reactor body 1 shown in FIG. distributed to. The catalyst packed bed 3 has a cylindrical shape and is installed inside the reactor main body 5. The cyclohexane supplied from the catalyst bed introduction passage 2 is converted into benzene through a dehydrogenation reaction in the catalyst packed bed 3. becomes hydrogen. Hydrogen selectively permeates through the porous material tube 4 and is extracted into the tube.
The hydrogen-rich permeate gas is passed through the porous material pipe permeate gas discharge passage 9 and the permeate gas outlet 10 of the reactor main body, and is discharged to the outside of the system by the vacuum pump 12. This vacuum pump 1
2 is an auxiliary means for drawing out the permeate gas,
It may be unnecessary depending on the operating conditions. On the other hand, the penzene-rich unpermeated gas is discharged to the outside of the system through the porous material tube unpermeated gas discharge passage 8 and the unpermeated gas outlet 11 of the reactor main body.In the five-line arrangement, heat is supplied to the catalyst packed bed 3 Steam is used as a heat medium for the reaction, and the steam is supplied from the heat medium introduction path 6, performs heat exchange inside the reaction device 5, and is then discharged from the system from the heat medium discharge path 7. , filled with Pt-At203 type catalyst as a catalyst, pressure 1 kf/c+JG, temperature 2-50°C.
S、V、 90 hr−’ の条件において、多孔質材
料管4からの選択的な水素引き抜きを行わない従来の方
法で脱水素反応だけを行つ九場合には、シクロヘキサン
からのベンゼンと水素への転化率は約18%程度であっ
たが、多孔質材料管4からの水素引き抜きを供給シクロ
ヘキサン流量に対して30%行うと、転化率は95チま
で上昇した。このように本発明の反応装置を用いること
によシ、反応系において生成する水素を選択的に引抜く
ので、反応が促進され、原料ガスよりの転化率が大巾に
向上する。In the case where only the dehydrogenation reaction is performed by the conventional method without selective hydrogen withdrawal from the porous material tube 4 under the conditions of S, V, 90 hr-', cyclohexane is converted into benzene and hydrogen. The conversion rate was about 18%, but when hydrogen was extracted from the porous material tube 4 by 30% of the supplied cyclohexane flow rate, the conversion rate increased to 95%. As described above, by using the reaction apparatus of the present invention, hydrogen generated in the reaction system is selectively extracted, so the reaction is promoted and the conversion rate from the raw material gas is greatly improved.
以上の実施列では、触媒の加熱用媒体としてスチームを
用いる列を示し穴が、本発明で用いる熱媒体はスチーム
に限定されるものではなく、加熱用としてはその他に燃
焼排ガス、加熱炉排ガス等のガス状熱媒体、あるいはこ
れらの排ガスと熱交換した液状の熱媒体等を用いてもよ
い。また加熱用媒体の流通型式は、実施例では、反応ガ
スの流れに対して並流としたが、熱交換が1・効率的に
行われれば対向流としてもよい。In the above implementation rows, the holes indicate rows in which steam is used as a heating medium for the catalyst, but the heating medium used in the present invention is not limited to steam, and examples of heating media include combustion exhaust gas, heating furnace exhaust gas, etc. A gaseous heat medium or a liquid heat medium that exchanges heat with these exhaust gases may be used. In addition, in the embodiment, the flow type of the heating medium was cocurrent with the flow of the reaction gas, but counterflow may be used as long as heat exchange can be carried out efficiently.
以上の説明では、炭化水素の脱水素を列にとり説明をお
こなったが、この反応装置は吸熱反応である炭化水素の
脱水素のみならず、COのシフト反応のような水素発生
を伴った発熱反応にも適用できる。この場合には熱媒体
として冷媒を用いることによって、系外への効率的な反
応熱の回収をおこなうことができる。In the above explanation, we focused on dehydrogenation of hydrocarbons, but this reactor is suitable for not only dehydrogenation of hydrocarbons, which is an endothermic reaction, but also exothermic reactions accompanied by hydrogen generation, such as the shift reaction of CO. It can also be applied to In this case, by using a refrigerant as a heat medium, the heat of reaction can be efficiently recovered to the outside of the system.
本発明は上記のごとき構成および作用を有するので、以
下のごとき効果がある。Since the present invention has the above configuration and operation, it has the following effects.
(a) 水素を選択的に引き抜くことによシ、反応温
度を低下させることができる。(a) By selectively extracting hydrogen, the reaction temperature can be lowered.
(b) 水素を選択的に引き抜くことによシ、転化率
を向上させることができる。(b) The conversion rate can be improved by selectively extracting hydrogen.
(c) 反応温度が低下するため、Ni、Feなどの
卑金属触媒での炭化水素の分解による炭素析出が防止で
きるつ
(d)熱交換が容易となり、反応状態を安定に維持でき
る。(c) Since the reaction temperature is lowered, carbon precipitation due to decomposition of hydrocarbons with base metal catalysts such as Ni and Fe can be prevented. (d) Heat exchange becomes easy and the reaction state can be maintained stably.
(e) 水素の発生と分離とを同時に行うことができ
るので、工程を省略でき、装置ヲコン、oクトにするこ
とができる。(e) Since hydrogen generation and separation can be performed simultaneously, steps can be omitted and the equipment can be made more compact.
第1図は本発明の一実力缶列であシ、熱交換器型反応装
置の側断面図である。
1・・・反応装置本体入口、2・・・触媒層導入路、3
・・・触媒充填層、4・・・多孔質材料管、5・・・反
応装置本体、6・・・熱媒体導入路、7・・・熱媒体排
出路、8・・・多孔質材料管未透過ガス排出路、9・・
・多孔質材料管透過ガス排出路、10・・・反応装置本
体透過ガス出口、11・・・反応装置本体未透過ガス出
口、12・・・真空ポンプ、13・・・触媒層外筒、1
4・・・熱媒体の流通空間
代理人 弁理士 秋 沢 政 光他1名FIG. 1 is a side cross-sectional view of a heat exchanger type reactor in accordance with the present invention. 1... Reactor main body inlet, 2... Catalyst layer introduction path, 3
... Catalyst packed bed, 4... Porous material tube, 5... Reactor main body, 6... Heat medium introduction path, 7... Heat medium discharge path, 8... Porous material tube Unpermeated gas exhaust path, 9...
- Porous material pipe permeated gas discharge path, 10... Reactor main body permeated gas outlet, 11... Reactor main body unpermeated gas outlet, 12... Vacuum pump, 13... Catalyst layer outer cylinder, 1
4... Heating medium distribution space agent Patent attorney Masamitsu Akisawa and 1 other person
Claims (1)
めの反応装置において、多孔質材料管の外周面に触媒充
填層を設け、周辺に熱媒体の流通空間を形成した触媒層
外筒にて前記触媒充填層を包被し、前記多孔質材料管に
は触媒充填層から該多孔質材料管の管壁を介して透過分
離された水素リッチガスの排出路を設けるとともに、前
記触媒充填層には原料ガスの導入路と多孔質材料管の未
透過ガスの排出路とを設け、さらに前記流通空間には熱
媒体の導入路と排出路とを設けたことを特徴とする水素
の発生を伴う反応を行わせるために用いる熱交換器型反
応装置。In a reaction device for carrying out a reaction accompanied by the generation of hydrogen in the presence of a catalyst, a catalyst-packed layer is provided on the outer peripheral surface of a porous material tube, and a catalyst layer outer cylinder with a heat medium circulation space formed around it. The porous material tube is provided with a discharge path for hydrogen-rich gas that has been permeated and separated from the catalyst packed layer through the wall of the porous material tube, and the catalyst packed layer is covered with a A reaction accompanied by generation of hydrogen, characterized in that an introduction path for raw material gas and a discharge path for unpermeated gas of the porous material pipe are provided, and furthermore, an introduction path and a discharge path for a heat medium are provided in the circulation space. A heat exchanger type reaction device used to carry out.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22828086A JPS6384629A (en) | 1986-09-29 | 1986-09-29 | Heat exchanger type reactor used for performing reaction accompanying generation of hydrogen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22828086A JPS6384629A (en) | 1986-09-29 | 1986-09-29 | Heat exchanger type reactor used for performing reaction accompanying generation of hydrogen |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6384629A true JPS6384629A (en) | 1988-04-15 |
Family
ID=16874002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22828086A Pending JPS6384629A (en) | 1986-09-29 | 1986-09-29 | Heat exchanger type reactor used for performing reaction accompanying generation of hydrogen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6384629A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5661977A (en) * | 1995-06-07 | 1997-09-02 | Shnell; James H. | System for geothermal production of electricity |
WO1996041104A3 (en) * | 1995-06-07 | 1998-02-26 | James H Shnell | System for geothermal production of electricity |
JP2004043292A (en) * | 2002-05-16 | 2004-02-12 | Haldor Topsoe As | Method of converting carbon monoxide and reactor |
US6921517B2 (en) * | 2000-02-02 | 2005-07-26 | Shuzo Matsumura | Process and apparatus for the pyrolysis of hydrocarbon gas |
JP2006104000A (en) * | 2004-10-01 | 2006-04-20 | Tokyo Univ Of Science | Hydrogen gas generation equipment |
WO2023135923A1 (en) * | 2022-01-14 | 2023-07-20 | 株式会社日立製作所 | Methanation reactor and method for producing methane-containing gas |
-
1986
- 1986-09-29 JP JP22828086A patent/JPS6384629A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5661977A (en) * | 1995-06-07 | 1997-09-02 | Shnell; James H. | System for geothermal production of electricity |
US5697218A (en) * | 1995-06-07 | 1997-12-16 | Shnell; James H. | System for geothermal production of electricity |
WO1996041104A3 (en) * | 1995-06-07 | 1998-02-26 | James H Shnell | System for geothermal production of electricity |
US5911684A (en) * | 1995-06-07 | 1999-06-15 | Shnell; James H. | System for geothermal production of electricity |
US6921517B2 (en) * | 2000-02-02 | 2005-07-26 | Shuzo Matsumura | Process and apparatus for the pyrolysis of hydrocarbon gas |
JP2004043292A (en) * | 2002-05-16 | 2004-02-12 | Haldor Topsoe As | Method of converting carbon monoxide and reactor |
JP4593885B2 (en) * | 2002-05-16 | 2010-12-08 | ハルドール・トプサー・アクチエゼルスカベット | Carbon monoxide conversion and reactor |
JP2006104000A (en) * | 2004-10-01 | 2006-04-20 | Tokyo Univ Of Science | Hydrogen gas generation equipment |
WO2023135923A1 (en) * | 2022-01-14 | 2023-07-20 | 株式会社日立製作所 | Methanation reactor and method for producing methane-containing gas |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5525322A (en) | Method for simultaneous recovery of hydrogen from water and from hydrocarbons | |
US7481857B2 (en) | Carbon monoxide conversion process and reactor | |
JP4045564B2 (en) | Self-oxidation internal heating type reformer and method | |
US3338681A (en) | Apparatus for hydrogen generation | |
JP4903339B2 (en) | Method for producing carbon monoxide by catalytic reverse conversion | |
JPS6117401A (en) | Method and device for converting steam by using coal or hydrocarbon | |
CA2442781A1 (en) | Single chamber compact fuel processor | |
CN107073427A (en) | The method that synthesis gas or hydrogen are prepared for the shell-tube type reactor of reforming natural gas and using it | |
JP2004537487A (en) | Ion transport membrane device and method | |
JPS62148303A (en) | Manufacture of hydrogen-containing gas, continuous supply ofhydrogen fuel to fuel cell, reaction equipment and fuel cellsystem | |
JP5190162B2 (en) | Method and reactor for performing non-adiabatic catalytic reaction | |
JPH10259002A (en) | Operation of membrane reactor and membrane reactor used therefor | |
JPS63162502A (en) | Manufacture of hydrogen by steam catalytic reforming of methanol | |
EA005001B1 (en) | Process and apparatus using plate arrangement for reactant heating and preheating | |
JPS6384629A (en) | Heat exchanger type reactor used for performing reaction accompanying generation of hydrogen | |
JPS6385002A (en) | Method for taking out hydrogen from cyclohexane at low temperature | |
KR102262103B1 (en) | Reformer system including plasma apparatus | |
GB1470631A (en) | Tubular heater for catalytically cracking hydrocarbons | |
JP4288179B2 (en) | Hydrogen generator | |
JPS6384630A (en) | Heat exchanger type reactor used for performing reaction accompanying generation of hydrogen | |
Gallucci et al. | A review on patents for hydrogen production using membrane reactors | |
JP2755685B2 (en) | Hydrogen production method for fuel cell | |
JPH04321502A (en) | Production of hydrogen for fuel cell, apparatus and method for feeding | |
JP2007076992A (en) | Apparatus for producing hydrogen and fuel cell system using the same | |
JPH0640704A (en) | Reactor for dehydrogenation reaction |